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Using publicly available satellite imagery
and deep learning to understand economic
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Accurate and comprehensive measurements of economic well-being are fundamental inputs

into both research and policy, but such measures are unavailable at a local level in many parts

of the world. Here we train deep learning models to predict survey-based estimates of asset

wealth across ~ 20,000 African villages from publicly-available multispectral satellite ima-

gery. Models can explain 70% of the variation in ground-measured village wealth in countries

where the model was not trained, outperforming previous benchmarks from high-resolution

imagery, and comparison with independent wealth measurements from censuses suggests

that errors in satellite estimates are comparable to errors in existing ground data. Satellite-

based estimates can also explain up to 50% of the variation in district-aggregated changes in

wealth over time, with daytime imagery particularly useful in this task. We demonstrate the

utility of satellite-based estimates for research and policy, and demonstrate their scalability

by creating a wealth map for Africa’s most populous country.
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Local-level measurements of human well-being are important
for informing public service delivery and policy choices by
governments, for targeting and evaluating livelihood pro-

grams by governmental and non-governmental organizations,
and for the development and deployment of new products and
services by the private sector. While recent work has generated
granular estimates of a range of human and physical capital
measures in parts of the developing world1–5, similar data on key
economic indicators remain lacking, constraining even basic
efforts to characterize who and where the poor are.

For example, at least 4 years pass between nationally repre-
sentative consumption or asset wealth surveys in the majority of
African countries (Fig. 1a), the key source of data for inter-
nationally comparable poverty measurements. These surveys have
limited repeated observation of individual locations, making it
difficult to measure local changes in well-being over time, and
public release of any disaggregated consumption data from
African countries is very rare. At current survey frequencies, we
calculate that a given African household will appear in a house-
hold well-being survey less than once every 1000 years, or about
two orders of magnitude less frequently than a household in the
United States (Fig. 1b). While not all households need to be
observed to generate accurate economic estimates, sampling
enough households to generate frequent and reliable national-
level statistics is alone likely to be expensive, requiring an esti-
mated $1 billion USD annual investment in lower-income
countries to measure a range of indicators relevant to the Sus-
tainable Development Goals6. Expanding these efforts to generate
reliable estimates at the local level would add dramatically to
these costs.

Although existing data are scarce and traditional collection
methods expensive to scale, other potentially relevant data for the
measurement of well-being are being collected increasingly fre-
quently. For instance, while most African households are never
observed in consumption or wealth surveys, their location
appears on average at least weekly in cloud-free imagery from
multiple satellite-based sensors (Fig. 1b), and will have been
observed in multispectral imagery at least annually for more than
a decade.

Here we study whether such imagery can be used to accurately
measure local-level well-being over both space and time in Africa.
Earlier work demonstrated that coarse (1 km/pixel) nighttime

lights imagery can measure country-level economic performance
over time7, and that high-resolution (<1 m/pixel) imagery from
private-sector providers can be used to measure spatial variation
in local economic outcomes in a handful of developing and
middle-income countries8–12. Our focus is on using multiple
sources of spatially coarser public imagery to infer both spatial
and temporal differences in local-level economic well-being
across sub-Saharan Africa, including for countries where reli-
able survey data do not yet exist and where survey-based inter-
polation methods might struggle to generate accurate estimates.

We find that a deep learning model trained on this imagery is
able to explain ~70% of the spatial variation in ground-measured
village-level asset wealth across Africa, and up to 50% of temporal
variation when aggregating to the district level. We show that
model performance is limited in large part by noise in the training
data. We then demonstrate how our estimates could potentially
be used to help target social programs and further understand the
determinants of well-being across the developing world.

To develop our models, we assemble data on asset wealth for
>500k households living in 19,669 villages across 23 countries in
Africa, drawn from nationally representative Demographic and
Health Surveys (DHS) conducted between the years 2009 and
2016 (Supplementary Fig. 1, Supplementary Table S1). We
focus on asset wealth rather than other welfare measurements
(e.g. consumption expenditure) as asset wealth is thought to be a
less-noisy measure of households’ longer-run economic well-
being13,14, is a common component of multi-dimensional poverty
measures used by development practitioners around the world, is
actively used as a means to target social programs14,15, and is
much more widely observed in publicly available georeferenced
African survey data. Following standard approaches13,16, for each
household we compute a wealth index from the first principal
component of survey responses to questions about ownership of
specific assets (“Methods”). We pool all households in our sample
in the principal components estimation such that the derived
index is consistent over both space and time, and then average
household values to the enumeration area level (also called
clusters, and roughly equivalent to villages in rural areas or
neighborhoods in urban areas), the level at which geocoordinates
are available in the public survey data. This approach assumes
that assets contribute similarly to wealth across all countries in
our data. Alternative methods of constructing the index using
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Fig. 1 Economic data from household surveys are infrequent in many African countries. a Frequency of nationally representative household
consumption expenditure or asset wealth surveys across Africa, 2000–2016. b Average household revisit rate for surveys and average location revisit rate
for various resolutions of satellite imagery over time. Survey revisit rate, the average time elapsed between observations of a given household in nationally
representative expenditure or wealth surveys, is calculated as number of total person-days (population × 365) divided by the number of person-days
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only directly observable subsets of these assets, or which allow the
mapping of assets to the wealth index to differ by country and
year, yield very similar wealth estimates (Supplementary Fig. S2),
and the wealth index is highly correlated with log consumption
expenditure (weighted r2= 0.5, Supplementary Fig. S3) in a small
subset of countries where consumption data are available.

We then train a convolutional neural network (CNN) to pre-
dict the village- and year-specific measure of wealth, using tem-
porally and spatially matched multispectral daytime imagery
from 30m/pixel Landsat and <1 km/pixel nighttime lights ima-
gery as inputs (see “Methods”). Unlike earlier approaches that
used nighttime light intensity as intermediate labels for training a
CNN feature extractor on daytime imagery8, we instead incor-
porate both sets of imagery in a deep learning model trained end-
to-end, with models trained separately on daytime and nighttime
images and then joined in a final fully connected layer. The goal
of the model is to learn features in the daytime and nighttime
imagery that are predictive of asset wealth, without first pre-
scribing what features the model should look for. We compare
performance of this dual-input combined model to models
trained only on nightlights or on Landsat multispectral imagery,
as well as to a transfer learning approach that uses nightlights as
intermediate labels to find wealth-relevant features in the multi-
spectral Landsat imagery8. We evaluate models using both pooled
cross-country wealth data as well as only within-country data,
and evaluate their ability to predict variation in well-being over
space, and to predict changes over time. All evaluation is done on
held-out test locations that the model did not use in training, an
approach that limits overfitting as well as replicates the real-world
setting of making predictions where ground data do not exist.

Results
Predictive performance over space. Our combined model is
predictive of cluster-level asset wealth, with predictions
explaining on average 70% of the variation in ground-based
wealth measurements in held-out country-years (Fig. 2a). Per-
formance in individual held-out countries is never below 50% of
variation explained, and often exceeds 80% (median= 70.4%,
Fig. 2c, Supplementary Fig. S4), indicating our model is not
simply separating wealthier African countries from poorer
countries, but capably differentiating wealth levels within coun-
tries. These results exceed performance in earlier work on a
similar task using high-resolution imagery8,11 or mobile phone
data17 as input, and match or exceed benchmarks for in-country
performance from geostatistical models used to predict health
outcomes, standard of living, and housing quality in Africa1,2,5,18

(see “Methods” for additional comparisons). Visualization
of model-derived features suggests that the model learns
semantically-meaningful features that are intuitively related to
wealth, including filters for urban areas, agricultural regions,
water bodies, and deserts (Supplementary Fig. S5). Aggregating
predictions and ground measurements to the district level further
improves performance (Fig. 2b, d), with predictions explaining
on average 83% of the ground measurements in held-out
countries not used to train the model. Improved performance
with aggregation is consistent with errors cancelling when either
the predictions or ground data are averaged.

Notably, CNNs trained only on nighttime lights (NL) or only
on multispectral (MS) daytime imagery perform similarly to each
other and almost as well as the combined model (MS+NL),
suggesting that these two inputs contain similar information, at
least for the task of predicting spatial variation in African wealth
(Fig. 3a, b; Supplementary Fig. S6). Consequently, our approach
of directly using nightlight images as model inputs performs
better than using them indirectly as a proxy, as in an earlier

transfer learning approach8. Perhaps surprisingly, this trend
holds even for highly data-limited settings: even when trained on
data from only 5% of the surveyed clusters (n < 1000), our best
models trained end-to-end outperform transfer learning (Fig. 3c).

A nearest neighbor model that predicts wealth in a given
location from wealth in locations with similar nightlights values
performs nearly as well as the deep learning models in predicting
spatial variation, and much better than a linear model using scalar
nightlights as input (Fig. 3a, b)—although neither nightlights
models are predictive of temporal changes in wealth, while
daytime models are (see below). These results suggest that non-
linearities and/or spatial structure in nightlights is important for
explaining spatial variation in well-being, and also may help
explain why the transfer learning approach, which only predicts a
scalar nighttime light intensity from daytime images, performs
worse than end-to-end training.

Predictive performance over time. Many research and policy
applications require estimates of changes in economic measures
over time as well as over space. There are important challenges,
however, in using available ground surveys to measure changes in
economic outcomes over time at a local level, as well as in eval-
uating our deep learning approach’s ability to do so. First, most
existing surveys do not repeatedly measure outcomes at the same
locations over time, i.e. they are not panel data; the DHS surveys,
for instance, draw a new sample of clusters each survey round.
Second, temporal changes over a few-year time span are likely to
be small relative to cross-sectional differences, and any random
noise in each year’s survey will diminish the signal in these
changes.

Given these challenges, we take three approaches to measuring
and predicting changes in wealth over time. We first use repeated
rounds of DHS surveys and spatially match a cluster in one
survey year to the nearest cluster in a previous survey year
(subject to the random noise added to the village locations by the
survey team; see below), and compute wealth changes as the
difference in wealth index between matched pairs of clusters.
Second, we use an independent smaller set of houeshold level
panel data, the Living Standards Measurement Surveys (LSMS),
to construct cluster-level changes in an asset wealth index. In
both cases, predictions from a deep learning model using imagery
as input can explain between 15% and 17% of the variation in
survey-measured changes in asset wealth in held-out villages
(Supplementary Fig. 7a, b). In contrast to our cross-sectional
results, deep learning models using nightlights as input
performed significantly worse than models using multispec-
tral daytime imagery (r2= 0.15 vs. r2 < 0.01), likely because
nightlights show little variation over time in our sample locations
(Supplementary Fig. S8). While temporal performance in multi-
spectral models remains low relative to our model’s performance
in cross section, we show in a simulation that exceeding this
temporal performance would be difficult for any model
(Supplementary Fig. S9, Supplementary Note 1), as the small
average temporal change in wealth in our sample (0.08 standard
deviations of our wealth index) could easily be obscured by noise
in the two survey values being differenced.

In a third experiment, we use the same LSMS data to construct
a PCA-based index of changes in asset ownership (rather than a
change in indexes, as before) to better capture the component of
wealth that is actually changing. By construction this index has
greater variation over time, and satellite-based features are more
predictive (r2= 0.35), again with the models requiring multi-
spectral daytime imagery inputs in order to perform well (Fig. 4a).
As in the cross-sectional results, models again appear to learn
features related to urbanization and to changing agricultural
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values in black are the average of r2 calculated within country-years. b As for a, but indices aggregated to the district level. c Average r2 over survey years
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patterns (Supplementary Fig. S10). Aggregating ground- and
satellite-based estimates to the district level again leads to
substantial performance improvements (Fig. 4b), with predictions
of asset wealth changes explaining up to 50% of the ground-
estimated changes in asset wealth. Improved performance with
aggregation is again consistent with errors cancelling when either
the predictions or ground data are averaged. To our knowledge,
these are the first known remote-sensing based estimates of local-
level changes in economic outcomes over time across a broad
developing country geography, and provide benchmarks for
future work.

Understanding model performance. While some of the com-
bined model’s overall performance in spatial prediction derives
from distinguishing wealthier urban areas from poorer rural
areas, the model is still able to distinguish variation in wealth
within either rural or urban areas (Fig. 3d). In either case, much

of the model’s explanatory power, at least in cross section,
appears to be in separating wealthier clusters from poorer clusters
rather than in separating the poor from the near poor (Fig. 3d).
Performance at the country level (as shown in Fig. 2c) is not
strongly related to country-level statistics on headcount poverty
rates, urbanization, agriculture, or income inequality (Supple-
mentary Fig. S11), although we do find that model performance is
somewhat worse in settings where within-village variation in
wealth is high. Poorer performance in these settings could be
because our model has difficulty making accurate predictions in
locally heterogeneous environments (a problem likely amplified
by the random noise that has been added to the data; see below),
or because sample-based estimates from the ground surveys are
themselves more likely to be noisy when local variation is high.

Other sources of noise in the ground data (e.g. due to survey
recall bias, sampling variation or geographic inaccuracies) could
also worsen model performance. To explore the overall role of
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ground-based error in model performance, we take two
approaches. First, we compare both model-based and ground-
based measures against an independent measure of asset wealth
derived from census data in eight countries, with the comparison
made at the district level, the lowest level of geographic
identification available in public census data. We find that
ground-based measures are only slightly more correlated with this
independent wealth measure than our model-based estimates,
and both are highly correlated with the independent estimate
(Fig. 2e, f). This suggests that at least some of the prediction error
in our main results derives from noise in the survey data.

Second, a known source of error in our ground data is the
random noise added to village-level geo-coordinates by the survey
implementers to protect privacy. In practice this jitter creates
geographic misalignment between our input imagery and the true
location of the surveyed villages; our approach is to look at all
pixels in the 6.72 × 6.72 km neighborhood of the provided GPS
location assuming that the village’s true location falls in this
neighborhood (6.72 km is the neighborhood defined by the input
size of of our CNN architecture and the pixel size of our imagery;
see “Methods”), but much of this information might not be
relevant to the specific village’s asset wealth. To understand the
performance cost of this noise, we iteratively add additional
locational noise to our training data and then re-evaluate model
performance on test data which are either also additionally
jittered or not. Performance degrades with additional jitter
(Supplementary Fig. S12), although much less rapidly when
evaluating on data that have not also been additionally jittered.
This suggests that the true (unobserved) performance of our main
results is higher than we report, given that we are evaluating on
data that have been jittered. Using these results to extrapolate
backward to a hypothetical setting of no jitter in training data

suggests that locational noise in ground data is reducing model
performance by r2= 0.07, or roughly the difference between our
best and worst performing CNN models (Fig. 3).

Downstream tasks. To demonstrate the applicability of our
satellite-based estimates to downstream research or policy tasks,
we consider two use cases. The first is understanding why some
locations are wealthier than others. Here we study associations
between wealth and exposure to extreme temperatures, as much
past work has indicated the wealth-temperature relationship is
nonlinear19,20, and because temperature data are readily avail-
able for all study locations in an independent gridded dataset21.
Ground-based survey data indicate a non-linear relationship
between village-level wealth and maximum temperature in the
warmest month, and out-of-country estimates from CNN-based
models recover this relationship very closely (Fig. 5a, “Meth-
ods”); estimates from simple scalar nightlights models do not.
While none of these cross-sectional estimates are well suited for
causal identification of the impact of temperature on wealth19,22,
we view the close match between satellite- and ground-based
estimates of the temperature-wealth relationship as evidence
that satellite-based estimates can be useful for these types of
research questions.

We also use our estimates to evaluate the hypothetical targeting
of a social protection program (e.g. a cash transfer), in which all
villages below some asset level receive the program and villages
above the threshold do not. Targeting on survey-derived asset
data is a common approach to program disbursement in
developing countries23. We compare targeting accuracy, defined
as the percent of villages receiving the correct program, using
estimates from different satellite-based models, under the
assumption that survey-based ground data describe the true asset
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distribution. Our best performing satellite models again perform
well on this task (Fig. 5b). For instance, using MS+NL estimates
to allocate a program to households below median wealth yields a
targeting accuracy of 81%, versus 75% for a CNN Transfer model
and 62% for a scalar nightlights model. Importantly, these
estimates likely understate true targeting accuracy given that
ground data are themselves measured with some noise.

Scalability. To demonstrate the scalability of our overall
approach, we construct a 7.65 km/pixel gridded wealth map of
Nigeria, Africa’s most populous country, for the years 2012–2014
using our model that combines daytime multispectral and
nighttime imagery (Fig. 6). Visualizing both inputs and model
predictions shows how our model learns to combine the two
inputs, for example ignoring very bright nightlights pixels asso-
ciated with oil flaring in the southern part of the country that are

not also associated with high wealth (Fig. 6b–g). Pixels are easily
aggregated to higher administrative units using existing popula-
tion rasters, and show strong latitudinal gradients of wealth
across the country (Fig. 6h).

Generating the pixel-level raster involves processing ~9.1 billion
pixels of daytime and nighttime imagery. Once the pipeline is
developed, going from these raw imagery inputs to the prediction
raster takes <30 h, including 4 h of model training on a NVIDIA
Titan X GPU (excluding hyperparameter search), and roughly
24 h for imagery processing and raster generation. By compar-
ison, a nationally representative household survey typically takes
months to years to execute, at an average cost of $1–2 million
USD6. While this comparison does not imply that our approach
can replace household surveys, our approach can accelerate
estimation of local-level wealth in years or in locations where
survey data are unavailable.
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Fig. 5 Using satellite-based wealth predictions in downstream tasks. a Cross-sectional relationship between average maximum temperature and wealth
across survey locations, as estimated with survey wealth data (black) and estimates from three satellite-based models. Each line is a bootstrap of the
cross-sectional regression (100 bootstraps, sampling villages with replacement). Best-performing models recover temperature-wealth relationships that
are closest to estimates using ground-measured data, and CNN-based models perform much better than scalar nightlights models. b Evaluation of a
hypothetical targeting program in which all villages below some desired threshold in the asset distribution receive the program (e.g. a cash transfer) and
villages above the threshold do not. We compare targeting accuracy, defined as the percent of villages receiving the correct program, using estimates from
the same four satellite-based models as in a, under the assumption that survey-based ground data provide the true asset distribution. For instance, using
MS+NL estimates to allocate a program to households below median wealth yields a targeting accuracy of 81%, versus 75% for CNN Transfer and 62% for
scalar NL models. These estimates likely understate true targeting accuracy, given that ground data are themselves measured with some noise.
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nightlights (NL) as input, just multispectral (MS) imagery as input, and the concatenated NL and MS features as input. In this region, the model appears to
rely more heavily on MS than NL inputs, ignoring light blooms from gas flares visible in b. h Deciles of satellite-based wealth index across Nigeria,
population weighted using Global Human Settlement Layer population raster, and aggregated to Local Government Area level from the Database of Global
Administrative Areas.
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Discussion
Our satellite-based deep learning approach to measuring asset
wealth is both accurate and scalable, and consistent performance on
held-out countries suggests that it could be used to generate wealth
estimates in countries where data are unavailable. Results suggest
that such estimates could be used to help target social programs in
data poor environments, as well as to understand the determinants
of variation in well-being across the developing world.

However, while our CNN-based approach outperforms
approaches to poverty prediction that use simpler features com-
mon in the literature (e.g. scalar nightlights7), the information the
CNN is using to make a prediction is less interpretable than these
simpler approaches, perhaps inhibiting adoption by the policy
community. A key avenue for future research is in improving the
interpretability of deep learning models in this context, and in
developing approaches to navigate this apparent performance-
interpretability tradeoff.

Our deep learning approach is also perhaps best viewed as a
way to amplify rather than replace ground-based survey efforts, as
local training data can often further improve model performance
(Fig. 3b), and because other key livelihood outcomes often
measured in surveys—such as how wealth is distributed within
households, or between households within villages—are more
difficult to observe in imagery. Similarly, our approach could also
be applied to the measurement of other key outcomes, including
consumption-based poverty metrics or other key livelihood
indicators such as health outcomes. Performance in these related
domains will depend both on the availability and quality of
training data, which remains limited for key outcomes such as
consumption in most geographies. Finally, our approach could
likely be further improved by the incorporation of higher-
resolution optical and radar imagery now becoming available at
near daily frequency (Fig. 1b), or in combination with data from
other passive sensors such as mobile phones17 or social media
platforms24. All represent scalable opportunities to expand the
accuracy and timeliness of data on key economic indicators in the
developing world, and could accelerate progress towards mea-
suring and achieving global development goals.

Methods
Construction of asset wealth index. The asset wealth index is constructed from
responses to the set of questions about asset ownership that are common across
DHS countries and waves: number of rooms occupied in a home, if the home has
electricity, the quality of house floors, water supply and toilet, and ownership of a
phone, radio, tv, car and motorbike. Variables such as floor type are converted from
descriptions of the asset to a 1–5 score indicating the quality of the asset. We then
construct an asset index at the household level from the first principal component of
these survey responses, a standard approach in development economics13,16. This
index is meant to capture household asset ownership as a single dimension, rather
than act as a direct measure of poverty. By construction, the index has a mean equal
to 0 and standard deviation of 1 across households. Supplementary Table S4 pro-
vides derived loadings for the first principal component.

Survey data are derived from 43 Demographic and Health Surveys (DHS)
surveys conducted for 23 countries in Africa from 2009 to 2016 (Supplementary
Table S1). In addition to the asset data, each DHS survey contains latitude/
longitude coordinates for each survey enumeration area (or cluster) surveyed, each
roughly equivalent to a village in rural areas and a neighborhood in urban areas.
We removed clusters with invalid GPS coordinates and clusters for which we were
unable to obtain satellite imagery, leaving us with 19,669 clusters. To protect the
privacy of the surveyed households, DHS randomly displaces the GPS coordinates
up to 2km for urban clusters and 10km for rural clusters25; this introduces a source
of noise in our training data.

Validating the wealth index. The PCA-based index is quite robust to methods of
calculation as well as variables included in the index. We compare our cross-
country pooled PCA index to a measure that is the sum of all the assets owned, a
PCA constructed from only objects that are owned (e.g. TV, radio) and not from
housing quality scores which are more subjective, and country-specific asset indices
created from running the PCA on each country separately. As shown in Supple-
mentary Fig. S2, correlations between the pooled PCA index we use and these
alternative variants range from r2= 0.80 to r2= 0.98.

Replicating the wealth index in other contexts. We then create similar asset
indices using two separate external data sets: census data from countries whose
censuses report asset ownership questions, and data from Living Standards Mea-
surement Study (LSMS) conducted by the World Bank. In the publicly available
census data, a 10 percent sample of microdata geolocated to the second adminis-
trative level (roughly, district or county) is available from each country. We focus
on countries with public data who conducted censuses within 4 years of a DHS
survey in our main sample and which had gathered data on assets similar to what
was available in DHS. We found that 8 countries (Benin, Lesotho, Malawi, Rwanda,
Sierra Leone, Senegal, Tanzania, and Zambia) had all asset variables used in DHS
excluding motorbike and rooms per person. (Using DHS data, we find that the
original index and an index constructed excluding these two variables had an r2=
0.99.) Our overall census sample yielded a total of 2,157,000 households observed
in 656 administrative areas across these eight countries.

As census data are only georeferenced at second administrative levels, both
DHS and census datasets are aggregated to the second-level administrative
boundaries provided in the census data. Census data is aggregated using census
household weights to construct representative district averages. A raw average
across households is used to construct the corresponding DHS value; DHS and
LSMS data do not provide household weights that allow construction of sub-
nationally representative estimates.

We utilized asset wealth data from LSMS panel surveys for five countries
(Malawi, Nigeria, Tanzania, Ethiopia, and Uganda). Cluster-level GPS coordinates
are provided, with clusters in urban areas jittered up to 2 km and clusters in rural
areas jittered up to 10 km. We are able to measure asset wealth for 9000 households
over time in the LSMS data (roughly two orders of magnitude less than DHS),
distributed over ~1400 clusters. As LSMS data follow households over time, we
created a village-level panel using only households that existed in the first wave of
interviews, removing any newly formed households or households that were not in
later surveys. Additionally, where available, households that reported in the second
survey that they had lived in their current location for less time than had elapsed
since the first survey (i.e. migrant families) were removed. LSMS data were
processed to try to match our DHS index as closely as possible, both by including
the same assets and by matching asset quality definitions as similarly as possible.
The fridge and motorbike variables were not available in the LSMS data and were
excluded from the LSMS wealth index. Using DHS data, we find that the original
index and an index constructed excluding the fridge and motorbike variables were
highly correlated, with an r2 of 0.974. While we cannot directly compare DHS and
LSMS indices at the village level, district level estimates from the two sources have
an r2 of 0.60.

While our asset data cannot be used to directly construct poverty estimates—
standard poverty measures are constructed from consumption expenditure data,
which are not available in DHS surveys—household consumption aggregates are
available in a subset of the LSMS data just described. Across six surveys in three
countries, we find our constructed wealth index is fairly strongly correlated with log
surveyed consumption at the village level, with a weighted r2 of 0.50 (Supplementary
Fig. S3). These results are consistent with findings that asset indices and consumption
metrics are typically very comparable14, and suggest that our approach to wealth
prediction could perhaps be useful for consumption prediction as well, particularly as
additional consumption data become available to train deep learning models.

Satellite imagery. We obtained Landsat surface reflectance and nighttime lights
(nightlights) images centered on each cluster location, using the Landsat archives
available on Google Earth Engine. We used 3-year median composite Landsat
surface reflectance images of the African continent captured by the Landsat 5,
Landsat 7, and Landsat 8 satellites. We chose three 3-year periods for compositing:
2009–11, 2012–14, and 2015–17. Each composite is created by taking the median of
each cloud free pixel available during that period of 3 years. The motivation for
using three-year composites was two-fold. First, multi-year median compositing
has seen success in similar applications as a method to gather clear satellite ima-
gery26, and even in 1-year compositing we continued to note the substantial
influence of clouds in some regions, given imperfections in the cloud mask. Second,
the outcome we are trying to predict (wealth) tends to evolve slowly over time, and
we similarly wanted our inputs to not be distorted by seasonal or short-run var-
iation. The images have a spatial resolution of 30 m/pixel with seven bands which
we refer to as the multispectral (MS) bands: RED, GREEN, BLUE, NIR (Near
Infrared), SWIR1 (Shortwave Infrared 1), SWIR2 (Shortwave Infrared 2), and
TEMP1 (Thermal).

For comparability, we also created 3-year median composites for our nightlights
imagery. Because no single satellite captured nightlights for all of 2009–2016, we
used DMSP27 for the 2009–11 composite, and VIIRS28 for the 2012–14 and
2015–17 composites. DMSP nightlights have 30 arc-second/pixel resolution and
are unitless, whereas VIIRS nightlights have 15 arc-second/pixel resolution and
units of nWcm−2sr−1. The images are resized using nearest-neighbor upsampling
to cover the same spatial area as the Landsat images. Because of the resolution
difference and the incompatibility of their units, we treat the DMSP and VIIRS
nightlights as separate image bands in our models.

Both MS and NL images were processed in and exported from Google Earth
Engine29 in 255 × 255 tiles, then center-cropped to 224 × 224, the input size of our
CNN architecture, spanning 6.72 km on each side (30 m Landsat pixel size × 224
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px= 6.72 km). Note that this means any survey cluster whose location coordinates
are artificially displaced by more than 4.75 km (6:72=

ffiffiffi
2

p
) is completely beyond the

spatial extent of the satellite imagery. Each band is normalized to have mean 0 and
standard deviation 1 across our entire dataset. The raster of wealth in Nigeria in
Fig. 5 was generated by exporting non-overlapping tiles from Google Earth Engine,
following the same processing steps as for model training.

Deep learning models. Our deep CNN models use the ResNet-18 architecture (v2,
with preactivation)30, chosen for its balance of compactness and high accuracy on
the ImageNet image classification challenge31. We modify the first convolutional
layer to accommodate multi-band satellite images, and we modify the final layer to
output a scalar for regression. For predicting changes in wealth and the “index of
differences” on the LSMS data, we stack together the images from two different
years to create a 224 × 224 × (2C) image, where C is the number of channels in a
single satellite image.

The modifications to the first convolutional layer prevent direct initialization from
weights pre-trained on ImageNet. Instead, we adopt the same-scaled initialization
procedure32: weights for the RGB channels are initialized to values pre-trained on
ImageNet, whereas weights for the non-RGB channels in the first convolutional layer
are initialized to the mean of the weights from the RGB channels. Then all of these
weights are scaled by 3/C where C is the number of channels. The remaining layers of
the ResNet are initialized to their ImageNet values, and the weights for the final layer
are initialized randomly from a standard normal distribution truncated at ±2. For the
models trained only on the nightlights bands, we initialized the first layer weights
randomly using He initialization33. When predicting changes in wealth and when
predicting the index of differences on the LSMS data, we used random initialization
instead, as it performed better than using same-scaled ImageNet initialization on the
validation sets (see “Cross-Validation”).

The ResNet-18 models are trained with the Adam optimizer34 and a mean
squared-error loss function. The batch size is 64 and the learning rate is decayed by
a factor of 0.96 after each epoch. The models are trained for 150 epochs (200 epochs
for DHS out-of-country). The model with the highest r2 on the validation set across
all epochs is used as the final model for comparison. This is done as a regularization
technique, equivalent to early-stopping. We performed a grid search over the
learning rate (1e-2, 1e-3, 1e-4, 1e-5) and L2 weight regularization (1e-0, 1e-1, 1e-2,
1e-3) hyperparameters to find the model that performs the best on the validation
fold. To prevent overfitting, the images are augmented by random horizontal and
vertical flips. The non-nightlights bands are also subject to random adjustments to
brightness (up to 0.5 standard deviation change) and contrast (up to 25% change).
Additionally, for predicting changes in wealth and the index of differences on the
LSMS data, we randomize the order for stacking the satellite images (i.e. stacking the
before image on top of or below the after image), multiplying the label by −1
whenever the after image was stacked on top to signify a reversed order.

When using the two nightlights bands, we set pixels in the non-present band to
all zeros. This ensures that the first-layer weights for that band are not updated
during back-propagation, because the gradient of the loss with respect to the
weights for the all-zero band becomes zero. Furthermore, since the ResNet-18
architecture has a batch-normalization layer following each convolutional layer,
there are no bias terms.

For models incorporating both Landsat and nightlights (i.e. our combined
model), we trained two ResNet-18 models separately on the Landsat bands and
nightlights bands, respectively, and joined the models in their final fully connected
layer. In other words, we concatenated the final layers of the separate Landsat and
Nightlights models and trained a ridge-regression model on top. We found that
this approach performed better than stacking the nightlights and Landsat bands
together in a single model.

For DHS data, an average of 25.59 households (standard deviation= 5.59) were
surveyed for each village, compared to an average of 6.37 households (sd= 3.57) in
LSMS. Due to the lower number of households surveyed for LSMS, which results in
noisier estimates of village-level wealth, we weighted LSMS villages proportional to
their surveyed household count in the loss function during training. We did not
weight DHS villages.

Transfer learning models. We compared our end-to-end training procedure with
the transfer learning approach first proposed by Jean et al.8. In this approach,
nightlights are a noisy but globally available proxy for economic activity (r2 ≈ 0.3
with asset wealth), and a model is trained to predict nighttime lights values from
daytime multispectral imagery. This process summarizes high-dimensional input
daytime satellite images as lower-dimensional feature vectors than can then be used
in a regularized regression to predict wealth.

Because our images have a mixture of DMSP and VIIRS values, and the two
satellites have different spatial resolutions, the binning approach in Jean et al.8 that
treated nightlights prediction as a classification problem was unworkable. Instead, we
framed transfer learning as a multitask regression problem. We extracted the neural
network’s final layer output predictions for both the DMSP value and the VIIRS value,
and regressed on whichever nightlights label was available for each daytime image. On
the nightlights prediction task over locations sampled from all 23 DMSP countries,
our transfer learning models achieved performance of r2= 0.82 when using RGB
bands and r2= 0.90 when using all Landsat bands; these values are not directly
comparable to results in Jean et al.8, as that work posed nightlights prediction as a

3-class classification problem. With these models trained to predict nightlights values
from daytime imagery, we froze the model weights and fine-tuned the final fully
connected layer to predict the wealth index. We note that our transfer learning
experiments contain a much larger set of countries than the Jean et al.8 results, which
focused on five countries, and thus are not directly comparable.

Baseline models. We train simpler k-nearest neighbor models (KNN) on night-
lights that predict wealth in a given location i as the average wealth over the k
locations with nightlights values closest to that in i. In essence, this model allows a
non-linear and non-monotonic mapping of nightlights to wealth. The hyper-
parameter k is tuned by cross-validation. We also train a regularized linear
regression on scalar nighlights (scalar NL) as a baseline model.

Training on limited data. To evaluate how models perform in even more data-
limited situations, we trained our deep models on random subsets of 5%, 10%, 25%,
50%, and 100% of the full training data, repeated over 3 trials with different random
subsets. For each subset size, we report the mean r2 over the three trials (Fig. 3c).

Data splits. For both DHS and LSMS survey data, we split the data into 5 folds of
roughly equal size for cross-validation. For the DHS out-of-country tests, we
manually split the 23 countries into the 5 folds such that each fold had roughly the
same number of villages, ranging from 3909 to 3963 (Supplementary Table S2). As
described below, models were trained using cross-validation to select optimal
hyperparameters. Each model was trained on 3-folds, validated on a 4th, and tested
on a 5th. The fold splits used in the cross-validation procedure are shown in
Supplementary Table S3. For DHS in-country training, we split the 19,699 villages
into 5 folds such that there was no overlap in satellite images of the villages
between any fold, where overlap is defined as any area (however small) that is
present in both images. We used the DBSCAN algorithm to group together villages
with overlapping satellite images, sorted the groups by the number of villages per
group in decreasing order, then greedily assigned each group to the fold with the
fewest villages. We followed the same procedure to create 5 LSMS in-country folds.
We did not perform out-of-country tests with LSMS data.

Cross-validation. For each of the input band combinations (MS, MS+NL, NL), we
trained five separate models, each with a different test fold. Of the four remaining
folds, three folds were used to train the models, with the final fold designated as the
validation set used for early stopping and tuning other hyperparameters (Supple-
mentary Table S3). Once the CNNs were trained, we fine-tuned the last fully
connected layer using ridge regression with leave-one-group-out cross-validation.
In the out-of-country setting, we fine-tuned the final layer individually for each test
country, using data from all other countries. Thus, the convolutional layers in the
CNNs have effectively seen data from four of the 5-folds, while the final layer sees
data from every country except the test country. In the in-country setting, we only
used data from the non-test folds for fine-tuning.

Ideally, the hyperparameters for machine learning models should be tuned by
cross-validation for optimal generalization performance on unseen data. However,
because training deep neural networks requires substantial computational
resources, leave-one-group-out cross-validation is prohibitively time intensive
(where in our setting, each group is a country). Consequently, we performed leave-
one-fold-out cross-validation for all the hyperparameters for the body of the CNN,
and only used leave-one-group-out cross-validation to tune the regularization
parameter for training the weights in the final fully connected layer.

Comparison with previous benchmarks. Our model achieves a cross-validated
r2= 0.67 on pooled cluster-level observations in held-out countries (or r2= 0.70
when averaging over r2 values from each country). This meets or exceeds published
performance on related tasks, including using high-resolution imagery and transfer
learning to predict asset wealth in five African countries8 (r2= 0.56), using call
detail records to predict asset wealth in Rwanda17 (r2= 0.62), and using survey data
and geospatial covariates to predict housing quality5 (r2= 0.67), child stunting1

(r2= 0.49), diarrheal incidence2 (r2= 0.47 averaged over years) across sub-Saharan
Africa or to predict standard of living in Senegal18 (r2= 0.69). All values are for
published cross-validated performance at the cluster or pixel level (except for
diarrheal incidence whose performance is only reported at the admin-2 level).

As our primary focus is on constructing and evaluating out-of-country
predictions, our results are not directly comparable to findings from other small
area estimate approaches that rely on having in-country surveys with which to
extract covariates and make local-level predictions (e.g. refs. 35,36). However, our
satellite-derived wealth estimates and/or the satellite-derived features themselves
could be used as input to these small area estimates, and evaluating the utility of
satellite-derived data in such settings is a promising avenue for future research.

Research and policy experiments. To study whether our satellite-based estimates
can be used to shed light on the determinants of the spatial distribution of wealth—
a longstanding research question—we match our ground-based and satellite-based
wealth estimates to gridded data on maximum temperature in the warmest
month21. We study temperature as our potential wealth determinant because past
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work has suggested that differences in temperature exert significant, non-linear
influence on economic output19,20, because temperature data are readily available
for all our study locations.

We extract the maximum average monthly temperature for each cluster in our
dataset (averaged over the years 1970–200021) and then flexibly regress wealth
estimates on temperature:

wi ¼ f ðTiÞ þ εi ð1Þ
where wi is the wealth estimate for cluster i and f(Ti) is a fourth-order polynomial in
temperature. To capture uncertainty in our estimates of f(), we bootstrap Eq. (1) 100
times for each different wealth measure, sampling villages with replacement. We
compare estimates of f() when we measure wi using the ground data or when using
various satellite-based estimates: our benchmark MS+NL estimates, or the two
main other published approaches, CNN transfer learning8 and scalar nightlights7.
Results are shown in Fig. 5a. We emphasize that these cross-sectional estimates of
f() do not represent causal estimates of the impact of temperature on wealth, as
many other factors are known to be correlated with both temperature and wealth
(e.g. institutional quality, disease environment, nearby trading partners, etc.)22.

To study whether our satellite-based estimates can be used for policy tasks, we
evaluate the hypothetical targeting of a social protection program (e.g. a cash transfer),
in which all villages below some asset level receive the program and villages above that
level do not. Such targeting on survey-derived asset data is a common approach to
program disbursement in developing countries23. Because asset indices constitute a
relative measure of wealth and it is not obvious how to set an absolute cut-off to
define who is poor, standard practice is instead to divide the population into
percentiles in the asset distribution and then designate bottom percentiles as poor15.

We follow that practice here. Using the ground data, we define a threshold w�
p;g

corresponding to a chosen percentile p in the ground-measured asset distribution,
and designate any village with wealth below that threshold as a program beneficiary
(a treated village), i.e. ti;g;p ¼ 1½wi;g < w�

p;g �, where wi,g is village i’s measured wealth
in the ground data and ti,g,p denotes that villages treatment status according to the
ground data. We then follow the same procedure for a satellite-estimated wealth
distribution s, choosing the same percentile p in the satellite-estimated distribution
to define treatment. This yields each village’s treatment status under the satellite-
derived estimates ti;s;p ¼ 1½wi;s < w�

p;s�. We note that we are fixing p between
ground- and satellite-based estimates rather than fixing the wealth threshold, such
that the same overall number of villages are treated in both the ground-measured
case and the satellite-measured case.

Under the assumption that the ground-derived treatment statuses ti,g are
correct, we then define targeting accuracy As,p as the proportion of satellite-
derived treatment statuses that are correct under a given percentile cutoff p, i.e.
As;p ¼ 1

n

Pn
i¼1 1½ti;s;p ¼ ti;g;p�, where n is the total number of villages. We compute

As under different values of p ranging from the 10th to the 50th percentile, and for
the same three different satellite-based wealth estimates s (MS+NL, transfer
learning, and scalar NL) used in Fig. 5. We emphasize that to the extent that the
ground data wi,g are measured with noise, which we have strong evidence of (see
Supplementary Fig. S12 and Fig. 2e, f), our estimated targeting accuracy likely
understates true targeting accuracy.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data to replicate all findings in the paper are available at https://github.com/sustainlab-
group/africa_poverty.

Code availability
Code to replicate all findings in the paper are available at https://github.com/sustainlab-
group/africa_poverty.
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