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Abstract—The Two Wave with Diffuse Power (TWDP) fading
model was proposed by Durgin, Rappaport and de Wolf as a
generalization of the Rayleigh and Rician fading models. This
model can characterize a large range of fading behavior and
has a geometric justification in terms of two dominant line of
sight components in the presence of a diffuse component. The
fact that the pdf of the TWDP model is not in closed-form has
hindered the analytical characterization of this otherwise intuitive
model. We show that any metric which is a linear function of the
envelope statistics of the TWDP fading model can be computed
as a finite integral of the corresponding metric for the Rice
model. Employing this approach, we obtain simple expressions
for some performance metrics for this fading model hitherto
not found in the literature, such as the Amount of Fading, the
Level Crossing Rate and the Moment Generating Function, by
leveraging existing results for Rician fading.

Index Terms—Envelope statistics, fading channels, multipath
propagation, Rician fading, small-scale fading, TWDP.

I. INTRODUCTION

Small-scale narrowband fading models such as the common
Rayleigh, Rician and Nakagami-m models have been verified
to match closely with field trials. The Rayleigh and Rice
models are geometrically justified in terms of the Line of Sight
(LoS) and Non-Line of Sight (NLoS) components [1] of the
fading envelope. The more general Nakagami-m model can
model Rayleigh or Rice fading models and is a close fit to
land-mobile and indoor multipath propagation but still does
not have a physical interpretation for arbitrary values of the
fading severity index m [2]. The κ − µ and η − µ fading
models proposed in [3] are generalizations of these models and
are defined as a sum of multipath clusters with each cluster
having a LoS and multiple NLoS components.

A related distribution is the Two Wave with Diffuse Power
(TWDP) fading model proposed in [1]. This model consists of
two LoS components and multiple diffuse NLoS components,
and is supported by field measurements in indoor scenarios [4].
By varying the power of the LoS and NLoS components, the
TWDP model encompasses the Rayleigh and Rician models
along with the LoS case with no diffuse components. Another
fading behaviour which the TWDP can model is when the
fading is more severe than Rayleigh fading [5]. This regime,
termed Hyper-Rayleigh fading, has been observed in Wireless
Sensor Networks (WSN) deployed in cavity structures such as
an aircraft or a bus [6].

Although the TWDP model can model a variety of fading
environments, its complicated statistical characterization has

been its main drawback. Since the original pdf of this model
has an integral form, an approximate closed-form pdf was
also proposed in [1] to facilitate further analytical results for
this scenario. This approximate pdf has been widely used
to characterize the performance of wireless communication
systems in TWDP fading: in [8], the Bit Error Rate (BER)
of BPSK modulated signals in TWDP fading was studied.
These results were extended to diversity combining reception
and over other modulation schemes in [9–11]. Symbol error
rates in relay networks over TWDP channels were also studied
in [12, 13]. These expressions provide the first analytical
characterization for TWDP in a number of scenarios. They are,
however, approximations; the exact characterization of most
performance metrics in TWDP is an open problem. Recently,
an alternative exact expression for the TWDP pdf was given
in [7] in terms of an infinite series.

Interestingly, the authors in [1] posited that the TWDP pdf
somewhat resembles the Rician pdf, but did not further exploit
this similarity. We have found that characterizing the envelope
statistics of TWDP fading is closely related to a classical
problem in communication theory addressed by Rice [14]
on the statistical properties of sine waves in Gaussian noise.
Esposito and Wilson [15] further developed these ideas and
provided expressions for the distribution of two sine waves in
the presence of Gaussian noise. Motivated by these results,
we show that the envelope statistics of the TWDP fading
model conditioned on the phase difference between the LoS
components results in the Rician fading model. This allows us
to express any performance metric which is a linear function
of the envelope statistics of the TWDP fading model in terms
of a finite integral of the Rician metrics. Using this simple
yet powerful approach, we find simple expressions for the pdf,
cdf, Amount of Fading and the level crossing rate (LCR). As a
key result, we obtain a closed-form expression for the Moment
Generating Function, which to the best of our knowledge has
not been expressed in the literature so far. This enables us
to use the MGF approach to calculate the BER for various
modulation schemes.

II. STATISTICAL CHARACTERIZATION OF THE TWDP
FADING MODEL

A. A brief description of the TWDP fading model

As presented in [16], the complex baseband received signal
s(t) in narrowband multipath fading is:
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s(t) = <

{
u(t)

∑
n

αne
jφn

}
, (1)

where u(t) is the transmitted signal in baseband, αn and
φn represent the amplitude and phase of the n-th multipath
component and <{.} denotes the real part.

The TWDP fading model [1, eq. 7] consists of two specular
components and a diffuse component, as

Vr = V1 exp(jφ1) + V2 exp(jφ2) +X + jY, (2)

where Vr is the received signal, components 1 and 2 are
specular components with φ1, φ2 ∼ U(0, 2π) and V1 and V2

are constant. In the diffuse component X, Y ∼ N (0, σ2). The
model is conveniently expressed in terms of the parameters K
and ∆, defined as

K =
V 2

1 + V 2
2

2σ2
, (3)

∆ =
2V1V2

V 2
1 + V 2

2

. (4)

Here K, like the Rician parameter, represents the ratio of
the power of the specular components to the diffuse power.
∆ is defined as the ratio of the peak specular power to the
average specular power and serves as the comparison of the
power levels of the two specular components. We observe that
∆ = 1 only when the two specular components are of equal
amplitude, and ∆ = 0 when either LoS component has zero
power. Special cases of the TWDP model are detailed in [1],
encompassing the One Wave, Two Wave, Rayleigh and Rician
fading models. In [5] it is shown that when K > 0 and ∆ ≈ 1
the channel exhibits worse fading than Rayleigh, referred to as
Hyper-Rayleigh behavior. As K increases, the fading becomes
more severe and with the extreme condition of K → ∞, the
most-severe Two Wave fading model emerges

The behavior of the TWDP fading model under these
conditions is seen in Fig. II-A. The two-ray model exhibits the
worst fading. As the power of the diffuse component increases,
the systems becomes more benign with Rayleigh-like behavior.
Rice-like conditions, where the power of one LoS component
is much larger than the other LoS component and the diffuse
components, offer better fading than Rayleigh.

The pdf of the TWDP model was given in [1] as

fR(r) = r

ˆ ∞
0

e−
v2σ2

2 J0(V1v)J0(V2v)J0(vr)vdv. (5)

where J0(·) denotes the Bessel function of the first kind with
order zero. An alternative expression for this pdf was also
given as

fR(r) =
r

σ2
exp

(
− r2

2σ2
−K

)
× (6)

1

π

ˆ π

0

exp (K∆ cos θ)I0

( r
σ

√
2K(1−∆ cos θ)

)
dθ,

where I0(·) is the modified Bessel function of the first kind
with order zero. Since both (5) and (6) are in integral form,

Figure 1. The CDF of the TWDP fading model vs. the normalized envelope
amplitude. The worst case arises in the Two-Ray model (∆ = 1, K → ∞).

the authors in [1] presented an approximate representation of
the pdf as

fR(r) =
r

σ2
exp

(
− r2

2σ2
−K

) M∑
i=1

aiD
( r
σ2

;K, ∆αi

)
,

(7)
where ai are tabulated constants, the order M should be
sufficiently large and

D(x;K, αi) =
1

2
exp(αiK)I0

(
x
√

2K(1− αi)
)

+
1

2
exp(−αiK)I0

(
x
√

2K(1 + αi)
)
, (8)

where αi = cos
(
π(i−1)
2M−1

)
.

B. TWDP fading as a generalization of Rician fading

Similar to the procedure followed in [1] to derive (6) from
(5), we use an expanded form of the Bessel functions J0 which
results in

fTWDP (r) = r

ˆ ∞
0

v exp(
−v2σ2

2
)J0(vr)

1

(2π)2

×
ˆ 2π

θ=0

ˆ 2π

φ=0

exp[jV1v cos(θ) + jV2v cos(φ)]dθdφdv, (9)

where we adopted the notation fTWDP (r) to denote the
TWDP pdf for convenience of discussion. We recognize that

V1 cos(θ) + V2 cos(φ) = V1 cos(θ) + V2 cos(θ − α)

=[V1 + V2 cos(α)] cos(θ) + V2 sin(α) sin(θ)

=
√
V 2

1 + V 2
2 + 2V1V2 cos(α) cos(θ + θ0), (10)

where α = θ − φ is the phase difference between the two
LoS components and θ0 = arctan( V2 sin(α)

[V1+V2 cos(α)] ). Using (10)
in (9) and noticing that adding a phase term θ0 in the Bessel
function integrand does not modify it as it is integrated over
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an entire period, we get

fTWDP (r) =
1

2π

ˆ 2π

α=0

r

ˆ ∞
0

v exp(
−v2σ2

2
)J0(vr)

× J0

(√
V 2

1 + V 2
2 + 2V1V2 cos(α)

)
dvdα. (11)

The inner integral of (11) is seen to be a special case of
(5) with only one LoS component V̄1 and V̄2 = 0, i.e. it
can be seen as an equivalent Rician pdf. The equivalent LoS
component amplitude V̄1 is given by,

V̄1 =
√
V 2

1 + V 2
2 + 2V1V2 cos(α) (12)

K̄ = K (1 + ∆ cos(α)) . (13)

Employing the equivalent Rician pdf in (11), we obtain

fTWDP (r) =
1

2π

ˆ 2π

0

fRice (r; K[1 + ∆ cos(α)]) dα. (14)

Thus, we see that the pdf of the TWDP fading model is
obtained by finding the Rician pdf with equivalent K̄ as given
by (3) and taking the mean with respect to α, the phase
difference between the LoS components. If we plug the well-
known expression for the Rician pdf [2] given by

fRice(r) =
r

σ2
e−

r2

2σ2
−KI0

( r
σ

√
2K
)

(15)

in (14), we obtain an expression very similar to (6). It is
straightforward to show that both are coincident by a simple
change of variables.

We have been able to find an insightful connection between
the TWDP and the Rician fading models, showing that the
former is in fact a natural generalization of Rician fading for
two LoS components. This connection can be inferred for an
arbitrary number of LoS components; however, as discussed in
[1], the applicability of such an n−wave model is questionable
in practice.

Another intuitive approach to arriving at (14) is as follows:
conditioning the received signal amplitude on the phase dif-
ference between the LoS components we get

Vr = exp(jφ1) (V1 + V2 exp[j(α)]) + Vdiff . (16)

This problem is equivalent to finding the Rician pdf as
there is a single LoS component of uniformly distributed phase
φ1 and constant amplitude V̄ and K̄ given in (12) and (13),
respectively. Thus, the TWDP fading distribution conditioned
on the phase difference α results in the Rician envelope
distribution, i.e. fTWDP (r|α) = fRice

(
r; K[1 + ∆ cos(α)]

)
.

Given that φ1, φ2 ∼ U(0, 2π), the random variable
α = φ2 − φ1 ∼ U(0, 2π). Although φ2 − φ1 is a symmetric
triangular distribution from −2π to 2π, we are interested in
the phase difference modulo 2π and α results in a uniformly
distributed pdf. Employing the uniform distribution in (17),
we obtain (14).

Although the consideration of uniformly and independently
distributed phase for the LoS components has been verified
through field measurements, we can extend the TWDP fading
model to a more general case where the phase difference α
can follow any distribution. The envelope distribution of this

model would be the average of fRice over this distribution of
α.

fTWDP (r) =

ˆ 2π

0

fRice (r; K[1 + ∆ cos(α)]) fα(α)dα

(17)

In the subsequent sections, we describe how the generalization
of Rician fading as TWDP fading allows us to express the per-
formance metrics of the latter in terms of existing expressions
for the former in a very simple manner.

III. PERFORMANCE METRICS OF THE TWDP
DISTRIBUTION

Let H be a metric of a fading model, expressed as a linear
function of its envelope pdf in the form

H =

ˆ
fR(r)g(r)dr, (18)

where g(.) is an arbitrary function defined on R. Then, the
metric of the TWDP model HTWDP (K,∆) can be expressed
in terms of the metric of the Rician fading model HRice(K)
as

HTWDP (K,∆) =
1

2π

ˆ 2π

0

HRice

(
K[1 + ∆ cos(α)]

)
dα.

(19)
This is easily verified by changing the order of integration in
(18). This simple approach is new in the literature to the best
of our knowledge. We now apply this general technique to
find expressions for performance metrics of the TWDP fading
model.

A. Probability density function

Using the pdf of the Rician distribution given in (15), the
pdf of the TWDP is given by

fTWDP (r) =
1

2π

ˆ 2π

0

r

σ2
exp

(
−K[1 + ∆ cos(α)]− r2

2σ2

)
× I0

(
r
√

2K[1 + ∆ cos(α)]

σ

)
dα. (20)

The average SNR at the receiver is defined as γ̄ = P̄r/N0,
where P̄r = V 2

1 + V 2
2 + 2σ2 is the average received power

and N0/2 is the Power Spectral Density of the AWGN noise.
Since the average SNR is expressed as

γ̄ = (1 +K)2σ2/N0, (21)

the pdf of γ is given by

fγ(γ) =
fR

(√
P̄rγ/γ̄

)
2
√
γ̄γ/P̄r

. (22)

Using this in the Rice pdf expression, we find the TWDP
fading pdf to be

fTWDP (γ) =
1

2π

ˆ 2π

0

1 +K

γ̄
exp

{
−K̄(α)− γ(1 +K)

γ̄

}

× I0

2

√
γK̄(α)[K + 1]

γ̄

 dα, (23)
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where K̄(α) is defined in (13). We observe that ∆ = 0 results
in the scenario where K̄(α) = K and the resulting pdf is
equivalent to the Rician pdf as expected. Furthermore, taking
K = 0, we get the exponential distribution that characterizes
the SNR distribution of Rayleigh fading.

B. Cumulative distribution function
The CDF of the Rice distribution is

FRice(r) = 1−Q1(
√

2K,
r

σ
), (24)

where Q1(·, ·) is the Marcum Q−function. Hence, the CDF
of the TWDP distribution is directly given by

FTWDP (r) = 1− 1
2π

ˆ 2π

0

Q1

(√
2K[1 + ∆ cos(α)],

r

σ

)
dα.

(25)

C. Moment Generating Function
The moment generating function (MGF) of the Rice distri-

bution is given by

MRice(s) =
1 +K

1 +K − sγ̄
exp

(
Ksγ̄

1 +K − sγ̄

)
. (26)

Given that 1+K
γ̄ is constant both for Rician and TWDP

distributions1, and represents the ratio of noise introduced by
the receiver to the power of the diffuse component according
to (21), we have that the MGF of the TWDP distribution is

MTWDP (s) =
1

2π

ˆ 2π

0

1 +K

1 +K − sγ̄
exp

(
K̄(α)sγ̄

1 +K − sγ̄

)
dα

=
1 +K

1 +K − sγ̄
exp

(
Ksγ̄

1 +K − sγ̄

)
I0

(
Ksγ̄∆

1 +K − sγ̄

)
.

(27)

Hence, we have found a closed-form expression for the
MGF of the TWDP fading model. Even though the TWDP
pdf or cdf cannot be expressed in closed-form, we have shown
that the MGF is characterized by a very simple expression.
This has two direct implications: first, the moments for the
TWDP distribution can also be expressed in closed-form,
using Leibniz’s rule for the derivative of products. Secondly,
the MGF is extensively used to characterize the error rate
performance of digital communication systems [2]. Hence,
expression (27) is useful to analyze some of the scenarios
considered in the literature [8–11] without the need for using
the approximate pdf in (7).

D. Moments
The moments for the TWDP distribution can be directly

obtained from the MGF. However, it is also possible to calcu-
late these moments from the moments of the Rice distribution,
given by

E(γk) =
k!

(1 +K)k
1F1(−k, 1; −K)γ̄k, (28)

1In general, when using a certain performance metric derived for Rician
fading to obtain the equivalent metric for TWDP fading, we propose the
following rule of thumb: K̄(α) should not be substituted in place of K where
a term 1+K

γ̄
appears in the equivalent expression for the Rician metric before

integration.

where 1F1(·, ·; ·) is the Kummer confluent hypergeometric
function. Using (19), we have

ETWDP (γk) =
k!γ̄k

(1 +K)k2π

ˆ 2π

0
1F1

(
− k, 1; −K̄(α)

)
dα.

(29)
In particular, the first two moments are given by

ETWDP (γ) =γ̄, (30)

ETWDP (γ2) =
γ̄2

(1 +K)2

{
2 + 4K +K2

(
1 +

∆2

2

)}
.

(31)

E. Amount of Fading
The Amount of Fading (AF) metric, as described in [2], is a

simple performance criterion to assess the fading model. It is
very useful in the analysis of diversity systems, since it allows
us to evaluate the severity of fading by using higher moments
of the SNR. The AF is defined as follows

AF =
E[(γ − γ̄)2]

E[γ]2
. (32)

The Amount of Fading in the TWDP channel for which a
closed-form expression has hitherto not been found is thus
easily seen to be

AFTWDP =
2 + 4K +K2∆2

2(1 +K)2
. (33)

F. Level Crossing Rate
Rice [14] first observed that the Level Crossing Rate (LCR)

of the envelope of a fading model at a threshold level rth could
be expressed as

N(rth) =

ˆ ∞
0

ṙfr,ṙ(rth, ṙ)dṙ, (34)

where ṙ is the time derivative of the fading envelope. In the
case where the specular components arrive perpendicular to the
direction of motion (they do not undergo Doppler fading) and
the diffuse component consists of isotropic 2−D scattering,
it is seen that the fading envelope and its time derivative are
independent, i.e. fr,ṙ(rth, ṙ) = fr(rth)fr(ṙ).

In this scenario, the LCR for the Rician fading envelope is
known to be

NRice(rth) =

√
π

2
×

√
P̄r

K + 1
fDfRice(rth), (35)

where fD is the maximum Doppler frequency. Hence, the LCR
for the TWDP channel is directly given by

NTWDP (rth) =

√
π

2
×

√
P̄r

K + 1
fDfTWDP (rth). (36)

The Average Outage Duration (AOD) is a metric that indicates
how long the channel is in a fade level below a certain
threshold, and is conveniently defined as the quotient between
the cdf and the LCR, i.e. AOD(rth) = Pr(r < rth)/N(rth).
Hence, the AOD for the TWDP fading is given by

AODTWDP (rth) =

√
2(K + 1)

πP̄r

FTWDP (rth)

fDfTWDP (rth)
. (37)
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IV. APPLICATION: PERFORMANCE OF DIGITAL
MODULATION OVER TWDP CHANNELS

The average probability of symbol error Ps of a fading
channel is given by [16] as

Ps(γ̄) =

ˆ ∞
0

PAWGN (γ)fγ(γ)dγ, (38)

where PAWGN (γ) is the probability of symbol error of an
AWGN channel with SNR γ. For a DPSK modulation scheme,
we have PAWGN (γ) = 1

2 exp(−γ), and the BER using (38)
can be obtained in closed-form as

Ps,TWDP (γ̄) =
1

2
MTWDP (−1; K,∆)

= 1
2

1+K
1+K+γ̄ exp

(
−Kγ̄

1+K+γ̄

)
I0

(
Kγ̄∆

1+K+γ̄

)
. (39)

We observe that the BER for the TWDP fading can be seen as
the BER for the Rician case modulated by a term that depends
on the modified Bessel function. The Bessel function term is
always greater than one except for the case when ∆ = 0;
hence, being a monotonically increasing function, the error
increases as ∆ increases. Specifically, if Kγ̄/(1 +K + γ̄) > 4
the error worsens by a factor greater than 10 as ∆ increases
to 1.

For other modulation schemes, the alternate Gaussian
Q−function representation can be employed to arrive at the
average probability of error, i.e. PAWGN (γ) = αQ(

√
2gγ).

The resultant expression is an integral of a smooth finite
integrand over finite limits which can efficiently be computed
by numerical quadrature schemes. For the BPSK modulation
scheme for instance, α = 1, g = 1. The average probability
of error of a BPSK modulation in a TWDP channel is,

Ps,TWDP (γ̄) =
1

π

ˆ π/2

φ=0

MTWDP

(
−1

sin2(φ)
; K,∆

)
dφ.

(40)

V. NUMERICAL RESULTS

In this section, we provide numerical results for the per-
formance metrics calculated previously. Monte Carlo (MC)
simulations have been included in order to check the validity
of the derived expressions.

The pdf of the TWDP model is represented in Figs. 2 and 3,
for different values of the parameters K and ∆, and keeping
P̄r constant. As K increases, the envelope values tend to be
more concentrated for a given ∆; conversely, as ∆ increases
then the envelope values tend to be more spread out.

Fig. 4 presents the AF metric of the TWDP distribution. As
K increases, the channel is more benign and AF is reduced.
However, in the Hyper-Rayleigh regime (∆ ≈ 1) there is
minimal improvement in the AF with increasing K, tending
asymptotically to 0.5 as K →∞.

The LCR normalized to fD is represented in Fig. 5, for
different values of K and D. Interestingly, we observe a larger
number of crossings for low values of the threshold envelope
in the Hyper-Rayleigh regime.

Finally, the BER performance of BPSK modulation i.e.
evaluated in Figs. 6 and 7, for different values of K and ∆.
It is seen that when the TWDP model operates in the Hyper-
Rayleigh regime, its BER drops.

Figure 2. Probability density function of the TWDP model for different values
of K and ∆ = 0.5. Markers correspond to MC simulations.

Figure 3. Probability density function of the TWDP model for different values
of ∆ and K = 10. Markers correspond to MC simulations.

Figure 4. Amount of Fading as a function of K for different values of ∆.
Markers correspond to MC simulations.
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Figure 5. Level crossing rate of TWDP fading for different values of K, ∆
and fD . Markers correspond to MC simulations.

Figure 6. BER of BPSK modulation scheme in TWDP fading for different
values of K and ∆ = 0.5. Markers correspond to MC simulations.

Figure 7. BER of BPSK modulation scheme in TWDP fading for different
values of ∆ and K = 10. Markers correspond to MC simulations.

VI. CONCLUSION

We provided a new look at the TWDP fading model, which
characterizes fading more severe than Rayleigh fading. By
observing that the TWDP fading conditioned on the difference
in phase between the two LoS components results in Rician
fading, any linear metric of the TWDP fading can be expressed
in terms of a simple finite integral of the corresponding metric
of the Rice fading model. This simple yet powerful approach
has allowed us to derive a closed-form expression for the MGF
of the TWDP fading model for the first time in the literature.
We also provided very simple expressions for the most relevant
performance metrics of systems experiencing TWDP fading.
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