CS250/EE 387 - LECTURE IO- LOCALITY!

AgENDA
() REcAP + WARmup w/ RM $M_{g}(2, r)$.
(1) Loci Correctable Codes
(2) RM CODES as LCCs
(3) HIGH-RATE LCCS [sketch]

GASTROPOD FACT.
slugs (which have small, internal shells) are thought to have evolved from snails (with large external shells). In fact, if you expose snail eggs to platinum, they will develop without shells, and the thought is that the mechansm for this hes to de wI the evolutionary snail \rightarrow slug mechanism.
(0) RecAP. Last time, we saw how to correct binary RM codes. Thisalgonithm had a nice property: we recovered the symbols Cs one-at-a-time, by looking LOCALY at different sets.
The APPROACH Find a bunch of disjoint sets that can "vote" for each cocleword symbol. This was the approach f
from last lecture from last lecture Not too many of these sets will be compted if there are not too many errs... so the majority vote will be the correct value!
or rather "exploit locality"
The algs we sew last time are "LOCAL" in the sense that
(a) We recover one symbol at time
(b) We do it by looking at small groups of other symbols.

All this should make us wonder:
If we ONLY want one symbol of the codeword, can we get it in SUBLINEAR (on)) TIME???

A LOCALLY CORRECTABLE CODE allows us to do this. (And RM codes are LCCS).
(1) LOCALLY CORRECTABLE CODES.

Let us try to formalize the question in the box.
WO THE $C \leq \mathbb{F}_{q}^{n}$ is a (δ, Q)-LOCALLY COREETABLe CODE (LCC) if there is an algorithm. A so that the following holds:
for all $w \in \mathbb{F}_{q}^{n}$ so that $\exists c \in C$ s.t. $\Delta(c, w) \leq \delta n$, and $\forall i \in[n]$, $A_{\sim}^{(w)}(i)$ makes at most Q queries to w and rectums c_{i}.
$\uparrow_{\text {input is } i}$
A has oracleacessstow
Does this mate sense? NO.
Sure, it parses, but if $Q=o(n)$ then this is a vacuous definition.
CARTOON:

That is, if the queries are deterministic, and $Q<\delta n$, then the adversary can Completely mess up the algorithm's view.

Instead, we will need to RANDOMIZE the queries if we want to deal with an adversary.

DEF. $C \subseteq \mathbb{F}_{q}^{n}$ is a (δ, Q, γ)-LOcally Correctable Code (LCC) if there is a randomized algorithm A so that the following holds:
for all $w \in \mathbb{F}_{q}^{n}$ so that $\exists c \in C$ st. $\Delta(c, w) \leq \delta n$, and $\forall i \in[n]$,

- $A^{(w)}(i)$ makes at mast Q queries to w $\widehat{T}_{\text {input is } i}$
A has oracleaccesstow
- $A^{(\omega)}(i)=c_{i}$ with probability at least $1-\gamma$.

OTHER NOTIONS of LOCALITY:

- If you only wont to recover a MESAGE SMBBL x_{i} instead of a COOEVORDS SYMBOL c_{i}, it's called a LOCALLY DECODABE CODE.
- If there's no adversary and you just want to beadle to recover any symbol in SoME

- Ass: Regenirratng codes, locale testable codes, relaxed lees, maximally recoverable cods,...

Brief Lit. Review on LCC's.

Q	n (as a function of k)	Comments
2	$n=\Theta\left(2^{k}\right)$	Matching upper lower bounds here.
3	$k^{2} \leq n \leq \exp \left(\exp \left(\operatorname{lglg}(k)^{0.99}\right)\right)$	The upper bd is achally an LDC
$O(\log ((1))$	$k \leq n \leq \operatorname{poly}(k)$	
$O\left(n^{\varepsilon}\right)$	$k \leq n \leq(1+\alpha) k$ for any $\alpha>0$	

Toclay weill see how RM codes fit in, sterling at $Q=2$ and ending at $Q=n^{\varepsilon}$.
(2) RM codes as LCCs.
(aA) $Q=2$.
Last time, we saw the following alg for decoding the Hadamard Code:

ALG. Input: $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\Delta(g, f)<2^{m-2}$ for some $f \in R M_{2}(m, 1)$
Output: f.

$$
\text { For } i=1, \ldots, m:
$$

For each $\beta \in \mathbb{F}_{2}^{m}$:

$$
\text { Let } \hat{c}_{i}(\beta)=g(\beta)+g\left(\beta+e_{i}\right)
$$

Set $\hat{c}_{i}=\operatorname{MAJ}\left\{\hat{c}_{i}(\beta): \beta \in \mathbb{H}_{2}^{m}\right\}$
RETURN $f\left(X_{1}, \ldots, X_{m}\right)=\sum_{i} \hat{c}_{i} X_{i}$.

We can easily modify this algorithm to be local:

ALG. Input: Queryccash $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\Delta(g, f)<2^{m-2}$ for some $f \in R M_{2}(m, 1)$, and on index $i \in[m]$
Output: A guess for $f\left(e_{i}\right)$

Choose $\beta \in \mathbb{F}_{2}^{m}$ atrandom.
RETURN $g(\beta)+g\left(\beta+e_{i}\right)$

As stated that only recovers message symbols but it is easily modified to return any codeword symbol:

ALG. Input: Qneryccast $g: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ st. $\left.\Delta g, f\right)<2^{m-2}$ forsome $f \in R H_{2}(m, 1)$, and an index $\alpha \in \mathbb{F}_{2}^{m}$
Output: A guess for $f(\alpha)$

Choose $\beta \in \mathbb{R}_{2}^{m}$ at random.
RETURN $g(\beta)+g(\beta+\alpha)$

CLAIM: $\operatorname{RM}_{2}(m, 1)$ is a $(\delta, 2,1-2 \delta)$-LCC for any $\delta<1 / 4$.
proof. If $g(\beta)=f(\beta)$ and $g(\beta+\alpha)=f(\beta+\alpha)$
(*)
then $g(\beta)+g(\beta+\alpha)=f(\beta)+f(\beta+\alpha)=f(\alpha) \quad$ since $\operatorname{deg}(f)=1$.
(*) happens with probability $\geqslant 1-2 \delta$, since
Notice that it's Ok iffy has a constant term since it will cancel.
$\mathbb{P}\{g(\beta) \neq f(\beta)\}=\mathbb{P}\{g(\beta+\alpha) \neq f(\beta+\alpha)\} \leqslant \delta$, since β and $\alpha+\beta$ are both w funumly numen. (Notice that they ere NoT jointly uniform, but exch marginal is
uniform).

GREAT! Now we have a 2 -query LCC. But the rate is not great: $\mathrm{m} / 2^{\mathrm{m}}$.
Questuws:
(1) Can we do better for $Q=2$?

No. See [Kerendis+Wolf]
(2) What if $Q=\omega(1)$?

YES! Coming up next.
(2B) $Q=\log (n)$
First Ter: $R M_{2}(m, r)$, like we saw last lime. This gives us a local alg $w / Q=2^{d}$.

Problem: If $Q=\omega(1)$, then the logic ion above ("hope we avoid all the enters") fails badly. If Q is large, then WHP a \&-faction of our quines will be compiled.

SECOND TRY: Well still use an RM code, but over a bigger field.
This way, our queries will actually be robust to a little bit of noise.
For motivation, consider $R M_{q}(2, r)$.
That is, the codewords of $R M_{q}(2, r)$ are evaluations of bivaniate polynomials

$$
f(X, Y)=\sum_{i+j \leqslant r} c_{i, j} X^{i} Y^{j}
$$

GOAL: Recover single symbol (say, $f(\alpha, \beta))$ given query access to $g: \mathbb{T}_{q}^{2} \rightarrow \mathbb{T}_{q}$ with $\Delta(g, f) \leq \delta$.

We canthink of codewords as $q \times q$ grids of evaluation points. 2

Suppose I want to recover
As before, we want to find a bunch of LOCAL, LINEAR relationships involving $f(0,0)$.

$f_{t a l o^{\prime}}$		

$$
\begin{aligned}
\leftarrow \text { This row is } & \left(f(0,0), f(0, \gamma), \ldots, f\left(0, \gamma^{-1}\right)\right) \\
=: & \left(g(0), g(\gamma), \ldots, g\left(\gamma^{-1}\right)\right)
\end{aligned}
$$

where $g(Y):=f(O, Y)=\sum_{i j \leqslant \leqslant r} c_{i} O^{i} \cdot r^{j}$

$$
=\sum_{j \leqslant r} c_{j} j^{j}
$$

\sum Similarly, this column is $\left(\begin{array}{l}h(0) \\ h(x) \\ \vdots \\ h\left(x^{4-1}\right)\end{array}\right)$ where $h(x)=\sum_{j \leqslant r} c_{j 0} x^{j}$
Hey, those are univariate polynomials! (aka, RS codewords).
Moreverer, the restriction of f to ANY line is an RSccleword!
Consider the line $L(z)=\left(a_{1} z+b_{1}, a_{2} z+b_{2}\right)$, $a_{i,} b_{i} \in \mathbb{F}_{q}$.
Then $f(L(z))=\sum_{i+j \leqslant r}\left(a_{1} z+b_{1}\right)^{i}\left(a_{2} z+b_{2}\right)^{j}$
$=$ some degree $\leq r$ polynomial in Z.

The lines through $f(0,0)$ have the properties we want:

- There are not too many (only) points per line.
- Any two lines through $f(0,0)$ don't intersect anywhere else.

Pictures):

This inspires an algorithm:
ALG. (Let $r<q$ and suppose $\delta<\frac{1}{2}(1-r / q)$.)
Input: Querycecast $g: \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}$ st. $\Delta(g, f)<\delta \cdot q^{2}$ for some $f \in R M_{q}(2, r)$.
and an index $(\alpha, \beta) \in \mathbb{F}_{q}^{2}$
Output: A guess for $f(\alpha, \beta)$.
Choose $(\sigma, \tau) \in \mathbb{F}_{q}^{2}\{\{(0,0)\}$ at random, let $L(z)=(\sigma \cdot z+\alpha, \tau \cdot z+\beta)$.
Query $g(L(\lambda))$ forall $\lambda \in \mathbb{F}_{q}$ and let $\tilde{h}(z):=g(L(z))$.
UseRS decoding to find an $h \in \mathbb{F}_{q}[z]$, deg $(h) \leq r$, so that $\Delta(h, \breve{h})<\frac{q-r}{2}$
RETURN $h(0)$.

CLAIM. For any $\delta>0, \quad A L G$ is comect with prob. $\geqslant 1-\left(\frac{2 \delta q}{q-r-1}\right)$
Proof. The RS decoder will succesffully find $h(z)=f(L(z))$
as long as the number of emors on $\left\{L(\lambda): \lambda \in \mathbb{F}_{q}\right\}$ is $\left\langle\left\lfloor\frac{q-r}{2}\right\rfloor\right.$, since $f(L(z)) \in R S_{q}(q, r+1)$.
$\mathbb{E}\{$ \#emors on a line $\}=\delta q$, so by Markov's inequality,

$$
\mathbb{P}\left\{\text { \#emors on a line } \geq\left\lfloor\frac{q-r}{2}\right\rfloor\right\} \leqslant \frac{\delta q}{\left\lfloor\frac{q-r}{2}\right\rfloor} \leqslant \frac{2 \delta q}{q-r-1}
$$

NOTE: If $\delta<\frac{1}{2}(1-r / q)=\frac{1}{2} \operatorname{dist}\left(R M_{q}(2, r)\right)$, then the failure probability above is interesting, otherwise it reads "with prob. ≥ 0."
For example:

$$
\text { COR. } \quad \operatorname{RM}_{q}\left(2, r=q_{2}\right) \leq \mathbb{F}_{q}^{N^{2}}, \quad \text { is a }(\theta=\sqrt{N}, \delta, 4 \delta)-L C C
$$ for any $\delta<\frac{1}{4}$. The rate is $\approx 1 / 8$ and the distance is $1 / 2$.

We can do EXACIIY the same thing with $m>2$.
LARGE-but-CONSTANT m:
Then we get $Q=q=N^{1 / m}$, since $N=q^{m}$.
However, as $m \uparrow$ then the radev. \longleftarrow Recall $R=\binom{q+m}{m} / q^{m} \leq\left(\frac{c}{m}\right)^{m} \rightarrow 0$ as $m \rightarrow \infty$.
But this does give us a conslent-rate code $\omega / \quad Q=N^{1 / 100}$ (sey).
EVEN LARGER m :
Choose $m=q / \log (q)$.
This simple construction is the

Then $N=q^{q \log (y)}=2^{q}$ so. $Q=q=\log (N)$ state - of-the art for $\log (n)$

But the rade is even worse, and in fact guesto 0 like $1 /{ }^{\text {poly }}(\mathrm{n})$.

So far, we hove sen how to we RM codes to get:

Q	n (asafunchin of $k)$	Code
2	$n=\theta\left(2^{k}\right)$	$\operatorname{RM}_{2}(m, 1)$
$\log _{(n)}(n)$	$n=\operatorname{poly}(k)$	$\operatorname{RM}_{q}(m, r)$ for $m=q / \log (q), q>r$
n^{ε}	$n=\Theta_{\epsilon}(k)$	$R M_{q}(m, r)$ for $m=1 / \varepsilon, q$ rr
\sqrt{n}	$n=8 k$	$R M_{q}(2, q / 2)$

All of these have pretty low rote. Could we get an LCC with rote $\rightarrow 1$?
For $\theta=n^{\varepsilon}$ (and even a bit smaller), the answer is YeS.
There are several constructions. Here's a sketch of one based on RM codes.
(2) High -RATE LCCs.

The thing we needed from RM codes are that restrictions to lines are low-deg polys.

To make the rate better, we might try

$$
e=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{q} m\right)\right): f \in \mathbb{F}_{q}[X], \text { AND } \operatorname{deg}(f(L(z))) \leq r \forall \text { lines } L\right\}
$$

This would be a win as long as $|C| \geqslant\left|R M_{q}(m, r)\right|$, aka, as long as there are high-degree polynomials whose restrictions to lines are low-degree.

Question.
N.

ANSWER. Over \mathbb{R} or $\mathbb{C}: \quad$ NO. (finereaise!)
Over \mathbb{F}_{p}, for prime $p: N O$. (see [Rubinild S-Sudan'gle])
Over \mathbb{F}_{q}, and $q>2 \cdot r$: NO. (" " ")
Over \mathbb{F}_{q}, and $q=r(1+\epsilon)$: YES, and there are LOTS of them.
[Guo, Kopparty, Sudan' 13]

EXAMPLE. Consider $f(X, Y)=X^{2} Y^{2}$ over \mathbb{F}_{4}.
The degree of f is 4 .
Any restriction of for a lire is equivalent to a polynomial of deg $\leq 3=q-1$. (Nat to happoul).
$\underset{\text { CLAIM }}{\forall \text { lines } L: \mathbb{F}_{4} \rightarrow \mathbb{F}_{4}^{2}, \quad \operatorname{deg}(f(L(z))) \leq 2 . ~}$
pf. Say $L(Z)=(\sigma Z+\alpha, \tau Z+\beta)$.

$$
\begin{aligned}
f(L(z)) & =(\sigma z+\alpha)^{2}(\tau z+\beta)^{2} \\
& =\left(\sigma^{2} z^{2}+\alpha^{2}\right)\left(\tau^{2} z^{2}+\beta^{2}\right) \quad\left[(a+b)^{2}=\alpha^{2}+b^{2} \text { in } F_{z}\right] \\
& =\sigma^{2} \tau^{2} z^{4}+\left(\alpha^{2} \tau^{2}+\sigma^{2} \beta^{2}\right) z^{2}+\alpha^{2} \beta^{2} \quad[\text { alqubrc }] \\
& \equiv\left(\alpha^{2} \tau^{2}+\sigma^{2} \beta^{3}\right) z^{2}+\sigma^{2} \tau^{2} z+\alpha^{2} \beta^{2} . \quad\left[\alpha^{4}=\alpha \text { in } F_{4}\right]
\end{aligned}
$$

That's just one example, but it tums out there are actually LOTS, enough so that

$$
C=\left\{\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{q} q^{m}\right)\right): f \in \mathbb{F}_{q}[X], \text { AND } \operatorname{deg}(f(L(z))) \leq r \forall \text { lines } L\right\}
$$

has $|C| \geq q^{(1-\epsilon) \cdot\left(q^{n}\right)}$, aka $\operatorname{RATE}(C) \geq 1-\epsilon$.
C is called a "LIFTED CODE."
The (Guv, Kpparty, Sudan)

$$
\left.\begin{array}{l}
\forall m>0, q=2^{t}, \forall \varepsilon>0, \exists \varepsilon^{\prime}>0 \text { st. the est } \\
\quad S=\left\{f: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q} \quad \begin{array}{c}
\left.\mid \text { has degrees: }\left(1-\varepsilon^{\prime}\right) q \text { reschidioins }\right\}
\end{array}\right\} \\
\text { of ALL lies }
\end{array}\right\}
$$

COR. $\forall \varepsilon, \alpha>0, \exists \delta>0$ and $\gamma>0$ st. there exists a family of codes $C \subseteq \mathbb{F}_{q}^{n}$ so that C is a $\left(n^{\alpha}, \delta, \gamma\right)-L C C$ of rate $1-\varepsilon$.
(One can doa bit better than this: see [Koppasty, Meir, Ron-Zewi, Sacral, 2015].)

Recap: - RM codes hare nice local structure

- They are $L C C S$ with $Q=2, \log (n), n^{1100}$ although the rate gets bad.
- To get rate $1-\varepsilon$ with $Q=n^{1 / r o w}$, we con "lift" RM coles.
- In general, there are TONS of open questions about LCCs!

QUESTIONS To PONDER
(1) Can you show that k must be at least $n^{2+\epsilon}$ for 3 -query $L C C$'s?
(2) Can you beat RM codes for $Q=\log (n)$?
(3) Can you do anything with the Hadamard code when $\delta>1 / 4$?

