Unless noted otherwise, all graphs considered are simple. The solution of every problem should be no longer than one page.

Problem 1: Show that in a tree containing an even number of edges, there is at least one vertex with even degree.

Problem 2: Given a graph G and a vertex $v \in V(G)$, $G - v$ denotes the subgraph of G induced by the vertex set $V(G) \setminus \{v\}$. Show that every connected graph G of order at least two contains vertices x and y such that both $G - x$ and $G - y$ are connected.

Problem 3: Let T be an n-vertex tree with exactly $2k$ odd-degree vertices. Prove that T decomposes into k paths (i.e. its edge-set is the disjoint union of k paths).

Problem 4: Prove that a connected graph G is a tree if and only if any family of pairwise (vertex-)intersecting paths P_1, \ldots, P_k in G have a common vertex.

Problem 5:

(a) What is the Prüfer code of the following tree?

```
   3   6   1   10
  / \   /   /   /
 4   2 9  5
 /\  / \  /
7  8
```

(b) Which labeled tree has Prüfer code $(5,1,1,7,7,5)$?

(c) Describe which Prüfer codes correspond to stars (i.e. to trees isomorphic to $K_{1,n-1}$).

(d) Describe what trees correspond to Prüfer codes containing exactly 2 different values.

Problem 6: Here we prove Cayley’s formula in a different way. Let T be a forest on vertex set $[n]$ with components T_1, \ldots, T_r. Prove, by induction on r or otherwise, that the number of labelled trees on the vertex set $1, \ldots, n$ containing T is $n^{r-2} \prod_{i=1}^{r} |T_i|$. Deduce Cayley’s formula.