CS250/EE387 - LECTURE 4.
(1/18/2017)

Agenda
(1) Plotkin + Singleton bounds
(2) Reed Solomon Codes!
(3) Dual view of RS Codes +more algebra! "

A few more bounds... and REED-SOLOMON

CODES!!! r
$\overleftarrow{G}_{\text {GASTROPOD FACT. }}$
The world's smallest snail, Angutbopila chominikue, (found in limestone in China) are < 1 mm long. 10 of them can fit through t the eve of a needle at once!

QUESTION Are there families of codes that beat the GV bound?

Answer 1: Yes. Fo $q \geq 49$,
"Algebraic Geometry Codes" beet the GV bound.

ANSWER 2: ???
For binary codes, we don't know. open Problem!

QUESTION Can we find explicit constructions of families of codes that meet the GV bound?

ANSWER 1. For large alphabets, yes
(Well see soon)

ANSWER 2.???
tor binary codes, recent work of [Ta-Shma 2017$]$ gives something close in a very particular parameter regime ... but in general, OPEN Probity!
(1) Singleton \sum_{1}^{\prime} Plotkin bounds

Let's try to narrow down that region a little bit.

THM. [singleton Bound] if C is an $(n, k, d) q$ code, then $k \leq n-d+1$.

Proof. For $c \in C$, consider throwing out the lest $d-1$ coordinates:

$$
c=(\underbrace{x_{1}, x_{2}, \cdots x_{n-d+1}}_{\text {call this } \varphi(c) \in \sum^{n-d+1}}, \underbrace{x_{n-d+2}, \ldots, x_{n}}_{\text {get rid of these }})
$$

Consider $\check{C}=\{\varphi(c): c \in C\}$, so $\tilde{C} \subseteq \Sigma^{n-d+1}$
CLAIM 1: $|C|=|\check{e}| \longrightarrow \begin{aligned} & \text { If not, then } \exists c, c^{\prime} \text { s.t. } \varphi(c)=\varphi\left(c^{\prime}\right) . \\ & \text { But then } \Delta\left(c, c^{\prime}\right) \leqslant d-1 \psi\end{aligned}$
CLA|M 2: $|\tilde{C}| \leq q^{n-d+1} \longrightarrow$ Since $\tilde{C} \subseteq \sum^{n-d+1}$
Thus, $|C| \leq q^{n-d+1} \Rightarrow q^{k} \leq q^{n-d+1} \Rightarrow k \leq n-d+1$.

The GV bound only works up to $d / n \leqslant 1-1 / q$. Is this necessary? Tums out, YES, at least asymptotically.
 Can we get anything here??

THM [PLOTKIN BOUND]
Let C be a $(n, k, d)_{q}$ code.
(a) If $d=(1-1 / q) \cdot n$, then $|C| \leq 2 \cdot q \cdot n$
(b) If $d>(1-1 / q) \cdot n$, then $|C| \leqslant \frac{d}{d-(1-1 / q) \cdot n}$

Notice that either (a) or (b) imply $R \rightarrow 0$ as $n \rightarrow \infty$. Thus, in order to have a constant-rate code, we should have $d<(1-1 / \mathrm{q}) \cdot n$.

We'll omit the proof of the Plotkin bound in class - Check out ESSENTIAL CODING THEORY $\$ 4.4$ for a proof.

COR. Let C be a family of codes of rate R and distance δ. Then

$$
R \leqslant 1-\left(\frac{q}{q-1}\right) \cdot \delta+o(1)
$$

Proof. (Assuming the Plotkin bound)
Choose $n^{\prime}=\left\lfloor\frac{d q}{q-1}\right\rfloor-1$. For all $x \in \sum^{n-n^{\prime}}$, define

$$
C_{x}=\left\{\left(c_{n-n^{\prime}+1}, \ldots, c_{n}\right) \mid c \in C \text { with }\left(c_{1}, \ldots, c_{n-n^{\prime}}\right)=x\right\}
$$

$=$ the set of ENDS of codewords that BEGIN with x.
Now C_{x} has distance $\geq d$, block length $x^{\prime} \leq(1-1 / q) \cdot d$.
Apply ing the Plotkin bound, $\left|C_{x}\right| \leqslant \frac{d}{d-(1-\sqrt{-2})^{n^{\prime}}} \leqslant d$
ct...
proof cts.
But then

$$
\begin{aligned}
|C|=\sum_{x \in \sum^{n-n^{\prime}}}\left|C_{x}\right| & \leqslant q^{n-n^{\prime}} \cdot d \\
& =q^{\left(n-\left\lfloor\frac{q d}{q-1}\right\rfloor+1\right)} \cdot d \\
& =\exp _{q}\left(n-\frac{q d}{q-1}+o(n)\right) \\
& =\exp _{q}\left(n\left(1-\delta\left(\frac{q}{q-1}\right)+o(1)\right)\right)
\end{aligned}
$$

So $R \leqslant 1-\left(\frac{q}{q-1}\right) \delta+0(1)$, as desired.

Did we make progress? Yes! We narrowed down the yellow region bit.

FUN EXERCISE: What happens to this picture as $q \rightarrow \infty$?
(2) REED-SOLOMON CODES.

Notice that for any fixed q, the Plotkin bound is strictly better than the Singleton bound.

AND YET, toclay we are going to see Reed-Solomon Codes, which EXACTLY ACHIEVE the SINGLETON BOUND.

(Th erick: the alphabet size will be growing with n)
We can define polynomials over finite fields, just like we can over \mathbb{R}.

The set of all univaniate polynomials w/ coeffs in \mathbb{F}_{q} is denoted $\mathbb{F}_{q}[X]$.

Note: depending on your background, its totally nomad to usecapital X as a variable or it's totally weird. If it's the later, get over it.

FACT. A polynomial f of degree d over \mathbb{F}_{q} has at most d roots.
"pf". (sketch). If $f(\beta)=0$, then $(x-\beta) \mid f$. So if $\beta_{1}, \ldots, \beta_{d+1}$ are roots of f_{1} then $\left(\left.\frac{\left.x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{d r 1}\right)}{\text { degree }+1} \right\rvert\, \underset{\text { degree } \leqslant \alpha}{f}\right.$, a contradiction. [This proof implicitly uses:
"The:" Arithmetic over $\mathbb{F}[x]$ behaves like pout think it should.
That Theorem is true.]

EXAMPLES Over \mathbb{F}_{3},
$f(x)=x^{2}-1 \quad$ has two roots. $\quad[f(2)=f(1)=0]$
$f(x)=x^{2}+2 x+1$ has one root. $\left[f(2)=2^{2}+2 \cdot 2+1=9^{\prime \prime}=0\right]$
$f(X)=X^{2}+1$ has zero roots. $[f(0)=1, f(1)=2, f(2)=" 5$ " $=2]$
Notice that $X^{2}+1$ DOES have a root over \mathbb{F}_{2}, sothe field matters.

DEF. A VANDERMONDE MATRIX has the fum

FACT A square Vendermonde matrix is invertible.
proof 1. V• $V=\left(\begin{array}{c}\Sigma_{i} a_{1} \alpha_{1}^{i} \\ \Sigma_{i} a_{2} \alpha_{2}^{i} \\ \Sigma_{i} a_{n} \cdot \alpha_{n}^{i}\end{array}\right)=\left(\begin{array}{c}f\left(\alpha_{1}\right) \\ f\left(\alpha_{2}\right) \\ \vdots \\ f\left(\alpha_{n}\right)\end{array}\right)$ if $f(X)=a_{0}+a_{1} X+\cdots+a_{n-1} x^{n-1}$.
Since f is a nonzero polynomial of degree $\leq n-1$, it doesn't have n roots, so $V \cdot \vec{a} \neq 0$ for all nonzero $\vec{a} \in \mathbb{F}_{q}^{n}$. Hence, $\operatorname{Ker}(V)=\phi$, so V is invertible.
proof 2. $\operatorname{det}(V)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} \alpha_{i}^{\sigma(i)-1}=\prod_{1 \leqslant i<j \leqslant n}\left(\alpha_{j}-\alpha_{i}\right)$
[The LLS is alternating, meaning
that if you switch α.
 divides it for all $i \neq j$, and then counting clegreess says that
has to be eweryhning
Since $\alpha_{i} \neq \alpha_{j} \forall i \neq j$, the RHS hos no zero factors and has to be enl y hing.] So is nonzero. [this sesesthe fact from your AW that $\alpha, \beta \neq 0$ if $\alpha, \beta \neq 0$].

COR. Any square submatrix of a Vandemonde matrix is invertible.

These facts about Vondermonde matrices will be useful.
First, they imply:
THEOREM. "Polynomial interpolation works over \mathbb{F}_{q} ".
Formally, given $\left(\alpha_{i}, y_{i}\right) \in \mathbb{F}_{2} \times \mathbb{F}_{f}$ for $i=1, \cdots, d+1$, there is a unique degree polynomial f so that $f\left(x_{i}\right)=y_{i} \forall i$.
proof. If $f(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}$, then the requirements that $f\left(x_{i}\right)=y_{i} \forall_{i}$
are precisely $V \prod_{\vec{a}}=\prod_{\vec{y}}$ for a square Vandemmonde matrix V.
Hence, $a=V^{-1} y$ is the unique solution. (Because lineardelebera "well" ave F_{f}).
Moreover, the proof implies that we can find f efficiently.
FACT. All functions $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ are polynomials of degree $\leq q-1$. joan FFT- like thing to mullion by Vendarade matrices real fast.
proof. There are only q pts in \mathbb{F}_{q}, so we can interpolate a (unique) degree $\leq q-1$ polynomial through any function.
[Second proof: thereare qq such functions and also q^{q} such polynomials]

EXAMPLE. $f(x)=x^{q}$ must have some representation as a degree $\leq q-1$ poly over \mathbb{F}_{q}. What is it?

ANSWER: $\quad X^{q} \equiv X$. This is because $F A C T: \alpha^{q}=\alpha \forall \alpha \in \mathbb{F}_{z}$

Now we are finally ready to define...
DEF. (REED-SOLOMON CODES)
Let $n \geqslant k, q \geqslant n$. The REED-SOLOMON CODE of dimension k over \mathbb{F}_{q}, with evaluation points $\vec{\alpha}=\left(\alpha_{1},-, \alpha_{n}\right)$, is

Useful fact! Let's call it (*).
We won't prove it but we will use it a bunch.

Lit's not hard to prove check out the supplementary materid on finite fields]

RS($n, k)$.
Note: This definition implies a natural encoding map for RS codes:

$$
x=\left(x_{0}, \ldots, x_{k-1}\right) \longmapsto\left(f_{x}\left(\alpha_{1}\right), \ldots, f_{x}\left(\alpha_{n}\right)\right), \text { where } f_{x}(x)=x_{0}+x_{i} x+\cdots+x_{k-1} x^{k-1}
$$

[We've been 1 -indexing
buthere it is conventient
to zero-index].
This isn't the ONLY encoding map, but it's the ore we will think about for most of the class.

PROP. $R S_{q}(\vec{\alpha}, n, k)$ is a linear code, and the generator matrix is the $n \times k$ Vandermonde matrix with rows corresponding to $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Notice: Since V has rank k, this implies that $\operatorname{dim}(R S(n, k))=k)$

Prop The distance of $R S_{q}(n, k)$ is $d=n-k+1$.

Proof. Since $R S_{g}(n, k)$ is linear, $\operatorname{dist}\left(R S_{q}(n, k)\right)=\min _{c \in R S} \omega t(c)$.
The minimum weight of any codeword is at least $n-k+1$, since any degree $k-1$ polynomial has at most $k-1$ roots.

Equivalent proof: the follows from the fort that every $k \times k$ minor of the generator matrix is fill rank.

COR. RS codes exactly meet the Singleton Bound.
MAY! OPTMALTY!! For any and k we like!

DEF. A linear $(n, k, d) q$ code with $n=k+d+1$ (aka, meeting the Singleton bod) is called MAXIMUM DISTANCE SEPARABLE. (MDS)

So, RS codes are MDS. Notice that MDS-ness is equivalent to the property: "every $k \times k$ minor of the generator matrix is full rank," which we just Saw wastrue for RS codes.

In particular, if C is MDS, then any k positions of $c \in C$ determine all of c.

Notice that of must be growing in order to get an MDS code (by the Plotkin bound). How big does q have to be? OPEN QUESTON!

CONJECTURE ("MDSCONSECTURE"). If $k \leq q$ then $n \leq q+1$, unless $\left(q=2^{h}\right.$ and $k=3$) or $k=q-1$, in which case $n \leq q+2$.
(3) DUAL VIEW of RS CODES

What is the parity-dheck matrix of an RS code?
Well need a bit more algebra.
DEF \mathbb{F}_{q}^{*} is the multiplicative group of nonzero elements in \mathbb{F}_{q}.
Aka, $\mathbb{F}_{q}^{*}=\mathbb{F}_{1} \backslash\{0\}$ as a set, and I can define multiplication and division everywhere in \mathbb{F}_{g}^{*}.

EXAMPLE. $\mathbb{F}_{5}=\{0,1,2,3,4\} \bmod 5$ equipped $\omega /+$ and $*$ $\mathbb{F}_{5}{ }^{*}=\{1,2,3,4\} \bmod 5$ equipped $\omega /$ just $*$.

FACT. \mathbb{F}_{q}^{*} is CYCLIC, which means there's some $\gamma \in \mathbb{F}_{q}^{*}$ so that

$$
\mathbb{F}_{q}^{*}=\left\{\gamma, \gamma^{2}, \gamma^{3}, \ldots, \gamma^{q-1}\right\}
$$

γ is called a PRIMITVE ELEMENT of \mathbb{F}_{q}.

EXAMPLE. 2 is a primitive element of \mathbb{F}_{5}, and

$$
\mathbb{F}_{5}^{*}=\left\{2,2^{2}=4,2^{3}=3,2^{4}=1\right\}
$$

4 is NOT a primitive element, since $4^{2}=1,4^{3}=-1,4^{4}=1,4^{5}=-1, \ldots$ and well never generate 2 or 3 as a power of 4 .

FUN EXERCISE:
If you haven't seen this before, play around w/ this and other examples. What elements of \mathbb{F}_{p} are primitive? If an element isn't primitive, what can you say about its ORBIT $\left\{\gamma^{i}: i=1,2,3, \ldots\right\}$?

FACT/LEMMA. For any $0<d<q-1, \sum_{\alpha \in \mathbb{F}_{q}} \alpha^{d}=0$.
Proof. $\sum_{\alpha \in \mathbb{F}_{q}} \alpha^{d}=\sum_{\alpha \in \mathbb{F}_{q}^{*}} \alpha^{d}$
$=\sum_{j=0}^{q-2}\left(\gamma^{j}\right)^{d}$ for a positive element γ.
For any $x \neq 1$,

$$
=\sum_{j=0}^{q-2}\left(\gamma^{d}\right)^{j}
$$

$(1-x) \cdot\left(\sum_{j=0}^{n-1} x^{j}\right)=1-x^{n}$,
$\begin{aligned} & \text { and so } \sum_{j=0}^{n=0} x^{j}=\frac{1-x^{n}}{1-x} \\ & \text { for any n. Apply this with } x=\gamma^{d} \text {. }\end{aligned}=\frac{1-\left(\gamma^{d}\right)^{q-1}}{1-\gamma^{d}}$
$\left(\gamma^{d}\right)^{q-1} \cdot \gamma^{d}=\left(\gamma^{d}\right)^{q}=\gamma^{d}$,
using (x) again.

$$
=\frac{1-1}{1-\gamma^{d}}=0 . \quad \text { So }\left(\gamma^{d}\right)^{\gamma^{-1}}=1 . \quad\left(\sin \left(\gamma^{d} \neq 0\right)\right. \text {. }
$$

Now we can answer our question about the parity-check matrix of RS codes.
Prop. Let $n=q-1$, and let γ be a primitive element of \mathbb{F}_{q}.

$$
\begin{aligned}
& \operatorname{RS}_{q}\left(\left(\gamma^{0}, \gamma^{1}, \gamma^{2}, \ldots, \gamma^{n-1}\right), n, k\right) \\
& \quad=\left\{\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in \mathbb{F}_{q}^{n}: c\left(\gamma^{j}\right)=0 \quad \text { for } j=1,2, \ldots, n-k\right\}
\end{aligned}
$$

where $c(X)=\sum_{i=0}^{n-1} c_{0} \cdot X^{i}$.
COR. The parity check matrix of $\operatorname{RS}_{q}\left(\left(\gamma^{0}, \ldots, \gamma^{n-1}\right), n, k\right)$ is

$$
\left.H=\begin{array}{|ccccc}
\begin{array}{ccc}
1 & \gamma & \gamma^{2} \\
1 & \gamma^{2} & \gamma^{4} \\
\vdots & \cdots & \gamma^{n} \\
1 & \gamma^{n-k} & \gamma^{2 n-k)} \\
\hline
\end{array} & \cdots & \gamma^{2(n-1)} \\
\hline
\end{array} \right\rvert\, \in \mathbb{F}_{q}^{(n-k) \times n}
$$

Proof of PROP. It suffices to show that

So let's just consider the (ii) entry of the product. This is

$$
\begin{aligned}
& 1 \gamma^{i} \gamma^{2 i} \gamma^{3 i} \cdots \gamma^{(n-1) i} \text {. } \\
& \begin{aligned}
\left\lvert\, \begin{aligned}
\overline{\gamma^{0 \cdot j}} \\
\gamma^{j} \\
\gamma^{2 \cdot j} \\
\vdots \\
\gamma^{(n-1) j}
\end{aligned}\right. & \sum_{l=0}^{n-1} \gamma^{l i} \cdot \gamma^{l j} \\
& =\sum_{l=0}^{n-1} \gamma^{l(i+j)} \\
& =\sum_{l=0}^{n-1}\left(\gamma^{l}\right)^{(i+j)} \\
& =\sum_{\alpha \in \mathbb{F}_{l}^{*} \alpha^{(i+j)}}
\end{aligned} \\
& =0 \\
& \begin{array}{l}
\text { Since } i+j \leq(n-k)+k=n=q-1<q . \\
\text { Cad } i+i>0 \text { since } i>0]
\end{array} \\
& \text { [and } i i_{j}>0 \text { since } i>0 \text {] }
\end{aligned}
$$

NoTICE: $R S(n, k)^{\perp}$ has generator matrix H^{\top}, which again looks a lot like a Vandermonde mahix! So $R S(n, k)^{\perp}$ is again (kind of) an RS cade!

This particular derivation used the choice of eval. pts heavily. However, a statement like this is true in geneal.

DEF. A GENERALIZED RS CODE $\operatorname{GRS}_{q}\left(\vec{\alpha}, n, k_{j} ; \vec{\lambda}\right)$ is

$$
\operatorname{GRS}_{q}\left(\vec{\alpha}, n_{1} k_{;} ; \vec{\lambda}\right):=\left\{\left(\lambda_{0} f\left(\alpha_{0}\right), \lambda_{1} f\left(\alpha_{1}\right), \ldots, \lambda_{n} f\left(\alpha_{n}\right)\right) \mid f \in \mathbb{F}_{q}[X], \operatorname{deg}(f) \leqslant k-1\right\} .
$$

TM.

$$
\operatorname{GRS}_{q}(\vec{\alpha}, n, k ; \vec{\lambda})^{\perp}=\operatorname{GRS}_{q}(\vec{\alpha}, n, n-k, \vec{\sigma})
$$

Proof: Fun exercise!

QUESTIONS to PONDER
(1) How would you modify RS codes to make them binary?
(2) How would you decode RS codes from errors efficiently? Can we do this?

