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SOME QUESTIONS
.

Gvbound

Quest Are there families of codes thatbeattheqvbwnd ?

for bnantodes

ANSWER 1 : Yes
. Frqs49 ,

ANSWER

2 : ? ? ?

'  '

Algebraic Geometry Codes
" For

binary
codes

,
we don't know

.

beat the GV bound . OPEN PROBLEM !

Ouest Can we find explicit constructions of

families of codes that meet the Gvbound ?

ANSWER 1. for large alphabets
, yes .

ANSWER '2
.

? ? ?

( We 'll see soon ) OF
binary

codes
,

recent work

of [Ta- Shma 2017 ] gives something

doseinavery particular parameter

regime . . .

but in general ,

OPEN PROBLEM !



�1�

Singleton ¢ Plotkin bounds

Let's try to narrow down that "\\
region

a little bit
.

THM
.

[ Singleton
Bound ] If C is an ( n ,k

,

d) qcode ,

then h< n - d+1
.

Proof .

for cec
,

consider
throwing

out the last d- 1 coordinates :

C = ( X
, ,

Xz
,

i. . Xn - d+1 ,
Xn

- dtz
,

. . .

,
Xn )

→
this y( c) e[

not 't get
rid of these

Consider @ = { ycc) : cec }
,

so I ezndt
'

If not
,

then F C
,

c
'

s.t.pk ) = 4k
'

)
.claim 1 : Icl - ' £1

}| But then AK
, d) ⇐ d 't %

CLAIM 2 : It leqn' dt '

- sincefezn
- dtt

Thus
,

KIE qnd
"

⇒ qkeqnid
"

⇒ ken .d+1
.

R
1

Note .

for
q=2 ,

the Singleton
bound is WORSE than the

Hamming
bound ! 't

HOWEVER (a) it's simpler
,

and (b) as

q→a
we 'll

get something
belter

.

R↳%€Iam%.

¥ ammno

"

S t Had "z )-112
1

SINGLETON

q=
2

g
, z

It "q

£



The GV bound only works
up

to dh ← 1- "
q . ¥

.gg

can

wenft.jo?nything

Is this
necessary

? Turns out
,

YES
,

at least
asymptotically .

THM [ PLOTKIN BOUND ]

Let C be a ( ni k
,
d)

q
code

.

(a) If D= ( 1 -

kg ) . n
,

then ICI ⇐ 2.
qn

(b) If d > H -

iq ) .

n
,

then K / E

d-d- It -

'

qtn

Notice that either (a) or ( b ) imply R→O as n → •
.

Thus
,

in order to have a constant - rate code
,

we should have d< H .

'
'

g) in .

We 'll omit the proof of the

Plotkin

bound in class - Check out

ESSENTIAL CODING THEORY § 4.4 for a proof .

COR
.

Let C be a family of codes of rate R and distance 8
.

Then

Re 1 - (got ) . S + 011 )

•

SOMETHING

Proof .

(Assuming the Plotkin bound )
/

nnlisutheffradfstn

'

5€

| is fishy

Choose n' = Ld1p ] - I
.

Er auxeznjn
'dfpm"±⇐":

Cx = { ( Cn .nu
,

...

,
en ) | cec with Ki

, .
.

, cmn , )=x }
= the set of ENDS of codewords that BEGIN with X

.

Now Cx has distance ± d
,

block
length

n' < It .

'

qtd .

Applying the Plotkin bound
, kxkd.de#n ,

⇐ d

Ctd...



proof ctd
.

But then

KI = [
* g.

ni K×/ ←

qmn

'

. d

= qln
- LEFT + it

. d

= expgln -

off
+ on )

=

expq ( n 11 -

Slft) +0111 )
,

so R< 1 - (F) S to 111
,

as desired
.

B§

Did we make
progress

? Yes ! We narrowed down the yellow region
a bit

.

R

1
-

Note : There are
bounds beller than

for
q=2

:

HAMMING A PLOTKIN
,

but

±⇒.ie#s&w" no " term " " " me

in here ! :
%Dq

HAMM
,

ng

I I 8

112 1

FUN

Exercise : What happens to this picture as

q→
a ?



�2� REED - SOLOMON CODES
.

Notice that for any fixed
q ,

the Plotkin bound is
strictly better than

the
Singleton bound

.

1

AND YET
, today we are going

to see Reed . Solomon Codes
,

549km
Plotkin

Which EXACTLY ACHIEVE the SINGLETON BOUND
. , ,

%

the tick : the alphabet size will be
growing

with n )
t

We can define
polynomials over finite fields

, just likewecanoverpk
.

f- I X ) =

ao + as X + az . X2+ . .  .

tad
.

XD Note :

depending on
your background ,

tea
.

tolfleigkme
it's

totally
normal to usecapital X%i€#8 %

isavanablethatwe of the polynomial . as a variable or it's
totally

thinkofastakingvaluesinfq
weird . If it's the latter

,

Thesetofallunivanate polynomials get
over it .

wlcoeffsinfq is denoted Fg[X ]
.

FACT
.

A polynomial f of degreed over Fq has at

most d roots

' '

pf
"

.

( sketch )
.

If f431=0 ,
then (X-p)|f .

So if P , ,
. ,pd+i are

roots of f ,
then

CX-pDlXy32@x-pdulf.a
contradiction .

[ this Proof implicitly
uses :

degreed +1
Greed

"

Thim :

"

Arithmetic over F[X] behaves like
you

think  it should
.

'

Thattheorem is true . ]



EXAMPLES Over Fs
,

f (X )= X

"
- 1 has two roots

.
[ HH=fH=O ]

fl X ) - 112+2×+1 has one root
.

[ f 121=22+2.2+159"=O]

f ( X) = X 2+1 has zero roots
.

[ fco ) =L
,

fH=2
,

fl2l=
"

5=2 ]

Notice that 1/2+1 DOES have awot over Fz
,

sothe field matters
.

DEF
.

A VANDERMONDE MATRIX has the form

1 a
,

a ,2 . . . xp

1 dz xz2 .
. . xam

V =

1 4 for some x
, ,

.
.

, xnefq .

Aka
, Vij

 = aft
.

; y
. distinct

[ Note : I also use

"

Vandemonde
"

to refer to the transpose
1 dn di -

.  - xnm
of a matrix of this form .

]

FACT A
square

Vandermonde matrix is invertible
.

p# 
'

"

←fgiiagif.li
,

)=fyY;D
if Hxtaotaxtitamxni

Since f is a nonzero
polynomial of degree

En - 1
,

it  doesn't have n roots
,

so Via # 0

for all nonzero as e
Fgn .

Hence
,

Kerw ) =¢ ,
so Vis invertible

.

- [ The LHS is acing , meaning

pH .

detlv
)=§snsgnwTiI

xidi 't
 = IT Kj -

ai ) Yuaetiifgtnofswidmsoaicd;Ya?j
kicjen divides it for  all itj ,

and

then
counting degrees  

says
that

Since
ditxj titj ,

The RHS has no zero factors and
hasbbeeneythirg . ]

So is nonzero
.

[ this usesthefact from
your

HW that x. 13+0 ifx
, pto ]

.



COR
. Any square

submalnxofavandermondemalnx is invertible
.

Proof . Asquaesubmatrix looks like Xi

'

ditt
'

diet
'

... xiitr = D. ✓

jtr

^

Pitt, dit ' diag¥
,

...

,xi+rM
'

:
a

square
Vandemonde

diiir .  -
. diff matrix

.

These facts about Vandermark matrices will be Useful
.

first
, they imply

:

" "

THEOREM
. Polynomial interpolation works over Fq .

Formally , given ( xi ,yi)eFg×Eg
for it

,
...

,
dtl

,

there is a
unique

degree polynomial f so that ftp.yiti .

proof . If fk ) =

a. + a. Xt . .  . + adxd
,

then the requirements
that flxityifi

are precisely ✓

as

=

g.

for a

square
Vandumondemaln 'xV

.

Hence
,

a =V'
y

is the
unique

solution . (Because linearalgebra
"

works
"

over Fg )
.

Moreover
,

the proof implies that we can find

f
efficiently

>
Actually ,

VERY

efficiently .

You can

doanfft - like
thing

FACT
.

All functions f : Eg
→

Eg are
to multiply by

Vandemark

polynomials of degree
<

of
-1

. matrices real fast .

proof .

There are
only qpts

in Fq ,
so we can interpolate a (

unique)

degree e

g-
I

polynomial through any
function .

[second proof : there are qb such functions and also qb such
polynomials ]



EXAMPLE
.

flXl= X.% must have some representation as a degree eqlpdy
over

Ftq .

What is it ?

ANSWER : X8=X
.

This is because FACT: x%=xtxeFg

:

↳
Now we are finally ready to define ...

Useful fact! Let's

call it at
.

DEF .
(REED . SOLOMON CODES) We Won't

prove
it

but We will use it

Let nzk
, of

= n
.

The REED .SOLOMON CODE A bunch
.

[ It's  not hard to
prove

:

of dimension k over Fq ,

with evaluation
points checkout the

supplementary

£ = ( X
, ,

-

, xn ) ,

is material on finite fields ]

souk
Rsqlsi ,

n ,k)={ Hk ,) ,
Had

,
... ,fkn )) :

feftgfx]
, degtfkk -1 }I 'll just

write

RSCMK)
.

NOTE : This definition implies a natural
encoding map

for RS codes :

Xtxo,
... .

,
#1→ ( fxk . ) ,

...

, fxknl )
,

where fx (X ) =

Xotx
,

.X+ . .  +
xk . ,

Xk
"

←
We've been 1-

indexing
but here it  is convenient

to zero - index ]
.

This isn't the ONLY encoding map ,

but it's the one we will think about

for most of the class
.

Prop
. Rsgl In ,k ) is a linear code

,
and the

generator matrix

is the nxk Vandermonde matrix with rows corresponding

to 21
,

Xz
,

. - .

,
dn

.

proof . Staring .

( If x has the coefficients off
,

then V. f=(tfYm) . )

Notice : Since Vhasrankk
,

this implies that dimlrslnik ) )=k )



Prop The distance of Rsglnik ) is D=a .

kit
.

Proof .

Since Rsglmkl is linear
, distlrsdmhltcyyjgwtk

)
.

The minimum weight of
any

codeword is at least nk .
,

since
any

degree kt
polynomial

has at most

kt
roots

.

Equivalent proof : the follows from the fact that

every
kxk minor of the

generator
matrix is full

rank
.

Cor
.

RS codes
exactly

meet the Singleton Bond
.

yay ! optimality ! !

Foranynandkwe
like !

DEF .

A linearlnikidlqcodewitknktdit( aka
, meehnytusingktnbd )

is called
MAXIMUM

DISTANCE SEPARABLE .
( MDs )

So
,

RS codes are MDS
.

Notice that MDS . ness is
equivalent

to the

properly
:

"

every
kxkminor of the

generator
matrix is full rank

,

"

which we just saw was true for RS codes
. )

In particular ,
if CISMDS

,
the

kxkminor P %u%
then

any
k positions of Cec

cggonge
.gg?ogngnYsedE

×

determine all of c
. ↳

G
C

Distance n -

k+1

# can correct
any

nk erasures

Notatnatqmut be
growing

in order to
get

⇐ any kxkminor
an MDS code ( by the Plotkin bound )

.

How
big of G is invertible

.

does
of

have to be ? OPEN QUESTION !

gained
, ⇐ fg.ly

,

"

!;§;] Imssifqah
,

and n=gt2 .

CONJECTURE (
"

MDSCONJECNRE
" ) .

If keq
,

then
neqtl ,

unless

(q=
2h andk=3)ork=qt ,

in which case neg+2 .

( from 1955 )

aka
, Rs codes basically have the smallest alphabet sized n=q



�3� DUAL VIEW of RS CODES

What is the parity . check matrix of an RS code ?

We 'll need a bit more algebra .

DEF Fg* is the multiplicative group
of nonzero elements in

Fg .

Aka
, Fg*=Eg\{03 as a set

,

and I can define multiplication and

division everywhere in ftp.

EXAMPLE
. Es = { 0

, 1,2 ,
3,4 } mod 5 equipped w/ t and

*#5* = { 1
,

2
,

3.4 } mod 5 equipped ay just
*

.

Fact
. Fg* is CYCLIC

,

which means there's some JE Fg* so that

Fg* . { g. y ; p ,
...

, got }

j is called a PRIMITIVE ELEMENT of Fg .

EXAMPLE
.

2 is a primitive element of Fs
,

and

Fs
't

= { 2
,

22=4
,

23=3
,

24=1 }

4 is Not a primitive element
,

since 42=1
,

43=-1
,

44=1
,

45=-1
,

...

.

and we 'll never
generate

2 or 3 as a power of 4.

FUN EXERCISE :

Ifyou haven't seen this before
, play

around wl this and other examples.

What elements of Fp are primitive
? If an element isn't primitive,

what can

You say
about its ORBIT { ji : it

, 2,3
,

... } ?



FACTILEMMA
.

for
any

O<d<
g-

I
,

§#gdd=O
.

Proof

Gplgtd-Eqpdd-EjEo2lyiTforapnmiliveelementjToanyxt@Ejfj2lydjH-x1.CEjYoxij-1.xn.s

and so EJII xi=f÷×L
= 1 - ( yd ) 't '

for
anyn

. Apply this with x=yd .

Tf # 18.1 .yd=(yd)%=yd
,

using
# again .

=

Fla = 0
.

So Cjd )H=1
.lsinaydio )

.

Now we can answer our
question

about the
parity

. check matrix of Rscodes
.

PROP
. Let

n=q1 ,
andletjbea primitive element of G .

Rsqllr :p :p ,
... ,yn 't

,

n ,k )

= { (co .ci
,

... .cm ) c.
Fgn : ctgiko hrj= 1.2

,
. . ,n

. h }

where CCX) -

. Eliya . Xi
.

COR
.

The parity check matrix of Rsglcj ; ... ,yn 's ,n,k) is

1 jj
.

. .

gn

H  
= 1 j

'

84 . .  .

gam
) c- FgHk)×n

p

:

yn
.

kyzln
- k )

.

. .

ycn
. kknt )



Proof of PROP
.

It suffices to show that

1 y y2
.

. .

yn
1 1 1 ...

I

" {
'

III.
'

t.sn?InI!::aIYii=o

-
.

G

n=q
. I

1 pm .
.

.

ylm÷kScout 's just consider the lijsentyoftheproduot . This is

1 yi yzi y3i
...

yen
. hi

•

go.si

=

£jj±
yli . ylj.

aj
=

[µnj
'

yllitjl
:

= Ejj
'

(gelato

gmt

= [ xepgttalitj
'

=O

since itj<
In .

kHh=n=qt< q
.

[ anditj > 0 since  i > o ]

Notice : Rslniklt has
generator

matrix Ht
,

which
again

looks alot like

a Vandermonokmahix ! So Rslmkltisagainlkindoflanrscode !

This particular derivation usedthechoiaofeval . pts heavily .

However
,

a statement
likethisistmeingenoal .



[ Ieftgxyn

DEF
.

A GENERALIZED Rs CODE GRSq( I ,n,k ; } ) is

Grsqfimh ;I ) :={ ( xofkdnnfk
, )

,
.

,

xnfkn) ) |feEgk ]
, degtfkkt} .

THM
. GRSQ ( 8. n ,k ; I )t=GRSq(x ,

n
,

nh
, 8)

for  some EE #g* )?

Proof : Fun exercise !

QUESTIONS to PONDER

�1� How would you modify Rscodestmakethembinary
?

�2� How would
you

decode Rscodesfnm errors efficiently ?

Can we do this ?


