
C52501 EE 387 - LECTURE 17 - Locality AND LISTS

AGENDA GASTROPOD FACT

The town of Elma
,

WA has
 an annual Slugfest featuring a

�1� Motivation : Leaming
BOOKINGS

uwo.ws fastest

slug
"

race
, on a course 24in long .

�2� Goldrich . Levin
Algorithm

The average
banana slug can move about 6.5in

per minute .

�3� Local List
Decoding .

ICF

@ RECAP
.

Last time we talked about LOCALLY CORRECTABLE CODES
.

The basic principle was illustrated
by

the Hadamard Code RMz(m ,
1)

,

RMZIM
,
1) = { Kw,

xD
,

...

,

(w
, xzm >) : wettzm }

The
key was that ti

,
(w

,
xi +

p
) + (w

, p
> = Cw

,
xD

,

solo
locally

recover (w
, xi)

we
query (w

, xitp >
,

< w
, 133 HOPE

they are not corrupted
,

and add them together.

�1� MOTIVATION : LEARNING BOOLEAN FNS
.

fthnughout
this lecture

, capital Idlers mean the
range

is { ±I3
.

Suppose
you

have
some Boolean function G :

qm→
{ . , ,+ , }

.

lowercase
9 :#

"

→ E have
range a .

You have
query

access 10 G and you'd like to learn an approximation

E
lo G .

DEF : for G :#
" '

→ { it

BY
the Fourier TRANSFORM of Gow Fa is

£iEzm→R
given by

G^
(w)

=z÷×§,,§k
) .fi)

↳

If

you
haven't

seen this before
,

but have
seen the Fun 'er Transform

over Q
,

all the same

things
hold

.
In particular

:

"

Parseval 's Thm
"

G(×l=w§÷mEHHk×

" >

and : t= In Eu
GKP £

w§#tGHt
so in particular the number of fun .cn coefficients

^G(w) so that ^G(w) > I is e

'

Ez
.

Suppose we want to learn G from samples .

If the Fourier spectrum of G is
"

spiky ,

"

it suffices to estimate ywafilw) for all wsothat Kilwll > T
.

Indeed
,

then We 'd have

GMT:&
,

,nEHHKw' a ftp.w.HMW?

Turns out
,

we can estimate
any particular £(w) from samples:

£ (w)

:=zn÷§
'

GK) H)<
" w >

,
so choose a

bunch of x 's at random
,

and estimate the sum .

But we can't do this frail 2

"
coeffs

GYW)
,

or else that takes RC

27
samples

- kinda dumb
.

Instead we 'll just do it for the big
ones

...

but We need to know which those are .

GOAL . Given
query

access to GKI and a parameter t > 0
,

find a set S of size

pdylm
)

so that

tw
w/

IEHI
> I

,

we
S

.

NOTE : We 'll loathe It in the GOAL for

Now
,

€ (w) ZT
simplicity . By repeating

whatever we

✓
remember

,

£{±' }
come up with for - G

,

it will be fine
.

←→

FEE
,

GKTHM " '
'

- t

←→ In (|{x : Gkkfhklw
'

31 - /{x : GKHthaw
'

1) = I

En (2/{x : Gkktikx 'w '

31-1) = I

⇒ ¥1{x : GKKHYW
'

}I=E+E

⇒ Em / { x :

gas
= a ,w>}| > £+42 where GKKH)9"Y aka

, gH={g.
GKH

Gkky

←→ S (g ,

lw) E £ - 92
,

where lw(xl=(×,w > and (lwlxi)
,

lwlxd
,

...

, lwkzn))

is a Hadamard codeword !

New Goal
.

Given
query

access to a received word

g
:# m→E

,
find all the

Hadamard codewords Kw ,

×
,
>

,
...

,
Cw

, Xzm)) = (lwk
,) ,

...

,
lwkzm))

so that S(g ,

lw) ⇐ I - e
.

That is
,

we'd like to LIST DECODE the Hadamard Code
.

. .

in SUBUNEARRME !

NOTICE :

yDist(
Hadamard Code) ;£

,
so we can

only

uniquely
decode up

10 radius " 4 .

(relative) /

You showed this on HWI
.

Also
,

dist (RMz(m,r11=z÷ ,

so dist (RMZIM ,
111=112

.

But we could hope to list . decode
up

to
'

k
.

In this case
,

the Johnson radius is

It 'd = Ell - FE) = tz
,

so we know that the list size isn't

toobig .

(
We also know this

�2� GOLDREKH - LEVIN ALG
.

from the
argument

With Pascual 's Thm

To warm up ,

let's do it for ¥ :
earlier

.

ALG

:O
.

Input :

quayacassbg :Fzm→E
,

a parameter e.

Output : The WEFM st .
S (g ,

lw) ft - E
, wlpnb

39%0
.

Draw P , ,
... ,Bte HIM uniformly at random

.

For it
,

... ,m :

f
Set T= Olmka)

Forte 1
,

...

,
T :

Set up !=gceitpltglp)

Wu
,

← MAJ (WYPH)

Nohietnisdymakestlttml

RETURN D=(WY ,wT
,

...

,
wnm)

queries
:

glpe) for t=l
,

... ,T

glpttei) for TECH
,

ic.cm]

Atthis point we're seen thisaly
several times

.

Why does this work ? As we've seen before :

P { wtlp) is incorrect } ±P{ either gleitp) or gcp
) were in error }

E (f - e) + lty - e)

=

Iz- ZE
.

P{ More than tz of the wimp) are incorrect }

=P{ FEI
,

#{ wiulpl incorrect 3 - Kal) > 2e }

⇐ tz ETI IE (I { win lpl incorrect] - K . zd)
'

by Chebyshev

(2 e)
2

=

¥2 . (I - E) (E + Ze)

=

(tlbe4T
16 .

e
2

⇐ Yoom if we choose T= 0 (Men) .

Now union bound overall i and win
.

OK
,

but now we want to do it
up

to ± - e
,

not ¥ - {
.

Suppose we
had

access to a
magic genie

who will
just

tell us the correct value <w ,

p;
>

But We can only ask the
genie

for Tvalues .

ALG 1
.

Input :

query
access to

g
:#

"

→ HE
,

a parameter e

,
and a

magic genie .

Output : An wean st . S(g ,
lw) ⇐ He

f.
set I Of may

'
4 Prob 99400

.

Draw
p , ,

...

,p , uniformly at random
.

Ask the
genie for b

, ,
. . ,b ,

so that bi = (w
, pi

>

FOR each i=l
,

. . ,m
:

Forte
1

,
...

,
T :

Set up !=gceitpltbt
Who ← MAJ (WTCPH)

RETURN it= (WT
,
WT

,
...

,
wnm) This dg makes TM

queries
.

Now
,

the same argument
works :

P{ win l
pit) is incorrect } = P{

gleitpt)
incorrect or the

genie
lied }

=P {
g(eitpdincorrect } (because

genies
don't lie)

.

{ tz - E
,

so everything goes through
as before

.

The problem
: WE DON'T HAVE A GENIE .

ALG 2
.

Input :

quay
access by :Fzm→E

,

a parameter e.

Output : A list of WEFM st .
S (g ,
lwjatz- E

,
4 prob 991100

.

Initialize S←¢

For each (b
, ,

. . .

,bite Fzt :

define GENIE
, , ,b

,

ltl =

be

Run ALGI
. using

this
genie

to obtain w

Add w HS
.

RETURN S

Why is this a good
idea ?

. If 8 (lw
, g)

⇐ E -

e
,

then Fbi
, -,b , f- (w

,p
,
)

,
... ,cw,ptD

so that ALGI relumsw
.

Thus w ends up in the list S
.

Why istnisabadidea ?

.IS/=2t=20cme4=lFaml
.

'

But SEEM was
supposed

to be a small subset
.

To fix this
,

we will use a PSEUDORANDOM
genie

.

To see what this means
, consider the

following way
of

picking
the

p
's

.

•

Choose P , ,
. .

, Be randomly
[and let tlogt)]

. For Ae[e]
,

define
PA

:=

§fBi

° Now I

have
2l=T different values of

p .

° CLAIM
. { PA

: Ace] } are PAIRWISE INDEPENDENT.

aka
,

for
any

At A
'

.paandpa
. are independent

.

in Fz

proof . pf . PA
-

PA
'

±
PA

+
PA

' =

Ehn.PT

2 symmetric difference ,

which is nonempty

So
, conditioning on PA

'

,

we have
PA

=

PA
' +

§aµ , Pt ,

hence
P{PA=1 /Pn ' }=±

' afa utniamy
random

and so
they

are independent .

inE.
Notice that our correctness argument before never used the fact that

the pi were fully independent : for Chebyshevwe only
needed

paimise independence

. So ALGI
.

works
just

fire with these
13

's !

ALG 3
.

Input :

query
access by :Fzm→E

,

a parameter e

,
and a

magic genie .

Output : An WEFM st .
S (g ,

lw)

ft
- E

,
4 prob 991100

.

Draw P , , , Be uniformly at random
,

← l=log(Me .) +011)

Ask the

genii
for b

, ,
...

,
bt so that bi.tw , pp .

For A e[l]
,

let
PA

= Eteapt ,

let bA= E- c. Abt .

FOR each i=l
,

. . ,m
:

for
A c- [e] :

Set WT #A) =

gceitpltBA.

WY ← MAJ (

WTCPA
))

RETURN it= (WT
,
win

,
...

,
wnm) This day

makes TM
queries

.

Notice that if the
genie

is correct about b.
,

. .

,
be

,
then (w

, pain .§aGipDi§µb=ba ,

so the
genie

is correct about BAV Aecl]
.

This alg .
is correct for exactly

the same reason as before
,

since the
#

are pairwise independent .

ALG 4 (GOLDREKH - LEVW)

Input :

query
access by :Fzm→E

,

a parameter e.

Output : A list of WEFM st . S(g ,
lwjftz - E

,
wl prob 991100

.

Initialize S←¢
e

-
set l=log(Me .) +011)

For each (b
, ,

. . .

,teeFz
:

define GENIE (H = be
b

, ,
-

, be

Run ALG 3
using

this
genie

to obtain w

Add w HS
.

RETURNS

We have basically already
proven

:

THM
.

The Goldrich Levin
algorithm makes pdylmk)

queries
to

g
and

returns a list SEEM
'

ofsize at most
pdycmle) so that

, Fwetfam

With S(lw
, g) etz - e

,
wef

.

Informal

COR
.

(KUSHKEVHZ . MANSOUR)

If G :# m→E±1. } is a Boolean function
,

then we can estimate

E (×) a [EH . thaw
>

w : IGTWH > I

Using polylmtu) queries .

@
LOCAL LIST DECODING

.

What we just saw was a
LOCAL LIST DECODING ALGORITHM

.

DEF
.

C€[
"

is (Q
, e ,

L) - LOCALLY LIST DECODABLE if :

Theresa randomized
algorithm ttthatoulputsatmost Ldherdgs B

, ,-,B<

so that :

• tie a]
,

Bi takes an input jean]
,

uses at most Q
queries

toyed
.

tge
I

,

fcecw
,Sigg) eq ,

Fi sit . ttjecn] :

P{ Bi (j ,
access tog) =g

.] = 25

Think of each Biasa different
genie .

In the
previous example ,

the B 's were indexed
by (b,

.bz
, → be.)eFd

:
GENE By

, ,b , . .

, be ,
(

query
access to

g ,

ivalptx
) :

NIE
: This is not

quite
the same as in our

l ← logl
' ' e) +0111 Goldrich - Levin version

,

for A e[.l] : since that Was supposed

WT (Pa) =

g (x +

PA) +

§ab;
to recover all of W

,
and this

WT ← MAJ (WIIPA) : Asa]) just guesses
Cw

,
a >

.
But

RETURN WI the idea is the same .

The
reason we bother to

give
LOCAL LIST DECODING a name is because it has

many

applications .

We 've
already

seen one in
learning theory ,

and here's another :

�4�

PRGS from OWE
-

(This is what Goldrich + Levin were interested in)
.

WARNING : This Will be extra
handwdvey .

"

DEF
.

"

A ONE-WAY Function (OWF) is a function that is
easy

to
apply by

hard to invert

.

§j<
ffnEueI@qgtsuretfkIQjEnnDxIFEatofEaumDf1nlnikvely.a

OWF
gives

a problem that's hard

• We don't know if OWFS exist
.

In fact
,

FOWF ⇒ Pt NP
.

↳ solve but
easy

to check
,

and that's

what Pt NP

means
.

. But there are several candidates : factoring
,

discrete log ,
etc

.

. And if a OWF exists
,

we can do some cool
things

With it .

"

DEF
"

PSEUDORANDOM GENERATOR
.

APRG has output that is not
very

random
,

but is
computationally difficult to distinguish from uniform

.

short seed → |PR]G→ loooong pseudorandomsequence

¥fhIYdYmyD offhand

We
might tylo make a PRG from a OWF as follows :

•

Say f is a OWF
,

f : ffyk → #
k er Technically ,

f should be a one-WAY permutation
.

•

suppose that this also means that it's hard to
guess

X± given f (x)
.

(*)

§j⇐DnYi!pd¥aan§¥i⇒
. Now consider the PRG :

yx
→ DPRG → (xe

,
[ftp.fflfkllk

,

[HHHHM
, ,

. . .)
Random seed

¥fhIh?gYnyD offhand

. Turns out this is a goodPRG
, assuming

Ht

. But there is no reason a) should be true

"
DEF

"

A HARDCORE PREDICATE bcx) for fk) is a
function b : #

k
→ E so that

it's hard to
guess

bcx)
given fk)

.

§#DY.li?pdbEtnoo#pae

So in order to
get

PRGS from OWF
,

we want a hardcore
predicate for our

OWF f.

In fact
,

we get
this from the local list . dead

ability of the Hadamard code

"

CLAIM
.

"

Let f :#
m

→ HIM be
a ONE-WAY PERMUTATION .Then

it's hard to
guess

(x
,

× > given ftx) and x.

aka
,

for all the Fzm
,

(x
,

×) is a hardcore
predicate for § : (×

,
xltslfkhx)

.

(())

Pf . Suppose there were some alg Q so that

P { Q (x
. fcx)) = (x. x) } 3 tzte

.

Aka
,

Q has
just a

slight advantage .

×

Then I can get query
access to

g.
(x) ÷ Q (x

,
flxl)

,
which is a

very noisy
version

of a Hadamard codeword
.

Now I can use
my

local list .

decoding algorithm to obtain a list L of O(
'
'
e 2)

possible x 's
.

Then I compute { fk) : xe L }
,

find × st
. fkl

=p ,

and return it
.

So f is

easy
to invert after all !

QUESTIONS to PONDER

�1� Can
you locally

list decode RMq(m ,
r) for r<

of
?

�2� Can
you

learn Fourier .

sparse
fns from poly (%) RANDOM

queries
?

�3� Can
you

think of other applications of local list
decoding

?

