CS250/EE387 - LECTURE 16-LOCALITY!

A LOCALLY CURRECTABLE CODE allows us to do this. (And RM codes are LCCS).

That is, if the queries are deterministic, and Q < Sn, then the adversary can COMPLETELY moss up the algorithm's view.

Instead, we will need to RANDOMIZE the queries if we want to deal with an adversary.

DEF.
$$C \in F_{q}^{n}$$
 is a (δ, Q, γ) - LOCALLY CORRECTABLE CODE (LCC) if there is
a randomized algorithm A so that the following holds:
for all we F_{q}^{n} so that $\exists c \in C$ s.t. $\Delta(c, w) \leq \delta n$, and $\forall i \neq ln \exists$,
• $A_{1}^{(w)}(i)$ makes at most Q queries to w
(limit is i
A has oracle access to w
• $A_{1}^{(w)}(i) = C_{i}$ with probability at least 1- γ .

OTHER NUTIONS of LOCALITY:

- IF you only want to recover a MESSAGE STMBOL X; instead of a CODEWORD SYMBOL C;, it's called a LOCALLY DECODABLE CODE.
- If there's no adversary and you just want to be able to recover any symbol in SOME local way (not including that symbol) it's a LOCALLY REPAIRABLE CODE. ("RECOVERABLE CODE".
- Also: REGENERATING CODES, LOCALLY TESTABLE CODES, RELAXED LOCS, MAXIMALLY RECOVERABLE CODES, ...

BRIEF LIT. REVIEW on LCC's.

$$\begin{array}{c|c} Q & n (as a function of k) & Comments \\ \hline 2 & n = \Theta(2^k) & Matching upper blow r \\ \hline 3 & k^2 \leq n \leq \exp(\exp(-J_{Q}a_{Q}(k)^{O.99}))) & The upper bd is \\ \hline 3 & k^2 \leq n \leq \exp(\exp(-J_{Q}a_{Q}(k)^{O.99}))) & The upper bd is \\ \hline 0(log(n)) & k \leq n \leq pdy(k) & \\ \hline 0(n^{\epsilon}) & k \leq n \leq pdy(k) & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \leq n \leq (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > p & \\ \hline 0(n^{\epsilon}) & k \in (1+\alpha)k \text{ for any } \alpha > \\ \hline 0(n^{\epsilon})$$

We can easily modify this algorithm to be local:

ALG. Input: Query access by $g: \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}$ s.t. $N(g, f) < 2^{m-2}$ for some $f \in \mathbb{R}M_{2}(m, 1)$, ond an index $i \in \mathbb{I}m$ Output: A guess for $f(e_{i})$

> Choose $\beta \in \mathbb{F}_2^m$ at random. RETURN $g(\beta) + g(\beta + e_i)$

As stated that only recovers message symbols but it is easily modified to return any codeword symbol:

•

ALG. Input: Queny access by $g: \mathbb{F}_2^m \to \mathbb{F}_2$ s.6. $Ng, f) < 2^{m-2}$ for some $f \in \mathbb{RM}_2(m, 1)$, ond an index $O \in \mathbb{F}_2^m$ Output: A guess for f(a)

> Choose $\beta \in \mathbb{H}_{z}^{m}$ at random. RETURN $g(\beta) + g(\beta + \alpha)$

CLAIM: RM2(m, 1) is a (S, 2,1-2S)-LCC for any S<1/4.

proof.Ifg(B) = f(B) andg(Btd) = f(Btd)(*)theng(B) + g(B+d) = f(B) + f(B+d) = f(d)sincedeg(f)=1.(*)happens with probability
$$\geq 1-2S$$
, sincea constant term since it will
cancel.(*)happens with probability $\geq 1-2S$, sinceRE
g(B) + f(B) = RE
g(B+d) = f(B+d) = f(B+d)

·

QUESTIONS:

Can we do better for Q=2?
 NO. See [Kerenadis+Walf]
 What if Q = ω(1) ?
 YES! Coming up next.

(2B) ($2 = \log(n)$

FIRST TRT: $RM_2(m,r)$, like we saw last time. This gives us a local alg $W/Q = 2^d$.

> PROBLEM: If $Q = \omega(1)$, then the logic from above ("hope we avoid all the entrors") fails badly. If Q is large, then WHP a S-fraction of our queries will be compled.

SECOND TRY: We'll still use an RM code, but over a bigger field. This way, our queries will achaely be vobust to a little bit of noise.

For motivation, consider $RM_q(2,r)$. That is, the codewords of $RM_q(2,r)$ are evaluations of bivariate polynomials

$$f(X,Y) = \sum_{i+j \leq r} c_{i,j} X^{i} Y^{j}.$$

GOAL: Recover a single symbol (say, $f(\alpha_1 \beta)$) given query access to $q: \mathbb{F}_q^2 \to \mathbb{F}_q$ with $\Delta(q, f) \leq \delta$.

The lines through F(0,0) have the properties we want:

- There are not too many (unly q) points per line.
- Any two lines through f(0,0) don't intersect anywhere else.


```
This inspires an algorithm:
```

ALG. (Let $r < q$ and suppose $S < \frac{1}{2}(1 - \frac{1}{q})$.)
$\text{Input: Query access b } g: \#_q^2 \rightarrow \#_q \text{s.t.} \Delta(g, f) < \delta \cdot q^2 \text{for some} f \in \mathcal{RM}_q(2, r).$
ond an index $(\alpha_{1\beta}) \in \mathbb{F}_{q}^{2}$
Output: A guess for f(x,13).
Choose $(\sigma, \tau) \in \mathbb{H}_{q}^{2} \setminus \{10, 0\}$ strandom, let $L(Z) = (\sigma \cdot Z + \alpha, \tau \cdot Z + \beta)$.
Query $g(L(\lambda))$ for all $\lambda \in \mathbb{F}_q$ and let $\hat{h}(Z) := g(L(Z))$.
of the No
Use RS decoding to find an heff _q [Z], deg(h) < r, so that $\Delta(h, \tilde{h}) < \frac{q-r}{2}$
RETURN L(O).

CLAIM. Tor any S>O, ALG is correct with prob
$$\ge 1 - \left(\frac{254}{4+7-1}\right)$$

Proof. The RS decoder will successfully find $h(2) = f(L(2))$
as long as the number of errors on $\{L(\lambda): \lambda \in F_{1}^{-1}, T \in \{\frac{n-1}{2}\}$,
succ $f(L(2)) \in RS_{1}(q, r+1)$.
 $E\{$ decrors on a line $\} = Sq$, so by Markov's inequality,
 $R\{$ decrors on a line $\} = Sq$, so by Markov's inequality,
 $R\{$ decrors on a line $\ge \lfloor\frac{q-r}{2}\rfloor \le \frac{Sq}{\lfloor\frac{n-r}{2}\rfloor} = \frac{2Sq}{\lfloor\frac{n-r}{2}\rfloor}$
NOTE: If $S < \frac{1}{2}(1 - Vq) = \frac{1}{2} did(RM_{1}(2, r))$, then the failure probability
 $\exists boxe is interesting, Otherwise it reacts "with prob ≥ 0 ."
 $br reample:$
 COR . $RM_{q}(2, r=V_{2}) \le F_{q}^{N}$, is a $(O=NT, S, 4S)-LCC$
for any $S \stackrel{+}{=}$. The case is $\le V_{2}$ and the distance is V_{2} .
We can do EXALLY the same thing with $m>2$.
 $LARGIC Lui-CARSTART m:$
Then we get $Q = q_{-} N^{Vm}$, since $N=q^{n}$.
However, as mT time turket. C
But this dass give us a constan-rate codew? $Q = N^{Vm}$ Supl.
 $\frac{PON LINGGER m:}{Powe = z^{n}}$ so $Q = q_{-} \log(N)$
But the rate is some wave, and in fact guesto O like Yaylon.$

So far, we have seen how to use RM codes to get:

Q.	n (as a funchion of k)	Code
2	$n = \Theta(2^k)$	$RM_{2}(m, 1)$
log(n)	n = poly(k)	$RM_q(m,r)$ for $m \approx 8' \log(q)$, $q > r$
NE	$n = \Theta_{\epsilon}(k)$	$RM_q(m,r)$ for $m = \frac{1}{2}$, $q > r$
Jn'	n= 8k	$\operatorname{RM}_{q}(2, \sqrt[4]{z})$

All of these have pretty low rate. Could we get an LCC with rate $\rightarrow 1$?

For $Q = n^{\epsilon}$ (and even a bit smaller), the answer is YES. There are several constructions. Here's a sketch of one based on RM codes.

2) HIGH - RATE LCCs.

The thing we needed from RM codes are that restrictions to lines are low-deg polys.

To make the rate better, we might try

 $C = \{(f(\alpha)), \dots, f(\alpha_{qm})\}: f \in F_q[X], ND deg(f(L(Z))) \leq r \forall lines L\}$

This would be a win as long as $|C| \ge |RM_q(m,r)|$, ska, as long as there are high-degree polynomicals whose restrictions to lines are low-degree.

QUESTION. Does there exist a polynomial
$$f: \mathbb{F}_{q}^{m} \to \mathbb{F}_{q}$$
 of degree >r so that,
 \forall lines L: $\mathbb{F}_{q} \to \mathbb{F}_{q}^{m}$, $deg(f(L(z))) \leq r$? (for $r < q^{-1}$)
This means $\exists g(z) w | deg(z) \leq r$ s.t. $g(\lambda) = f(L(\lambda))$
 $\forall \lambda \in \mathbb{F}_{q}$

ANSWER. Over
$$\mathbb{R}$$
 or \mathbb{C} : NO. (fun exercise!)

Over
$$\mathbb{F}_q$$
, and $q > 2:r : NO.$ (" ")

Over
$$F_q$$
, and $q \approx r(1+\epsilon)$: YES, and there are LOTS of them.
[Guo, Kopparty, Sudan' 13]

EXAMPLE. Consider
$$f(X,Y) = X^2Y^2$$
 over f_4 .

CLAIM
$$\forall$$
 lines $L: \mathbb{F}_4 \to \mathbb{F}_4^2$, deg $(f(L(Z))) \leq 2$.

$$\begin{array}{c|c} pf. & Say & L(Z) = (\sigma Z + \alpha, \tau Z + \beta). \\ f(L(Z)) = (\sigma Z + \alpha)^{2} (\tau Z + \beta)^{2} \\ & = (\sigma^{2} Z^{2} + \alpha^{2}) (\tau^{2} Z^{2} + \beta^{2}) \quad \left[(a+b)^{2} = a^{2} + b^{2} \text{ in } F_{Z^{2}} \right] \\ & = \sigma^{2} \tau^{2} Z^{4} + (a^{2} \tau^{2} + \sigma^{2} \beta^{2}) Z^{2} + a^{2} \beta^{2} \quad \left[alg_{2} br_{3} \right] \\ & = (\alpha^{2} \tau^{2} + \delta^{2} \beta^{2}) Z^{2} + \sigma^{2} \tau^{2} Z^{2} + a^{2} \beta^{2}. \quad \left[a'' = a' \text{ in } F_{q} \right] \end{array}$$

That's just one example, but it turns out there are actually LOTS, enough
so that

$$C = \left\{ (f(u)), \dots, f(uqm) \right\} : f \in fly[X], ND deg(f(L(Z))) \leq r \forall lives L \right\}$$
has $|C| \geq q^{(1-\varepsilon) \cdot (q^m)}$, ake $RATE(C) \geq 1-\varepsilon$.
C is called a "LIFTED CODE."
Thim (Guo, Kapparty, Suckan)
 $\forall m > 0, q = 2^t, \forall \varepsilon > 0, \exists \varepsilon' > 0 \text{ s.t. the sol}$
 $S = \left\{ f : Fl_q^m \Rightarrow Fl_q = \right\} f$ has degree $\epsilon(1-\varepsilon')q$ restrictions $\right\}$
has dim(S) $\geq (1-\varepsilon) \cdot q^m$
COR. $\forall \varepsilon, \alpha > 0, \exists \delta > 0$ and $\gamma > 0$ s.t. there exists a family of
codes $C \in Fl_q^m$ so that C is a (nⁿ, δ, γ)-LCC of rate $1-\varepsilon$.
(One can do a bit batter than this: see. [Kopparty, Meir, Ron-Zewi, Saraf, 2015].)

RECAP: RM codes have nice local structure They are LCCs with Q = 2, log(n), $n^{1/100}$ although the rate gets bed. To get rate $1-\varepsilon$ with $Q = n^{1/100}$, we can "lift" RM codes.

· In general, there are TONS of open questions about LCCs.

QUESTIONS TO PONDER

- Can you show that k must be at least N^{2+e} for 3-query LCC's?
 Can you beat RM cocles for Q = log(n)?
 Can you do anything with the Hadamard code when S> 4 ?

 - Can you do anything with the Hadamard code when S> 1/4 ?