
CSZSOIEE 387 - LECTURE 7 - Etkientlycdeinoadtnnatateaaas
.

11/30/2018

AGENDA GASTROPODFACT
.

AKA
,

Finishing @ CONCATENATED CODES and the ZYABLOVBOUND Land
slugs

and land snails have
a

↳ " "§
@ ASIDE : Justesen Codes

single lung ,
called apneumostome ,

Which
opens directly to the outside

. The
opening opens and closes about

�1� EFFICIENTLY DECODING CONCATENATED CODES
once

every few minutes in a fully hydrated

land
slug ,

but itspeedsupifthe

slug gels dehydrated

-•°°Yp¥he¥l*td¥EkIYmfT

Recall the GOAL fomlastledure :

GOAL
.

Obtain EXPLICIT (aka
, efficiently

constructible) ,
ASYMPTOTICALLY GOOD

i

frfodey families of BINARY CODES
, ideallywith fastalgorithms .

We just
saw

how to use CONCATENATED CODES lodoallofthatexapt

the
"

fast
algorithms

"

part .

Now we will do that
.

RECALL :
"

The CONCATENATED CODE

linocut
E [fit

" "

is defined [by picture .]by

I | I I I ← xe
qinhinhout

~

Eouohout

/

(

iesoutlI (I I I

lv
I ←

ceEolYt
, encoding

of
.x

µ ,/ / / |
,

\,\
undercoat .

I

IT
↳ '

esinin
,

encodingofdundercin .

FIRST TRY at decoding :

-

I I 1 1 ,

.dk#itnqnhnkn

.

Cont

(
de [

onlyI I I I I I

lv
I I

#infcin
/

IanYin#
Cefnofout → I

IT
GADD ERROR

'

e Einin
, encoding

of d under Gn
.

Nin
• nout

Ie [
in

→

-
�1� Decode each of these Td blocks : that is

,

find the codeword decin

which is the closest to the received word
.

�2� Convert the
"

corrected
"

chunks D E C
in

into # E [
out

�3� Decode Gut to
get

the
original message

.

CLAIM

.*
The above works PROVIDED that the number of errors eis <

dinogd.ttasg.my#gegwgistfNonce:d=din.dout

is the
designed

distance of the concatenated code
.

So we'd
really like e ⇐ Ldt J

,
not 01/4

.

But let's prove
the claim anyway ,

to understand
why

this approach

might fail .

pflish)
.

Let's call a block l=
"

BAD

"

if there are more than Ld #) errors in that block
.

If there are e errors total
,

at most

%a¥j
blocks are BAD

.

)f- a block is NOT BAD
,

then the inner code works
.

Thus We Win provided (# BAD Blocks) e ¥51) Indeed
,
that's what

happens
when there are

aka %d÷ '

je Let exactly K¥ errors

e ⇐ LEE
'

]µzty←d¥u

in each bad block
.

The
.

proof shows that this might
Not be?good idea

.

If the adversary JUST BARELY messes
up as

many
blocks as

he
can

,

this

decoder will
fail on L¥] errors

.

WHAT ARE WE LEAVING ON THE TABLE ?

Key observation : When we decode the inner code D →

td ,

Ee g. Min

we learn more than just tdc ;
weaboknow wtfdm-D.cn) .

SOME MOTIVATING EXAMPLES :

�1� Each block either has 0 or
dink errors

.

[This is the bad example from before]
.

-

c

En errors in
.

i.

eaubff.ec# e *#*******-

µ Tttheseblocks have

corrected
a HHHH M *

no errors and don't

blookwlcin
C

× Change
when we decode them

.

(
This block had

some errors
.

When We decode it
,

it's to
something at least dink

away,because :

• •

dIgt¥)↳•""
'T.tt#ythis distance is also > dink

.

Thus
,

even though the

NIH
blocks are incorrect

,
we can detect that they

were incorrect
.

So the
thing we should do in this case is tneatthetxy blocks as

ERASURES
.

We can handle twice as
many

of those ! So our error tolerance is

actually about dk in this case
,

which is what we wanted
.

�2� MOTNAMNG EXAMPLE # 2
.

The bad
guy

tries to foil our previous example

by adding error din to some blocks
, turning

them into other codewords
.

eadaiieenersd:C
, * *

blocks

↳wYT¥Egham(,

* *all
already codewords !

Nothing left to do
.

Now we can't detect anything
! BIT

,

there are
only eldn corrupted blocks

.

Again we save a factor of 2 and can correct
up

to exdlz errors
.

We would like to interpolate between these two extremes
.

CLAIM
.

We can efficiently decode Rsd.mk) from e errors and s erasures
,

as long as Zets < n - k+1
.

(aka
,

the distance of the RS code)
.

pf -
ish

.

Throw out the s erasures
.

You are left with RSA - s
,

k)
.

Since Ze < (n . s) - k+l
,

run Berlekamp . Welch to correct the errors .
Now

you

have an RSC n
,
k) codeword w/ s erasures

.

Since s< n . k+1
,

correct the

erasures (via linear
algebra) .

This inspires the following algorithm :

ALGORITHM :
(NOT THE FINAL VERSION) .

Given in = (we
,

wz
,

...

, wnn .
) e (Fgnn

"

)%Y st
. A (w

, e) < dined

for each i =L
,

...

,
nout : for some CEC

,

. no Cut

Let wi =

argemein
(Bly,

wi))

Y

With probability min (
ZDC wiswi

'

)

(set pi
=L

#
,

1) :

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Coat 's (error + erasure) decoder On (
Pi

,

,

Pnuut
),

RENRN the result
.

Why does this algorithm
work ?

CLAIM .
IE [(#

yi
that =L) + 2 (

#

Tiathneatoarenot)] < dont
.

algorithm 's

randomness

x

Proof 1 sketch)
.

Let Ei=D(

Wiici
)

,
so / Cont \

E = Eiei < din . clout
.

4 a •
not

2- ,#€¥.in/Cin/C#*nh
C

, Cz C not

Let I it .

1{Pi=t
} .

Item
I ? = 1{ Pittandpitd ; } w

,
we want

tYEhfes
so

Tang . ! bnotdnonmgeasny

fdeeacchkbeock

SUB / Wi Wr's Wniut

claim . IE[Zxietxit]£2d÷ .

t.pt
,

.tt/f#pabiasea
132 134 Ps136136It Pnout

Coin to either

(Notice

that
the SUBCLAIM proves

the CLAIM
, flouts decoder

turn the codeword

back into a symbol
by linearity of expectation)

.

X ? in [out
,

or

. else 1

pf .
 of SUBCLAIM :

case 1
. G- =wi

'

.

So Xie =0
,

and IE[Xit]€2NdL"w# =

299¥ =2g÷ .

As before
,

lE[Xit] =

2mm (Alwiiwi
'

)

,d
,)

CASE 2
.

Citwi
'

D= ,

and

E- [Xie] = 1 - lE[Xit]
,

since if we didn't find ↳ then we

made a mistake .

SUBSUBCLAIM
. Ei + Min (Dlwiiwi)

,
ch

.

) Z d± .

Given the sY3uEam
,

E[2XietXi]=2(1- Efxi]) - IECXF]

= 2 - IEC Xit]

Proof of SUBSUBCLAM .

< £± (de - Min (D (wiiwi
'

)
,
d ;))

'

the min is attained by D(

www.D#i/d1.:3ysuissuBaaim

.

then the claim reads

Aki
,

wilt A (w
: ,wi

'

) > d1
,

Which is true by the A -

ineq

.(%%5dY
,

And if it's attained by de then We are done
.

So the CLAIM implies that the algorithm works
"

in expectation .

"

We could
try

10 him this into a high probability result (repeat
a bunch of lines)

,

but instead We Will
actually be able to DERANDOMIZE it

.

STEP 1
.

We will reduce the
necessary

randomness
by a little bit

.

ALGORIIHM
VERSION

2

Given N= (we
,

wz
,

...

, wnn .
) e (Fgnn

"

)%Y st
. A (w

, e) < dined

for some CE fino Court

CHOOSE 0 e [0,1] UNIFORMLY AT RANDOM .

for each i =L
,

...

,
nout :

Let wi =

argemein
(Bly,

wi))

YI.F Of min (ZDL.wni.at ,
1) :

L set Pi
=L

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Cont 's (error + erasure) decoder On (
Pi

,

,

Print
),

RENRN the result
.

That is
,

we never used the fact that our draws for Pi were independent .

So let's make them not at all independent .

Our next step will be to search overall possible -0 's
.

In fact
,

we
only

need 10 look at nout +2 values of 0 :

min

(Myint , 1) -03
min (Maggie, 1)

¥ . . . g-
ON

out
+ I

E

qd 9 Go
. -

O a 1
oo min (2ndw%wsI,

±)
min (24¥

"

t) [
a , the • values w , in the same interval

behave the same
.

This is called FORNEY 's GENERALIZED

ALGORITHM :
FINAFERS,

ON

FMNMMDBMNCEDecoder
.

Given D= (w±
,

wz
,

...

, wnn .
) e (Fgnn

"

)%Y st
. A (w

, e) < dined

COMPUTE THE Nout +2 RELEVANT for some Cefnocout
VALUES of 0

,
Go

,
...

,
On

out
+1

for j=O ,
...

,
Nout +1

:

for each i =L
,

...

,
nout :

Let wi =

argemein
(Bly,

wi))

Y

IF Qj < min (
2D(wiiwi

'

)

" #
,

1) :

L set Pi
=L

Else :

L Set Bi sit . Ein (g.) = Wi

'

Run Cont 's (error + erasure) decoder on (P , ,

,

pnm
.)

,
to Obtain I

IF A(Enc (k)
,

w) ⇐ [d÷] :

[RETURN i

The fact that this
algorithm is correct follows from our earlier claim .

Since
Ez [2 (Items) + (# erasures)] E dont

,

there exists some Ge [0,1] so that 2C # errs) + At erasures) edont
,

aka so that the alg . finds the correct I .

Thus
,

our algorithm above
,

which tries ALL values of 0
,

must

find that
good

value and return the correct answer
.

What is the
running

time of this algorithm
?

Depends on the codes
.

Let's choose our explicit construction from last time :

I

Recall We had A
out

=

Gout
- 1

, .com .
= Rs code with rate Rout

,

dist
.

Soul
.

 # Rout

2nd
Gout

= 2km

.

. Cin

= Binary linear code on the

Gf
bound

,
with rater > 1- Hdtinte .

You showed Kill show how to

And this in time
pdyln) on

your homework .

The
expensive

bits of the
algare

:

For Olnout) choices of 0 :

for n

'

= I
,

. . .

,
Nout :

. Decode the inner code (length nin=O(kin) = O(loglnout)))
by brute force 11 Time Olnin . lcinl) = 0(nin . 2km) =

polyln)

• Run the RS decoder
.

11 time
polyln)

So altogether the whole
thing runs in polynomial time

.

We have proved

THM For
every Recoil)

,

there is a
familyf of

EXPLICIT BINARY LINEAR CODES that lies

at or above the
Zyablov bound

.

Further
,

C

can be decoded from errors
up

to half the Zyablov

bound in time
poly (n)

.

AKA
,

we have achieved our goal
!

Hooray
!

To RECAP the
story of Concatenated Codes :

- We considered (RS code) ° (Binary Linear Code on the GV bound)

- Because the inner code is so small
,

we can find a good one by

brute force in time
poly

(n)
.

- We can be a little more clever with the Justesen Code
,

if we want

something asymptotically good
and STRONGLY explicit .

- (RS) ° (Binary code on the Gvbd) met the

"

Zyablov Bound!
,

which was

defined as
"

the bound that these codes meet !

- We saw how to use Forney
's GMD decoder to efficiently decode

these codes
up to half the minimum distance .

QUESTIONS to PONDER :

�1� When does code concatenation
give

distance STRICTLY LARGER

than dined out ?

�2� Do there exist concatenated codes on the GV bound ?

SPOILER ALERT : YES
,

see [Thomasson 1983] .

(H 's a randomized
construction)

�3� Can we decode these 9

efficiently
?

SPOILER ALERT . ALSO YES .
It uses list decoding ,

we

may see it later

�4� Can
you

do better than the Zyablov bound for EXPLICIT CODES

With EFFICIENT ALGS ?

