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AGENDA GASTROPODFACT
.

AKA
,

Finishing @ CONCATENATED CODES and the ZYABLOVBOUND Land
slugs

and land snails have
a

↳ "  "§
@ ASIDE : Justesen Codes

single lung ,
called apneumostome ,

Which
opens directly to the outside

. The
opening opens  and closes  about

�1� EFFICIENTLY DECODING CONCATENATED CODES
once  

every few minutes  in  a fully hydrated

land
slug ,

but  itspeedsupifthe

slug gels  dehydrated

-•°°Yp¥he¥l*td¥EkIYmfT

Recall the GOAL fomlastledure :

GOAL
.

Obtain EXPLICIT (aka
, efficiently

constructible ) ,
ASYMPTOTICALLY GOOD

i

frfodey families of BINARY CODES
, ideallywith fastalgorithms .

We just
saw

how to use CONCATENATED CODES lodoallofthatexapt

the
"

fast
algorithms

"

part .

Now we will do that
.
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FIRST TRY at decoding :
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�1� Decode each of these Td blocks : that is

,

find the codeword decin

which is the closest to the received word
.

�2� Convert the
"

corrected
"

chunks D E C
in

into # E [
out

�3� Decode Gut to
get

the
original message

.

CLAIM

.*
The above works PROVIDED that the number of errors eis <

dinogd.ttasg.my#gegwgistfNonce:d=din.dout

is the
designed

distance of the concatenated code
.

So we'd
really like e ⇐ Ldt J

,
not 01/4

.

But let's prove
the claim anyway ,

to understand
why

this approach

might fail .

pflish )
.

Let's call a block l=
"

BAD

"

if there are more than Ld # ) errors in that block
.

If there are e errors total
,

at most

%a¥j
blocks are BAD

.

)f- a block is NOT BAD
,

then the inner code works
.

Thus We Win provided ( # BAD Blocks ) e ¥51) Indeed
,
that's what

happens  
when there are

aka %d÷ '

je Let exactly K¥ errors

e ⇐ LEE
'

]µzty←d¥u

in each bad block
.



The
.

proof shows that this might
Not be?good idea

.

If the adversary JUST BARELY messes
up as

many
blocks as

he
can

,

this

decoder will
fail on L¥ ] errors

.

WHAT ARE WE LEAVING ON THE TABLE ?

Key observation : When we decode the inner code D →

td ,

Ee g. Min

we learn more than just tdc ;
weaboknow wtfdm-D.cn ) .

SOME MOTIVATING EXAMPLES :

�1� Each block either has 0 or
dink errors

.

[ This is the bad example from before ]
.

-

c

En errors  in
.

i.

eaubff.ec# e *#*******-

µ Tttheseblocks have

corrected
a HHHH M *

no errors and don't

blookwlcin
C

× Change
when we decode them

.

(
This block had

some errors
.

When We decode it
,

it's to
something at least dink

away,because :

• •

dIgt¥)↳•""
'T.tt#ythis  distance is  also > dink

.

Thus
,

even though the

NIH
blocks are incorrect

,
we can detect that they

were incorrect
.

So the
thing we should do in this case is tneatthetxy blocks as

ERASURES
.

We can handle twice as
many

of those ! So our error tolerance is

actually about dk in this case
,

which is what we wanted
.



�2� MOTNAMNG EXAMPLE # 2
.

The bad
guy

tries to foil our previous example

by adding error din to some blocks
, turning

them into other codewords
.

eadaiieenersd:C
, * *

blocks

↳wYT¥Egham(,

* *all
already codewords !

Nothing left to  do
.

Now we can't detect anything
! BIT

,

there are
only eldn corrupted blocks

.

Again we save a factor of 2 and can correct
up

to exdlz errors
.

We would like to interpolate between these two extremes
.

CLAIM
.

We can efficiently decode Rsd.mk ) from e errors and s erasures
,

as long as Zets < n - k+1
.

( aka
,

the distance of the RS code)
.

pf -
ish

.

Throw out the s erasures
.

You are left with RSA - s
,

k )
.

Since Ze < ( n . s ) - k+l
,

run Berlekamp . Welch to correct the errors .
Now

you

have an RSC n
,
k ) codeword w/ s erasures

.

Since s< n . k+1
,

correct the

erasures ( via linear
algebra) .

This inspires the following algorithm :

ALGORITHM :
( NOT THE FINAL VERSION ) .

Given in = ( we
,

wz
,

...

, wnn .
) e ( Fgnn

"

)%Y st
. A ( w

, e) < dined

for each i =L
,

...

,
nout : for some CEC

,

. no Cut

Let wi =

argemein
( Bly,

wi ) )

Y

With probability min (
ZDC wiswi

'

)

( set pi
=L

#
,

1 ) :

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Coat 's ( error  + erasure ) decoder On (
Pi

, ... .

,

Pnuut
),

RENRN the result
.



Why does this algorithm
work ?

CLAIM .
IE [ ( #

yi
that  =L ) + 2 (

#

Tiathneatoarenot ) ] < dont
.

algorithm 's

randomness

x

Proof 1 sketch )
.

Let Ei=D(

Wiici
)

,
so / Cont \

E = Eiei < din . clout
.

4 a •
not

2- ,#€¥.in/Cin/C#*nh
C

, Cz C not

Let I it .

1{Pi=t
} .

Item
I ? = 1{ Pittandpitd ; } w

,
we want

tYEhfes
so

Tang . ! bnotdnonmgeasny

fdeeacchkbeock

SUB / Wi  Wr's Wniut

claim . IE[ Zxietxit ]£2d÷ .

t.pt
,

.tt/f#pabiasea
132 134 Ps136136It Pnout

Coin to  either

( Notice

that
the SUBCLAIM proves

the CLAIM
, flouts decoder

turn the codeword

back  into  a  symbol
by linearity of  expectation )

.

X ? in [ out
,

or

. else 1

pf .
 of SUBCLAIM :

case 1
. G- =wi

'

.

So Xie =0
,

and IE[Xit ]€2NdL"w# =

299¥ =2g÷ .

As before
,

lE[Xit ] =

2mm ( Alwiiwi
'

)

,d
, )

CASE 2
.

Citwi
'

D= ,

and

E- [ Xie ] = 1 - lE[ Xit ]
,

since if we didn't  find ↳ then we

made a mistake .

SUBSUBCLAIM
. Ei + Min ( Dlwiiwi )

,
ch

.

) Z d± .

Given the sY3uEam
,

E[2XietXi]=2(1- Efxi ] ) - IECXF ]

= 2 - IEC Xit ]

Proof  of SUBSUBCLAM .

< £± ( de - Min ( D ( wiiwi
'

)
,
d ;) )

'

the min is attained by D(

www.D#i/d1.:3ysuissuBaaim

.

then the claim reads

Aki
,

wilt A ( w
: ,wi

'

) > d1
,

Which is true by the A -

ineq

.(%%5dY
,

And if it's attained by de then We are done
.



So the CLAIM implies that the algorithm works
"

in expectation .

"

We could
try

10 him this into a high probability result (repeat
a bunch of lines)

,

but instead We Will
actually be able to DERANDOMIZE it

.

STEP 1
.

We will reduce the
necessary

randomness
by a little bit

.

ALGORIIHM
VERSION

2

Given N= ( we
,

wz
,

...

, wnn .
) e ( Fgnn

"

)%Y st
. A ( w

, e) < dined

for some CE fino Court

CHOOSE 0 e [ 0,1 ] UNIFORMLY AT RANDOM .

for each i =L
,

...

,
nout :

Let wi =

argemein
( Bly,

wi ) )

YI.F Of min ( ZDL.wni.at ,
1 ) :

L set Pi
=L

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Cont 's ( error  + erasure ) decoder On (
Pi

, ... .

,

Print
),

RENRN the result
.

That is
,

we never used the fact that our draws for Pi were independent .

So let's make them not at all independent .

Our next step will be to search overall possible -0 's
.

In fact
,

we
only

need 10 look at nout +2 values of 0 :

min

( Myint , 1) -03
min ( Maggie, 1)

¥ . . . g-
ON

out
+ I

E

qd 9 Go
. -

O a 1
oo min (2ndw%wsI,

± )
min ( 24¥

"

# t ) [
a , the •  values w , in the same interval

behave the same
.



This is called FORNEY 's GENERALIZED

ALGORITHM :
FINAFERS,

ON

FMNMMDBMNCEDecoder
.

Given D= ( w±
,

wz
,

...

, wnn .
) e ( Fgnn

"

)%Y st
. A ( w

, e) < dined

COMPUTE THE Nout +2 RELEVANT for some Cefnocout
VALUES of 0

,
Go

,
...

,
On

out
+1

for j=O ,
...

,
Nout +1

:

for each i =L
,

...

,
nout :

Let wi =

argemein
( Bly,

wi ) )

Y

IF Qj < min (
2D( wiiwi

'

)

" #
,

1 ) :

L set Pi
=L

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Cont 's ( error  + erasure ) decoder on (P , , ... .

,

pnm
. )

,
to Obtain I

IF A(Enc ( k )
,

w ) ⇐ [d÷ ] :

[ RETURN i

The fact that this
algorithm is correct follows from our earlier claim .

Since
Ez [ 2 ( Items ) + ( # erasures ) ] E dont

,

there exists some Ge [ 0,1 ] so that 2C # errs ) + At erasures ) edont
,

aka so that the alg . finds the correct I .

Thus
,

our algorithm above
,

which tries ALL values of 0
,

must

find that
good

value and return the correct answer
.



What is the
running

time of this algorithm
?

Depends on the codes
.

Let's choose our explicit construction from last time :

I

Recall We had A
out  

=

Gout
- 1

, .com .  
= Rs code with rate Rout

,

dist
.

Soul
.

 # Rout

2nd
Gout

 
= 2km

.

. Cin
 

= Binary linear code on the

Gf
bound

,
with rater > 1- Hdtinte .

You  showed Kill show how to

And this  in time
pdyln ) on

your homework .

The
expensive

bits of the
algare

:

For Olnout ) choices of 0 :

for n

'

= I
,

. . .

,
Nout :

. Decode the inner code ( length nin=O( kin ) = O( loglnout ) ) )
by brute force 11 Time Olnin . lcinl ) = 0( nin . 2km ) =

polyln)

• Run the RS decoder
.

11 time
polyln )

So altogether the whole
thing runs in polynomial time

.

We have proved

THM For
every Recoil )

,

there is a
familyf of

EXPLICIT BINARY LINEAR CODES that lies

at or above the
Zyablov bound

.

Further
,

C

can be decoded from errors
up

to half the Zyablov

bound in time
poly ( n )

.

AKA
,

we have achieved our goal
!

Hooray
!



To RECAP the
story of Concatenated Codes :

- We considered ( RS code) ° ( Binary Linear Code on the GV bound)

- Because the inner code is so small
,

we can find a good one by

brute force in time
poly

( n )
.

- We can be a little more clever with the Justesen Code
,

if we want

something asymptotically good
and STRONGLY explicit .

- ( RS ) ° ( Binary code on the Gvbd ) met the

"

Zyablov Bound!
,

which was

defined as
"

the bound that these codes meet !

- We saw how to use Forney
's GMD decoder to efficiently decode

these codes
up to half the minimum distance .

QUESTIONS to PONDER :

�1� When does code concatenation
give

distance STRICTLY LARGER

than dined out ?

�2� Do there exist concatenated codes on the GV bound ?

SPOILER ALERT : YES
,

see [ Thomasson 1983 ] .

( H 's a randomized
construction)

�3� Can we decode these 9

efficiently
?

SPOILER ALERT . ALSO YES .
It uses list  decoding ,

we

may see it later

�4� Can
you

do better than the Zyablov bound for EXPLICIT CODES

With EFFICIENT ALGS ?


