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Abstract—Quantitative estimates of the impacts of climate change on eco-
nomic outcomes are important for public policy. We show that the vast
majority of estimates fail to account for well-established uncertainty in
future temperature and rainfall changes, leading to potentially misleading
projections. We reexamine seven well-cited studies and show that
accounting for climate uncertainty leads to a much larger range of pro-
jected climate impacts and a greater likelihood of worst-case outcomes,
an important policy parameter. Incorporating climate uncertainty into
future economic impact assessments will be critical for providing the best
possible information on potential impacts.

1. Introduction

EADING economics and social science journals have

published an increasing number of articles in recent
years on the projected effects of global climate change on
important outcomes, including aggregate economic activity,
agriculture, and health. Results of these studies have fea-
tured prominently in public policy debates, informing deci-
sions about appropriate investments in greenhouse gas emis-
sions reductions, as well as in measures designed to help
societies adapt to a changing climate. Such investments re-
present potentially large amounts of resources. For instance,
a high-profile assessment concluded that expected future cli-
mate damages warrant an immediate annual investment of
1% to 2% of global GDP to avoid the worst effects of cli-
mate change (Stern, 2007).! Similarly, the 2009 US$100 bil-
lion pledged in annual transfers from rich to poor countries
to help the latter adapt to expected climate impacts is close
to the total current annual foreign aid transfer from rich to
poor countries.” Generating credible estimates of climate
impacts is thus of considerable public concern.

As in empirical work more broadly, climate impact esti-
mates could be expected to provide both a best guess of
potential impacts—that is, an unbiased point estimate—as
well as a sense of the uncertainty around this estimate.
Unfortunately, a methodological flaw common in many
recent impact studies results in their often providing neither
the best guess of possible impacts nor an appropriate charac-
terization of the uncertainty. To quantify potential impacts,
these studies typically combine estimates of the historical
relationship between climate variables and outcomes of
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interest with projections of future changes in climate, the lat-
ter typically derived from global climate models. Although
such studies are typically careful to document the statistical
uncertainty inherent in the historical relationship between
climate variables and outcomes of interest, they rarely
account for the large degree of climate uncertainty found in
existing projections of climate change itself. Studies over-
whelmingly rely on projections from only one or a handful
of climate models, despite the availability of over twenty
such models that are in wide use in the climate science com-
munity, the frequently large discrepancies across models,
and the lack of evidence that any particular subset of models
is more reliable than others for long-term projections (Ran-
dall et al., 2007; Meehl et al., 2007). Our survey of this
growing literature reveals that of the nearly 200 papers that
make quantitative climate impact projections for economic,
political, or social outcomes, the median number of climate
models used is just two, with disproportionate dependence
on only a few of the over twenty recognized models. Many
studies rely on a single model, the Hadley Centre Climate
Model,? despite the lack of systematic evidence that it is any
more trustworthy than alternatives, and the ready availabil-
ity of data from at least fifteen models since at least 2000.

Because climate models can disagree on both the magni-
tude and even the sign of future changes in key climate
variables, point estimates using a single projection of future
climate can mislead, and the range of possible outcomes
around this point estimate will be substantially understated
if the full extent of climate uncertainty is not taken into
account. Failure to incorporate this uncertainty into impact
studies thus renders much of the rapidly growing literature
on the economics of climate change a potentially poor
guide for public policy.

In this paper, we—a team of climate scientists and social
scientists—provide a readily usable analytical approach that
addresses the role of climate uncertainty in estimates of cli-
mate change impacts. To illustrate our approach, we reexa-
mine data from seven well-cited articles in the climate
impacts literature that explore potential impacts on various
outcomes, including agricultural productivity, economic
growth, and civil conflict. To isolate the role of climate
uncertainty from other study characteristics that might also
affect impact estimates—for instance, authors’ choices
about the study sample or econometric specification—we
remain agnostic on these choices and focus attention on the
authors’ own preferred analytical approach in each study.
The results we present here are thus not meant to provide

3 This includes earlier generations of the Hadley model, now super-
seded by more recent modeling output. See Gordon et al. (2000); and
Johns et al. (1997, 2006).
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definitive impact projections for particular outcomes but
instead to demonstrate the importance of accounting for cli-
mate uncertainty in generating such projections.

We show that accounting for climate uncertainty in these
studies is consequential, yielding different point estimates, a
much wider range of projected impacts, and far more negative
worst-case scenarios, relative to an approach that only consid-
ers uncertainty in the historical relationship between climate
variables (such as temperature and precipitation) and the out-
come of interest. In fact, even with perfect knowledge of the
mapping from climate to outcomes, climate uncertainty alone
generates a wide range of potential impacts: depending on the
choice of climate model, impacts of climate on U.S. farmland
values can shift up or down by half a trillion dollars by the
mid-twenty first century, GDP per capita growth in poor
countries could decline over that period by anywhere between
a fifth to a half (relative to a world without climate change),
and the incidence of African civil conflict could increase by
“just” 40 percentage or could double. For analysts and pol-
icymakers interested in the left tail of the climate change
impact distribution (Weitzman, 2009), we show that failing to
account for climate uncertainty greatly understates the sever-
ity of the worst-case scenario in most articles we examine.

There are also instances when accounting for climate
uncertainty is less important. In particular, when an analysis
can rule out a meaningful historical relationship between
climate and the outcome of interest (i.e., the relationship
between climate and the outcome is a precise zero), then
any change in future climate will be projected to have simi-
larly minimal impacts on that outcome. In other words, and
unsurprisingly, when climate does not affect a particular
outcome, neither does climate uncertainty. Nevertheless,
because most papers in this literature either find meaningful
historical impacts of climate, or at least are unable to defini-
tively rule them out, our results suggest that accounting for
climate uncertainty will substantially shape impact esti-
mates in most settings of interest.

The structure of the remainder of the paper is as follows.
Section II presents a thorough literature review that docu-
ments the use of global climate models in economics and
social science research and presents novel quantitative evi-
dence on the widespread failure of recent studies to take cli-
mate uncertainty into account. Section III presents our
approach and quantifies the importance of accounting for cli-
mate uncertainty when estimating potential impacts across a
range of economic outcomes. The final section concludes
with specific suggestions for how climate uncertainty should
be incorporated into future research.

II. Climate Models in Recent Economics and Social
Science Research

A. The Science of Modeling Climate Change

A basic overview of climate science models and termi-
nology is useful before we discuss the recent economics lit-
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erature on the impacts of climate change. The science of
understanding past changes in climate and projecting possi-
ble future changes has evolved rapidly. The main tools for
projecting future climate are coupled general circulation
models (GCMs), which are detailed computer models that
numerically approximate fundamental physical laws at time
and space scales appropriate for representing global climate
(Randall et al., 2007). These models are coupled in the
sense that the interaction of different components of the cli-
mate system—the ocean with the atmosphere, for exam-
ple—is explicitly included in the numerical calculations.
Many such models are currently in use, reflecting efforts by
different research groups around the world to develop ever
more refined representations of the complex physical pro-
cesses that determine the state of the climate.

There are two basic sources of uncertainty in model pro-
jections of future changes in climate: imperfect knowledge
of the future trajectories of variables that might affect the
climate system (most notably, greenhouse gas emissions)
and imperfect knowledge of how changes in these variables
translate into changes in climate. The former we will refer
to as emissions uncertainty and the latter simply as climate
uncertainty.

Emissions uncertainty is typically captured by running a
given climate model under multiple future emissions sce-
narios. To facilitate cross-model comparability, the Intergo-
vernmental Panel on Climate Change (IPCC) developed a
standardized set of these scenarios, some subset of which
almost all modeling groups use as inputs into their model-
ing efforts. Known as the SRES scenarios (from the Special
Report on Emissions Scenarios), they employ different
assumptions about economic growth and technological
change to span a range of different rates of change in
anthropogenic (man-made) radiative forcing. These scenar-
ios provide the basis for the various climate model projec-
tions reported in the IPCC’s assessment of the state of the
science, the 2007 Fourth Assessment Report, in part for
which it was awarded the Nobel Prize.* Conditional on the
use of a particular emissions scenario, climate uncertainty
derives from the different modeling choices climate science
research groups make about how to best represent the
underlying physical relationships and about what baseline
conditions should be used to initialize the models.

While emissions are uncertain from the perspective of
the econometrician, they are in principle a policy choice
and are typically treated differently in the climate science
community than is the uncertainty in how the climate sys-
tem responds to a given level of emissions. In particular,
even given a perfectly defined trajectory of anthropogenic
emissions, climate projections will still be subject to uncer-
tainty arising from lack of perfect knowledge of the physi-

4 A new framework for emissions scenarios is now being used to allow
exploration of a wider range of possible climate policies and more rapid
response to relevant research for future IPCC assessments (Moss et al.,
2010).
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FIGURE 1.—PRroJecTIONS OF END-OF-CENTURY, 2080-2100, CLIMATE CHANGE
oVER U.S. CorRN GROWING AREA, BY CLIMATE MODEL AND EMISSIONS SCENARIO,
RELATIVE TO A 1980-2000 BASELINE
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‘White represents the B1 emissions scenario, light gray the A1B scenario, and dark gray the A2 sce-
nario, with projections of change in growing season temperature (in °C) on the x-axis and percent change
in precipitation (% change) on the y-axis. Lines connect the projections for a given model across the
three emissions scenarios, with projections for the Hadley model (HadCM3 A1B) shown as triangles.
Box plots summarize the distribution of projected changes by scenario, with dark lines indicating the
median projection, boxes the interquartile range, and whiskers the range containing 95% of estimates.

cal processes at work (often termed model uncertainty) and
from inherent, chaotic variability (internal variability)
within the climate system that is manifest in a large sensi-
tivity to initial conditions. Although these uncertainties
may be reduced through further research, the rate of pro-
gress has been fairly slow, and there are fundamental limits
to the reduction of uncertainty associated with initial condi-
tions (Deser et al., 2012). Therefore, to ensure that we are
not conflating policy uncertainty with more fundamental
physical uncertainty, we focus primarily on the role of the
latter in what follows.

To begin illustrating the extent of climate uncertainty,
figure 1 presents projections of climate change in primary
U.S. agricultural regions between 2000 and 2080 to 2100,
using output from twenty climate models contributing to
the IPCC’s Fourth Assessment Report.5 Climate models
uniformly predict that temperatures will warm over U.S.
agricultural regions, but disagree on both the sign and mag-
nitude of precipitation changes. Furthermore, within an

> Comparable projections for the sub-Sahara are shown in figure 1A in
the appendix. Actual model output is compiled and made publicly avail-
able in a standard data format by the Coupled Model Intercomparison
Project of the World Climate Research Programme (http://cmip-pcmdi
Alnl.gov/). The models used in this paper are BCCR, CCCMA.t63, NCAR
.CCSM, CCRM, CSIRO, ECHAM, GFDL_CM2.0, GFDL_CM2.1, GISS
.AOM, GISS.EH, GISS.ER, HADcm3, HADGEM1, IAP, INMCM3,
IPSL, MIROC.Hires, MIROC.Medres, MRI, and NCAR.PCM, which
together constitute nearly all of the available ensembles and the models
with the appropriate combination of twentieth- and twenty-first-century
runs for our analysis at the time of writing. Not all models report projec-
tions for all emissions scenarios. We have access to eighteen models
reporting projections for both the A1B and B1 scenarios and fifteen mod-
els reporting for the A2 scenario. For a useful overview of available
model output, refer to http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php.
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emissions scenario, the variation in model predictions can
be large. In the oft-used A1B scenario, for instance, the pro-
jected mean temperature across the full ensemble of twenty
models increases by 3.5°C (6.3°F), but the range containing
95% of the predictions is large, from roughly 2°C (3.6°F) to
6°C (10.8°F).° For precipitation, the ensemble mean pro-
jected change is close to 0, but individual models project
growing season precipitation rising or falling by as much
as 20%. Recall that these differences across models are dri-
ven by assumptions made in the scientific modeling of cli-
mate rather than uncertainty about future greenhouse gas
emissions.

An immediate question is how researchers should treat
this range of climate projections. One tempting solution,
and the implicit (or explicit) approach of the vast majority
of the literature surveyed below, is to identify a single
model or small subset of models that appears more trust-
worthy and use only their output in impact projections. This
approach underestimates the uncertainty associated with
long-term climate projection in at least two ways. First, in
cases where only a single realization (that is, one run from
a single set of initial conditions) for a single model is used,
the uncertainty arising from internal variability (i.e., sensi-
tivity to initial conditions) is neglected. This uncertainty
due to internal variability can be large relative to other
sources of uncertainty, especially for projections over the
next few decades and for precipitation (Hawkins & Sutton,
2009). Second, even when multiple realizations of a single
model are used, an analysis based on a single model ignores
the uncertainty associated with incomplete knowledge of all
relevant physical processes (i.e., model uncertainty). Since
the climate science literature finds little evidence that parti-
cular models consistently outperform others or that any
measure of performance on past climate observations helps
to meaningfully narrow the future range of climate projec-
tions (Knutti, 2010; Tebaldi & Knutti, 2007; Gleckler, Tay-
lor, & Doutriaux 2008), there is no reasonable climate
scientific rationale for restricting analysis to a single model
or small number of models. In contrast to the recent eco-
nomics of climate change literature and as evidence of this
point, most studies of future climate impacts carried out by
climate scientists are characterized by model “democracy”
(Knutti, 2010). In this method, each model that meets IPCC
standards gets one “vote,” and the votes are combined into
an ensemble projection whose distribution is then character-
ized (Meehl et al., 2007).

B. The Social Science Literature on Climate Change
Impacts

We conducted an extensive review of the climate impact
literature, with particular attention to papers that use cli-

6 The popularity of the A1B scenario is due to its assumptions of robust
economic growth, moderate increases in global population, rapid adoption
of technology, and balanced reliance on fuel sources (hence “B”).
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FiGure 2.—USsE oF CLIMATE MODEL DATA IN EXISTING SOCIAL SCIENCE LITERATURE

150

100

50

T T
1990 1995

T
2000

year

T T
2005 2010

25

20

number of climate models

total available

mean
-~
, ~
.

median

T T T
1990 1995 2000

year

T T
2005 2010

(Left) Cumulative number of studies making quantitative projections about climate impacts on socioeconomic outcomes, with agricultural studies in dark gray and other studies in light gray. (Right) Mean (dashed
line) and median (solid black line) number of climate models used by these studies over time (three-year moving average). The solid gray line represents the total number of climate models available to researchers

since 2000, when quantifying their availability becomes tractable.

TABLE 1.—STUDIES MAKING QUANTITATIVE CLIMATE CHANGE PREDICTIONS REGARDING EcoNoMmIC AND SociAL OUTCOMES

Median Number Mean Number % of Studies % of Studies
Number of of Climate of Climate Using the Using only the
Studies Models Used Models Used Hadley Model Hadley Model
A. All Studies
Total 188 2 4 40 13
By sector (% of total)
Agriculture 53 3 4 37 12
Health 15 1 2 52 28
Water 6 2.5 5 58 0
Multiple 14 2 5 35 8
Other 12 1 3 32 14
B. Studies since 2005
Total 126 2 43 42 11
By sector (% of total)
Agriculture 51 3 4 48 14
Health 13 1 2 38 19
Water 7 2 6 44 0
Multiple 14 2.5 6 39 6
Other 15 1 3 26 5

The literature review was conducted through August 2012; see text for details. "Hadley model" includes multiple versions of the Hadley model.

mate model information to make quantitative projections
about the impacts of climate change on economic, political,
and social outcomes. We adopted a broad definition of cli-
mate model, including in our review papers using explicit
output from GCMs (the majority) as well as other papers
that used quantitative climate projections of any kind, such
as simple uniform warming scenarios of, say, a 1°C increase
in temperature. Outcomes of interest included estimates of
sector-specific or economy-wide damages resulting from
climate change, as well as estimates of climate impacts on
outcomes with clear economic consequences, such as on
agricultural productivity, water resources, human morbidity
and mortality, or violent conflict. We limited our search to
peer-reviewed published articles, as well as unpublished
papers in well-known working paper series, such as the
NBER and World Bank’s Policy Research series.

These search criteria yielded a large number of studies.
Our review is almost surely an underestimate of the total
number of papers in this literature, but it captures the
most highly cited work as well as much of the recent work
(over half of the papers we reviewed were published in

2007 or later).” The total number of studies we review are
shown in the left panel of figure 2. As shown in the figure,
studies focusing on agricultural impacts account for the
majority of the published studies, although their share has
fallen in recent years.

Social scientists’ use of climate models is surprising in
light of climate scientists’ general preference for the demo-
cratic use of climate model output. Among the nearly 200
papers that made quantitative projections of future climate
impacts, the median number of climate models used is
just two (table 1). Studies on the agricultural impacts of cli-
mate change, accounting for 53% of all articles, do little
better: the median number of climate models used is three.
Research on climate impacts in other sectors, such as health
and water resources, shows similar patterns.

The median number of climate models used has also been
roughly unchanged since scientific concern about climate

7 Our review of the literature extended through August 2012. All data
used in this literature review and our analysis presented in this paper can
be found at http://emiguel.econ.berkeley.edu/research.
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change began in earnest in the early 1990s, as shown in the
right panel of figure 2. Importantly, this is despite the fact that
since at least 2000, output from at least fifteen climate models
has been publicly available in a central online database.®

It might be more defensible to use only a small subset of
the available climate model ensemble if researchers drew
their subset of models at random. For instance, given the
distribution of temperature projections for U.S. agriculture,
simple simulations suggest that two models drawn at ran-
dom will, in expectation, capture roughly 35% of the total
ensemble range of temperature projections (results avail-
able on request). However, researchers do not appear to be
drawing models randomly. Despite the availability of over
twenty IPCC-recognized models, researchers show a strong
preference for models from one particular research group,
the Hadley Centre (in the United Kingdom), perhaps be-
cause their data were historically available to researchers in
a particularly user-friendly format. Roughly half of the stu-
dies we reviewed used Hadley models, and nearly a sixth of
all the studies used only a Hadley model.”

This use of models is particularly troubling given that
projections from the Hadley models do not always reflect
the central tendency of the full ensemble of climate models.
As figure 1 shows for U.S. agricultural regions, precipita-
tion projections from the most recent coupled model from
the Hadley Centre are near the ensemble mean, but tem-
perature projections are outside the ensemble interquartile
range. Again, the climate literature offers no evidence that
the Hadley projections are any more (or less) trustworthy
than other models, implying that the singular use of Hadley
likely yields a poor representation of the range of possible
outcomes. We next explore what the overuse of the Hadley
model—or any other model or small subset of models, for
that matter—implies for projections of climate impacts.

III. Quantifying Climate Uncertainty

A. The Basic Approach

Studies typically proceed in two steps to quantify poten-
tial impacts of climate change on outcomes of interest: first,
estimate the historical relationship between climate vari-
ables and the outcome, and then evaluate these estimates at
future changes in climate. To fix ideas, consider the regres-
sion specification:

yi:ot+f(c‘[)+6x,~+8,~ (1)
where outcome y in geographic unit i is a function of cli-
mate in that location ¢;, covariates x;, and an error term.
In the simplest setup, researchers model outcomes as a sim-
ple linear function of temperature and precipitation,

8 Model output is compiled and made publicly available at http://cmip-
pemdi.llnl.gov/.

° This again includes earlier variants of the Hadley model, superseded
by more recent output from their team.
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f(ci) = BiT; + B,P;, with the latter, for example, represent-
ing the average temperature or total precipitation over an
agricultural growing season in a given location. The [ terms
are estimated using historical data, and then the projected
impacts of climate change are calculated by multiplying
these coefficient estimates by projected changes in the rele-
vant climate variables over time (AT and AP here) as
derived from global climate models.

The proper derivation of these changes is worth noting.
For instance, AT by end of century (2080-2100) is calcu-
lated by differencing climate model projected average tem-
perature over 2080 to 2100 in a given area and projected
average temperature in that area over the relevant period of
historical data, say, 1980 to 2000. The latter are projected
because climate model simulations typically exhibit biases
for current climate in some regions, meaning observed pre-
sent-day temperatures and modeled present-day tempera-
tures might not be the same. Differencing future model pro-
jected temperatures and current observed temperatures
would introduce bias into estimates of temperature changes,
and thus the commonly accepted approach is to difference
future and current modeled temperature.'® To quantify cli-
mate uncertainty, this calculation is then repeated for each
climate model in the IPCC ensemble mentioned above.

The implicit assumption in this approach is that past
responses to climate as captured in the B's reflect how out-
comes will respond in the future to similar changes in cli-
mate, that is, that any future adaptations that agents are able
to make in the face of a changing climate are fully reflected
in their observed ability to adapt to past changes. While this
assumption appears strong, scholars have noted that in at
least two domains of interest, agricultural productivity and
economic growth, there is surprisingly little evidence that
outcomes are less sensitive to long-run shifts in climate than
they are to short-run shifts, implying limited adaptation
(Schlenker & Roberts, 2009; Burke & Emerick, 2013; Dell,
Jones, & Olken, 2012). Perhaps more important, it is in
principle possible to assume any level of future adaptation
that the analyst desires by scaling the B’s up or down to the
desired level. For our purposes here, we follow the studies
we review in assuming that future adaptation to climate is
reflected in past climate sensitivities, and multiply the B's
estimated using historical data by future changes in climate
to generate projected impacts.

B. Climate Impacts on Agriculture, Economic Growth, and
Civil Conflict

We apply our approach to seven published studies. In
keeping with the larger literature, most of the studies we
examine focus on potential climate impacts on agriculture,
but we also revisit studies that examine impacts on eco-
nomic growth and civil conflict. Table 2 provides details on

10 See Auffhammer et al. (2013) for a recent discussion of the appropri-
ate use of climate data.
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their outcome measures, sample, climate model choices,
regressions specifications, and functional form for historical
climate (in columns 1-5). At the time of writing, these arti-
cles have been cited a collective total of over 2,000 times.""
We first provide a brief overview of the studies and then
demonstrate the importance of climate uncertainty for their
projected impacts.

As noted above, the social science literature on climate
impacts has focused disproportionately on agriculture (table
1). This is particularly true in economics, where the most
cited climate change impacts papers focus almost exclu-
sively on potential damages in U.S. agriculture. Such a
focus is understandable: temperature and precipitation enter
directly into the agricultural production function, and while
U.S. agriculture is not uniquely affected by climate, the
United States is the world’s largest exporter of agricultural
goods and one of its largest overall producers.12 The out-
sized impact that fluctuations in U.S. agricultural produc-
tion have on global food markets thus makes climate
impacts there a significant global public policy concern.

In a seminal paper, Mendelsohn, Nordhaus, and Shaw
(1994; henceforth MNS) use a hedonic approach to relate
agricultural land values in U.S. counties to average local
climate. If land markets are well functioning (a reasonable
assumption in the United States), then the hedonic approach
should capture the impact of changes in climate on agricul-
tural production value, net of any adaptive measures that
farmers can take in response to a changing climate (e.g.,
planting different crops or even switching to noncrop
income sources). MNS find a muted response of land values
to climate and project that climate change could on net in
fact benefit U.S. agriculture.

The limitation of this cross-sectional approach is that
average local climate could correlate with many other
unobserved factors that also affect land values, biasing
coefficients on climate variables in an unknown direction.
In follow-up work, Schlenker, Hanemann, and Fischer
(2005; henceforth SHF) show that irrigation was an impor-
tant omitted variable in the MNS study and that accounting
for irrigation leads to much more negative projected climate
impact estimates for U.S. agriculture. More recent work has
used panel data to further address omitted variables con-
cerns. Deschenes and Greenstone (2007; henceforth DG)
relate county-level deviations in weather to deviations in
agricultural profits, finding a limited effect of weather on
profits and thus small potential impacts of future climate
change on U.S. agricultural profitability. Building on DG,
Fisher, Hanemann, Roberts, and Schlenker (2012; hence-
forth FHRS) adopt DG’s county fixed-effects strategy but
take issue with DG’s data and specification and show that
under alternate specifications and updated data, future cli-

' Based on Google Scholar (as of October 2013).

12 For instance, based on the most recent (2008) data from the U.N.
Food and Agricultural Organization, the United States is the second lar-
gest cereal producer (behind China) and by far the largest exporter. See
http://faostat.fao.org.
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mate impacts on productivity and profitability could be
quite negative.'?

Importantly, these four studies (MNS, SHF, DG, and
FHRS) all appeared in the same leading economics research
journal, the American Economic Review, and all projected
impacts using a single climate model, the Hadley model.
There remain substantial disagreements among these stu-
dies concerning the appropriate econometric specification
of the historical relationship between climate and agricul-
tural outcomes. However, we remain agnostic on these dif-
ferences in this paper and quantify impacts as would have
been obtained by the study authors themselves had they
adopted our approach to dealing with climate uncertainty.

We also revisit three other papers examining potential
impacts outside U.S. agriculture. Schlenker and Lobell
(2010; henceforth SL) use a panel of African countries over
1961 to 2002 to estimate climate change impacts on the
productivity of the primary African crops, finding large his-
torical sensitivities to temperature increases and thus sub-
stantial potential losses under future climate change. Burke
et al. (2009; henceforth BMSDL) also use a panel of Afri-
can countries but explore the role of climate in civil war.
They find that civil war has been strongly responsive to past
variation in temperature in Africa and that future warming
could increase the incidence of war. Both SL and BMSDL
use multiple climate models (sixteen and twenty, respec-
tively) to project impacts, but we can apply the same
approach as in the other studies to quantify the importance
of climate uncertainty in overall impact projections and to
get a sense of how SL and BMSDL’s conclusions might
have changed had they not used a large number of climate
models.

Finally, Dell, Jones, and Olken (2012) use a global panel
of countries over 1950 to 2003 and document a strong nega-
tive relationship between economic growth and warmer-
than-average temperatures in poor countries (but not rich
countries). In the well-cited working paper version of the
article (Dell et al., 2008), they project climate impacts on
end-of-century GDP levels using a single climate model,
finding large effects on per capita incomes in poor countries
but limited overall impact on global GDP as a whole. (The
lack of an effect on global GDP results from their finding
that rich countries were largely unaffected by changes in
temperature over their study period and rich countries
account for the vast majority of global income.)

C. Quantifying the Importance of Climate Uncertainty

For each of the seven studies we reexamine, we estimate
in figure 3 the impacts by midcentury (2040-2060) asso-
ciated with each of fifteen to eighteen different climate

Bna response to FHRS, Deschenes and Greenstone (2012) defend
their econometric specification choice of controlling for unobserved state-
by-year shocks, although using updated data, they find somewhat more
negative projected climate impacts on agricultural profits than in their
2007 paper.
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FiGURE 3.—PRroJECTIONS OF CLIMATE CHANGE IMPACTS ON OUTCOMES ACROSS
CLIMATE MODELS AND EMISSIONS SCENARIOS BY MIDCENTURY, 2040-2060,
RELATIVE TO A 1980-2000 BASELINE

i
A1B |
MNS
land val. B1 |
A2 i
]
1
A1B |
SHF
land val. B1 :
A2 i
]
T
A1B
DG
ag profits B1
A2
]
A1B I
BMSDL i
civil war B1 I
A2 !
H
i
]
A1B I [}
SL i
corn yield B1 '
]
A2 i
1]
i
A1B | |
FHRS !
corn yield B1 :
A2 i
1
T
A1B | !
DJO
GDP/cap B1 :
A2 i
]
:
[

-100 -75 -50 -25 0 25 50 75 100 125

% impact
Each gray vertical line represents projected impacts derived from a single climate model running a sin-
gle emissions scenario, assuming perfect knowledge of how the outcome responds to changes in climate

(i.e., no regression uncertainty). Dark black lines represent projected impacts from the Hadley model
running the A1B scenario (HadCM3 A1B).

models for each of three emission scenarios, relative to a
1980-2000 baseline; note that not all climate models report
projections for all emissions scenarios, leading to slight var-
iation in the models by scenario. The Hadley model with an
A1B emission scenario is highlighted as a dark vertical line
given the prominence of this model scenario combination
in the literature (table 1). Even ignoring regression uncer-
tainty (as we do in this figure), there is a large range of pro-
jections owing to the different climate models.'* In three of
the seven studies, the range of projected impacts (under the
A1B scenario) includes both positive and negative esti-
mated effects, as also shown in table 2 (column 6).

We next quantify the role of climate uncertainty relative
to regression uncertainty by estimating the range of pro-
jected impacts when (a) climate is varied across models
(running a given emissions scenario) but regression coeffi-
cients are fixed at their point estimates (as in figure 3); (b)

' Emissions are a policy choice and as such are a different source of
uncertainty, but as we show in figure 3, no matter which emissions choice
is made, climate model uncertainty remains large. To quantify this uncer-
tainty below, we mainly focus on the A1B scenario in figure 4.
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climate is fixed at the model, giving the median estimated
impact for a given emissions scenario, but regression coeffi-
cients are resampled to reflect regression uncertainty (as
estimated by bootstrapping the main specification in each
study, sampling observations 1,000 times with replace-
ment); or (c) both climate and regression coefficients are
varied, to reflect uncertainty in both factors. For the A1B
scenario which is reported by eighteen models, case c is
then a vector of 18,000 bootstrap replications (1,000 per
model), from which we take the 2.5th and 97.5th percentiles
to calculate the range containing 95% of projected esti-
mates.'> This is a natural set of values to consider given the
equal weight we place on all climate models in the ensem-
ble. To then measure how much climate uncertainty adds to
the overall variation in projected effects beyond the effect
of regression uncertainty alone, we compare the size of this
interval to the comparable interval from case b.'® These
results are presented in figure 4 and column 7 of table 2.

The range containing 95% of estimates increases only
moderately when climate uncertainty is accounted for in the
two studies using African data. This mainly reflects the fact
that regression uncertainty in the historical relationships
was already quite large for those studies. For the four stu-
dies focused on U.S. agriculture impacts, however, the
regression uncertainty was relatively small, and accounting
for climate uncertainty greatly increases the range contain-
ing 95% of projected impacts. In SHF and FHRS, this range
for the mid-21st-century projections increases fivefold
when accounting for both climate and regression uncer-
tainty (relative to when focused solely on regression uncer-
tainty). DJO is an intermediate case, with the range increas-
ing by 30% when climate uncertainty is considered.

It is beyond the scope of this study to determine whether
the increasing uncertainty generated by considering climate
uncertainty should change the main conclusions or policy

'3 We note that this interval could be disjoint in principle. For example,
the interval [—10%,—5%] could contain 95% of projected impacts for one
climate model, and [5%,10%] could contain 95% of projected impacts for
a second model. In this case, focusing on the range from the 2.5th percen-
tile to the 97.5th percentile across the two models would be highly mis-
leading, incorrectly suggesting, for instance, that a 0 effect of climate is
likely. In this case, it would be appropriate to report the relevant disjoint
intervals separately; we thank the editor, David Lee, for this point. How-
ever, in none of the empirical cases we examine in this paper is there an
instance where the range containing 95% of projected estimates for one
model is disjoint from the range for the other models we consider. This is
a result of the rather smooth distribution of temperature and precipitation
projections across the full model ensemble (see figure 1), together with
the fact that the historical relationships are quite imprecisely estimated in
many cases, leading to extensive overlap.

'6 Here, the overall variation in projected effects captures the range of

) proj p g
projected impacts as evaluated from the bootstrap replications when both
the regression coefficients and the climate projections are varied. This
approach to the utilization of the climate projections from the twenty cli-
mate models within the bootstrapping procedure is consistent with the
assumption that these models represent independent samples of the under-
lying distribution of future climate. Treating an ensemble of models in
this way is a well-studied means of facilitating a probabilistic approach to
future projections in the climate science literature (CCSP, 2009) and in
our case provides a mean of quantitatively combining the variability
derived from historical relationships and from climate projections.
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FiGURE 4.—IMPORTANCE OF CLIMATE AND REGRESSION UNCERTAINTY IN PROJECTIONS OF CLIMATE IMPACTS, BY MIDCENTURY, 2040-2060, AND END OF CENTURY,
2080-2100, RELATIVE TO A 19802000 BASELINE

R

1

SHF, 2005

[3872%]

T T T T
-6m  -500

change in land values ($bil)

BMSDL, 2009

[21%]

400 -0 200

change in land values (Sbil)

SL, 2010

change in profits (Sbil)

FHRS, 2010

[462%]

50 100 150 200 250 300 350

increase in conflict incidence (%)

DJO, 2012

(28%)

change in poor country GDPicap (%)

=30

change in corn yield (%)

change in corn yields (%)

‘White box plots show the uncertainty in impact projections resulting from regression uncertainty in the historical relationship between the outcome and climate, with changes in climate fixed at the median projec-
tion. Light gray box plots summarize projection uncertainty resulting from different model projections of how the climate will respond under the A1B emissions scenario, with responses to climate fixed at regression
point estimates. Dark gray box plots combine these two sources of uncertainty (climate plus regression uncertainty). Dark lines represent the median projection, the box the interquartile range, and whiskers the range
containing 95% of projections. Numbers in brackets on the left of each panel show the percentage increase in the range containing 95% of estimates for climate plus regression uncertainty versus under regression

uncertainty alone.

recommendations of the individual articles we reexamine.
Yet we note that the broader implications of uncertainty
will often depend on just how bad the worst-case outcomes
are. Specifically, if increased uncertainty was entirely in the
direction of more positive outcomes, then the increased
uncertainty would likely reduce the perceived need for pub-
lic action on climate change. However, if widening both
tails of the distribution of projected outcomes increases the
perceived risk of catastrophic left-tail outcomes, then addi-
tional uncertainty could imply a greater need for action (see
Weitzman, 2009, and the contrasting views in Weitzman,
2011 and Pindyck, 2011).

In column 8 of table 2, we attempt to capture left-tail cli-
mate realizations by comparing the 2.5th percentile out-
come that accounts for climate uncertainty versus that
which does not. In four of the seven articles we reexamine,
this worst-case outcome is at least twice as large in magni-
tude (and negative). For example, the 2.5th percentile out-

come for corn yields in FHRS by midcentury decreases
from —20% to nearly —50% when we account for climate
uncertainty, and the shift is similarly large and negative for
land values in MNS and SHF, and even larger for DG. Once
again, the changes are less pronounced for the studies using
African data.

IV. Conclusion

A rapidly growing research literature estimates the future
economic, political, and social impacts of climate change.
We survey the existing literature and find that very few stu-
dies employ anything close to the full ensemble of approxi-
mately twenty climate change models that have undergone
vigorous testing within the community of climate scientists.
In fact, the median study uses just two such models, with
the most influential recent studies on U.S. agriculture focus-
ing on a single model (Hadley). As a result, most studies in
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the burgeoning literature on the economics of climate
change do not capture the full range of plausible future cli-
mate variation, making their findings seem more precise
than they actually are, and as a result making them less
credible among climate scientists and potentially mislead-
ing for policymakers.

We feel that the methodological approach presented here
addresses a fundamental shortcoming in this emerging lit-
erature. Using seven well-cited recent articles spanning a
range of outcomes as examples, we show that failing to
account for climate uncertainty can frequently lead to
underestimating the range of projected climate impacts,
especially when the underlying historical relationships are
precisely estimated, as is often the case for studies using
large high-quality historical data sets from the United
States. One consequence is that analysts may severely
underestimate the thickness of the tails of the distribution of
future outcomes, with four out of the seven studies under-
stating a worst-case (2.5th percentile) outcome by at least a
factor of 2 when failing to consider climate uncertainty.

Fully accounting for climate uncertainty sometimes gen-
erates very wide ranges of estimated climate change im-
pacts, but this greater degree of uncertainty is more defensi-
ble from the point of view of climate science. Studies that
focus on a single or small handful of climate models gener-
ate a false sense of confidence about the likely future
impacts of climate change, when in fact impacts are actu-
ally far less certain. The ability to choose among a wide set
of critically evaluated climate models, with their often
divergent projected temperature and precipitation changes,
could also leave researchers who select just one or a few
such models open to the charge of cherry-picking.

We thus feel that the most valid analytical approach for
future social science research on climate change impacts is
the “democratic” standard we adopt in this paper, giving
each IPCC model a single “vote” when carrying out the
analysis, at least until such time as there is sufficient scienti-
fic consensus regarding the superiority of a particular model
or set of models. Implementing the simple approach pre-
sented here should make future research on the economics
of climate change more credible to the policymakers who
depend on this growing body of research to make important
public policy decisions, even if it means that the answers
we researchers can provide are less certain.
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Appendix

FiGure 1A.—ProsectioNs oF END oF CENTURY, 2080-2100, CLIMATE CHANGE OVER AFRICAN CORN (MAI1ZE) GROWING AREA, BY CLIMATE MODEL AND
EmissioNs SCENARIO, RELATIVE TO A 1980-2000 BASELINE
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White represents the B1 emissions scenario, light gray the A1B scenario, and dark gray the A2 scenario, with projections of change in growing season temperature (in °C) on the x-axis and percent change in preci-
pitation (% change) on the y-axis. Lines connect the projections for a given model across the three emissions scenarios, with projections for the Hadley model (HadCM3 A1B) shown as triangles. Box plots summar-
ize the distribution of projected changes by scenario, with dark lines indicating the median projection, boxes the interquartile range, and whiskers the range containing 95% of estimates.



