Problem 1: Roll two dice. Let X be the maximum of the two numbers and let Y be the minimum of the two numbers

(a) Find the joint probability mass function of X and Y

(b) What is the marginal probability mass function $p_Y(y)$?

(b) What is the conditional probability mass function $p_{X|Y}(\cdot|y)$, for $y \in \{1, \ldots, 6\}$?

Problem 2: Let $X, Y \sim \text{Bin}(n, p)$ be two independent binomial random variables.

(a) What is the conditional probability mass function $p_{X|X+Y}(\cdot|m)$, for $m \in \{0, \ldots, 2n\}$?

(b) [Bonus question, not for credit]: Can you give an intuitive explanation for the answer to (a)?

Problem 3: Consider a uniformly random point on the unit sphere $\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1 \}$ (meaning that the probability of falling in a region is proportional to the surface area of that region). Let Φ and Θ be the latitude–longitude coordinates of the point (meaning that the x-coordinate is $\cos \Phi \cos \Theta$, the y-coordinate is $\cos \Phi \sin \Theta$, and the z-coordinate is $\sin \Phi$, with $0 \leq \Theta \leq 2\pi$ and $-\pi/2 \leq \Phi \leq \pi/2$).

(a) Find the joint density of Φ and Θ

(b) Compute the conditional density $f_{\Phi|\Theta}(\phi|0)$

(c) Compute the conditional density $f_{\Theta|\Phi}(\theta|0)$

(d) [Bonus question, not for credit]: Can you give an intuitive explanation comparing the answers to (b) and (c)?
Problem 4: Suppose \(\vec{X} = (X_1, X_2) \) has a multivariate normal distribution, meaning that
\[
f_{\vec{X}}(\vec{x}) = \det(2\pi \Sigma)^{-1/2} \exp\left(-\frac{1}{2} (\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})\right)
\] for some \(\vec{b} \in \mathbb{R}^2 \) and \(2 \times 2 \) matrix \(\Sigma \). Suppose also that \(\text{Cov}(X_1, X_2) = 0 \). Prove that \(X_1 \) and \(X_2 \) are independent.

Problem 5: A coin having probability \(p \) of coming up heads is continually flipped until both heads and tails have appeared. Find

(a) the expected number of flips;

(b) the probability that the last flip lands on heads.

Problem 6: The number of people who enter an elevator on the ground floor is a Poisson random variable with mean 10. If there are \(n \) floors above the ground floor, and if each person is equally likely to get off at any one of these \(n \) floors, independently of where the others get off, compute the expected number of stops that the elevator will make before discharging all of its passangers.

Problem 7: Let \(X \sim \text{Bin}(n, p) \). In this exercise we will compute \(\mathbb{E}[1/(X + 1)] \) in an unusual way. Imagine a game show featuring you and \(n \) other participants. Each participant (including you) wins with probability \(p \), independently, then a prize pool of \(\$1 \) is shared between all the winners (for example, if 3 people win then those people get \(1/3 \) of a dollar, and if nobody wins no prize is paid out).

(a) Let \(Z \) be the total amount that the game show company has to pay out. What is \(\mathbb{E}Z \)?

(b) Let \(Y \) be the amount of money you receive personally. What is \(\mathbb{E}Y \)?

(c) Explain why \(\mathbb{E}[Y|Y > 0] = \mathbb{E}[1/(X + 1)] \).

(d) Deduce the value of \(\mathbb{E}[1/(X + 1)] \).

Problem 8: toss a coin \(N \) times, where \(N \) has a Poisson distribution with mean \(\lambda \). Let \(X \) be the number of heads. What is \(\text{Var} \ [X] \)?

Problem 9:

(a) Let \(X \in \text{Geom}(p) \) have a geometric distribution. Compute the moment-generating function of \(X \).

(b) Let \(U \) be uniform on \([a, b] \). Compute the moment-generating function of \(U \).