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The introduction to Newton’s identities owes much to [7]. The rest of this
document rehearses some proofs of Newton’s identities and catalogues a few
others. (Eventually, I hope to turn the sections that merely catalogue proofs
into ones that rehearse them.) If you see any typos or have any suggested
improvements, please let me know! You can click on my name (above) to send
me an email.

1 Introduction

Consider a field F and a polynomial f in F [x] of degree n with roots x1, ..., xn.
Let us assume that f is monic, i.e., that the coefficient of xn is 1. Express

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

=

n∏
i=1

(x− xi).

Expanding the above product, and considering an arbitrary coefficient si (with
i between 1 and n), we have

si = (−1)i
∑

j1<...<ji

xj1 · · · xji .

The polynomial si in x1, .., xn is symmetric (it does not change if we renumber
the roots xi) and homogenous (all terms have the same degree). The polynomi-
als s′i = si · (−1)i are called elementary symmetric polynomials because every
symmetric polynomial in x1, ..., xn can be uniquely written as a polynomial in
s′1, ..., s

′
n. We say that the s′i form a basis for all such symmetric polynomials.

Another such basis is given by p1, ..., pn, where

pi(x1, ..., xn) = xi1 + · · ·xin.

The polynomials pi are called power sums. The transition formulas between
these two bases are known as “Netwon’s formulas” or “Netwon’s identities,”
and they first appeared in Isaac Newton’s Arithmetica universalis, written be-
tween 1673 and 1683. In these notes, we outline some proof of these identities,
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but before we do that, it will help to consider how these identities can be for-
mulated.1 Here is a natural formulation:

Theorem 1.1. Fix some positive integer k. We have

ksk +

k−1∑
i=0

sipk−i = 0 if k ≤ n

n∑
i=0

sipk−i = 0 if k > n

Note that there are infinitely many identities: one for each choice of k. This
is why a lot of people call the above theorem “Newton’s identities” and not
“Newton’s identity.” We can arrive at a more concise formulation, if we adopt
the natural convention of making “coefficients” si equal to 0 when i is greater
than n:

Theorem 1.2. Fix some positive integer k and define si = 0 for all i > n. We
have

ksk +

k−1∑
i=0

sipk−i = 0.

If one stares long enough, one can see that these two formulations are indeed
equivalent. We can use these identities to calculate pk for any k, using the
coefficients of f . Indeed, using the second formulation, we find that

ksk + s0pk +

k−1∑
i=1

sipk−i = 0,

and we can rearrange to solve for pk. Recalling that s0 = 1, we have

pk = (−1)(ksk +

k−1∑
i=1

sipk−i).

For example, suppose n = 3. Then, using the roots x1, x2, x3 of f , we have

p1 = −s1 = −(−1)1(x1 + x2 + x3) = x1 + x2 + x3,

p2 = −(2s2 + s1pk−1) = −(2(x1x2 + x2x3 + x1x3)− (x1 + x2 + x3)p1)

= (x1 + x2 + x3)2 − 2(x1x2 + x2x3 + x1x3) = x21 + x22 + x23.

1The fact that there are different formulations of Newton’s identities is made more compli-
cated by the fact that many people use very different labels for relevant values. For example,
the coefficients si are sometimes αi, the power sums pi are sometimes Si; the polynomial f(x)
is sometimes P (z); the indices on the si sometimes run 1 to n instead of n to 1; and sometimes
one drops the assumption that f is monic. Here, I have chosen to consistently use the notation
that (I hope) makes things clearest, and I’ve tried to be very careful about translating between
other’s notation and my own, so that all (relevantly) different formulations of the identities
are explored in the introduction. One thing unusual about my notation is that elementary
symmetric polynomials are written s′i, and not si, but I am not sure that I could change that
notation and keep things as clear as (I hope) they are.
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The above formulas, and the analgous ones for pi with i at most six, were
obtained by Albert Girard in 1629, over 30 years before Newton’s work (but
Newton is thought to have been ignorant of this). For this reason, Newton’s
identities are also known as the Newton–Girard formulae. Note that we don’t
actually need to know what the roots are in order to use the formulae to solve
for pk; we just need the coefficients si of f .

We will turn shortly to our first proof of Newton’s identities, but first, a
brief remark. The assumption that f is monic is not strictly necessary: we
could allow a0 6= 0, and then we would find that

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

= s0

n∏
i=1

(x− xi),

and then we would have

si =

(
1

s0

)
(−1)i

∑
j1<...<ji

xj1 · · · xji .

The identities, with si defined in this new way, would then hold. (Indeed, as
we will see, they are sometimes stated and proven that way; see [3].) But
this makes the expression for si messier than it already is, so for readability,
we’ll often assume f is monic. Now, let us consider our first proof of Newton’s
identities.

2 Proof from the Case n = k

We prove the special case n = k and derive the general identities from this case.

Theorem 2.1. Let k = n. We claim that

ksk +

k−1∑
i=0

sipk−i = 0.

Proof. Let f be as above, with roots x1, ..., xn. Recall that

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

Consider f(xj) for any j between 1 and n:

k∑
i=0

sk−ix
i
j = 0.

Summing over all j gives

ksk +

k∑
i=1

sk−ipi = 0,

which is what we wanted to show (to see this, one fiddles with indices).
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The general identities follow from this one. Indeed, suppose first that k > n.
Informally, we can throw in an extra k−n roots by adding them to f , and then
set them equal to 0 to obtain the identity

n∑
i=0

sipk−i = 0.

Formally, let

f ′(x) = f(x)

k∏
i=k−n+1

(x− αi),

where the αi are arbitrary. Then run the earlier argument on f ′ instead of f ,
and set the αi to 0. Since

si = (−1)i
∑

j1<...<ji

xj1 · · · xji ,

any term in which an αi appears will be equal to 0, and the desired identity
holds.

Now, suppose instead that k < n. We would like to show that

ksk +

k∑
i=1

sk−ipi = 0.

If we combine like terms, it will suffice to show that the coefficient of any term

xa1
1 · · · xan

n , with each ai a nonnegative integer,

is 0. Since at most k of the ai are nonzero, we can delete at least n − k roots
xi from the monomial and not change its value. But then we know that the
coefficient of the monomial must be 0. For we have, in effect, set n − k of the
roots xi to 0, and are dealing with the case where f is a polynomial of degree
k; and we know from this case that the identity holds, i.e., that the coefficients
of the combined terms are 0.

3 Combinatorial Proof (1983)

In this section, we give a combinatorial proof of Newton’s identities. A combi-
natorial proof is usually either (a) a proof that shows that two quantities are
equal by giving a bijection between them, or (b) a proof that counts the same
quantity in two different ways. Before we discuss Newton’s identities, the fol-
lowing example may be help to clarify what (b) comes to. If you’ve seen this
example before or would like to get straight to the identities, feel free to skip it.

Theorem 3.1. Let k ≤ n be positive nonnegative integers. Then

k!

(
n

k

)
= n(n− 1)(n− 2) · · · (n− k + 1)
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Proof. Consider any set S with n elements. Let us count the number Nk of
k-element sequences of elements of S, where we do not repeat elements.

On the one hand, first we can choose an unordered set of k elements of S,
and then put them in order. There are

(
n
k

)
choices of elements, and k! ways of

ordering each choice: this shows that the quantity on the left-hand side (LHS)
is equal to Nk.

On the other hand, we can construct the sequence as we choose elements, so
that we pick one element to go first in the sequence, and another to go second,
and so on. There are n choices for the first element, then n−1, and so on. This
shows that the quantity on the RHS is also equal to Nk.

Now, following [9], we give a combinatorial proof of the concise formulation
of Newton’s identities:

Theorem 3.2. Fix some positive integer k. We have

ksk +

k−1∑
i=0

sipk−i = 0.

Proof. Consider the set A (n, k) of tuples (A, j, `) where

(i) A is a subset of [n], with |A| at most k. (Recall that [n] is the set of whole
numbers {1, ..., n}.)

(ii) j is a member of [n].

(iii) ` = k − |A|

(iv) If ` is 0, then j is in A.

Define the weight of (A, j, `) by

w(A, j, `) = (−1)|A|
( ∏
a∈A

xa
)
· x`j .

For example,
w({1, 3, 5}, 2, 3) = (−1)3x1x3x5 · x32.

To show the theorem, it will suffice to show that the sum in the theorem is the
sum of the weights of all elements of A (n, k), and that this sum is 0.

First, we show that that the sum in the theorem is the sum of the weights
of all elements of A (n, k). Using the identities in the introduction, we have

ksk +

k−1∑
i=0

sipk−i+ =

= k(−1)k
∑

j1<...<jk

xj1 · · · xjk+

k−1∑
i=0

(−1)i(xk−i1 + · · ·xk−in )
∑

j1<...<ji

xj1 · · · xji (∗)
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There are two summands on the RHS. First, we consider the first summand:

k(−1)k
∑

j1<...<jk

xj1 · · · xjk · 1.

Set A = {j1, ..., jk}. Then as we range over choices of indices, we range over
all choices of A. Since ` is 0, x`j = 1 contributes nothing to the product (but is
written above on the RHS, for clarity). By (iv), j is in A. This gives k choices
of j: ∑

|A|=k;j∈A;`=0

w(A, j, `) = k ·
∑

|A|=k;`=0

w(a, j′, `),

where j′ is an arbitrary element of A. This shows that the first summand in (∗)
can be written as the sum of all weights of elements of A (n, k) with |A| = k. To
see that all other elements make up the other summand in (∗), one can multiply
it out.

It remains for us to show that the sum of the weights of all elements of
A (n, k) is 0. Define a map T : A → A by

T (A, j, `) =

{
(A− {j}, j, `+ 1) if j is in A

(A ∪ {j}, j, `− 1) if j is not in A

(Intuitively, T adds j to A if it’s in A, and removes it if it isn’t, adjusting
` = k − |A| as required.) Then applying T takes us to a distinct set with
opposite weight:

w(T (A, j, `)) = −w(A, j, `),

and T 2 is the identity (i.e., T is an involution). Thus, all the weights can be
arranged in mutually cancelling pairs, and their sum is 0.

4 Proof Using Calculus (1968)

Here, following [3], we give a proof using some basic calculus. For a similar
proof that uses generating functions, in the context of coding theory, see page
212 of [1].

To present this proof, we need to introduce and briefly discuss the n-reversal
of a polynomial f , which is just the result of arranging the coefficients of f in
reverse order.

Definition 4.1. Consider a poynomial f (with roots x1, ..., xn):

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

=

n∏
i=1

(x− xi).

Then the n-reversal of f is the polynomial

revn(f) = snx
n + sn−1x

n−1 + · · ·+ s1x+ s0.
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In order to prove Newton’s identities, we need the following lemma.

Lemma 4.2. Let f be as above. Then revn(f) = xnf(1/x), and the roots of
revn(f) are 1/xi, for any xi a root of f .

Proof. By squinting, one intuits that revn(f) = xnf(1/x). Note then that if xi
is a root of f , it follows that 1/xi is a root of revn(f). Since revn(f) is of degree
n, all of its roots are of this form.

As an aside, we mention that the interested reader may like to try using the
above lemma to establish the following corollary.

Corollary 4.3. Let f and g be polynomials of n ≥ m, respectively, with g
monic. Using the Euclidean algorithm, express f = qg+ r for some polynomials
q, r. Then the reversal identity holds:

revn(f) = revn−m(q) · revm(g) + xn−m+1 · revm−1(r).

For the solution, see [2]. Now, we can prove Newton’s identities. For reasons
that will become apparent, the less concise formulation is more useful here:

Theorem 4.4. Fix some positive integer k. Assume that 0 is not a root of f
(i.e., that sn 6= 0). We have

ksk +

k−1∑
i=0

sipk−i = 0 if k ≤ n

n∑
i=0

sipk−i = 0 if k > n

Proof. Let f be as above. Let v denote revn(f). Then using the above lemma,

v(x) = snx
n + sn−1x

n−1 + ...+ s0

= sn

n∏
i=1

(x− x−1i ).

Looking at the first equality above, note that if we evaluate the k-th derivative
of v at 0, we obtain the coefficient sk:

v(k)(0) = sk

It turns out that the logarithmic derivative of v, when evaluated at 0, is a
multiple of pk+1. This proof proceeds by turning the relation between v and
its logarithmic derivative into a relation between the polynomials sk and pk+1.
Since 0 is not a root of f , it is not a root of v, and we can take its logarithmic
derivative:

V (x) =
v′(x)

v(x)
=

n∑
i=1

(x− x−1i )−1.
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To see why the equality on the RHS holds, use the generalized product rule on
the factorization of v above, noting that the derivative of each factor is 1. Now,
we claim that

V (k)(0) = − · k! · pk+1, (∗)

where V (k) is the k-th derivative of V . This holds because we have

V 1(x) = −1

n∑
i=1

(x− x−1i )−2

V 2(x) = 2

n∑
i=1

(x− x−1i )−3,

and so on, and plugging in x = 0 gives, for example, V 2(0) = −1 · 2! · p3.
When k is even, the negative sign comes from the fact that (1/ − x−1i )k+1 is
negative. When k is odd, the negative sign comes from our application of the
power rule. This shows that (∗) is true. To complete the proof, we establish
another equality, and we apply (∗) to derive Newton’s identities.

Now, let [V (x)v(x)](k−1) be the k-th derivative of V (x)v(x). We have

v(k)(x) = [V (x)v(x)](k−1)

=

k−1∑
i=0

(
k − 1

i

)
V (i)(x)v(k−1−i)(x),

where the first equality comes from the definition of the logarithmic derivative
V , and the second equality comes the product rule and the binomial theorem.
Now, we replace V (r) with the expression in (∗) and rearrange to obtain

v(k)(0)

k!
= −1

k

k−1∑
i=0

v(k−1−i)(0)

(k − 1− i)!
pi+1.

Recalling that v(k)(0) = sk, we have

−ksk =

k−1∑
i=0

sk−(i+1)pi+1 if k ≤ n,

0 =

k−1∑
i=k−n−1

sk−(i+1)pi+1 if k > n,

which are Newton’s identities, if one fiddles with the indices.

5 Proof with Clever Notation (1992)

We owe this proof to [5]. Like the approach in [7], and the one we saw from
the case n = k, this involves adding several equations together. Let us just
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introduce the notation, to get a feel for the approach. Let f be as above, of
degree n with roots x1, .., xn. Let (a1, ..., an), where the ai are nonnegative
integers and nonincreasing from left to right, represent∑

i1<...<in

xa1
i1
· xa2

i2
· · · xan

in
.

If ai = 0 for i greater than k, we can write (a1, ..., ak) instead of (a1, ..., an).
Then

pi = (i),

s′i = (1, ..., 1),where 1 is repeated i times.

This notation makes statements (and proofs) of Newton’s identities easier on
the eyes. For example, if n ≥ k = 3, we can subtract this equation:

(2)(1) = (3) + (2, 1)

from this one:
(1)(1, 1) = (2, 1) + 3(1, 1, 1),

to obtain the Newton identity:

p3 − p2s′1 + p1s
′
2 − 3s′3 = 0 =⇒ 3s3 +

k−1∑
i=0

sipk−i = 0.

For the complete proof, we refer the reader to [5].

6 Proofs by Cases and by Induction (2003)

The interested reader may consult [7] for a proof by induction and [6] for a proof
by cases. (As [5] remarks, these kinds of proofs can sometimes feel unmotivated
and difficult to follow, but it usually does more good than harm to try to
understand another perspective on things.)

7 Matrix Proof (2000)

Newton’s identities provide a means of computing the characteristic polynomial
of a matrix in terms of the traces of the powers of the matrix, and one can
derive Newton’s identities using matrices. I have a hard time thinking about
matrices in general, but [4] provides an interesting and well-written proof.
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