CS250/EE387-LECTURE5
ALGORTITMS
for REED-SOCOMON CODSS!
Agenda
(O) Finishing up dual RS codes
(1) Berlekamp-Welch
(2) Berleleamp-Massey [sketch]

Gastropod FACT:
Most land slugs have two pairs of tentacles. The upper pair senses light, and the lower pair senses smell.

(O) Recall the definition of RS codes:

DEF. (REED-SOLOMON CODES)
Let $n \geqslant k, q \geqslant n$. The REED-SOLOMON CODE of dimension k over \mathbb{F}_{q}, with evaluation points $\vec{\alpha}=\left(\alpha_{1},-, \alpha_{n}\right)$, is RS (n, k).

Last time, we saw that they meet the singleton bound.
[Need to finish up RS duality - see LECTURE 4 notes].
HIstoric Aside. RS codes were invented by Reed + Solomon in 1960.
At the time, they didn't have any fast decoding alg, so they were sort of neat but not that useful. But in the late 1960^{\prime} 's, Peterson, Bertekims-Massey developed an $O\left(n^{2}\right)$ - time alg, which can be made to mun in time $O(n \log (n))$ with $F F T$ tricks. Then RS codes started to be used all over the place! CDs, satellites, QRRcodes,... In 1986, Wench + Berekekamp came up w/ another decoding alg - it's a bit sower but it is really pretty, so weill start with that.
(1) Welch - Berlekamp Algorithm

PROBLEM (DECODING $\operatorname{RS}_{q}(\vec{\alpha}, n, k)$ from $e \leq\left\lfloor\frac{n-k}{2}\right\rfloor$ ERRORS $)$
Given $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{F}_{q}^{n}$, find a polynomial $f \in \mathbb{F}_{q}[x]$ so that:

- $\operatorname{deg}(f)<k$
- $f\left(\alpha_{i}\right) \neq w_{i}$ for at most $e \leq\left\lfloor\frac{n-k}{2}\right\rfloor$ values of i, or else return \perp if no such polynomial exists.

IDEA: Consider the polynomial $E(X)=\prod_{i: w_{i} \neq f\left(x_{i}\right)}\left(X-\alpha_{i}\right)$.
This is called the "error locator polynomial." (Notice that wedon't know what it is...)
Then $\forall i, \quad w_{i} \cdot E\left(\alpha_{i}\right)=\underbrace{f\left(\alpha_{i}\right) \cdot E\left(\alpha_{i}\right)}_{\text {Call this } Q\left(\alpha_{i}\right)}$
Algorithm (Berlekamp-Welch)
(1) Find:

- a monic degree e polynomial $E(X)$
- a deg $\leq e+k-1$ polynomial $Q(X)$
sothat: $\omega_{i} \cdot E\left(\alpha_{i}\right)=Q\left(\alpha_{i}\right) \forall i$
If it cloesn't exist, RETURN \perp.
(2) Let $\tilde{f}(X)=Q(X) / E(X)$

If $\Delta(\tilde{f}, w)>e$:
RETURN \perp
RETURN \tilde{f}

Two qUESTIONS:

1. How do we find such polys?
2. Once we do, why is it correct to return Q/E? What if wedidn't find the "correct" Q and E ?

Let's answer Question 2 first.
CLAIM. If there is a degree $s k-1$ poly f s.t. $\Delta(f, w) \leqslant e$, then there exists E and Q satisfying (*).
proof. Let $E(X)=\left[\prod_{i: w_{i} \neq f\left(\alpha_{i}\right)}\left(X-\alpha_{i}\right)\right] \cdot X^{e-\Delta(f, w)}$
Let $Q(X)=E(X) \cdot f(X)$.

CLAIM. Suppose that $\left(E_{1}, Q_{1}\right),\left(E_{2}, Q_{2}\right)$ BOTH satisfy the requirements in STEP (1). Then:

$$
\frac{Q_{1}(X)}{E_{1}(X)}=\frac{Q_{2}(X)}{E_{2}(X)}
$$

proof. Consider $R(X)=\underbrace{Q_{1}(X)}_{\text {dey } \leqslant e+k-1} \underbrace{E_{2}(X)}_{\text {doge }}-Q_{2}(X) E_{1}(X)$

$$
\begin{aligned}
& \operatorname{deg}(R) \leq 2 e+k-1, \text { and } \forall i \in\{1, \ldots, n\}, \\
& R\left(\alpha_{i}\right)=\left[w_{i} \cdot E_{1}\left(\alpha_{i}\right)\right] \cdot E_{2}\left(\alpha_{i}\right)-\left[w_{i} \cdot E_{2}\left(\alpha_{i}\right)\right] \cdot E_{1}\left(\alpha_{i}\right)=\left.0\right|_{\downarrow} ^{\substack{\text { Thesis where } \\
\left.\text { wen ede } \leq \leq \frac{1-k}{2}\right\rfloor}}
\end{aligned}
$$

Hence R has at least n roots. Since $e<\frac{n-k+1}{2}, 2 e+k-1<n$. So $R \equiv O$ is the all-zero polynomial. (Low der ne paynamals dent havel mo many mats!)

Together, these CLAIMS answer Question 2.
Moving on to Question 1. How do we find E, Q ? POLTNOMAL interpolatIon!
More precisely, we want:

$$
\underbrace{w_{i} \cdot E\left(\alpha_{i}\right)=Q\left(\alpha_{i}\right) \text { for } i=1, \ldots, n, \quad \begin{array}{l}
\operatorname{deg}(E)=e, \quad E_{\text {monic }} \\
\operatorname{deg}(Q) \leqslant e+k-1 .
\end{array}}
$$

n linear constraints.
$e+(e+k)=2 e+k$ variables, which are the coefficients on these two
We already know (from CLAM M 1)
that a solution exists (assuming floes).
So solve this system of eqs. to find it!
[Notice that $2 e+k<(n-k+1)+k \leqslant n$, sou the system looks like

But we don't achally care fth system is over or under-determined, now that we know that a solution exists and that any solution will do.] \qquad

Running Time of Berlekamp-welch:

- Step (1) takes time $O\left(n^{3}\right)$ for polynomial clivision
- Step (2) takes time $O\left(n^{3}\right)$ for Gaussian Elimination
$\Rightarrow O\left(n^{3}\right)$ total.
(2) BERLEKAMP-MASSEY (sketch)

Again we solve this PROBLEM
The Berlekamp-Messey algonithm is more efficient than the Berlekamp-Welchaly, especielly when the \#enors is small. Aso, it tumsout to be really nice to implement in hardwere, athough we wor't go in to that.

Let H be the parity-check matrix for our RS code. Im actually going to cheat a bit and add a row of ones on top, so that $H=G^{\top}$ for sone RS generator matrix G, since it makes the exposition a bit nicer. Evengthing in sight is a generalized RS code, so it duesn't matter too much.

So let $H=\left[\begin{array}{ccccccc}1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \gamma & \gamma^{2} & \gamma^{3} & . & \\ 1 & \gamma^{2} & \gamma^{4} & \gamma^{b} & \cdots & & \gamma^{n-1} \\ \vdots & \vdots & & & \gamma^{2(n-1)} \\ 1 & \gamma^{n-k-1} & \cdots & & & \gamma^{(n-k-1)(n-1)}\end{array}\right]$

We will do SYNDROME DECODING (like for Hamming codes).
That is, suppose $w=c+e$, and we can compute

$$
H \cdot W=H \cdot c+H \cdot e=H \cdot e, \text { since } H \cdot c=0 \forall c e C \text {. }
$$

Our goal will be to use H.e (the "STNDROME") to recover $E(X)$, the error locator polynomial.

$$
E(X)=\prod_{i: e_{i} \neq 0}\left(X-\gamma^{i}\right) \begin{aligned}
& \text { here Im secializing to this } \\
& \text { perticularocoder on evel pto bl } \\
& \text { we picked } H \text { as } b \text { bove. }
\end{aligned}
$$

We don't have direct access to e, but we clo have access to Hie. Consider, for some vector ($f_{0}, f_{1}, \ldots, f_{n-k-1}$),

This we can compute, since we know Hie.
However, if we remember that $H=G^{\top}$, this is also equal to

So, we can actually compute $\left\langle f_{1} e\right\rangle$ for any $f w / \operatorname{deg}(f)<n-k$. Our goal is to use this power to recover e.
Actually, we are going to recover $E(X)$, then factor it to learn e.
OBSERVATION. $\left\langle e, X^{r} \cdot E(X)\right\rangle=0 \quad \forall r$.
proof: $\left\langle e, X^{r} \cdot E(X)\right\rangle=\sum_{i=0}^{n-1} e_{i} \cdot \gamma^{\text {ir. }} \cdot E\left(\gamma^{i}\right)$
OUR PLAN: Let's find some poly f st. deg (f) stand
one of these two things is zero.

$$
\left\langle e, x^{r} \cdot f(x)\right\rangle=0 \text { for } r=0, \ldots, t-1 .
$$

It's not immediately clear that this is a good plan...
.. but in fact it is a good plan:
Prop. Suppose that wt $(e)=t$, and that $\left\langle e, x^{r} \cdot f(x)\right\rangle=0$ for $r=0, \ldots, t-1$. Then $E(X) \mid f(X)$.
In particular, if $\operatorname{deg}(f) \leq t, \quad E(X)=\alpha \cdot f(X)$ for some $\alpha \in \mathbb{F}_{\text {. }}^{*}$.

Proof. If $\left\langle e, X^{r} \cdot f(X)\right\rangle=0 \forall r=0, \ldots, t-1$, then by linearity,

$$
\langle e, g(X) \cdot f(x)\rangle=0 \quad \forall g \in \mathbb{F}_{q}[X] \text { with } \operatorname{deg}(g) \leqslant t-1 \text {. }
$$

For any k s.t. $e_{k}=1$, let $g_{k}(X)=\frac{E(X)}{X-\gamma^{k}}=\prod_{\substack{i: e_{i} \neq 0 \\ i \neq k}}\left(X-\gamma^{i}\right)$.
Then $\operatorname{deg}(g) \leq t-1$, hence

$$
\begin{aligned}
& 0=\langle e, g(X) \cdot f(X)\rangle=\sum_{i=0}^{n-1} e_{i} \cdot g\left(\gamma^{i}\right) \cdot f\left(\gamma^{i}\right)=e_{k} \cdot g\left(\gamma^{k}\right) \cdot f\left(\gamma^{k}\right) \\
& \text { Hence, } f\left(\gamma^{k}\right)=0 \text {. So }\left(X-\gamma^{k}\right) \mid f(X) \forall k \text { st. } e_{k}=1 \text {, } \\
& \text { So zero also not zero } \quad E(X) \mid f(X) .
\end{aligned}
$$

OK, so our plan is a good one. Let's try to find f so that:

$$
\begin{aligned}
& \cdot \operatorname{deg}(f) \leqslant t \\
& \cdot\left\langle e, X^{r} \cdot f(X)\right\rangle=0 \quad \forall \quad r=0, \ldots, t-1
\end{aligned}
$$

To this end, define: $\operatorname{span}(f)=$ the smallest r r st. $\left\langle e, X^{r} \cdot f(x)\right\rangle \neq 0$

$$
\operatorname{disc}(f)=\left\langle e, x^{\operatorname{span}(f)} \cdot f(X)\right\rangle \text { is that nonzero value. }
$$

[This page skipped in class]
USEFUL LEMMA: If $\operatorname{deg}(g) \leqslant \operatorname{span}(f)$, then $\operatorname{deg}(g)+\operatorname{span}(g) \leqslant \operatorname{deg}(f)+\operatorname{span}(f)$.
Proof. First, suppose that deg $(g)=\operatorname{span}(f)$, say $g(X)=\alpha \cdot X^{\operatorname{span}(f)}+$ STuFF.
 $\left\langle e, g(x) \cdot x^{c}\right\rangle \neq 0$, hence $\operatorname{spen}(g) \leqslant c \leqslant \operatorname{deg}(f)$.
Then $\operatorname{deg}(g)+\operatorname{span}(g) \leqslant \operatorname{span}(f)+\operatorname{deg}(f)$.
Next, if $\operatorname{deg}(g)<\operatorname{span}(f)$, apply the above to $\quad X^{\operatorname{sen}(f)-\operatorname{deg}(g)} \cdot g(X)$.

COR. If $\operatorname{span}(f) \geqslant t$ then $\operatorname{span}(f)=\infty$.
proof. Say $\operatorname{span}(f) \geq t$ but is finite. Then $\operatorname{deg}(E)=t \leq \operatorname{span}(f)$, so by the USEFUL LEMMA,

$$
\operatorname{deg}(E)+\underbrace{\operatorname{span}(E)}_{\infty} \leq \underbrace{\operatorname{deg}(f)+\operatorname{span}(f)}_{\text {finite. }}
$$

Contradiction!

Again, our goal is to come up $\omega /$ some function $\omega /$ large span. The following lemma will tell us how to get this.

Suppose $\operatorname{span}(g)=c, \operatorname{disc}(g)=\nu$
AND say that $c \leqslant r$.
Then $h(X)=f(X)-\left(\frac{\mu}{v}\right) \cdot X^{c-r} \cdot g(X)$ has

$$
\operatorname{span}(h)>\operatorname{span}(f)
$$

The point of this lemma is that, given f and g with reasonably close spans, we can combine them to get $h w /$ a strictly bigger span and degree not too much larges.
pf. Just consider

$$
\begin{aligned}
& \left\langle e, X^{i} \cdot\left[f(X)-\left(\frac{\mu}{v}\right) X^{c-r} g(X)\right]\right\rangle \\
= & \left\langle e, X^{i} f(X)\right\rangle-\left(\frac{\mu}{v}\right)\left\langle e, X^{c-++i} \cdot g(X)\right\rangle
\end{aligned}
$$

If $i<r$, then both terms are O since $\operatorname{sp}(f)=r, \operatorname{sp}(g)=c$.
If $i=r$, then we have $\mu-\left(\frac{\mu}{v}\right) \cdot v=0$.
Hence $s p(h)>r$.

Algorithm (BERLEKAMP-MASSEY):
Initialize $f \leftarrow 1, g \leftarrow 0$

$$
\text { [This will impose the constraint } 2 t-1 \in n \cdot k-1 \text {] }
$$

if $\mu=0$ or $r \leqslant c$:

RETURN $f(X)$

CLAIM. This algorithm maintains:
After iteration m :

- f is manic and $\operatorname{deg}(f)+\operatorname{span}(f)>m$
- either goo

OR: $\cdot \operatorname{span}(y)=\operatorname{dey}(f)-1$

- $\operatorname{span}(y)+\operatorname{deg}(y) \leqslant m$
- $\operatorname{disc}(y)=1$.

$$
\begin{aligned}
& \text { else: }
\end{aligned}
$$

$$
\begin{aligned}
& g^{\prime}(X) \leftarrow \frac{1}{\mu} \cdot f(X) \\
& \begin{array}{l}
\text { and } \text { dis }(g)=1 \text {, so the } \\
\text { Lemunts upacate would be }
\end{array} \\
& \text { LemMA's upstate would be } \\
& h \leftarrow g(x)-\frac{1}{\mu} \cdot x^{r-c} f(x) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CIt takes srewe kern disig }(\mathrm{f})=1 \text {). } \\
& \text { C(} 1 \text { moles swreve kep dis }(f)=1 \text {). }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } m=0, \ldots, 2 t-1 \text { : } \\
& c \leftarrow \operatorname{deg}(f)-1 \\
& r \in m-c-1 \quad(=m-\operatorname{leg}(f)) \\
& \begin{array}{l}
r \leftarrow m-c-1 \quad(=m-\operatorname{deg}(f)) \\
\mu \leftarrow\left\langle e, X^{\top} \cdot f(X)\right\rangle
\end{array} \quad \begin{array}{l}
\text { RECALL, we can computethis as } \\
\text { long as deg }\left(X^{\top} \cdot f(x)\right) \leqslant n-k-1
\end{array}
\end{aligned}
$$

[This proof skipped in class]
Proof. The base case (after $m=-1$) is easy.
Let $m \geq-1$ and assume by induction that
(1) f is manic and $\operatorname{deg}(f)+\operatorname{span}(f)>m$
(2) EITHER $g=0 \quad O R$:

- $\operatorname{span}(y)=\operatorname{deg}(f)-1$
- $\operatorname{span}(y)+\operatorname{deg}(y) \leqslant m$
- $\operatorname{disc}(g)=1$.

CASE 1. $\mu=0$. Then f and g are unchanged.
So the shift (2) about g is good.
Further, since $0=\mu=\left\langle e, X^{r} f(X)\right\rangle=\left\langle e, X^{m-\operatorname{deg}(f)} \cdot f(X)\right\rangle$,
we have $\operatorname{span}(f)>m-\operatorname{deg}(f)$, hence $\operatorname{span}(f \mid+\operatorname{ceg}(f)>m$, so (1) holds.
CASE 2. $\mu \neq 0$.
CASE RA. $r \leqslant c$.

Initalize $f \in 1, g<0$
for $m=0, \ldots, 2 t-1$:

$$
\begin{aligned}
& c \leftarrow \operatorname{deg}(f)-1 \\
& r \leftarrow m-c-1=m-\operatorname{deg}(f) \\
& \mu \leftarrow\langle e, X \cdot(f)\rangle
\end{aligned}
$$

if $\mu=0$ or $r \leqslant c$:

$$
\begin{aligned}
& f^{\prime}(x) \leftarrow f(x)-\mu \cdot x^{c-r} \cdot g(x) \\
& g^{\prime}(x) \leftarrow g(x)
\end{aligned}
$$

else:

$$
\begin{aligned}
& f^{\prime}(x)<x^{\circ \cdot c} f(x)-\mu \cdot g(x) \\
& g^{\prime}(x)<\frac{1}{\mu} \cdot f(x)
\end{aligned}
$$

fief. g^{\prime}
Retire $f(x)$

Alg. repeated for the reader's (end writer's...) convenience.
induction $=\operatorname{deg}(f)-1=c$ by our choice of c. Hence $\operatorname{span}\left(X^{c-r} \cdot g(X)\right)=r$.

Then $f^{\prime} \leftarrow \frac{f(x)}{l}-\mu \cdot x^{c-r} \cdot g(x)$.

$$
\operatorname{deg}(f)+\operatorname{span}(f) \geq m \stackrel{\operatorname{deg}}{=}(f)+r \Rightarrow \operatorname{span}(f) \geq r .
$$

And since $\mu \neq 0, \operatorname{span}(f)=r$.
So both f, g have $\operatorname{span}=r, \operatorname{disc}(f)=\mu, \operatorname{disc}(g)=1$, so this update is precisely the one from the LEMMA and $s p\left(f^{\prime}\right)>r$.
Moreover, $\operatorname{deg}\left(f^{\prime}\right)=\operatorname{deg}(f)$, hence $\operatorname{deg}\left(f^{\prime}\right)+\operatorname{sp}\left(f^{\prime}\right)>\operatorname{deg}(f)+s p(f)>m$

$$
\Rightarrow \operatorname{deg}\left(f^{\prime}\right)+\operatorname{sp}\left(f^{\prime}\right)>m+1
$$

To see this, notice that $\operatorname{deg}(g)=(s p(g)+\operatorname{deg}(g))-\operatorname{sp}(g) \leqslant m-\operatorname{span}(g)=m-c$ So $\operatorname{deg}\left(X^{c-r} g(x)\right) \leqslant(m-c)+(c-r)=\underbrace{m-r<\operatorname{deg}(f)}$;
Thus, the update " $-\mu \cdot X^{c-r} g(X)^{\prime \prime}$ affects neither the degree, nor the monicness of f
This arg says also that f^{\prime} is manic, so (1) holds for $m+1$.
(2) holds since in this case we dial not update g.

CASE 2B. $c<r$ is similar. [FUN EXERCISE].

COR. Suppose $w t(e)=t$.
If $m \geqslant 2 t-1$, then after iteration $m, f(X)=E(X)$.
proof. First notice that $\operatorname{deg}(f(x)) \leq t$.
Indeed, we've been maintaining $\operatorname{span}(g)=\operatorname{deg}(f)-1$, so if $\operatorname{deg}(f)>t$ then p $p(g) \geq t$ By the USEFUL LEMMA (or rather, its COR), we have $\operatorname{span}(g)=\infty$.
But we were also maintaining $\operatorname{span}(g)+\operatorname{deg}(g) \leqslant m$, sothat's a \mathscr{y}.
Now, $\quad \operatorname{deg}(f)+\operatorname{span}(f)>m$

$$
\begin{aligned}
\Rightarrow \quad \operatorname{span}(f) & >m-\operatorname{deg}(f) \\
& \geq(2 t-1)-t \\
& =t-1
\end{aligned}
$$

So $\operatorname{span}(f) \geq t$.

But this is what we wanted:

$$
\begin{aligned}
& \text { his is what we wanted: } \\
& \begin{aligned}
\text { sp }(f) \geqslant t & \Rightarrow E(x) \mid f(X) \\
\text { deg }(f) \leqslant t & \Rightarrow E(X)=\alpha \cdot f(X) \quad \text { for somedier } \alpha \in \mathbb{F}^{*} \\
f_{\text {manic }}^{*} & \Rightarrow E(X)=f(X) .
\end{aligned}
\end{aligned}
$$

Finally, recall that $d=n-k+1$, and that the algorithm stops working (we stop being able to query $\left\langle e, X^{\cdot} \cdot f(X)\right\rangle=\mu$) when $m \geqslant n-k$, so we need $2 t-1 \leq n-k-1$
aka $t \leq \frac{n-k}{2}=\frac{d-1}{2}$ which is where the algorithm should stop working.
HOWEVER! Notice that if t happens to be smaller, we can achally stop earlier, with orly $O(t)$ rounds.
The polys we reworking with all have dey $\leq m=O(t)$, and so we can do everything in poly (t) computations over F_{q}. That's sublinear time!
[See "Syndrome Encoding and Decoding of BCH Codes in Sublinear Time" by Dodis, Ostrorsky, Reyzin, Smith for details about making this seal Fast.]

All this just finds $E(X)$. We still need to find the roots of $E(X)$, and then figure out how to fix the errors.

- If you get fancy, you can factor $E(X)$ in time $O\left(t^{1.8 \text { ssh }} \cdot \log (n)\right)$
- Esubguadratic-time factoring of polynomids over finite fields" Kaltofen +Shoup 1995]
- To actually recover the message, we can't hope for sublinear time (since the message has length $\left.k=R_{n}\right)$, but we can how do that in time O(nlog(n)) via linear algebra. [Then $\log (n)$ is bc Vandermende matrices admit a nice FFT-like] alg.

That finishes the Berlekemp-Massey elgonthm.
This algonthrre can actually be implemented nicely in hardware [the update step can be done with a shift register] and so this is the alg. That's often used in practice for RS codes. (Or, optimized versions of this).

The Berlekamp-Welch alg is certainly easier to understand, though!
QUESTIONS io PONDER
(1) Fill in the detail's for the Bereleamp-Massey alg.
[there sone Fun exercise in the notes and I anticipate we skipped Some proofs incas]
(2) Can you think of any other algs for RS codes?
(3) How would you adapt RS codes / these alyonthms to come up with BINARY codes?

