
ALGORITHMS

CSZSTYEE 387 - LECTURES -

for REED . SOLOMON CODES !

AGENDA

GASTROPOD FACT:

00 Finishing Up
dual RS codes Most land

slugs
have two pairs of tentacles

.

�1� Berlekamp . Welch The upper pair senses light ,
and the lower

pair

�2� Berlekamp -

Massey [ sketch ] senses smell
.

%EEtecht.EE#@

Recall the definition of RS codes :

DEF
.

(REED . SOLOMON CODES)

Let nzk
, qzn

.

The REED -SOLOMON CODE

of dimension k over Fq ,

with evaluation
points

I = ( x
, ,

-

, an ) ,

is

sIof@smtRsqlI.n,

k ) = { Hk ,) ,
Had

,
...

,
fkn )) :

feftgfx]
, degtfkk -1 }

write

RSCMK)
.

Last time
,

we saw that they meet the Singleton bound
.

[ Need to finish
up

RS duality - see LECTURE 4 notes ]
.

HISTORIC ASIDE
. RS codes were invented

by
Reed + Solomon in 1960

.

At the time
, they

didn't have
any

fast
decoding algs , so they were sort of neat

but not that Useful
. But in the late 1960 's

,
Peterson

,
Berkkamp . Massey developed

an 044 - time
alg ,

which can be made to run in time OCHogan
) with FFT tricks

.

Then RS codes started to be used all over the place
! CDs

,

satellites
,

QR codes
,

...

In 1986
,

Welch + Berlekamp came up w/ another decoding alg
- its a bit slower but it is

really pretty ,
so we 'll start with that

.



�1� WELCH - BERLEKAMP ALGORITHM

PROBLEM ( DECODING

Rsiqlx
,n,h)

tomes
Lh¥ ] ERRORS )

Given W - ( w
, ,

...

,
Wn ) E Fgn ,

find a polynomial feFg[X ] so that :

•

degcfkk
. fkiltm . for at most eel "¥J values of i

,

or else return 1- if no such polynomial exists
.

IDEA : Consider the
polynomial

ECX )=
,
:w,±TfµfX

-

di ) .

This is called the
"

error locator
polynomial

.

"

(Notice that we don't know what it is
... )

Then ti
, Wi

. Elxi ) = flxil . Elxi )

←
this QKD

ALGORITHM ( BERLEKAMP . WELCH )

�1� Find .

. a inonicdegree e polynomial ECX )

•

a
deg

eetk -1
polynomial QCX )

so that : Wi . Eki ) = QK ;) ti C* )

If it doesn't exist
,

RETURN 't
.

�2� Let FK ) =
QK )1E#)

If A. ( f
,

w ) > e :

RETURN 1-

RETURN F



TWO QUESTIONS :

1
.

How do we find such
pays

?

2. Once we do
, why is it correct to return QIE ? What if we didn't find the

' ' correct
"

Q and E ?

Let's answer QUESTION 2 first .

CLAIM
.

If there is a
degree ek -1 poly fst . Dlfw ) < e

,
then there exists

E and Q satisfying
C * )

.

Proof.

Let ECX) =

(
,
:lI.fµ(

X-D . ) ]
. Xe

' " fn )

Let QK ) - ECX ) .flX )
.

CLAIM
. Suppose that ( Ea

,
Q

.
)

,

( E. Q ) BOTH satisfy the
requirements

in STEP �1�
.

Then :

*a
=

QCNEZCX

)

proof .

Consider RK ) = QINEZKI - QDXIE
,

K )

←← e+k . TE

deglk ) ⇐ Zetkt
,

and ties
,

. ,n}
,

wethimeisden!T¥ ,

Rlhi ) =[Wi
. Entxi ) ] . Ezki ) - [ wi .Eddin . E. Hi ) - 0 |

Hence R has at least n
roots

.

Since e< n¥'
,

2e+k . 1 <

I .

So REO is the all - zero
polynomial .

twduondftneaevpottonmmaidglsna! ) arm



Together,

these CLAIMS answer Question 2
.

Moving onto QUESTION 1
.

How do We find E
,

Q ? POLYNOMIAL INTERPOLATION!

More
precisely ,

we want :

Wi . Ekil = Qki ) for i. b. .

,
n

, deg (E) = e
,

Emonic

- deg ( Q ) ← etk -1
.

÷
near constraints

.

et ( etk ) = Zetk variables
,

which are the coefficients on these two

We
already

know (from CLAIM 1) polynomials
.

that a solution exists (assuming fdoes)
.

So solve this system of
eqs

. to find it ! Zetkrars

m

[

Notice
that 2e+k< ( h . KH ) + ken

,

so the
system

looks like,|
But we don't

actually care if the
system

is over or under . determined
,

↳
'

constants

now that We know that a solution exists and that
any

solution will do
. ]

RUNNING TIME of BERLEKAMP - WELCH :

. Step �1� takes time OCN ) for polynomial division

.

Step @ takes time O(n3 ) for Gaussian Elimination

⇒ O(n3 ) total
.

,



g
These notes adapted from Michael O'Sullivan 's 2004 Problem ( Deanna

Rsjlxn,h)tome⇐L¥t
errors )

Lecture Notes from Math 696 at SDSU
.

[ AvailableBYGWGKY
for them ]

'

Given  w=(w
, ,

. . ,wn ) ettgn ,
fnda polynomial fefefx ] sothat :

�2� BERLEKAMP . MASSEY ( sketch ) ¥ff¥¥hm .br#moste=LnEtwuesofi
,

Again  we  solve this
pygmy

or  else  return  tifnosuoh polynomial  exists
.

The Berkkamp -

Massey algorithm  is more efficient than the Berlekamp -

Wddhalg ,

especially
when the # errors is small

.

Also
,

it turns out to be
really

nice to implement in

hardware
, although

we won't
go

into that .

Let Hbethepanly . check matrix for our RS code
.

I'm
actually going

to cheat a
bit and

add a now of ones on top ,
so that H  = GT for some RS

generator
matrix G

,
since

it makes the exposition a bit nicer
.

Everything
in

sight
is a

generalized
RS code

,

so it doesn't matter to much
.

So let H  = 1 I 1 1  
. .

.
I

1 y y2 y3 . .

ym

1 y2 y4 yb
.  .

.

gun
)

. :

.

1 ymk
- '

. . . yln
. K - 1) In . I )

We will do SYNDROME DECODING ( like for
Hamming

codes)
.

That is
, suppose

W=c+e
,

and we can compute

HW
= He + He = He

,
since He . Otcec

.

Ourgoalwillbelouse He (the
"

SYNDROME
'

) to recover ECX )
,

the error locator
Polynomial

'

_ faetmspeciatizinybthis

particular order onevalptsbk

E (X ) = IT ( X - ji ) we picked Hasabwe .

i : eito

\



We don't have direct access to e. but we do have access to He
.

Consider
,

for some vector ( fo.fi
,

...

,
fnk .

,
)

,

f. f
,

- . . fn
. K . ,

H

e

This we can compute ,
since we know He

.

However
,

if we remember that H=Gt
,

this is also equal to

fa ) fg ) ftp.  . .
. ffym

' ) = : ( f. e) or
( FK)

,
e)

. INTRODUCING

where fk)=EIjktfi . Xi
. Notation .

So
,

we can actually compute
< fie > for

any fwldeglfkn
. k

.

Our
goal

is to use this
power

to recover e
.

Actually
,

we are
going

to recover ECX)
,

then factor it to learn e.

OBSERVATION
.

( e
,

Xr . ECX) ) = 0 fr .

proof : ( e
,

Xr . EHI > = Elise. gir . ELI

OUR PLAN : Let's find some
poly

fat
. deg(f) stand

The two things is zero
.

( e
,

Xiflx ) ) = 0 for r=o
,

. . ,tt .

It's not immediately clear that this is a
good plan ...



. . .
but in fact it is a good plan :

PROP
. Suppose that wtle )=t

,
and that ( e

,

X !fH ) )=O for r=O
, ,tt .

Then EH ) Ifk )
.

In
particular ,

if deglf)
a- t

,
ECX )=x .

HX) for some #
*

Proof
. If 4

,

X. FH) ) = Ott r=o
,

... .tt
,

then
by linearity

,

4. gktfk) )=O ttgettfx] with
degcgktt .

roranykst . ⇐ 1
,

let gkkk

¥84
;

!¥qf×

't )
.

Then
degcg) ⇐ t - 1

,

hence

0=4
, gktfk ) ) = [ ¥ ei

.

g
( j ) . flj ) =

gnglyktflyk)

Hence
, ffyk )=O

.
So (X. yk ) Ifk ) ffest . q=1

,

when alsotnotzero J
better

So E ( x ) 1 f ( X)
.

t.com

OK
,

so our plan is a
good

one
.

Let's try to find f so that :

.

deglftet

. ( e
,

X. fk ) ) = 0 tt r :O
,

...

,
t -1

.

To this end
,

define :

span (f) = the smallest rst
. G. Xrfk ) > to

disc (f) = ( e
,

X
" an #

. flx ) ) is that nonzero value
.



[ This page skipped in class ]

USEFULLEMMA : lfdeglg) Espana)
,

then deglg) tspanlgledeglfltspanlfl .

Proof
.

First
, suppose

that
deglgkspantfl , say gk )= x. XM

" "
i. STUFF

.

Tnonzen

Then G. gkl.tl/D=Ce.fglxtxXsMtDHxD+Gx.XHttfkD
- .

degree < spank)
NONZERO by#
defofspanlf )

ZERO

÷
this whole

thing

In particular ,
ONE of the terms that shows is NONZERO

.

up
in f

, say
X

'

force degcf) ,
has

Ce
, gk

) .x° > t0
,

hence
span (g)

⇐

cideglf
)

.

Then
deylgltspanlg

) ⇐
span # +

deglfl .

Next
,
if degly) < spantfl

,
apply the above to XM

# '

&8G '

.g(
X)

.

COR
. If span (f) =t then

span I f ) = a.

proof. Say spantft > t but is finite
.

Then
degkttespantfl ,

so by the USEFULLEMMA
,

degl E) +
span

(E) E

deglf
) + spanlf )

T fnitT §
CONTRADICTION !



Again ,
our goal is to come up w/ some function w/ large span .

The
following

lemma will tell us how to
get

this
.

LEMMA Suppose spanlfkr
,

disc # =µ
WRYYYYTFYIYF.that ,

and

( e
,

xifkl ) = 0 ficr
.

Suppose span (g) =c
,

disc
(g)

=V

AND say
that cer

.

Then hlxt HXI . IF ) .

Xtrgk ) has

span 1 h ) >
span l f )

.

The point of this lemma is that
, given

f and
g

With
reasonably

close spans ,

we can combine 1ham to
get

hwl a strictly bigger span
and degree

not too much
larger.

PI
.

Just consider

< e
,

xi . [ th ) . (F) xargcx ) ] >

= ( e. xifcx ) > - (F) ( e. Xtrtiglx) >

If icr
,

then both terms are 0 since splfkr , splgkc .

If ier
,

then we have
µ

-

( E ) . v
= 0

.

Hence Sp
( h ) > r

.



ALGORITHM
.

(BERLEKAMP . MASSEY ) :

Initialize f ← 1
, g←O

for m=O
,

...

,

Zt -1 :

C ← deglf ) -1

r ← M - c -1 Em . degtfl )

µ
← ( e

, .

)
WRECK

's Wccanamputethisas

yr.HN longasdeglxifk) ) en . k -1

[ This will impose the constraint Ztten .

h
- I ]

if
µ=O

or re C :

,

g
We will maintain induotivehypsthat

.

imply
that in this case

,f-(X ) ← FCX ) -

µ
.

X
"

.gl/l)spanif1=r.spanlgte.disdgt=t

,

g.
( X ) ←

g-
( X ) sothisisjusttue update

from the LEMMA
.

else :

,

fln
this case we 'll have

ffx ) ← Xr
'

c. flx ) -

µ

.gl/l)spancH=r.spanlgttg'
( X ) ←

f. f( X )
and

disdght

,

so the

LEMMA 's
update  would be

f.
g

← fsgi

h ←

gk
) -

f. Xrifk )
,

.

and this is just -µ
lines that .

RETURN f ( X ) Gtmukessurewekeepdisd,gl=1 )
.

CLAIM
.

This algorithm maintains :

After iteration m :

• fismonicand degtfttspanlfl
> m

• EITHER
g=O

OR : .

spancg) =

deylfl

-1

.

span g)
+ degly

) < m

• disc
(g) =1

.



[ This proof skipped in class ] Initialize f ← 1
, g←O

Proof
.

The base Case (after m= -1 ) is easy .

£m=o
, .at :

Let M >  -1 and assume by
induction that e ← agate

r  ←  m - c . ,
=  m

-

deg ( f )

µ
← ( e

, yr. th

(1) fismonic and deglfttspanlf ) > m if
to

 or re :

(2) EITHER
g=O

OR :

fix
) ← HX ) -

µ
.

X.
gk )

•

Spancg) =

deylfl
-1gtxl←

g
( x )

.

span (g)
+ degly

) Em
else :fix ) ← Xriflx ) .

µg( × )

• disc
(g) =1

.jlx ) ←  

f. flx )

f. g
←

fig
'

RETURN flx )

CASEI
.

µ=o
.

Then f and
gareumhdnafd .

Ng . repeated for the readers (and writer 's ... ) convenience
.

So the sluttk ) about
g

is
good .

further
,

since O=µ . ( e
,

Xrflx ) ) = 6
,

xm
-

death

!fW

)
,

We have
span

1 f ) > m . degtf )
,

hence
spantfltokglfl

> m

,
so 111 holds

.

y
induction

CASE 2
. µto .

fspanlgl

= degtfl -1
 

=c by our choice of  .
.Hence

span ( X
' '

r.gl/y)=r.
CASE ZA .

VEC
.

-

then f
'

←

IN
-

A

Xtrigktgndutiongaueofr

(
deglfltspanlfumtdeglfltr ⇒ spanlflsr.

And since
µ

to
,

spanlfkr .

So both f.
g

have  
span

=r

, disdfkpi ,
disc (g) =1

,

so this update is
precisely

the one from the LEMMA and splf
' ) > r

.

Moreover
, deglf

'

kdeglf )
,

hence
deglf 'H golf

'

) >
deglfltsplfl

> m

-

⇒
deglf

'

) + splf
'

) >
m +1

(
To see this

,
notice that deglgl = (splgltdeglg) ) -

sply ) em -

spanlg )=m - C

so

deglxtrgcx ) ) e ( M . c) + ( c . rtm - r <

dey→
Thus

,
the update

' '

-

µ
.

Xtrgk )
"

affects bkspanttkr ,

and

a ,

#
neither the degree ,

nor the monicness off
by induction

splfttrdeglf) > m
.

arg says
also that f

'

is manic
,

so (1) holds for
 m+1

.

(2) holds since in this case we did not update
g.

CASE ZB . Ccr is similar .
[ FUN EXERCISE ]

.



COI . Suppose wtle ) = t
.

If m > Zt -1
,

then after iteration m
,

FIX ) =EK )
.

proof. first notice that
deg ( fk ) ) et

.

Indeed
,

we've been
maintaining span (g) = degtfl

-

1
,

soifdeglflstlhensplgkt
.

By the USEFUL LEMMA ( or rather
,

its Cor )
,

We have span (g)
=  •

.

But We were also  maintaining span (g)
+ deglg ) em

,
so that's a tf .

Now
, deylf ) +

span ( f ) >
m

⇒ span # > m -

degtf
)

= ( Zt . 1) - t

= t - 1

So
span ( f ) st .

But this is what we wanted :

gBy
earlier LEMMA

.

splfl > t  ⇒ EK ) Ifk )

deglf ) et  ⇒ EK ) = x. fk ) for some he F
*

fmonic ⇒ Ektfk )
.

Finally
,

recall that D= n - k +1
,

and that the algorithm shops working

( we shop being
able to

query ( e. X. FIX ) )
=p

) when M > n . k
,

so we

need Zt - 1 En - k - 1

aka t = n÷k = dist which is where the algorithm
should stop working .

HOWEVER ! Notice that if t happens to be smaller
,

we can actually stop earlier
,

with
only

OH) rounds
.

Thepdysweareworking
with all have deg em = Old

,
and so we can do everything in

polylt) computations over Fq .

That's sublirear time ! !

is

[ See
"

Syndrome Encoding and Decoding of BCH Codes in Sublineartime
"

by Dodis
,
Ostrosky

,
Reyzin ,

Smith for details about making this nallast
. ]



All this just finds ECN
.

We still need to find the roots of Ek )
,

and then figure

out how to fix the errors
.

•

If you get fancy
, you

can
factor Ek ) in time Of t

" 8
ish

.

log( n ) )

€

Esubquadratic
- time

factoring
of

polynomials over finite fields
"

Kallofen + Shoup 1995 ]

° To
actually

recover the
message ,

we can't hope for sub linear line ( since the

message
has length k= Rn )

,
but we can how do that in line Olnloglnl)

via linear
algebra .

[ The nlugln ) is bk Vandermonde matrices admit a nice
Ffatygike ]

That finishes the Berkkamp - Massey algorithm
.

This
algorithm can actually

be implemented nicely in hardware [ the update

skp can be done with a shift
register

] and so this is the
dg . that's often used

in practice for RS codes
.

( Or
, optimized versions of this )

.

The Berlekamp - Welch
alg

is
certainly

easier to understand
, though

!

QUESTIONS to PONDER

�1� fill in the detail's for the Berlekamp -

Massey alg .

[ there is one FUN EXERCISE in the notes and I anticipate we skipped Some proofs in class]

�2� Can
you

think of
any

other
algs

for RS codes?

�3� How would
you adapt RS codes / these algorithms

to come
Up

with BINARY codes ?


