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a b s t r a c t

Predicting the potential effects of climate change on crop yields requires a model of how crops respond
to weather. As predictions from different models often disagree, understanding the sources of this diver-
gence is central to building a more robust picture of climate change’s likely impacts. A common approach
is to use statistical models trained on historical yields and some simplified measurements of weather,
such as growing season average temperature and precipitation. Although the general strengths and weak-
nesses of statistical models are widely understood, there has been little systematic evaluation of their
performance relative to other methods. Here we use a perfect model approach to examine the ability of
statistical models to predict yield responses to changes in mean temperature and precipitation, as simu-
lated by a process-based crop model. The CERES-Maize model was first used to simulate historical maize
yield variability at nearly 200 sites in Sub-Saharan Africa, as well as the impacts of hypothetical future
scenarios of 2 ◦C warming and 20% precipitation reduction. Statistical models of three types (time series,
panel, and cross-sectional models) were then trained on the simulated historical variability and used
to predict the responses to the future climate changes. The agreement between the process-based and
statistical models’ predictions was then assessed as a measure of how well statistical models can capture
crop responses to warming or precipitation changes. The performance of statistical models differed by
climate variable and spatial scale, with time-series statistical models ably reproducing site-specific yield
response to precipitation change, but performing less well for temperature responses. In contrast, sta-
tistical models that relied on information from multiple sites, namely panel and cross-sectional models,
were better at predicting responses to temperature change than precipitation change. The models based

on multiple sites were also much less sensitive to the length of historical period used for training. For all
three statistical approaches, the performance improved when individual sites were first aggregated to
country-level averages. Results suggest that statistical models, as compared to CERES-Maize, represent
a useful if imperfect tool for projecting future yield responses, with their usefulness higher at broader
spatial scales. It is also at these broader scales that climate projections are most available and reliable,
and therefore statistical models are likely to continue to play an important role in anticipating future

e.
impacts of climate chang

. Introduction

Improved understanding of the potential effects of climate
hange on crop yields is central to planning appropriate and
imely responses. Analysts wishing to anticipate these effects must
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

nevitably rely on some conceptual or numerical model of how crop
ields respond to climate. A widely used approach to this predic-
ion problem is to rely on numerical models that emulate the main
rocesses of crop growth and development. These process-based
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models are typically developed and tested using experimental tri-
als and thus offer the distinct advantage of leveraging decades of
research on crop physiology and reproduction, agronomy, and soil
science, among other disciplines. Yet these models also require
extensive input data on cultivar, management, and soil conditions
that are unavailable in many parts of the world.

More significantly, even in the presence of such data these
models can be very difficult to calibrate because of a large num-
bers of uncertain parameters. Often this parameter uncertainty is
ignored and a subjective decision is made to proceed with a single
statistical models to predict crop yield responses to climate change.

set of parameter values that produces acceptable agreement with
observations. When uncertainties in parameter values are explicitly
considered, however, the uncertainty estimates for model projec-
tions can widen substantially. For example, Iizumi et al. (2009)
and Tao et al. (2009) describe efforts to estimate distributions of
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ig. 1. A schematic outline of the perfect model approach used in this study. CERE
9-year period. Three different statistical models are then fit to these “data”, and u
omparison with the “true” CERES response to these changes is used to measure th

arameter values for a simplified process-based model from data
n yields of rice and maize, respectively. Both studies employed a
arkov Chain Monte Carlo technique to retrieve parameter dis-

ributions, with the width of these distributions reflecting the
nability of historical datasets to completely constrain parameter
alues. Parameter uncertainties then translated to large uncer-
ainties in projecting responses to climate change, particularly
or future scenarios that exceeded those in the calibration period
Iizumi et al., 2009).

Statistical models, in which historical data on crop yields and
eather are used to calibrate relatively simple regression equa-

ions, provide a common alternative to process-based models.
hree main types of statistical approaches are found in the liter-
ture: those based purely on time series data from a single point
r area (time series methods), those based on variations both in
ime and space (panel methods), and those based solely on vari-
tions in space (cross-section methods). Time-series models are
enerally believed to have the advantage of capturing the behav-
or particular to the given area, whereas panel and cross-section

ethods must assume common parameter values for all locations,
nd cross-section methods in particular are prone to errors from
mitted variables such as soil quality or fertilizer inputs that vary
patially. On the other hand, time-series models are often limited
y data whereas panel and cross-section methods can aggregate
ata from multiple sites. A further discussion of the strengths
nd limits of particular methods in the context of predicting yield
esponses to climate change can be found in Lobell and Burke
2009).

The main advantages of statistical models are their limited
eliance on field calibration data, and their transparent assess-
ent of model uncertainties. For example, if a model does a poor

ob of representing crop yield responses to climate, this will be
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

eflected in a low coefficient of determination (R2) between mod-
led and observed quantities, as well as a large confidence interval
round model coefficients and predictions. Although process-based
odels could in theory be accompanied with similar statistics, in

ractice they rarely are.
ze is used to simulate “true” outcomes for variations in weather conditions over a
predict the response to scenarios of higher temperatures or reduced precipitation.

istical models’ abilities to predict crop responses to climate change.

Statistical models are not without serious shortcomings, how-
ever, and in particular they are subject to problems of co-linearity
between predictor variables (e.g., temperature and precipitation),
assumptions of stationarity (e.g., that past relationships will hold
in the future, even if management systems evolve), and low signal-
to-noise ratios in yield or weather records in many locations. An
example of the co-linearity problem was highlighted by Sheehy
et al. (2006) in response to the statistical models of Peng et al.
(2004), which showed a 10% decline of Philippine rice yields with
a 1 ◦C increase in average minimum temperature (Tmin). Sheehy et
al. (2006) argued that solar radiation was a strong negative corre-
late of Tmin, and thus an apparent negative effect of warming could
easily arise from a positive effect of higher solar radiation. Sim-
ilarly, Lobell and Ortiz-Monasterio (2007) showed that historical
correlations between Tmin and wheat yields in Mexico arose in part
because of a negative correlation between solar radiation and Tmin.

Despite the frequent caveats to results from statistical
approaches (e.g., White, 2009), little work has been done to system-
atically evaluate their performance for predicting yield responses
to climate. As their widespread use continues, it would be useful to
know the specific conditions under which these models are most
likely to mislead, and to quantify the errors incurred by adopt-
ing this convenient if imperfect approach. Moreover, because the
aforementioned factors that challenge statistical approaches (e.g.,
co-linearity, signal-to-noise) will vary with scale, it is useful to
evaluate statistical models at a range of different spatial scales.

As a step toward these goals, the current study evaluates the
ability of statistical models to predict yield responses to tempera-
ture and precipitation change for nearly 200 sites in Sub-Saharan
Africa. Since the “true” yield responses are unknown, we invoke
the “perfect model” approach whereby a different model is used
to simulate data, and a statistical model is tested for its ability to
statistical models to predict crop yield responses to climate change.

recreate the underlying relationships between climate and yields.
This is a common technique, for instance, in climate modeling stud-
ies where one model is used as “observations” and the others are
tested for their ability to reproduce observations (Murphy et al.,
2004; Tebaldi and Knutti, 2007). This approach does not rely on

dx.doi.org/10.1016/j.agrformet.2010.07.008
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Table 1
Location of sites with unique soil profiles where CERES simulations were performed.

Country Number of sites

Burundi 11
Botswana 22
Cameroon 12
Guinea 1
Ivory Coast 8
Kenya 27
Lesotho 14
Mali 13
Niger 11
Nigeria 1
Rwanda 6
South Africa 1
Sudan 19
Uganda 9
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Zambia 34
Zimbabwe 9

Total 198

he “perfect model” actually being perfect (which no model is), but
ather tests the ability of a given model and calibration technique
o recreate the behavior of a reference model.

In this case, we use the well established and widely used
rocess-based model CERES-Maize as our “perfect model” to sim-
late historical yields, and then fit statistical regressions to the
imulated data. We then evaluate the performance of the statistical
odels for different sites, level of spatial aggregation, and number

f years used to calibrate the model. Given limitations in CERES-
aize, the goal of this paper is not to present a final verdict on

tatistical models, but rather to understand more fully their general
evel of performance and the most influential sources of errors.

. Methods

Fig. 1 illustrates the sequence of steps used to evaluate statis-
ical models. The study focused on maize in Sub-Saharan Africa,

crop and region of great relevance for evaluating the impacts
f climate change on global food production and food security.
aize yields were simulated using CERES-Maize (version 4.0.2.0), a

ommonly used process-based model for evaluating maize growth
nd yield responses to changes in management and environmen-
al conditions (Jones et al., 2003). The model has been applied in
umerous climate change studies, including several focused on
he African continent (Jones and Thornton, 2003; Thornton et al.,
009). Although far from perfect, the model embodies a great deal
f understanding of how crop yields respond to temperature and
recipitation.

.1. Simulated “observations”

We begin by selecting a wide range of sites to ensure the inclu-
ion of different soil and climatic settings. Because CERES-Maize
equires detailed information on soil properties, the study was lim-
ted to locations where soil profiles were readily available from the

ISE soil database of the International Soil Reference and Informa-
ion Centre (Batjes, 1995), which was reformatted for crop model
pplications by Gijsman et al. (2007). A total of 213 soil profiles
ere located within the study region, although 15 sites were in

ocations where simulations with CERES-Maize indicated very poor
rowing conditions, defined as crop failures for more than half of
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

he years simulated. After omitting these sites from further analy-
is, a total of 198 sites were used in this study, with a distribution
cross countries as shown in Table 1.

CERES-Maize requires daily weather inputs, although measure-
ents at this frequency over a long time period are difficult to
 PRESS
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obtain. For the purposes of this study, it was deemed sufficient
to use simulated weather data. These were generated using the
Marksim model (Jones and Thornton, 2000) based on the prescribed
location of each site, which Marksim uses to generate daily weather.
This model has been widely used and provides a realistic simula-
tion of temperature, precipitation, and solar radiation distributions.
A total of 40 years of daily weather was simulated at each site.

Other required inputs for CERES-Maize include the planting
window, planting rule, maize variety, fertilizer practices, and ini-
tial soil water and nitrogen levels. The planting window at each
site was based on country-specific data provided by the Food and
Agriculture Organization (FAO) and other entities, as synthesized
in Lobell et al. (2008). The planting rule was to sow the crop when
soil moisture reached 60% of field capacity, which typically trig-
gered planting following the second significant rain event at most
African sites. This rule attempts to mimic actual farmer response
to weather variations, and was deemed more realistic than simply
fixing planting to a single date each year. All sites planted a generic
medium-maturing maize variety.

Fertilizer was prescribed at the fairly low rate of 5 kg N ha−1,
which is representative of most African farms. Initial soil nitrogen
levels were prescribed as 5.0 �g N/g, and initial moisture was set
to 30% of the way between the soil wilting point and field capacity.
Simulations at each site were independent from year to year, with
the simulation for a given year beginning two months before the
beginning of the site-specific planting window. The same CO2 levels
(330 ppm) were used in all simulations.

For each site, simulations were performed for the 40 years
of simulated weather conditions, although since growing sea-
sons often included January 1, only a total of 39 harvests were
recorded. We refer to these simulations as “historical” or “control”
as they represent current climate conditions. Two additional sets
of simulations were then run for each site: one in which average
temperatures were uniformly increased by +2 ◦C, which represents
an amount of warming that is likely by mid-century, and one in
which precipitation was lowered by 20%. The latter simulation cor-
responds to a fairly pessimistic scenario of rainfall change, as it is
near the lower bound of projected precipitation changes by 2050
(Christensen et al., 2007). Neither climate change simulation is
intended to represent a particular projection, but rather to evalu-
ate yield impacts of warming and drying for changes of reasonable
magnitude. The average yield impact for +2 ◦C was computed as
the average yield for the simulations with +2 ◦C minus the average
yields in the control, while the impact of −20% precipitation was
the difference between average yields with and without −20% pre-
cipitation. Intermediate values were also tested (e.g., +1 ◦C) with
similar qualitative results (not shown). Because average yields in
the control varied widely across sites (from 0.6 to 9.1 Mg ha−1) we
express yield changes as % change relative to average yields in the
control.

2.2. Regression analysis

With the simulations completed, we now describe the training
of the statistical models as shown in Fig. 1. For each site, the 39
years of simulated data were used to fit a time-series model of the
form:

log(Yt) = ˇ0 + ˇ1Tt + ˇ2Pt + εt (1)

where Yt, Tt, Pt are yield, growing average temperature, and grow-
ing season total precipitation, respectively, in year t, ˇ0–2 represent
statistical models to predict crop yield responses to climate change.

model parameters to be fit, and ε is an error term. The values of ˇ0–2
were obtained as the least-squares solution to Eq. (1). The use of
growing season averages for temperature and precipitation is com-
mon in statistical approaches, although it is often criticized on the
basis that aspects of sub-seasonal variations, such as long dry spells

dx.doi.org/10.1016/j.agrformet.2010.07.008
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r heat waves, can be critical to crop growth (Porter and Semenov,
005). The ability of Eq. (1) to capture yield variability will there-
ore reflect, in part, the importance of climate variables other than
eason averages.

The 198 sites were then combined to estimate a panel regression
odel:

og(Yi,t) = ˇi,0 + ˇ1Ti,t + ˇ2Pi,t + ˇ3T2
i,t + ˇ4P2

i,t + εi,t (2)

here ˇi,0 now represents an intercept, for each site i, and squared
erms for both T and P are included. These terms are typically omit-
ed for the time-series model, as we do here, because of the limited
umber of observations and the fact that temperatures and precip-

tation span a narrow range and are therefore yield response can
e reasonably approximated by a linear function (see discussion of
ig. 3 below). The site-specific intercepts are typically included in a
anel regression, as we do here, to account for spatially varying fac-
ors for which no observations are present, such as soil quality. We
lso follow a common approach of expressing yields in log units,
hich assumes that a given change in T or P will have the same
ercent impact on yields regardless of yield level.

Finally, the average yields, T, and P are computed at each site to
stimate a cross-section model:

og(Yi,avg) = ˇ0 + ˇ1Ti,avg + ˇ2Pi,avg + ˇ3T2
i,avg + ˇ4P2

i,avg + εi (3)

here again squared terms are included for T and P to capture
onlinearities in yield response. Note that although we use sim-

lar notation for Eqs. (1)–(3), the values of the parameters ˇ are
ifferent in each case.

Each statistical model was then used at each site to estimate
he effects of a 2 ◦C increase in T, as well as a 20% decrease in P.
he predictions from the statistical models could then be directly
ompared to the “true” yield responses, as measured by the yield
hanges simulated by CERES-Maize for these same climate changes.
hus, the ability of the statistical regression models to recreate
he CERES-Maize responses of yield to climate changes represents
he key measure of the fidelity of statistical models in this paper.
owever, we note that if actual yield responses to climate change
re affected by processes not represented in CERES-Maize, such as
athogens or flooding or heat damage related to processes not in
ERES, a statistical model could adequately recreate the behavior of
ERES-Maize without properly capturing the true behavior of crop
ields.

Care should therefore be taken when interpreting performance
f statistical models in capturing CERES behavior as evidence that
heir yield predictions are robust. Nor should one be too quick to
ismiss statistical models if they perform modestly in reproducing
ERES behavior, because CERES may be omitting important factors
hat statistical models capture well. Finally, even if CERES-Maize
erfectly captured the processes affecting crop yields, it would be
ifficult for an uncalibrated version of the model itself to perfectly
ecreate the behavior, as one would first have to determine values
or the many model parameters. Nevertheless, insofar as CERES-

aize captures the basic processes underlying how maize responds
o changes in temperature and precipitation, the ability of statis-
ical models to recreate this response provides insight into the
greement between the two approaches, as well as insight into
he broader usefulness of statistical approaches in estimating the
mpacts of climate change.

. Results and discussion
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

.1. CERES projections of yield response to climate changes

Across the 198 sites, CERES-simulated a wide range of responses
o warming (+2 ◦C) and reduced rainfall (−20%), which reflects the
 PRESS
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diverse range of agro-environments found in Sub-Saharan Africa
(Fig. 2). The median projected impact for 2 ◦C warming was a yield
loss of 14.4%, whereas the median effect of reducing precipita-
tion by 20% was a 5.8% yield reduction. The fact that warming of
this magnitude is roughly three times more important than a 20%
decline in precipitation is consistent with previous modeling stud-
ies, but perhaps counter-intuitive given the importance of rainfall
in driving year-to-year changes in yield (Lobell and Burke, 2008).
That is, there is widespread appreciation of the importance of pre-
cipitation for crop production because of its larger interannual
variability, but temperature trends are large relative to historical
variability and can (and do) become more important than pre-
cipitation trends in driving CERES-simulated yield responses to
climate change. We note, however, that because each simulation
year is initialized from the same conditions regardless of climate
scenario, the current implementation of CERES could underesti-
mate the effects of persistent rainfall reductions, which in reality
would lower average soil moisture at the beginning of the season
(Wang, 2005).

The diversity of responses to both warming and drying is con-
sistent with previous studies that have used simulations with
CERES-Maize in Africa to emphasize the spatial heterogeneity of
potential impacts (Jones and Thornton, 2003; Thornton et al., 2009).
As shown in Fig. 2a, much of the variation in response to tem-
perature is linearly related to the site’s average temperature in
the control period, with hotter sites incurring more damage from
warming. In contrast, the response to rainfall exhibits a weaker
relationship with the site’s average precipitation in the control
period (Fig. 2c). Examination of individual simulations revealed
that yield impacts for drying are closely related to the increase
in water stress experience by the crop, but that this latter factor
was affected by several factors in addition to average precipitation,
including levels of initial nitrogen stress (not shown).

3.2. Training of statistical models on historical CERES projections

An example of the data used to train the regression models
using the 40-year time series at each site is shown in Fig. 3a and
b, while Fig. 3c and d and e and f illustrate the data used for
the panel and cross-section models, respectively. The relationships
illustrated in Fig. 3a and b were typical of many sites—a very weak
and insignificant inferred effect of temperature with a positive but
quite uncertain effect of rainfall. This is similar to the results of
Iglesias et al. (2000), who found that CERES-simulated wheat yields
at sites in Spain were closely tied to total growing season precipita-
tion. The median R2 for Eq. (1) across all sites was 0.17, with a range
from zero to 0.69. This range of values is similar to those found in
studies using actual crop and weather datasets, for instance the R2

for the 94 crop-region combinations evaluated in Lobell et al. (2008)
ranged from near zero for several crops to 0.67 for groundnuts in
South Asia.

The regression model trained on the panel dataset (Eq. (2))
resulted in an R2 of 0.54. For both temperature and precipitation,
the model estimated a positive coefficient for the linear term and
a negative coefficient for the squared term, consistent with the
expectation of an inverted-U relationship apparent in Fig. 3c and d.
The optimum average growing season temperature, where yield is
maximized according to the panel regression, was 21.6 ◦C, with an
optimum precipitation total of 830 mm. The cross-section model
was fit with an R2 of 0.59 and coefficients:

log(Y ) = −3.5 + 0.47T + 5.18 × 10−4P − 0.0013T2
statistical models to predict crop yield responses to climate change.

i,avg i,avg i,avg i,avg

− 1.79 × 10−7P2
i,avg

This inferred relationship corresponds to an optimum inferred tem-
perature of 20.9 ◦C and an optimum precipitation total of 1452 mm.

dx.doi.org/10.1016/j.agrformet.2010.07.008
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ig. 2. Summary of yield responses to +2 ◦C warming and −20% precipitation as s
arming and average growing season (GS) temperature in the baseline period. (b) Hi

etween % change in average yield for −20% precipitation and average GS precipita
or −20% precipitation.

All temperature and precipitation coefficients were significant
t p = 0.05 for the cross-section model, and all but the precipitation
quared term was significant for the panel model. As mentioned,
he typical time-series model had a significant precipitation term
ut an insignificant temperature term. Out of 198 sites, only 22
11%) had a temperature coefficient significant at p = 0.05, while
05 (53%) had a precipitation term with that level of significance.
his again emphasizes the relative importance of rainfall varia-
ions for year-to-year changes in crop yields. For example, if one
ompares Fig. 3b and d, the range of precipitation values experi-
nced at that one site over 40 years is nearly one-quarter the range
f the entire range of precipitation simulated across all sites and
ears. The temperature range in Fig. 3a is, in contrast, less than 3 ◦C
hereas the range observed across all sites and years is more than

0 ◦C. The relative lack of temperature variability at a single site
mplies that time-series models will be limited in their ability to
nfer temperature responses, as discussed further below.

.3. Projections using statistical models for individual sites

The estimates of climate impacts from the statistical models are
ompared to the “true” responses of CERES in Fig. 4 and Table 2.
he three statistical approaches indicated a similar median effect
f +2 ◦C of between 11.4% and 12.7% yield loss, slightly less than
ut close to the “true” CERES value of 14.4%. All three approaches
lso agreed that the median effects of −20% precipitation would
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

e negative but smaller than for +2 ◦C, although the panel model
rojected nearly twice the median response as CERES (−9.0% vs.
4.9%). These results relate to the bias of the statistical models, but

ay little about their ability to capture site-to-site differences in
ield responses.
ted by CERES-Maize. (a) Relationship between % change in average yield for +2 ◦C
m of CERES-simulated % changes in average yield for +2 ◦C warming. (c) Relationship
the baseline period. (d) Histogram of CERES-simulated % changes in average yield

In general, the time-series models did a poor job of captur-
ing site-to-site differences in temperature responses, but did quite
well in capturing precipitation responses (Fig. 4a and d). A non-
parametric measure of the scatter is the median absolute deviation
(MAD), which was 14.2% for temperature responses but just 5.7%
for precipitation responses (Table 2). There were no clear rela-
tionships between errors for either temperature or precipitation
projections and the characteristics of sites, such as location, corre-
lations among weather variables, or average yields. This indicates
that the problems of co-linearity noted in previous work (Lobell
and Ortiz-Monasterio, 2007; Sheehy et al., 2006) is not a pervasive
problem, at least for the sites considered here.

Both the panel and cross-section models improved considerably
on the performance of the time-series model in capturing responses
to +2 ◦C (Fig. 4b and c). The MAD was 10.0% and 7.7% for the panel
and cross-section model, respectively. As seen in Fig. 4, both the
panel and cross-section models tended to give a wider distribu-
tion of predicted responses than CERES. For example, the statistical
models predicted more sites with positive responses to warming
than CERES, an error which occurred mainly at cooler sites. Simi-
larly, the statistical models tended to predict more very negative
impacts (>30% declines) than CERES, which occurred mainly at the
warmer sites.

Unlike for temperature, the ability of statistical models to
project precipitation responses did not improve for the panel and
cross-section models relative to time-series models, with MAD for
statistical models to predict crop yield responses to climate change.

all three methods separated by just 1%. The panel and cross-section
models did significantly change projections for many sites, but
these just as often degraded rather than improved agreement with
CERES values. In general, the panel and cross-section models gave
very uniform impacts of precipitation across sites (Fig. 4d and e). In

dx.doi.org/10.1016/j.agrformet.2010.07.008
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Fig. 3. (a and b) An example of simulated data used to fit the time-series model, for a site in Botswana. (c and d) The full dataset of yields vs. growing season (GS) temperature
and precipitation for 39 years at 198 sites used to fit the panel model. (e and f) The full dataset of average yields vs. growing season (GS) temperature and precipitation for
198 sites used to fit the panel model.

Table 2
Summary of predicted yield changes (%) for +2 ◦C temperature and −20% precipitation changes from CERES models, and corresponding ability of three different statistical
models trained on CERES historical simulations to predict the actual CERES response. The first four columns show values for predictions at individual field sites where CERES
simulations were performed, while the right four columns show predictions where the CERES simulations were first aggregated to country averages and then used to train
the statistical models. All statistics are non-parametric to avoid influence of outliers.

Field-scale data Country-scale data

CERES Time series Panel Cross-section CERES Time series Panel Cross-section

Median predicted yield change
(%) for +2 ◦C

−14.4 −11.4 −11.8 −12.7 −14.2 −13.7 −8.3 −12.3

Errors for predicting CERES response (% yield) to +2 ◦C
Median error 0.5 −0.9 −2.0 −1.1 5.1 −2.2
Median absolute deviation 14.2 10.0 7.7 10.3 5.7 4.2
Rank correlation 0.33 0.67 0.67 0.13 0.81 0.81

Median predicted yield change
(%) for −20% precipitation

−5.8 −3.9 −9.0 −3.4 −4.9 −2.9 −5.2 −2.6

Errors for predicting CERES response (% yield) to −20% precipitation
Median error 1.5 −2.2 2.3 2.3 0.3 3.0
Median absolute deviation 4.8 5.6 6.7 2.9 5.4 4.1
Rank correlation 0.71 0.51 −0.48 0.76 0.37 0.42
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Fig. 4. A comparison of CERES-Maize predictions of average site-level yield responses (%) to 2 ◦C warming (y-axis) vs. predictions from (a) time series, (b) panel, and (c)
cross-section models (x-axis) that were trained on historical CERES simulations. Each point represents one of 198 sites in Sub-Saharan Africa. Diagonal dashed line shows
1:1 line. Vertical and horizontal dotted lines show median yield responses for each model. (d–f) Same as (a–c) except for yield responses to 20% decline in growing season
precipitation.

Table 3
The change in error measures for statistical models when trained with datasets covering fewer and fewer years. Numbers show error (% yield) in predicting CERES yield
response to +2 ◦C warming.

Model 39 years 20 years 5 years 1 year

Time series Median error 0.5 7.45 9.41 n/a
Median absolute deviation 14.2 19.01 46.86 n/a

Panel Median error −0.9
Median absolute deviation 10.0

Cross-section Median error −2.0
Median absolute deviation 7.7

Fig. 5. Same as Fig. 4(b) except showing mean impacts for the driest (a) or wettest
(b) half of years, in terms of growing season precipitation, at each site.
3.38 10.61 n/a
7.45 10.86 n/a

−2.42 −1.45 −0.89
8.01 8.82 10.63

contrast, the CERES simulations exhibit a wide range of responses,
from roughly 20% yield gains to 40% yield losses relative to baseline,
for a 20% reduction in precipitation.

Thus, the results present three findings of interest. First, rela-
tive to CERES-Maize, time-series models are fairly reliable tools for
projecting responses to rainfall changes, but are of limited value
for anticipating temperature responses. Second, statistical models
trained with spatial variation – whether panel or cross-section data
– do a fairly good job at projecting temperature response but do not
improve upon time-series models for projecting rainfall responses.
This indicates that the added sample size and range of tempera-
ture variation that occurs when expanding to panel or cross-section
models is well worth the potential penalty of restricting all sites to
obey the same functional relationship, whereas the same is not true
for precipitation. In part this is because temperature variations in
time are much more limited than precipitation, and in part because
precipitation responses are not as closely tied to average precipita-
tion as are temperature responses to average temperature (Fig. 2).

Third, the results indicate that even for the best performing sta-
tistical models, there is considerable scatter between the projected
and “true” CERES responses to climate change. This represents
the fundamental inability of simple statistical models to capture
the complexities of dynamic cropping systems. Even adding sub-
growing season measures of weather did little to improve the
ultimate performance of these statistical models. In particular, the
statistical models to predict crop yield responses to climate change.

regressions were rerun using three variables for both temperature
and precipitation, corresponding to averages over each third of the
growing season. The resulting regressions exhibited no significant
improvements in predicting CERES responses to either temperature
or precipitation changes.

dx.doi.org/10.1016/j.agrformet.2010.07.008
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In addition to the effects of climate change on average crop
ields, the impacts in particularly bad years are also of interest.
ndeed, an often cited strength of process-based models is their
bility to capture important interactions between variables. To
xamine the performance of statistical models in this respect, at
ach site we computed the model errors for years among the coolest
s. warmest half of the record, as well as among years with the
east vs. most precipitation. The results indicated that all three sta-
istical models tended to overestimate yield losses from warming
n drier years, but there was little difference between cool and

arm years (an example for panel models shown is in Fig. 5). In
ry years, CERES tended to show very little effect of warming since
ields were already low because of moisture stress, but statisti-
al models did not capture this interaction with water availability.
or precipitation, the performance of statistical models appeared
imilar across years with different temperature or precipitation
mounts.

The inability of statistical models to perfectly capture CERES
ehavior is of course not surprising, given the far greater number of
arameters and the dynamic nature of the CERES simulations, but
he statistical models clearly do a decent job of approximating the
true” response. An important remaining question is whether the
rrors in the statistical model predictions persist when consider-
ng larger spatial scales than individual sites. That is, do the errors
end to cancel out at scales at which statistical models are more
ommonly applied, such as provincial or country averages? If so,
he attractiveness of statistical models may depend on the scale at
hich projections are desired.

.4. Projections using statistical models for sites averaged by
ountry

To evaluate the scale-dependence of statistical model perfor-
ance, the procedure outlined in Fig. 1 was repeated, except that

imulations were first averaged for each year for all sites within
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
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country. Three countries with only a single site (Table 1) were
mitted, leaving 13 country aggregates for each year. The statisti-
al models were then trained on the country aggregates, and used
o predict the country-level response to warming or rainfall reduc-
ions. This is more akin to the scale at which statistical models are
s (%) to 2 ◦C warming (y-axis) vs. predictions from (a) time series, (b) panel, and (c)
ted to the country level. Each point represents one of 13 countries in Sub-Saharan
an yield responses for each model. (d and f) Same as (a–c) except for yield responses

typically applied—for countries or regions rather than individual
fields.

At the country scale, the accuracy of the statistical models for
projecting impacts of warming, as measured by MAD, improved for
all three statistical models (Fig. 6 and Table 2). The MAD for time-
series models fell from 14.2% to 10.3%, for panel models from 10.0%
to 5.7%, and for cross-section models from 7.7% to 4.2%. Results also
improved in all three models for projecting impacts of precipitation
reductions, although the differences in MAD were less than 2% in
all cases.

The reduction of errors when aggregating to larger scales indi-
cates that the relationship between weather and yields is more
appropriately described by simple functions at coarse scales than at
finer scales, an observation consistent with previous work on crop
yields (Challinor et al., 2005; Hansen and Jones, 2000; Landau et al.,
2000; Lobell and Field, 2007) and a broader literature on scale and
environmental modeling (Addiscott and Tuck, 2001; Beven, 2002).
Intuitively, this happens because many of the errors at individual
fields are independent and therefore cancel out when aggregat-
ing to larger scales. While some questions related to agricultural
adaptation to climate change may require projections with consid-
erable spatial detail, particularly in topographically diverse regions
(Jones and Thornton, 2003), the response of aggregated production
over broad regions is of relevance to many policy questions, such
as whether national food production is at risk from climate change.
Moreover, while statistical models may be limited for fine-scale
responses, it is often questionable whether even perfect crop mod-
els would have the necessary inputs to project impacts at these
scales, since climate projections at field scales are hard to obtain
and extremely uncertain (e.g., Hansen and Indeje, 2004).

Since at most 34 sites were simulated for any single country,
the country aggregates do not reflect a real-world country in which
thousands of individual fields contribute to total maize production.
It is likely that errors from individual sites would be even fur-
ther reduced when aggregating over a sample size typical of most
statistical models to predict crop yield responses to climate change.

countries. On the other hand, weather at each site was simulated
independently in this study, so that in any single year nearby sta-
tions could have very different weather. In the real world, weather
is highly correlated among nearby fields, so that errors would likely
cancel much more slowly than if they were truly independent.

dx.doi.org/10.1016/j.agrformet.2010.07.008
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hus, we note that care should be taken to relate the specific scale-
ependence discussed above to real world simulations. To do so
ould require further work that characterizes the number and

imilarity of fields in a more realistic fashion.

.5. Sensitivity to size of training dataset

A final factor considered in this study is the length of records
vailable to train statistical models. This is of interest, for exam-
le, in countries where it can be extremely difficult to find reliable
ata prior to the 1980s. In such cases it is common to have only
0 years with which to examine relationships between yields and
limatic conditions. Table 3 compares the baseline results using
9 years for 198 individual sites with shortening the period to
0 or, as an extreme, 5 years. The time-series model shows an
xpected increase in both median error and MAD for predicting
ERES response to +2 ◦C. The median error jumps from near zero to
ver 7%, while the MAD for 20 years is only 5% greater than in the
aseline case.

The panel and cross-section models show less sensitivity to
umber of years, as expected since they rely on spatial as well
s temporal information. The cross-section model in particular is
obust even with only 5 years of data to compute average yields and
eather at each site. Using only a single year of data for 198 sites,

he MAD rises slightly to 10.6%. Thus efforts to infer climate sensi-
ivities using cross-sections from a survey in a single year may find
easonable results, for instance the recent work on relating farm
evenue to climate in Africa (Dinar et al., 2008; Kurukulasuriya et
l., 2006), although these studies focus on farm revenue rather than
ield, with the former arguably more difficult to measure accurately
nd more sensitive to off-field decisions such as utilization of stored
rains.

. Summary and conclusions

Statistical models based on temporal or spatial variation in crop
ields, or a combination of the two, are now widely used to inves-
igate the effects of recent and future climate changes on crop
ields. Although the relative strengths and weaknesses of differ-
nt statistical approaches are often discussed, little has been done
o systematically evaluate their ability to generate accurate projec-
ions of crop response across a range of factors that could influence
heir performance. This study provides a step in that direction by
reating output from a process-based crop model, CERES-Maize, as
bservations. The advantage of using this perfect model approach
s that the “true” response to climate change can be calculated,

hereas with real data the future response in unknown. As dis-
ussed in the Introduction, this approach is limited in part by the
act that CERES-Maize only represents some of the many processes
hat affect yields.

The results provide several insights, some which were fairly
urprising. All three approaches exhibit relatively little bias when
rained with the full dataset (39 years at 198 sites) and used to
roject impacts to warming or precipitation reductions, where
ias was measured non-parametrically as the median error. For
xample, the median error for all three methods was less than
% for projecting impacts of +2 ◦C, which was much smaller than
he median projected impact of −14.4%. However, the time series
pproach exhibited high model variance, with a lot of scatter
round the 1:1 line (Fig. 3a) and a median absolute deviation above
4%. An option to reduce this variance that could be explored in
Please cite this article in press as: Lobell, D.B., Burke, M.B., On the use of
Agric. Forest Meteorol. (2010), doi:10.1016/j.agrformet.2010.07.008

uture work is the use of Bayesian methods, such as ridge regres-
ions, that shrink parameter estimates toward a prior distribution
Hastie et al., 2001; Iizumi et al., 2009). These techniques effec-
ively add a little bias in exchange for larger reductions in variance,
ltimately reducing the prediction errors.
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The panel regressions, which combine all data into a single
regression that includes site-specific intercepts to account for omit-
ted time-invariant variables, proved more robust than time-series
models for predicting temperature responses. This is consistent
with the recent findings of Schlenker and Lobell (2010), who found
that a panel regression using country yield statistics in Africa
resulted in much narrower error bars than the time series approach
used previously with the same dataset. Surprisingly, however, there
was no visible improvement in the current study when panel mod-
els were used to project precipitation responses (Fig. 3d and e). This
finding was attributed to the facts that precipitation responses in
CERES showed only a weak correlation with average precipitation,
and that variations in precipitation through time at a single site
were large enough to fit a reliable time-series model. Cross-section
models provided the most accurate predictions of temperature
response, but also the poorest predictions of rainfall response.
Again, this is related to the fact that precipitation response in CERES
was influenced by factors such as rainfall timing and nitrogen stress
that were not captured in the cross-section model.

The performance of statistical models may also be affected by
several factors not considered here. One is the presence of noise in
measurements of yield or weather, which could obscure the rela-
tionship between the two. Another factor is potential differences
in the varieties sown in different locations. Whereas the simula-
tions used here assumed a fixed variety, varieties often differ across
space in response to local climate and other factors. Projections
from cross-section models trained on such data would therefore
assume that farmers are capable of automatically adapting the vari-
eties they grow to new climate conditions, even if the new climate
conditions have never experienced before at that location. Recent
work that compared cross-section, panel, and time-series models
for maize, soybean, and cotton production in the United States sug-
gests that the impact of these adaptations are modest (Schlenker
and Roberts, 2009). Specifically, the authors found very small dif-
ferences between the three models in predicting response to high
temperatures, indicating that the scope of existing adaptations to
high temperatures has been small.

The performance of statistical models could also be affected by
changes in climate variability, which in this study was assumed to
be the same in future as in current climate. The crop, region, and
type of management system considered (e.g., in this study, rainfed
maize with low fertilizer inputs) also will likely influence the utility
of statistical approaches. Further work is therefore needed to test
the generality of conclusions across different crops and growing
conditions. Perhaps most importantly, the results of the study are
specific to CERES, and future work should consider other process-
based models.

Overall the results emphasize three important points that users
of crop models should consider in future work. First, statistical
models represent a very useful if imperfect tool for projecting
climate responses, with all three statistical approaches able to
reproduce some of the key aspects of the simulated responses to
temperature and precipitation changes. Second, the relative perfor-
mance of statistical models will depend on the response in question.
Time-series models appear particularly good at estimating pre-
cipitation responses, while panel or cross-section methods appear
more reliable for temperature responses. Finally, the accuracy of
statistical approaches depends on the spatial scale of the training
data and the scale at which output projections are required. In gen-
eral, statistical models appear to become more appropriate as the
scale of interest becomes broader. It is also at these broader scales
statistical models to predict crop yield responses to climate change.

that climate projections are most available and reliable, and there-
fore statistical models are likely to continue to play an important
role in anticipating future impacts of climate change. These strate-
gies should also consider factors not addressed in the current study,
such as fertilization effects of higher atmospheric CO2 levels.

dx.doi.org/10.1016/j.agrformet.2010.07.008
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