CS250/EE387 - LECTURE 17 - LOCALITY AND LISTS

Suppose we want to learn. G from samples.

If the Fourier spectrum of G is ''spiky," it suffices to estimate $\mathbf{y}_{\omega} \simeq \hat{G}(\omega)$ for all ω so that $|\hat{G}(\omega)| > \tau$. Indeed, then we'd have

$$G(x) \approx \sum_{\omega: |\hat{G}(\omega)| > \tau} \hat{G}(\omega) (-1)^{\langle X, \omega \rangle} \simeq \sum_{\omega: |\hat{G}(\omega)| > \tau} y_{\omega} \cdot (-1)^{\langle X, \omega \rangle}$$

Tums out, we can estimate any <u>particular</u> $\hat{G}(w)$ from samples:

$$\hat{G}(w) := \frac{1}{2^m} \sum_{x} G(x) (-1)^{\langle x, w \rangle}, \quad \text{so choose a bunch of } x's at random, and estimate the sum.}$$

But we can't do this firall 2^m coeffs $\hat{G}(w)$, or else that takes $\Omega(2^m)$ samples - kinda dumb. Instead we'll just do it for the big ones... but we need to know which those are.

GOAL. Given query access to
$$G(\times)$$
 and a parameter $\tau > 0$, find a set S of size poly(m) so that $\forall \omega \omega / |\hat{G}(\omega)| \ge \tau$, $\omega \in S$.

Note: Well lose the [+] in the GOAL for
Now,
$$\hat{G}(\omega) \ge T$$

remains, $e_{1}^{\pm 1}$
 $\Rightarrow \frac{1}{2^{m}} \sum_{x \in F_{2}}^{\infty} G(x) \cdot (-1)^{\langle x, \omega \rangle} \ge T$
 $\Leftrightarrow \frac{1}{2^{m}} \left(\left| \frac{1}{x} : G(x) = (-1)^{\langle x, \omega \rangle} \frac{3}{3} \right| - \frac{1}{2} : G(x) + (-1)^{\langle x, \omega \rangle} 1 \right) \ge T$
 $\Leftrightarrow \frac{1}{2^{m}} \left(2 \left| \frac{1}{x} : G(x) = (-1)^{\langle x, \omega \rangle} \frac{3}{3} \right| - \frac{1}{2} : \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : G(x) = (-1)^{\langle x, \omega \rangle} \frac{3}{3} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : G(x) = \langle x, \omega \rangle \frac{3}{3} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : G(x) = \langle x, \omega \rangle \frac{3}{3} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : g(x) = \langle x, \omega \rangle \frac{3}{2} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : g(x) = \langle x, \omega \rangle \frac{3}{2} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : g(x) = \langle x, \omega \rangle \frac{3}{2} \right] \ge \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : g(x) = \langle x, \omega \rangle \frac{1}{2} = \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : g(x) = \langle x, \omega \rangle \frac{1}{2} = \frac{1}{2} + \frac{T}{2}$
 $\Leftrightarrow \frac{1}{2^{m}} \left[\frac{1}{x} : \frac{1}{2} - \frac{T}{2} , \qquad \text{where} \quad G(x) = (-1)^{\frac{g(x)}{x}}, \quad \text{ska, } g(x) = \begin{cases} 0 \\ 4 \\ 6 \\ (x) = (-1)^{\frac{g(x)}{x}}, \quad \frac{1}{2} \\ (x) = (-1)^{\frac{g(x)}{x}}, \quad$

New GOAL. Given query access to a received word g:
$$\mathbb{H}_{2}^{m} \to \mathbb{F}_{2}$$
, find all the
Hisdemoid codensards $(\langle \omega, x, s \rangle, ..., \langle \omega, x_{2^{m}} \rangle) = (\mathcal{L}_{n}(x_{1}), ..., \mathcal{L}_{n}(x_{2^{m}}))$
so that $\delta(g, \mathcal{L}_{n}) \leq \frac{1}{2} - \varepsilon$.
That is, we'd like to LIST DECODE the Hadaward Code... in SUBLINEAR TIME!
NOTCE: Dist (Hadamad Code) = $\frac{1}{2}$, so we can only uniquely decode up to racius '4.
Know dist ($\mathbb{R}^{1}(w, n)$) = $\frac{1}{2}$, so we can only uniquely decode up to racius '4.
Know dist ($\mathbb{R}^{1}(w, n)$) = $\frac{1}{2}$, so we know that the list size isn't too big.
But we could hope to list-decode up to '2. In this case, the Jahrson adjus is
 $J_{2}(\frac{1}{2}) = \frac{1}{2}(1 - \sqrt{1 - 2\cdot \frac{1}{2}}) = \frac{1}{2}$, so we know that the list size isn't too big.
To warm up, let's do it for $\frac{1}{2}$:
ALG O.
Input: guey access to g: $(\mathbb{F}_{2}^{m} \to \mathbb{F}_{2}, a perometer \varepsilon$.
Output: The we \mathbb{F}_{2}^{m} s.t. $\delta(g, \mathcal{L}_{m}) \leq \frac{1}{2} - \varepsilon$, wy pab $\frac{1}{2}$ We.
Drew $\mathcal{P}_{1}, ..., \mathcal{P}_{T} \in \mathbb{F}_{2}^{m}$ uniformly direndom.
For $i = 1, ..., m$: \sum Set $T = O(\mathbb{W}_{2^{m}})$
For $t \in 1, ..., T$:
 $Set \tilde{W}_{1}(\mathbb{R})$ by $g(p)$
 $\tilde{W}_{2} \leftarrow MAS(\tilde{W}_{2}(p_{1}))$
Notice less of mode. $T(1 + m)$
 \mathbb{R} FTURN $\tilde{W}_{2} = (\tilde{W}_{1}, \tilde{W}_{2}, ..., \tilde{W}_{m})$ $\mathbb{Q}^{p_{1}}(\mathbb{R})$ \mathbb{C}_{1}

At this point we've seen this ally several times.

Why dues this work? As we've seen before:

$$\begin{array}{l} \mathbb{P} \left\{ \widetilde{w}_{i}\left(\beta\right) \text{ is incorrect } \right\} &= \mathbb{P} \left\{ either g(e_{i} + \beta) \text{ or } g(\beta) \text{ were in enorf} \\ & \in \left(\frac{1}{4} - \epsilon\right) + \left(\frac{1}{4} - \epsilon\right) \\ & = \frac{1}{2} - 2\epsilon \,. \end{array}$$

$$\begin{split} & \underset{\substack{= \\ P \\ E \\ = \\ P \\ \frac{1}{2} \\ \stackrel{+}{\longrightarrow} \\ \stackrel{\tau}{\underset{\substack{= \\ t=1 \\ t=1$$

Now union bound overall i and wir.

OK, but now we want to do it up to $\frac{1}{2} - \varepsilon$, not $\frac{1}{4} - \varepsilon$.

Suppose we had access to a magic genie who will just tell us the correct value $\langle w, B_j \rangle$. But we can only ask the genie for Tvalues.

ALG 1.

Input: query access to
$$q: [t_2^m \to \overline{t}_2, a \text{ parameter } \varepsilon, and a magic genie.
Output: An we $\overline{t_2^m}$ s.t. $S(q, l_w) \leq \frac{1}{2} - \varepsilon, w/ \text{ prob } qq/100.$
 $set T = O(m/\varepsilon^2)$
Draw $B_{1,...,B_T}$ uniformly at random.
Ask the genie for $b_{1,...,b_T}$ so that $b_i = \langle w, p_i \rangle$
For each $i = 1,...,m$:
For $t \in 1,...,T$:
 $Set \tilde{w}_i(\beta_i) = q(e_i + \beta_i) + b_t$
 $\tilde{w}_i \leftarrow MAJ(\tilde{w}_i(\beta_i))$
RETURN $\tilde{w} = (\tilde{w}_1, \tilde{w}_2, ..., \tilde{w}_m)$
This sly makes T-m queries.$$

Now, the same argument works:

$$P\{ \widetilde{w}_{i}(\beta_{t}) \text{ is incorrect } \} = P\{g(e_{i} + \beta_{t}) \text{ incorrect } \text{ or the genie lied } \}$$

$$= P\{g(e_{i} + \beta_{t}) \text{ incorrect } \} \quad (\text{because genies don't lie}).$$

$$\leq \frac{1}{2} - \varepsilon_{t}$$

so everything goes through as before.

The problem: WE DON'T HAVE A GENIE.

ALG 2.
Input: query access lo g:
$$F_2^{m} \rightarrow F_2$$
, a parameter ε ,
Output: A list of $\omega \in F_2^{m}$ s.t. $S(g, l_{\omega}) < \frac{1}{2} - \varepsilon$, ω prob 94/100.
Initialize $S < \phi$
For each $(b_1, \dots, b_T) \in F_2^{T}$:
define $GENIE_{b_0 \rightarrow b_T}(\varepsilon) = b_{\varepsilon}$
Run ALG 1. rising this genie to obtain ω
Add ω to S.
RETURN S
Why is this a good idee?

• If
$$S(l_{\omega}, q) \leq \frac{1}{2} - \epsilon$$
, then $\exists b_{1,2}, b_T \quad (=\langle \omega, p_1, \rangle, ..., \langle \omega, p_T \rangle)$
so that ALG1 returns ω . Thus ω ends up in the list S.

Why is this I bad idea?

$$\begin{array}{l} \cdot |S| = 2^{T} = 2^{O(m'\epsilon^2)} \ge |F_{2}^{m'}|.\\ \cdot But S \subseteq F_{2}^{m'} was supposed to be a small subset. \end{array}$$

To fix this, we will use a PSEUDORANDOM genie.

 To see what this means, consider the following way of picking the p's.

 • Choose β₁,..., βe randomly Cand (et l = log(T)]

 • Tor A ≤ Tell, define
$$P_A := \sum_{i \in A} B_i$$

 • Now I have $\partial^Q = T$ different values of B.

 • CLAIM. E $P_A := A ≤ Tell 3$ are PAIRWISE INDEPENDENT.

 • are independent.

 • Proof.

 • F.

 • PA - PA'

 • Pa + PA'

 • Proof.

 • F.

 • PA - PA'

 • Pa + PA'

 • Proof.

 • Pf.

 • Pa - PA'

 • Pa + PA'

 • Proof.

 • Pf.

 • Pa - PA'

 • Pa = PA' + E

 • Proof.

 • Pf.

 • Pa - PA'

 • Pa = PA' + E

 • Proof.

 • Pf.

 • PA - PA'

 • Pa = PA' + E

 • Pa = PA' + E

 • Proof.

 • Pf. PA - PA'

 • PA = PA' + E

 • Pa

- . Notice that our correctness argument before never used the fact that the Bi were fully independent: for Chebyshev we only needed pairwise independence.
- · So ALG1. works just fine with these B's !

ALG 3.

Input: query access to $q: \mathbb{F}_{2}^{m} \to \mathbb{F}_{2}$, a parameter ε , and a magic genie. Output: An $\omega \in \mathbb{F}_{2}^{m}$ s.t. $S(q, l_{\omega}) \leq \frac{1}{2} - \varepsilon$, ω / prob 99/100.

Draw
$$\mathcal{P}_{1}, \dots, \mathcal{B}_{\ell}$$
 uniformly at random, $\leftarrow l = \log(m/\epsilon^2) + O(1)$
Ask the genie for $\mathcal{D}_{1}, \dots, \mathcal{D}_{T}$ so that $\mathcal{D}_{i} = \langle \omega, \mathcal{B}_{i} \rangle$.

For A S [2], let BA = StEA Bt, let bA = StEA bt.

For each
$$i=1,...,m$$
:
For $A \subseteq [L]$:
Set $\widetilde{W}_i(\beta_A) = q(e_i + \beta_A) + D_A$
 $\widetilde{W}_i \leftarrow MAJ(\widetilde{W}_i(\beta_A))$

RETURN $\tilde{\omega} = (\tilde{\omega}_1, \tilde{\omega}_2, ..., \tilde{\omega}_m)$ This alg makes T-m queries.

Notice that if the genie is correct about $b_{1,...,b_{\ell}}$, then $\langle w, B_A \rangle = \sum_{t \in A} \langle w, B_{\ell} \rangle = \sum_{t \in A} b_{\ell} = b_A$, so the genie is correct about $b_A \neq A \leq \lfloor L \rfloor$.

•

This alg. is connect for exactly the same reason as before, since the B_A are pairwise independent.

ALG 4 (GOLDREICH-LEVIN)
Input: query access to g:
$$[F_2^m \rightarrow F_2, \exists paremeter z,$$

Output: A list of $w \in F_2^m$ s.t. $\delta(g, l_w) \leq \frac{1}{2} \cdot \varepsilon, w \mod qq/100$.
Initialize $S \leftarrow \phi$ set $l = log(m/e^z) + O(1)$
For each $(b_1, \dots, b_d) \in F_2^d$:
define $GENIE_{b_{1,2},b_d}(t) = b_t$
Run ALG 3 using this genie to obtain w
Add w to S.
RETURN S

We have basically already proven:

THM. The Goldreich Levin algorithm makes $pdy(m/\epsilon)$ queries to g and returns a list $S \in IF_z^m$ of size at most $pdy(m/\epsilon)$ so that, $\forall w \in IF_z^m$ with $S(l_w, g) \leq \frac{1}{2} - \epsilon$, $w \in S$.

Informal COR.

. (Kushilevitz- Mansour)

If $G: \mathbb{F}_2^m \rightarrow \{\pm 1\}$ is a Bodeon function, then we can estimate

$$\widetilde{G}(x) \simeq \sum_{\omega: |\widehat{a}(\omega)| > \tau} \widehat{G}(\omega) \cdot (-1)^{\langle x, \omega \rangle}$$

using $poly(m_{t})$ queries.

3 LOCAL LIST DECODING.

What we just saw was a LOCAL LIST DECODING ALGORITHIM.

DEF.
$$C \subseteq \sum_{i=1}^{n} i_{S} (Q, e, L) - LOCALLY LIST DECODABLE if:$$

There is a randomized algorithm A. That outputs at most L other algo B1, _, BL so that:

· Yie [L], B: takes an input je [n], uses at most Q queries to ge. Z".

Think of each B_i as a different genie. In the previous example, the B's were indexed by $(b_1, b_2, ..., b_d) \in \mathbb{H}_z^d$:

The reason we bother to give LOCAL LIST DECODING a name is because it has many applications. We've already seen one in learning theory, and here's another: PRGs from OWFs (This is what Goldreich + Levin, were interested in). WARNING: This will be extra handwavey. "DEF." A ONE-WAY FUNCTION (OWF) is a function that is easy to apply by hard to invert. Con you evaluate f on x? SURE. $f(x) = \alpha$. (an you find an x so that f(x)=ß? Umm... Inhuitively, a OWF gives a problem that is hard · We don't know if OWFs exist. In fact, $\exists OWF \Rightarrow P \neq NP.$ to solve lout easy to check, and theil's what P+NP means. · But there are several candidates: factoring, discrete log, etc. · And if a OWF exists, we can do some cool things with it. "DEF" PSEUDORANDOM GENERATOR. A PRG has output that is not very random, but is computationally difficult to distinguish from uniform. short-seed -> PRG -> loocong pseudorandom sequence Is that Uniformly random? { umm... (

We might try to make a PRG from a OWF as follows: · Say f is a OWF, f: Hg & > Hg & < rechnically, f should be a ONE-WAY PERMUTATION. • Suppose that this also means that it's hard to guess x_1 given f(x). (¥) Con you find be $\{q_i\}$ s.t. $\exists x \omega / x_1 = b$ and f(x) = B? · Now consider the PRG $\times \longrightarrow \mathbb{PRG} \longrightarrow (\mathfrak{x}_{1}, [f(\mathfrak{x})]_{1}, [f(f(\mathfrak{x}))]_{1}, [f(f(f(\mathfrak{x})))]_{1}, \dots)$ Random seed Uniformly randow? · Turns out this is a good PRG, assuming (*). · But there is no reason (*) should be true. A HARDCORE PREDICATE b(x) for f(x) is a function $b: H_z^k \to H_z$ so that "DEF" it's hard to guess b(x) given f(x). (an you find be ξq13 s.t. Ξ X ω/ b(x)=b and f(X)= B ? Umm... So in order to get PRGs from OWFs, we want a herdcore predicate for our OWF f.

QUESTIONS 10 PONDER.

(1) Can you locally list decode RMq (m,r) for r<q?
 (2) Can you learn Fourier-sparse fins from poly (^m/_e) RANDOM queries?
 (3) Can you think of other applications of local list decoding ?