Problem 1: Suppose that X is a random variable that is uniformly distributed on the interval $[0, 1]$. What is the expected value of e^X?

Problem 2: Suppose a random variable X has the Cauchy distribution with density given by

$$f_X(x) = \frac{1}{\pi(1 + x^2)}.$$

Is X integrable? Why or why not?

Problem 3: Consider a uniformly random point in a square of unit area. Let X be the distance between the random point and the nearest edge of the square.

(a) What is the distribution function of X?

(b) What is the density function of X?

(c) compute $E X$.

(d) compute Var X.

Problem 4: Alice throws a dart at a circular target with a 20cm radius. Suppose that the position of the dart is a uniformly random point on the target. She gets 10 points if the dart lands within 2cm of the centre, 5 points if it is between 2 and 5 cm of the centre, and 1 point otherwise. What is her expected score?

Problem 5: Let X be a continuous random variable with density f_X, which only takes positive values (meaning that $f_X(x) = 0$ for $x < 0$). Prove that $E X^n = \int_0^\infty nx^{n-1}(1 - F_X(x)) \, dx$ for any $n > 0$.

Problem 6: Let X be a random variable whose distribution function F_X is strictly increasing. What is the distribution of $F_X(X)$?
Problem 7: Let Z be a standard normal random variable, and let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function which does not grow “too fast” in the sense that $\lim_{x \to \infty} (g(x)/e^{x^2/2}) = \lim_{x \to -\infty} (g(x)/e^{x^2/2}) = 0$.

(a) Show that $\mathbb{E}[g'(Z)] = \mathbb{E}[Zg(Z)]$.

(b) Find $\mathbb{E}Z^4$.

Problem 8: Let Z be a standard normal random variable, with distribution function Φ.

(a) Explain why $\mathbb{P}(Z \geq z) = \mathbb{P}(Z \leq -z)$

(b) Prove that $\mathbb{P}(|Z| \geq z) = 2(1 - \Phi(z))$.