CS250/EE387-LECTURE 18-RS codes as

It hums out that communication is EXPENSIVE (and is a bottleneck in distributed storage systems) so this is a win.

。 » }

 $C_1, C_7, C_{n-1} \Rightarrow C_i!$

Ci

LESS

COMMUNICATION!

What 's the model here?

LOCALITY seems useful. But are LCCs the right bol for the job?

ANSWER: No+ really.

(a) The night model is ERASURES, not ERRORS.

(b) 98% of the time , only ONE server is down.

* Based on a study of the Facebook Warehouse cluster.

Means

Instead what do we want?

(1) Best trade-off between RATE and DISTANCE possible - a ka an MDS cude. • We want to handle as many fuilures as possible in the worst case. Recall this

 (2) Every symbol can be obtained from not-too-many other symbols. n-k+1=d
 When there is only 1 failure, we'd like to repair it with minimal communication.

2 RS CODES are BAD IDEA for DISTRIBUTED STORAGE.

(1) MDS Code

(2) Every symbol can be obtained by not-too many other symbols X

(2) duesn't hold:

· Suppose f G ff { [x], deg(f) < k.

• I NEED be evaluation pts $f(\alpha_{k}), ..., f(\alpha_{k})$ to say ANYTHING at all about $f(\alpha_{k+1})$

ey, suppose f(X) is a quadrahic and goes through these 2 points: what is $f(\alpha_s)$? CUULD BE ANYTHING.

 $d_1 \quad d_2 \quad d_3$

So that's really wasteful.

So can we find some other code satisfying (1) and (2)?

NO ! Actually that argument works for any MDS code, not just RS codes. So:

IF (1) MDS code then (2) Every symbol can be obtained by not-too-many other symbols X

Two WAYS around this: WAY 1: Give up on MDS. This is really interesting and the buzzword WAY 2: Rephrase (2) is "Locally Recoverable Code." We won't talk about it.

— We will talk about this.

We will instead shoot for:

(1) MDS code (2) Every symbol can be obtained by not-too-many BITS from other symbols.

In pictures the model is this:

Such a code is called a REGENERATING CODE. There's tons of super cool work on these that I won't talk about. But for today ...

"THM." Reed-Solomon Codes ARE good regenerating codes.

(3) RS CODES are a GREAT IDEA for distributed storage!

For simplicity let's focus on k = n/2, n = q, $q = a^{t}$. So a rodeword of $RS_{q}(F_{q}, q, \frac{q}{2})$ looks like:

f(o) f(-r) f(-r) for a primitive elt γ .

Say f(0) fuils. Works with any node, but for concreteness say it's f(0).

CLAIM (which we will show)

It is possible to download ONE BIT from $f(\gamma^i)$ for i=1, ..., q-1, and recover f(0).

Notice this is q-1 BITS total, while the naive scheme would download $k = \sqrt[4]{2}$ whole symbols, each are lq(q) bits — so that's $\frac{g lg(g)}{2}$.

So the CLAIM is BETTER than the naive scheme!

CLAIM (which we will not show)

This is ophimal *

* Gralinear scheme, Gran MDS code.

To prove two first CLALM, we will noted the following adgetor. Bets:
FACT:
$$F_{at}$$
 is a vector space over F_{a} .
So we can think of $\alpha \in F_{at}$ as a vector $\vec{a} \in F_{a}^{\pm}$ if we want.
(of course, this is for two additive structure only).
FACT. Let $P(X) = X + X^2 + X^4 + \dots + X^{a^{t-1}}$. Then
(u) $P: F_{at} \rightarrow F_{a}$ is F_{a} -linear.
(u) $P(x) = P(g \cdot X)$ for some $g \in F_{a}$.
(c) "Morselly" we should think of $P(\alpha \cdot \beta)$ as $\langle \vec{\alpha}, \vec{\beta} \rangle$ for $\vec{\alpha}, \vec{\beta} \in F_{a}^{\pm}$.
(P(X) is usually called the "field trace".
"pt" of the form $P(x_{1}) = P(x_{1}) = P(x_{1})$, recall $(\alpha + p)^{2} = \alpha^{2} + p^{2}$ in F_{a} .
To see $P(x_{1}) \in F_{a}$, notice $P(x_{1}^{2} = P(x_{1})$, which is only true for 0 and 1.

Now that we have thuse fact, we can prove the CLAIM. Recall
$$q=5^{\ddagger}$$
.
By RS duality, RS $_{1}(F_{1}, q, \frac{\pi}{2})^{\perp} = RS_{1}(F_{1}, q, \frac{\pi}{2})$
So for all $f, g \in F_{2}[X]$ u/ degree $< k = \sqrt{2}$,
 $O = \sum f(\alpha) \cdot g(\alpha)$
 $\alpha \in F_{1}$.
 $f(o) g(o) = \sum f(\alpha) \cdot g(\alpha)$
 $\alpha \in F_{2} \setminus 1^{\circ}$.
For any $g \in F_{2}^{\circ}$, lat $g_{3}(X) = \frac{P(q, X)}{X} = -q + X + X^{3} + X^{7} + \dots + X^{3^{1}-1}$.
Then $cleg(q_{3}) = \partial^{1-1} - 1 = \frac{q}{2} - 1 = k - 1$.
So we may plug in q_{3} for g above:
 $\forall f \in F_{q}[X]$ st. $da_{3}(f) < \sqrt{2}$:
 $f(o) g_{3}(0) = \sum_{\alpha \in F_{1} \setminus 1^{\circ}} f(\alpha) \cdot g(\alpha)$
 $p(f(0) \cdot g) = P(\sum_{\alpha \in F_{1} \setminus 1^{\circ}} f(\alpha) \cdot \frac{P(y\alpha)}{\alpha})$ Def of q_{3} .
 $P(f(0) \cdot g) = P(f(\alpha) \cdot \frac{P(y\alpha)}{\alpha})$ Tate P(i on but sites
 $P(f(0) \cdot g) = \sum P(f(\alpha) \cdot \frac{P(y\alpha)}{\alpha})$ P(i is F_{2} -invert
 $< i \overline{n}, \overline{g} > = \sum_{\alpha \in F_{1} \setminus 0} P(g(\alpha) < \frac{P(\alpha)}{\alpha})$ P($i > 2, \overline{p}$, moolly
 $\langle i \overline{n}, \overline{g} \rangle = \sum_{\alpha \in F_{1} \setminus 0} P(g(\alpha) < \frac{P(\alpha)}{\alpha})$ P($g(\alpha) \in F_{2}$, so its just a cales

So for all
$$\tilde{g} \in F_{2}^{-6}$$
, we have
 $\langle f(\tilde{\omega}), \tilde{g} \rangle = \underset{\alpha \in F_{1} \setminus 0}{\sum} P(ga) \langle f(\tilde{\omega}), \tilde{d}^{\dagger} \rangle$
Recall the goal is to find f(0). So the algorithm is:
ALG. (Assuming f(0) has field).
 \cdot The nocle holding $f(d)$ returns $b_{\alpha} = \langle f(\tilde{\omega}), (\tilde{d}^{-1}) \rangle \in F_{2}$
 \cdot We compute $\langle \tilde{e}_{i}, f(\tilde{o}) \rangle = \underset{\alpha \in F_{1} \setminus 0}{\sum} P(g_{i} \cdot \alpha) \cdot b_{\alpha} \in F_{2}$ for all i , where
 $p_{i} \in F_{2} t \text{ s.t. } p_{i}^{-1} = \tilde{e}_{i} \in F_{2}^{-1}$

That's it ? This feels a bit magical, but achually it generalizes to some other parameter regimes and also turns out to be optimal?

See [Guruswami, W. 16], [Dau, Milenkovic 17], [Temo-Ye-Berg 17] for more.

The point:

- For distributed storage, a different notion of locality is appropriate.
 This is good news since even though RS codes are NOT good LCCs, they ARE good regenerating codes!
- · Also, this is kind of a neet fact about polynomial interpolation.

4) COURSE RECAP.

Next week I will be traveling and Marco Mondelli will be guest lecturing. So this is it from me!

WHAT HAVE WE LEARNED?

fundamental trade-offs between RATE and DISTANCE
 The "correct" trade-off for binary codes is still open, but over large alphabets

it is attained by ...

- REED-SOLOMON CODES and "LOW-DEGREE POLYS DON'T • OMG the BEST code! HAVE TOO MANY ROUTS."
 - · How to decode RS codes, and how to use this to get efficiently decodable binary codes. · Reed-Muller, BCH, concatenation, of my.
- · Brief detour into RANDOM ERRORS and we can get the same trade-offs with LIST-DECUDING !

· Capacity = 1 - H(p) either way?

• We can do list - Lecoding (also list - recovery) EFFICIENTLY of the GURUSWAMI - SUDAN Agonithm! And we can modify this to achieve capacity by FOLDING.

· STEP 1: INTERPOLATE. STEP 2: ROOT-FIND. JEP 3: PROFIT.

We talked about RM codes and locality! • Plus, local-list-cleccoliny, and just now regenerality codes!

Along the way, APPLICATIONS! · Crypto, Compressed Sensing, Group testing, Heavy Hitters, Learning theory, Storage, (communication, QR codes, that puzzles,...)

THE MORAL(S) of the STORY :

(1) Low-degree polynomials don't have too many roots. and this fact is unreasonably useful!

(2) Error correcting codes show up all over the place. maybe even in your own research?

QUESTION TO PONDER

What can emor correcting codes do for you?