Estimation in Autoregressive Processes with Partial Observations: Proofs

Milind Rao, Tara Javidi, Yonina Eldar, Andrea Goldsmith

Appendix A

In this appendix, we prove the convergence of $\left\|\hat{\Sigma}^{0}-\Sigma^{0}\right\|_{2}$. In order to do this, we use a covering net argument. First, we prove convergence for any $\alpha, \beta \in \mathbf{R}^{n}$ such that $\|\alpha\|_{2},\|\beta\|_{2} \leq$ 1.

We assume that the process begins $T_{p} \geq 0$ time units before observations take place. In other words, $x_{-T_{p}}=x_{S}$. We provide some definitions and rewrite a few expressions.

Consider $\Phi \in \mathbf{R}^{n T \times n\left(T_{p}+T\right)}, \Gamma_{i} \in \mathbf{R}^{T \times n T}, \Lambda_{k} \in \mathbf{R}^{T \times T}$

$$
\begin{aligned}
\Phi & =\left[\begin{array}{cccccc}
A^{T_{p}} & \ldots & A & \mathbf{I} & \ldots & \mathbf{0} \\
A^{T_{p}+1} & \ldots & A^{2} & A & \ldots & \mathbf{0} \\
\vdots & & & \ddots & & \vdots \\
A^{T_{p}+T-1} & \ldots & A^{T} & A^{T-1} & \ldots & \mathbf{I}
\end{array}\right] \\
\Gamma_{i} & =\left[\begin{array}{c}
e_{i}^{\top} \\
e_{n+i}^{\top} \\
\vdots \\
e_{n(T-1)+i}^{\top}
\end{array}\right] \\
\Lambda_{k} & =\left[\begin{array}{cc}
\mathbf{0}_{T-k \times k} & \mathbf{I}_{T-k \times T-k} \\
\mathbf{0}_{k \times k} & \mathbf{0}_{k \times T-k}
\end{array}\right]
\end{aligned}
$$

Lemma 1. We have these properties:

1) $\|\Phi\|_{2} \leq\left(1-\sigma_{\max }\right)^{-1}$
2) $\Lambda_{k}^{\top} \Gamma_{i} \Gamma_{j}^{\top} \Lambda_{k}=\left[\begin{array}{lc}\mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{T-k \times T-k}\end{array}\right] \mathbf{1}(i=j)$

Proof. We can define binary matrices $\left\{J_{l}\right\}_{l \in\left[T_{p}+T\right]} \in$ of dimension $T \times T_{p}+T$. J_{l} denotes locations in block matrix Φ where A^{l} is present. J_{l} has at most 1 non-zero entry in each row. Hence, $\left\|J_{l}\right\|_{2} \leq 1$.

$$
\begin{array}{rlr}
\Phi & =\sum_{l=0}^{T_{p}+T} J_{l} \otimes A^{l} & \text { [Kronecker product] } \\
\Rightarrow\|\Phi\|_{2} & \leq \sum_{l=0}^{\infty}\left\|J_{l}\right\|_{2}\left\|A^{l}\right\|_{2} & {[\text { Norm over } \otimes]} \\
\Rightarrow\|\Phi\|_{2} & \leq \sum_{l=0}^{\infty} \sigma_{\max }^{l}=\frac{1}{\left(1-\sigma_{\max }\right)} &
\end{array}
$$

[^0]The second point is self-evident by definition.
Let $\mathbf{0}_{l}$ be an l-dimensional vector of zeros. We create stacked vectors of noise $W=\left[w_{-T_{p}+1}|\ldots| w_{0}\left|w_{1}\right| \ldots \mid w_{T}\right]$, the initial conditions of the same dimension $X_{S}=\left[x_{S} \mid \mathbf{0}((T+\right.$ $\left.\left.\left.T_{p}-1\right) n\right)\right]$, and the observational noise $V=\left[v_{1}|\ldots| v_{T}\right]$. Let the stacked vector of observations of position i with delay k be the T-dimensional vector $Z(k)_{i}=\left[z_{1+k, i}\left|z_{2+k, i}\right| \ldots\left|z_{T, i}\right| \mathbf{0}_{k}\right]$. We recall that $P_{t, i}$ is 1 if the $i^{t h}$ position of noisy observation of x_{t} is observed in the sampling case or is the multiplicative noise otherwise. We create the T-diagonal matrix $P(k)_{i}=\operatorname{diag}\left(\left[P_{1+k, i}|\ldots| P_{T, i} \mid \mathbf{0}(k)\right]\right)$ and denote with $P(k)_{i, j}=P(0)_{i} P(k)_{j}$. Finally, $\theta(k)_{i, j}=\mathbb{E}\left[P_{t, i} P_{t+k, j}\right]$.

First, we prove a lemma about the impact of multiplicative noise or sampling.
Lemma 2. With bounded multiplicative noise, we have with probability at most $\delta / 3$, event Err occurs where

$$
\begin{aligned}
\operatorname{Err}= & \left\{\max _{i, j} \frac{\operatorname{Tr}\left(P^{2}(k)_{i, j}\right.}{(T-k) \theta(k)_{i, j}}-1 \geq\right. \\
& \left.\sqrt{\frac{(k+1)\left(p_{u}^{4}-p_{l}^{4}\right) \log \left(3 n^{2}(k+1) / \delta\right)}{2(T-2 k) \theta(k)_{*}^{2}}}\right\}
\end{aligned}
$$

Proof. To bound $\operatorname{Tr}\left(P^{2}(k)_{i, j}\right)$, we need to bound the sum $\sum_{t=1}^{T-k} P_{t, i}^{2} P_{t+k, j}^{2}$. We break this up into $k+1$ with the number of terms being at least $\lceil T-2 k / k+1\rceil$ independent terms. The $m^{\text {th }}$ such series is bounded by $S_{m}=$ $p_{u}^{2} \sum_{t=1}^{\lceil T-k-m+1 / k+1\rceil} P_{(k+1) t+m-1, i} P_{(k+1) t+m-1+k, j}$.

First consider the case where $P_{t, i}$ is bounded between $\left[p_{l}, p_{u}\right]$. Each of the terms in the sum is $\left(p_{u}^{4}-p_{l}^{4}\right)^{2} / 4$ subgaussian. By Hoeffding inequality,

$$
\begin{array}{r}
\operatorname{Pr}\left(S_{m} \geq \theta(k)_{i, j}\lceil T-k-m+1 / k+1\rceil\left(1+p_{\rho}\right)\right) \leq \\
\exp \left(-\frac{2 \theta(k)_{i, j}^{2} p_{\rho}^{2}\lceil T-2 k / k+1\rceil}{\left(p_{u}^{4}-p_{l}^{4}\right)^{2}}\right)
\end{array}
$$

We re-arrange and use union bound over these $k+1$ sums as well as the n^{2} number of i, j terms and rearrange to complete the proof.

From earlier definitions, we have

$$
\begin{aligned}
Z(k)_{i} & =P(k)_{i} \Lambda_{k} \Gamma_{i}\left(\Phi\left(W+X_{S}\right)+V\right) \\
\alpha^{\top} \hat{\Sigma}_{i j}^{k} \beta & =\sum_{i, j} \alpha_{i} \beta_{j}\left[\frac{1}{(T-k) \theta(k)_{i, j}} Z(0)_{i}^{\top} Z(k)_{j}\right. \\
& \left.-\left(Q_{v}\right)_{i, j} \mathbf{1}(k=0)\right] .
\end{aligned}
$$

We can split $\alpha^{\top} \hat{\Sigma}_{i j}^{k} \beta$ into these three terms -

$$
\begin{aligned}
T_{1}= & \left(W^{\boldsymbol{\top}} \Phi^{\top}+V^{\top}\right) A_{T}(\Phi W+V) \\
& \quad-\alpha^{\boldsymbol{\top}} Q_{v} \beta \mathbf{1}(k=0) \\
T_{2}= & X_{S}^{\top}\left(A_{T}+A_{T}^{\top}\right)(\Phi W+V) \\
T_{3}= & X_{S}^{\top} \Phi^{\top} A_{T} \Phi X_{S} \\
\hat{\Sigma}_{i, j}^{k}= & T_{1}+T_{2}+T_{3} \\
A_{T}= & \sum_{i, j} \alpha_{i} \beta_{j} \Gamma_{i}^{\top} \frac{P(k)_{i, j}}{(T-k) \theta(k)_{i, j}} \Lambda_{k} \Gamma_{j}
\end{aligned}
$$

Lemma 3. Conditioned on the event that Err does not occur, we have

$$
\begin{align*}
& \operatorname{Pr}\left(\left|T_{1}-\mathbb{E}\left[T_{1}\right]\right| \geq \epsilon\right) \\
& \quad \leq 2 \exp \left(-\frac{\epsilon^{2}(T-k) \theta(k)_{*}}{8 \max \left(\left\|Q_{v}\right\|_{2}^{2}, \frac{\left\|Q_{w}\right\|_{2}^{2}}{\left(1-\sigma_{\max }\right)^{4}}\right)}\right) \tag{1}\\
& \\
& \operatorname{Pr}\left(\left|T_{2}\right| \geq \epsilon\right) \tag{2}\\
& \quad \leq 2 \exp \left(-\frac{\epsilon^{2}(T-k)^{2} \theta(k)_{*}^{2}}{8 p_{u}^{4}\left\|x_{S}\right\|_{2}^{2}\left(\left\|Q_{w}\right\|_{2}\left(1-\sigma_{\max }\right)^{-2}+\left\|Q_{v}\right\|_{2}\right)}\right) \tag{3}\\
& \left|T_{3}\right|
\end{align*}
$$

Proof. Term T_{1} :

W can be written as $Q_{W}^{1 / 2} z_{w}$ where $Q_{W}=\mathbb{E}\left[W W^{\top}\right]=$ $Q_{w} \otimes \mathbf{I}_{T+T_{p} \times T+T_{p}}$ and $z_{w} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}_{n \times n}\right)$. Similarly $V=$ $Q_{V}^{1 / 2} z_{v}$. It can be seen that $\left\|Q_{W}\right\|_{2} \leq\left\|Q_{w}\right\|_{2},\left\|Q_{V}\right\|_{2} \leq$ $\left\|Q_{v}\right\|_{2}$.

$$
\begin{aligned}
T_{1} & =\left[\begin{array}{c}
z_{W} \\
z_{V}
\end{array}\right]^{\top} L_{1}\left[\begin{array}{c}
z_{W} \\
z_{V}
\end{array}\right]-\alpha^{\top} Q_{v} \beta \mathbf{1}(k=0) \\
L_{1} & =B_{T}^{\top} A_{T} B_{T} \\
B_{T} & =\left[\begin{array}{cc}
\Phi Q_{W}^{1 / 2} & \mathbf{0} \\
\mathbf{0} & Q_{V}^{1 / 2}
\end{array}\right] \\
\Rightarrow\left\|L_{1}\right\|_{F}^{2} & \leq\left\|B_{T}\right\|_{2}^{4}\left\|A_{T}\right\|_{F}^{2}
\end{aligned}
$$

Norm of B_{T} can be bounded as

$$
\left\|B_{T}\right\|_{2}^{4} \leq \max \left(\left\|Q_{v}\right\|_{2}^{2}, \frac{\left\|Q_{w}\right\|_{2}^{2}}{\left(1-\sigma_{\max }\right)^{4}}\right)
$$

We employ lemma ?? and ?? to now bound A_{T} with high
probability as

$$
\begin{aligned}
\left\|A_{T}\right\|_{F}^{2} & =\sum_{i, j} \frac{\alpha_{i}^{2} \beta_{j}^{2}}{(T-k)^{2} \theta(k)_{i, j}}\left\|P(k)_{i, j} \Lambda_{k}\right\|_{F}^{2} \\
& \leq \sum_{i, j} \frac{\alpha_{i}^{2} \beta_{j}^{2}}{(T-k)^{2} \theta(k)_{i, j}} \operatorname{Tr}\left(P(k)_{i, j}^{2}\right) \\
& \leq \frac{1}{(T-k) \theta(k)_{*}}\left(\sum_{i} \alpha_{i}^{2}\right)\left(\sum_{j} \beta_{j}^{2}\right) \\
& \leq \frac{1}{(T-k) \theta(k)_{*}}
\end{aligned}
$$

For the concentration result, consider eigenvalues of symmetric matrix $L^{s}=\frac{L_{1}+L_{1}^{\top}}{2}$ be λ_{i}. We have $\sum_{i} \lambda_{i}^{2}=\left\|L^{s}\right\|_{F}^{2} \leq$ L_{F}^{2}. Diagonalizing L^{s} and because of the circularly symmetric nature of standard gaussian vector

$$
\begin{aligned}
z^{\top} L_{1} z-\mathbb{E}\left[z^{\top} L_{1} z\right] & =\sum_{i} \lambda_{i}\left(z_{i}^{2}-1\right) \\
\operatorname{Pr}\left(\sum_{i} \lambda_{i}\left(z_{i}^{2}-1\right) \geq \epsilon\right) & \leq \mathrm{e}^{-t \epsilon} \prod_{i} \mathbb{E}\left[\exp \left(t \lambda_{i}\left(z_{i}^{2}-1\right)\right)\right] \\
& \leq \exp (-t \epsilon) \prod_{i} \frac{e^{-t \lambda_{i}}}{\sqrt{1-2 t \lambda_{i}}} \\
& \leq \exp \left(-t \epsilon+2 t^{2} \sum_{i} \lambda_{i}^{2}\right)
\end{aligned}
$$

The first inequality holds when $t \geq 0$. The second holds using MGF of χ^{2} random variable when $t \lambda_{i} \leq \frac{1}{2}$. The last inequality holds as $\log (1-x) \geq-x-x^{2}$ when $x \leq \frac{1}{2}$ or whenever $t \lambda_{i} \leq \frac{1}{4}$. We take $t=\frac{\epsilon}{4 L_{F}^{2}}$ to obtain the bound.

Term T_{2}
We can write

$$
\begin{aligned}
T_{2} & =l_{2}^{\top}\left[\begin{array}{l}
z_{w} \\
z_{v}
\end{array}\right] \\
l_{2} & =X_{S}^{\top} \Phi^{\top}\left(A_{T}+A_{T}^{\top}\right)\left[\begin{array}{ll}
Q_{W}^{1 / 2} & Q_{V}^{1 / 2}
\end{array}\right] \\
\Rightarrow\left\|l_{2}\right\|_{2}^{2} & \left.\leq \frac{4}{(T-k)^{2}}\left\|x_{S}\right\|_{2}^{2}\left\|A_{T}\right\|_{2}^{2}\left[\left(1-\sigma_{\max }\right)^{-2}\right)\left\|Q_{w}\right\|_{2}+\left\|Q_{v}\right\|_{2}\right]
\end{aligned}
$$

We now bound $\left\|A_{T}\right\|_{2}^{2}$ as

$$
\begin{aligned}
\left\|A_{T}\right\|_{2}^{2} & \leq \sum_{i, j, i^{\prime}, j^{\prime}} \alpha_{i} \beta_{j} \alpha_{i^{\prime}} \beta_{j^{\prime}}\left\|\Gamma_{j}^{\top} \Lambda_{k} \frac{P(k)_{i, j}}{\theta(k)_{i, j}} \Gamma_{i} \Gamma_{i^{\prime}}^{\top} \frac{P(k)_{i^{\prime}, j^{\prime}}}{\theta(k)_{i^{\prime}, j^{\prime}}} \Lambda_{k} \Gamma_{j^{\prime}}\right\|_{2} \\
& \leq \frac{p_{u}^{4}}{\theta(k)_{*}^{2}} \sum_{i, j} \alpha_{i}^{2} \beta_{j}^{2}
\end{aligned}
$$

where the last inequality is by applying lemma ?? and observing that $\Gamma_{j}^{\top} \Lambda_{k}^{\top} P^{2} \Lambda_{k} \Gamma_{j^{\prime}}$ is zero when $j \neq j^{\prime}$ as P is a diagonal matrix. We now apply Hoeffding bound to arrive at the answer.
Term T_{3}
We use the bound on $\left\|A_{T}\right\|_{2}$ and submultiplicative property of the ℓ_{2} bound to prove the bound. Also, $\left|T_{3}-\mathbb{E}\left[T_{3}\right]\right| \leq$ $\left|T_{3}\right|+\left|\mathbb{E}\left[T_{3}\right]\right|$.

Lemma 4. The difference between the mean of the sample covariance and the true covariance matrices is bounded as

$$
\begin{aligned}
& \left\|\mathbb{E}\left[\hat{\Sigma}^{k}\right]-\Sigma^{k}\right\|_{2} \leq \frac{\sigma_{\max }^{2 T_{p}+k}}{\left(1-\sigma_{\max }^{2}\right)(T-k)} \times \\
& {\left[\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }^{2}\right)}+\frac{p_{u}^{2}\left\|x_{S}\right\|_{2}^{2}}{\min _{i, j} \theta(k)_{i, j}}\right]}
\end{aligned}
$$

Proof. We have $\Sigma^{k}=\mathbb{E}\left[x_{t} x_{t+k}^{\top}\right]=\left(\sum_{i=0}^{\infty} A^{i} Q_{w} A^{i \top}\right) A^{k \top}$. Now we can split the empirical covariance into two terms the first due to a start from origin and the second due to the exponential decay of the initial state captured in T_{3}.

$$
\begin{aligned}
& \mathbb{E}\left[\hat{\Sigma}^{k}\right]=\mathbb{E}\left[\left.\frac{1}{T-k} \sum_{t=1}^{T-k} x_{t} x_{t+k}^{\top} \right\rvert\, x_{-T_{p}}=x_{S}\right] \\
& \succeq \frac{1}{T-k} \sum_{t=1}^{T-k} \sum_{i=0}^{T_{p}+t-1} A^{i} Q_{w} A^{i+k \top}+\left|T_{3}\right| I \\
& \left\|\mathbb{E}\left[\hat{\Sigma}^{k}\right]-\Sigma^{k}\right\|_{2} \leq \frac{1}{T-k} \sum_{t=1}^{T-k} \sum_{i=T_{p}+t}^{\infty}\left\|Q_{w}\right\|_{2} \sigma_{\max }^{2 i+k}+\left|T_{3}\right| \\
& \leq \frac{\left\|Q_{w}\right\|_{2} \sigma_{\max }^{k}}{\left(1-\sigma_{\max }^{2}\right)(T-k)} \sum_{t=1}^{T-k} \sigma_{\max }^{2\left(T_{p}+t\right)}+\left|T_{3}\right| \\
& \leq \frac{\sigma_{\max }^{2 T_{p}+k}}{\left(1-\sigma_{\max }^{2}\right)(T-k)}\left[\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }^{2}\right)}+\frac{p_{u}^{2}\left\|x_{S}\right\|_{2}^{2}}{\min _{i, j} \theta(k)_{i, j}}\right]
\end{aligned}
$$

We complete the proof by observing that for any $M \times M$ matrix $L,\|L\|_{\max }=\max _{i, j \in[M]}\left|e_{i}^{\top} L e_{j}\right| \leq\|L\|_{2}$.

We now present the proof of Theorem 1 which combines the above results.

Proof. Max norm bound Conditioned on event Err ${ }^{c}$, using Lemma ?? and Lemma ??, we see that with probability larger than $1-\delta / 3$,

$$
\begin{aligned}
& \left|T_{1}-\mathbb{E}\left[T_{1}\right]\right| \leq \\
& \sqrt{\frac{8 \log (6 / \delta)}{(T-k) \theta(k)_{*}}} \max \left(\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }\right)^{2}},\left\|Q_{v}\right\|_{2}\right) \\
& +o\left((T-k)^{-0.5}\right)
\end{aligned}
$$

Similarly, for T_{2} we find that with probability larger than $1-\delta / 3$,

$$
\begin{aligned}
& \left|T_{2}\right| \leq \frac{p_{u}^{2}\left\|x_{S}\right\|_{2}}{(T-k) \theta(k)_{*}} \times \\
& \sqrt{8 \log (6 / \delta)\left(\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }\right)^{2}}+\left\|Q_{v}\right\|_{2}\right)}
\end{aligned}
$$

which is $o\left((T-k)^{-0.5}\right)$.
Finally,

$$
\begin{aligned}
\left\|\Sigma^{k}-\hat{\Sigma}^{k}\right\|_{\max } & \leq\left\|\hat{\Sigma}^{k}-\mathbb{E}\left[\hat{\Sigma}^{k}\right]\right\|_{\max }+\left\|\mathbb{E}\left[\hat{\Sigma}^{k}\right]-\Sigma^{k}\right\|_{\max } \\
& \leq\left|T_{1}-\mathbb{E}\left[T_{1}\right]\right|+\left|T_{2}\right| \\
& +\left|T_{3}-\mathbb{E}\left[T_{3}\right]\right|+\left\|\mathbb{E}\left[\hat{\Sigma}^{k}\right]-\Sigma^{k}\right\|_{\max }
\end{aligned}
$$

We use Lemma ?? to get
$\alpha^{\top}\left(\hat{\Sigma}^{k}-\Sigma^{k}\right) \beta$
$\leq \sqrt{\frac{8 \log (6 / \delta)}{(T-k) \theta(k)_{*}}} \max \left(\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }\right)^{2}},\left\|Q_{v}\right\|_{2}\right)+o\left((T-k)^{-1 / 2}\right)$
when $\|\alpha\|_{2},\|\beta\|_{2} \leq 1$.
Now using $\alpha=e_{i}$ and $\beta=e_{j}$ we obtain the convergence result for each element $\left|\hat{\Sigma}_{i j}^{k}-\Sigma_{i j}^{k}\right|$ and taking union bound over the n^{2} choices, we obtain the result for the max bound.
ℓ_{2} norm bound Let us define $\Delta \Sigma^{k}=\hat{\Sigma}^{k}-\Sigma^{k}$. We consider a covering set \mathcal{A} such that for any $\alpha \in \mathbf{R}^{n}$ such that $\|\alpha\|_{2} \leq 1$, there exists $\alpha^{\prime} \in \mathcal{A}$ with $\left\|\alpha^{\prime}\right\|_{2} \leq 1,\left\|\alpha-\alpha^{\prime}\right\|_{2} \leq \epsilon$. From covering set theory, we can construct such a set with $|\mathcal{A}| \leq$ $(3 / \epsilon)^{n}$. Applying union bound, we find

$$
\begin{aligned}
& \max _{\alpha, \beta \in \mathcal{A}} \alpha^{\top} \Delta \Sigma^{k} \beta \leq \sqrt{\frac{8(2 n \log (\epsilon / 3)+\log (6 / \delta))}{(T-k) \theta(k)_{*}}} \times \\
& \max \left(\frac{\left\|Q_{w}\right\|_{2}}{\left(1-\sigma_{\max }\right)^{2}},\left\|Q_{v}\right\|_{2}\right)+o\left((T-k)^{-1 / 2}\right)
\end{aligned}
$$

Now, we see

$$
\begin{aligned}
\left\|\Delta \Sigma^{k}\right\|_{2}= & \max _{\alpha, \beta} \alpha^{\top} \Delta \Sigma^{k} \beta \\
\leq & \max _{\alpha^{\prime}, \beta^{\prime} \in \mathcal{A}} \alpha^{\prime \top} \Delta \Sigma^{k} \beta^{\prime}+\left(\alpha-\alpha^{\prime}\right)^{\top} \Delta \Sigma^{k} \beta^{\prime} \\
& +\alpha^{\top} \Delta \Sigma^{k}\left(\beta-\beta^{\prime}\right) \\
\leq & \max _{\alpha^{\prime}, \beta^{\prime} \in \mathcal{A}} \alpha^{\top} \Delta \Sigma^{k} \beta^{\prime}+2 \epsilon\left\|\Delta \Sigma^{k}\right\|_{2} \\
\Rightarrow\left\|\Delta \Sigma^{k}\right\|_{2} \leq & \frac{1}{1-2 \epsilon} \max _{\alpha^{\prime}, \beta^{\prime} \in \mathcal{A}} \alpha^{\top \top} \Delta \Sigma^{k} \beta^{\prime}
\end{aligned}
$$

We use $\epsilon=1 / 4$ to obtain the final result.

Appendix B

In this appendix, we derive convergence guarantees for the covariance matrix under structural assumptions.

Sparsity Let the set $\mathcal{U}=\left\{\Sigma: \sum_{j}\left|\Sigma_{i j}\right|^{q} \leq s \forall i\right\}$. We assume $\Sigma^{k} \in \mathcal{U}$. First we suppose $U_{u}\left(\hat{\Sigma}^{k}-\Sigma^{k}\right.$ is symmetric.

Consider the thresholding operation $U_{u}(\cdot)$ defined as

$$
\left(U_{u}(\Sigma)\right)_{i j}=\Sigma_{i j} \mathbf{1}\left(\left|\Sigma_{i j}\right| \geq u\right)
$$

We observe,

$$
\left\|U_{u}\left(\hat{\Sigma}^{k}\right)-\Sigma^{k}\right\|_{2} \leq\left\|U_{u}\left(\hat{\Sigma}^{k}\right)-U_{u}\left(\Sigma^{k}\right)\right\|_{2}+\left\|U_{u}\left(\Sigma^{k}\right)-\Sigma^{k}\right\|_{2}
$$

The second term can be bounded as

$$
\begin{align*}
\left\|U_{u}\left(\Sigma^{k}\right)-\Sigma^{k}\right\|_{2} & \leq \max _{i} \sum_{j}\left|\Sigma_{i j}^{k}\right| \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \leq u\right) \\
& \leq \max _{i} u \sum_{j}\left|\Sigma_{i j}^{k} / u\right|^{q} \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \leq u\right) \\
& \leq u^{1-q} s \tag{5}
\end{align*}
$$

The first term needs a more detailed analysis as

$$
\begin{aligned}
\left\|U_{u}\left(\hat{\Sigma}^{k}\right)-U_{u}\left(\Sigma^{k}\right)\right\|_{2} & \leq \max _{i} \sum_{j}\left|\left(U_{u}\left(\hat{\Sigma}^{k}\right)-U_{u}\left(\Sigma^{k}\right)\right)_{i j}\right| \\
& \leq \max _{i} \sum_{j}\left|\Sigma_{i j}^{k}-\hat{\Sigma}_{i j}^{k}\right| \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u,\left|\hat{\Sigma}_{i j}^{k}\right|\right. \\
& +\max _{i} \sum_{j}\left|\Sigma_{i j}^{k}\right| \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u,\left|\hat{\Sigma}_{i j}^{k}\right| \leq u\right) \\
& +\max _{i} \sum_{j}\left|\hat{\Sigma}_{i j}^{k}\right| \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \leq u,\left|\hat{\Sigma}_{i j}^{k}\right| \geq u\right) \\
& =\mathrm{I}+\mathrm{II}+\mathrm{III}
\end{aligned}
$$

I can be bounded with high probability as,

$$
\begin{align*}
\mathrm{I} & \leq\left\|\Delta \Sigma^{k}\right\|_{\max } \max _{i} \sum_{j} \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u\right) \\
& \leq \gamma(\delta) \max _{i} \sum_{j}\left(\Sigma_{i j}^{k} / u\right)^{q} \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u\right) \tag{6}\\
& \leq \gamma(\delta) s u^{-q}
\end{align*}
$$

For term II, we have,

$$
\begin{aligned}
\mathrm{II} & \leq \max _{i} \sum_{j}\left(\left|\Delta \Sigma_{i j}^{k}\right|+\left|\hat{\Sigma}_{i j}^{k}\right|\right) \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u,\left|\hat{\Sigma}_{i j}^{k}\right| \leq u\right) \\
& \leq(\gamma(\delta)+u) k u^{-q}
\end{aligned}
$$

where we have used the bound in Eq. ?? and recognised that each term in the second summation is bounded by u.

Term III can be written in two parts

$$
\begin{aligned}
\mathrm{III} & \leq \max _{i} \sum_{j}\left[\left|\Delta \Sigma_{i j}^{k}\right|+\left|\Sigma_{i j}^{k}\right|\right] \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \leq u,\left|\hat{\Sigma}_{i j}^{k}\right| \geq u\right) \\
& \leq \max _{i} \sum_{j}\left|\Delta \Sigma_{i j}^{k}\right| \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \leq u,\left|\hat{\Sigma}_{i j}^{k}\right| \geq u\right)+s u^{1-q} \\
& \leq \gamma(\delta) \max _{i} \sum_{j} \mathbf{1}\left(\left|\Sigma_{i j}^{k}\right| \geq u-\gamma(\delta)\right)+s u^{1-q} \\
& \leq \gamma(\delta) \frac{u^{-q}}{(1-\gamma(\delta) / u)^{q}}+s u^{1-q}
\end{aligned}
$$

where Eq. ?? has been used.
We now use $u=2 \gamma(\delta)$ to obtain the bound. if Σ^{k} is not symmetric. We bound $\left\|\Delta \Sigma^{k}\right\|_{1},\left\|\Delta \Sigma^{k}\right\|_{\infty}$ as above and use $\left\|\Delta \Sigma^{k}\right\|_{2}^{2} \leq\left\|\Delta \Sigma^{k}\right\|_{1}\left\|\Delta \Sigma^{k}\right\|_{\infty}$.

Additionally, if $\lambda_{\min }\left(\Sigma^{k}\right) \geq \epsilon_{0}$, we obtain the result for the inverse as well as $\left\|\left(U_{u}\left(\hat{\Sigma}^{k}\right)\right)^{-1}-\left(\Sigma^{k}\right)^{-1}\right\|_{2}=$ $\Omega\left(\left\|U_{u}\left(\hat{\Sigma}^{k}\right)-\Sigma^{k}\right\|_{2}\right)$

Bandedness It is assumed that $\Sigma^{k} \in \mathcal{V}=\{\Sigma$: $\left.\max _{i} \sum_{j}\left|\Sigma_{i j}^{k}\right| \mathbf{1}(|i-j|>s) \leq C s^{-q} \forall k, i\right\}$.

We consider the banding operation $B_{s}(\cdot)$ defined as

$$
B_{s}(\Sigma)_{i j}=\Sigma_{i j} \mathbf{1}(|i-j| \leq s)
$$

As earlier, we observe,

$$
\begin{aligned}
\left\|B_{s}\left(\hat{\Sigma}^{k}\right)-\Sigma^{k}\right\|_{2} & \leq\left\|B_{s}\left(\hat{\Sigma}^{k}\right)-B_{s}\left(\Sigma^{k}\right)\right\|_{2}+\left\|B_{s}\left(\Sigma^{k}\right)-\Sigma^{k}\right\|_{2} \\
& \leq 2 s \gamma(\delta)+C s^{-\alpha}
\end{aligned}
$$

We use $s=\gamma^{-1 /(\alpha+1)}(\delta)$ to obtain the final answer $\mathcal{O}\left(\gamma^{\alpha /(\alpha+1)}(\delta)\right)$. The inverse can be obtained in a similar manner to the sparse case by additionally assuming that the minimum eigenvalue of Σ^{k} is above ϵ_{0}.

\geq Sparsity of the Inverse

Here we make the assumption that the inverse covariance matrix $\Theta^{0}=\left(\Sigma^{0}\right)^{-1}$ is sparse. Let $\mathcal{E}\left(\Theta^{0}\right)=\{(i, j) \mid i \neq$ $\left.j, \Theta_{i j}^{0} \neq 0\right\}$ be the set of off-diagonal non-zero elements in the inverse covariance matrix. Define $s=\left|\mathcal{E}\left(\Theta^{0}\right)\right|$ as the size of this set. Set $\mathcal{S}=\mathcal{E}(\Theta) \cup\{(i, i) \mid i \in[n]\}$ includes the diagonals. Also, d is the maximum row cardinality which is the maximum number of non-zero elements in any row of the inverse covariance matrix.

We define $\Gamma=\left(\Theta^{0}\right)^{-1} \otimes\left(\Theta^{0}\right)^{-1}$ which is the Hessian of the log-determinant determinant function. We characterize the convergence in terms of quantities $\kappa_{\Sigma}=\left\|\Sigma^{0}\right\|_{\infty}, \kappa_{\Gamma}=\|\Gamma\|_{\infty}$. Another important assumption being made is an irrepresentability condition given by $\left\|\Gamma_{\mathcal{S}^{c} \mathcal{S}}\left(\Gamma_{\mathcal{S S}}\right)^{-1}\right\|_{\infty} \leq 1-\alpha$.

The estimator for the empirical inverse covariance matrix is obtained from the Bregman divergence on the log determinant function. Consider $g(\Theta)=-\log |\Theta|$. We now find symmetric positive definite matrix Θ which minimizes $D_{g}\left(\Theta^{0} \| \Theta\right)$ which leads to

$$
\hat{\Theta}^{0}=\operatorname{argmin}_{\Theta \succ 0} \operatorname{Tr}\left(\Theta^{\top} \Sigma^{0}\right)-\log |\Theta|+\lambda_{n}\|\Theta\|_{1, \text { off }}
$$

We obtain the final estimator by replacing unknown Σ^{0} with its empirical estimate and a regularization term which is the ℓ_{1} sum of off-diagonal elements $\|\Theta\|_{1, \text { off }}=\sum_{i, j \quad i \neq j}\left|\Theta_{i j}\right|$.

For $T \geq 288 \log \frac{6 n^{2}}{\delta} d^{2} \max \left(\frac{\left\|Q_{w}\right\|_{2}^{2}}{\left(1-\sigma_{\max }\right)^{4}},\left\|Q_{v}\right\|_{2}^{2}\right) \max \left(\kappa_{\Gamma}^{2} \kappa_{\Sigma}^{2}, \kappa_{\Gamma}^{4} \kappa_{\Sigma}^{6}\right)(1+$ $\left.\frac{8}{\alpha}\right)^{2} \theta(0)_{*}^{-1}$, with probability at least $\left\|\Delta \Sigma^{0}\right\|_{\max } \leq \gamma(\delta) \leq$ $\frac{1}{6(1+8 / \alpha) d \max \left(\kappa_{\Gamma} \kappa_{\Sigma}, \kappa_{\Gamma}^{2} \kappa_{\Sigma}^{3}\right)}$. Following Theorem 1 and corollary 3 of [?], we see with high probability and upto order $T^{-1 / 2}$

$$
\begin{aligned}
\left\|\hat{\Theta}^{0}-\Theta^{0}\right\|_{\max } & \leq 2 \kappa_{\Gamma}\left(1+\frac{8}{\alpha}\right) \gamma(\delta) \\
\left\|\hat{\Theta}^{0}-\Theta^{0}\right\|_{F} & \leq 2 \kappa_{\Gamma}\left(1+\frac{8}{\alpha}\right) \sqrt{s+n} \gamma(\delta) \\
\left\|\hat{\Theta}^{0}-\Theta^{0}\right\|_{2} & \leq 2 \kappa_{\Gamma}\left(1+\frac{8}{\alpha}\right) \min (\sqrt{s+n}, d) \gamma(\delta) \\
\left\|\hat{\hat{\Sigma}}^{0}-\Sigma^{0}\right\|_{2} & \leq 2 \kappa_{\Sigma}^{2} \kappa_{\Gamma}\left(1+\frac{8}{\alpha}\right) d \gamma(\delta)+6 \kappa_{\Sigma}^{3} \kappa_{\Gamma}^{2}\left(1+\frac{8}{\alpha}\right)^{2} d^{2} \gamma^{2}(\delta)
\end{aligned}
$$

Low rank matrix We assume the rank of the matrix Σ^{k} is $r \ll n$. We employ the following estimator to obtain a low rank matrix approximation

$$
\bar{\Sigma}^{k}=\operatorname{argmin}_{\Sigma}\left\|\Sigma-\hat{\Sigma}^{k}\right\|_{F}^{2}+\lambda_{n}\|\Sigma\|_{*}
$$

Define $\bar{\Delta}=\bar{\Sigma}^{k}-\Sigma^{k}$. We now observe,

$$
\begin{align*}
\left\|\bar{\Sigma}^{k}-\hat{\Sigma}^{k}\right\|_{F}^{2}+\lambda_{n}\|\bar{\Sigma}\|_{*} & \leq\left\|\Sigma^{k}-\hat{\Sigma}^{k}\right\|_{F}^{2}+\lambda_{n}\left\|\Sigma^{k}\right\|_{*} \\
\Rightarrow\|\bar{\Delta}\|_{F}^{2}-2\left\langle\bar{\Delta}, \Delta \Sigma^{k}\right\rangle & \leq \lambda_{n}\|\bar{\Delta}\|_{*} \\
\Rightarrow\|\bar{\Delta}\|_{F}^{2} & \leq\left(2\left\|\Delta \Sigma^{k}\right\|_{2}+\lambda_{n}\right)\|\bar{\Delta}\|_{*} \\
\Rightarrow\|\bar{\Delta}\|_{F}^{2} & \leq \frac{3}{2} \lambda_{n}\|\bar{\Delta}\|_{*} \tag{7}
\end{align*}
$$

where in the final step, we have used the fact that $\lambda_{n} \geq$ $4\left\|\Delta \Sigma^{k}\right\|_{2}$ and $\|A\|_{*} \leq \sqrt{r}\|A\|_{F}$.

We now bound $\|\bar{\Delta}\|_{*}$. We define subspace \mathcal{A} to span the first r singular vectors of Σ^{k} and \mathcal{B} the remaining singular vectors. We use $\Pi_{\mathcal{A}}$ to denote the euclidean projection operation onto subspace \mathcal{A}. Clearly, $\Sigma^{k}=\Pi_{\mathcal{A}}\left(\Sigma^{k}\right)+\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)$.

We now define $\bar{\Delta}_{2}=\Pi_{\mathcal{B}}(\bar{\Delta})$ and $\bar{\Delta}_{1}=\bar{\Delta}-\bar{\Delta}_{2}$. Consider the SVD of $\Sigma^{k}=U D V^{\top}$. We can write

$$
\begin{aligned}
\bar{\Delta} & =U\left[\begin{array}{ll}
\nu_{11} & \nu_{12} \\
\nu_{21} & \nu_{22}
\end{array}\right] V^{\top} \\
\Rightarrow \bar{\Delta}_{1} & =U\left[\begin{array}{cc}
\nu_{11} & \nu_{12} \\
\nu_{21} & \mathbf{0}
\end{array}\right] V^{\top} \\
& =U\left(\left[\begin{array}{cc}
\nu_{11} / 2 & \mathbf{0} \\
\nu_{21} & \mathbf{0}
\end{array}\right]+\left[\begin{array}{cc}
\nu_{11} / 2 & \nu_{12} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\right) V^{\top}
\end{aligned}
$$

where $\nu_{11} \in \mathbf{R}^{r \times r}$. Clearly, $\operatorname{rank}\left(\bar{\Delta}_{1}\right) \leq 2 r$ as it can be written as a sum of 2 matrices with r non-zero rows or columns in each.

We can write

$$
\begin{align*}
\left\|\bar{\Sigma}^{k}\right\|_{*} & =\left\|\Pi_{\mathcal{A}}\left(\Sigma^{k}\right)+\bar{\Delta}_{2}+\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)+\bar{\Delta}_{1}\right\|_{*} \\
& \geq\left\|\Pi_{\mathcal{A}}\left(\Sigma^{k}\right)+\bar{\Delta}_{2}\right\|_{*}-\left\|\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)+\bar{\Delta}_{1}\right\|_{*} \\
& \geq\left\|\Pi_{\mathcal{A}}\left(\Sigma^{k}\right)\right\|_{*}+\left\|\bar{\Delta}_{2}\right\|_{*}-\left\|\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)\right\|_{*}-\left\|\bar{\Delta}_{1}\right\|_{*} \tag{8}
\end{align*}
$$

From optimal solution of optimization problem, we have

$$
\begin{aligned}
& 0 \leq\|\bar{\Delta}\|_{F}^{2} / \lambda_{n} \\
& \quad \leq \frac{1}{2} \bar{\Delta}\left\|_{*}+\right\| \Sigma^{k}\left\|_{*}-\right\| \bar{\Sigma}^{k} \|_{*} \\
& 2\left\|\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)\right\|_{*}+\frac{3}{2}\left\|\bar{\Delta}_{1}\right\|_{*}-\frac{1}{2}\left\|\bar{\Delta}_{2}\right\|_{*} \\
& \Rightarrow\left\|\bar{\Delta}_{2}\right\|_{*} \leq 3\left\|\bar{\Delta}_{1}\right\|_{*}+4\left\|\Pi_{\mathcal{B}}\left(\Sigma^{k}\right)\right\|_{*}
\end{aligned}
$$

where we have used Eq. ?? in the third inequality. We conclude

$$
\begin{aligned}
\|\bar{\Delta}\|_{*} & \leq 4\left\|\bar{\Delta}_{1}\right\|_{*} \\
& \leq 4 \sqrt{2 r}\|\bar{\Delta}\|_{F}
\end{aligned}
$$

We substitute this in the Eq. ?? to obtain $\|\bar{\Delta}\|_{F} \leq 6 \lambda_{n} \sqrt{2 r}$

Appendix C

In this section, we estimate the transition matrix under various constraints.

Dense Transition Matrix

With probability greater than $1-\delta$ both, maximum value of $\Delta \Sigma^{0}=\hat{\Sigma}^{0}-\Sigma^{0}$ and $\Delta \Sigma^{1}=\hat{\Sigma}^{1}-\Sigma^{1}$ are less than $\gamma(\delta / 2)$. We have also seen that $\left\|\Delta \Sigma^{0}\right\|_{2},\left\|\Delta \Sigma^{1}\right\|_{2} \leq \mathcal{O}(\sqrt{n} \gamma(\delta / 2))$. As mentioned in [?], we get

$$
\left\|\Delta \Sigma^{0 \dagger}\right\|_{2} \leq\left\|\Sigma^{0 \dagger}\right\|_{2}^{2}\left\|\Delta \Sigma^{0}\right\|_{2} \leq \frac{4 \sqrt{n} \gamma(\delta / 2)}{\sigma_{\min }^{2}}
$$

This is true when $\left\|\Delta \Sigma^{0}\right\|_{2}<\lambda_{\text {min }}\left(\Sigma^{0}\right)$ and Σ^{0} is invertible. The error is given by,

$$
\begin{aligned}
\|\hat{A}-A\|_{2} & \leq\left\|\hat{\Sigma}^{1 \top} \hat{\Sigma}^{0 \dagger}-\Sigma^{1 \top} \hat{\Sigma}^{0 \dagger}+\Sigma^{\top} \hat{\Sigma}^{0 \dagger}-\Sigma^{1 \top} \Sigma^{0 \dagger}\right\|_{2} \\
& \leq\left(\left\|\Delta \Sigma^{0 \dagger}\right\|_{2}+\left\|\Sigma^{0 \dagger}\right\|_{2}\right)\left\|\Delta \Sigma^{1}\right\|_{2}+\left\|\Sigma^{1}\right\|_{2}\left\|\Delta \Sigma^{0 \dagger}\right\|_{2} \\
& \leq \frac{4 \sigma_{\max } \sqrt{n} \gamma(\delta / 2)\left\|Q_{w}\right\|_{2}}{\sigma_{\min }^{2}\left(1-\sigma_{\max }^{2}\right)}
\end{aligned}
$$

completing the proof.

Sparse Transition Matrix

We now obtain results with sparse A. This proof is described in [?] for getting performance bounds on estimate A using the Dantzig selector algorithm with our estimates of Σ^{0}, Σ^{1}.

Let $\gamma(\delta / 2)$ be the maximum deviation of empirical covariance matrices as earlier.

We show that $A^{\top}=\Sigma^{0 \dagger} \Sigma^{1}$ is a feasible solution with high probability.

$$
\begin{aligned}
\left\|\hat{\Sigma}^{0} A^{\top}-\hat{\Sigma}^{1}\right\|_{\max } & \leq\left\|\left(\hat{\Sigma}^{0}-\Sigma^{0}\right) A\right\|_{\max }+\left\|\left(\hat{\Sigma}^{1}-\Sigma^{1}\right)\right\|_{\max } \\
& \leq \gamma(\delta / 2)\left(\|A\|_{1}+1\right)=\lambda
\end{aligned}
$$

Clearly, $\|\hat{A}\|_{1} \leq\|A\|_{1}$ with high probability. We also obtain,

$$
\begin{aligned}
& \|\hat{A}-A\|_{\max }=\left\|\Sigma^{0 \dagger}\left(\Sigma^{0} \hat{A}^{\top}-\Sigma^{1}\right)\right\|_{\max } \\
& =\left\|\Sigma^{0 \dagger}\left(\Sigma^{0} \hat{A}^{\top}-\hat{\Sigma}^{0} \hat{A}^{\top}+\hat{\Sigma}^{0} \hat{A}^{\top}-\hat{\Sigma}^{1}+\hat{\Sigma}^{1}-\Sigma^{1}\right)\right\|_{\max } \\
& \leq 2 \lambda\left\|\Sigma^{0 \dagger}\right\|_{1}=\lambda_{1}
\end{aligned}
$$

We can use λ_{1} as a threshold level for sparsity. We consider each column j separately. Define set $\mathcal{T}=\left\{i \in[n]\left|A_{i j}\right| \geq \lambda_{1}\right\}$. For convenience, we denote column j of matrix A as a and matrix \hat{A} as \hat{a}. We can write

$$
\begin{aligned}
\|\hat{a}-a\|_{1} & \leq\left\|\hat{a}_{\mathcal{T}^{c}}\right\|_{1}+\left\|a_{\mathcal{T}^{c}}\right\|_{1}+\left\|\hat{a}_{\mathcal{T}}-a_{\mathcal{T}}\right\|_{1} \\
& \leq\|a\|_{1}+\left\|a_{\mathcal{T}^{c}}\right\|_{1}-\left\|\hat{a}_{\mathcal{T}}\right\|_{1}+\left\|\hat{a}_{\mathcal{T}}-a_{\mathcal{T}}\right\|_{1} \\
& \leq 2\left\|a_{\mathcal{T}^{c}}\right\|_{1}+\left(\left\|a_{\mathcal{T}}\right\|_{1}-\left\|\hat{a}_{\mathcal{T}}\right\|_{1}\right)+\left\|\hat{a}_{\mathcal{T}}-a_{\mathcal{T}}\right\|_{1} \\
& \leq 2\left(\left\|a_{\mathcal{T}^{c}}\right\|_{1}+\left\|a_{\mathcal{T}}-\hat{a}_{\mathcal{T}}\right\|_{1}\right)
\end{aligned}
$$

Consider sum

$$
\begin{aligned}
s_{a} & =\sum_{i} \min \left(\frac{\left|a_{i}\right|}{\lambda_{1}}, 1\right) \\
& \leq \lambda_{1}^{-q} \sum_{i}\left|a_{i}\right|^{q}=s \lambda_{1}^{-q}
\end{aligned}
$$

Now, $\left\|a_{\mathcal{T}^{c}}\right\|_{1} \leq \lambda_{1} s_{a}=s \lambda_{1}^{1-q}$. Also, $\left\|a_{\mathcal{T}}-\hat{a}_{\mathcal{T}}\right\|_{1} \leq \lambda_{1}\left|T_{j}\right| \leq$ $\lambda_{1} s_{a}=s \lambda_{1}^{1-q}$. Substituting these, we get the bound $\| \hat{A}-$ $A \|_{1} \leq 4 s \lambda_{1}^{1-q}$.

Low Rank Transition Matrix

We assume the rank of the transition matrix A is $r \ll n$. We use the following estimator

$$
\hat{A}=\operatorname{argmin}_{B}\left\langle A^{\top}, \hat{\Sigma}^{0} A^{\top}-2 \hat{\Sigma}^{1}\right\rangle+\lambda_{n}\|A\|_{*}
$$

For the analysis, we again denote $\hat{\Delta}=\hat{A}-A$. From the optimality conditions and some algebra,

$$
\begin{aligned}
\left\langle\bar{\Delta}^{\top}, \hat{\Sigma}^{0} \bar{\Delta}^{\top}\right\rangle & \leq 2\left\langle\bar{\Delta}^{\top}, \hat{\Sigma}^{1}-\hat{\Sigma}^{0} A^{\top}\right\rangle+\lambda_{n}\left(\|A\|_{*}-\|\hat{A}\|_{*}\right) \\
& \leq\left(2\left\|\hat{\Sigma}^{1}-\hat{\Sigma}^{0} A^{\top}\right\|_{2}+\lambda_{n}\right)\|\bar{\Delta}\|_{*} \\
& \leq\left(2\left(\left\|\Delta \Sigma^{1}\right\|_{2}+\sigma_{\max }\left\|\Delta \Sigma^{0}\right\|_{2}\right)+\lambda_{n}\right)\| \| \bar{\Delta} \|_{*}
\end{aligned}
$$

As shown in appendix earlier, we get $\|\hat{\Delta}\|_{*} \leq 4 \sqrt{2 r}\|\hat{\Delta}\|_{F}$ when $\lambda_{n} \geq 4\left(\left\|\Delta \Sigma^{1}\right\|_{2}+\sigma_{\max }\left\|\Delta \Sigma^{0}\right\|_{2}\right)=4(1+$ $\left.\sigma_{\max }\right) \gamma_{2}(\delta / 2)$.
Now the optimization problem is convex when
$\hat{\Sigma}^{0} \succ \mathbf{0}$ and a sufficient condition is when
$\left\|\Delta \Sigma^{0}\right\|_{2} \leq \gamma_{2}(\delta / 2)<\lambda_{\min }\left(\Sigma^{0}\right) / 2$. This happens when we have large enough number of time samples $T \geq \frac{128 n \log 1 / \delta}{\lambda_{\min }^{2} \theta(0)_{*}} \max \left(\frac{\left\|Q_{w}\right\|_{2}^{2}}{\left(1-\sigma_{\max }\right)^{4}},\left\|Q_{v}\right\|_{2}^{2}\right)$. Now $\left\langle\bar{\Delta}^{\top}, \hat{\Sigma}^{0} \bar{\Delta}^{\top}\right\rangle \geq \frac{\lambda_{\min }\left(\Sigma^{0}\right)}{2}\|\bar{\Delta}\|_{F}^{2}$ which leads to the bound $\|\bar{\Delta}\|_{F} \leq 12 \lambda_{n} \sqrt{2 r}$.

Appendix D

In this section, we prove the analogue of Theorem 1 for higher order VAR processes.

The proof from section ?? goes through with a few modifications. $Q_{\underline{V}}=\mathbb{E}\left[\underline{V V^{\top}}\right]=Q_{v} \otimes J_{V}$ where J_{V} is a binary matrix with at most p ones in each row. Thus $\left\|Q_{V}\right\|_{2} \leq p\left\|Q_{v}\right\|_{2}$.

The other difference is the term $\operatorname{Tr}\left(\underline{P}^{2}(k)_{i, j}\right)$. It can be observed that

$$
\left.\begin{array}{rl}
\operatorname{Tr}\left(\underline{P}^{2}(k)_{i, j}\right)= & \operatorname{Tr}\left(P^{2}\left(\left.\left\lfloor\frac{j-1}{n}\right\rfloor-\left\lfloor\frac{i-1}{n}\right\rfloor+k \right\rvert\,\right)_{i_{p}, j_{p}}\right.
\end{array}\right) .
$$

Thus earlier convergence result holds with union bound taken over $(n p)^{2}$ choices of i, j.

We also now take the union bound over $(n p)^{2}$ choices for the max bound and correspondingly larger set for the 2 norm. $|\mathcal{A}| \leq(3 / \epsilon)^{n p}$ to get the final answer.

References

[1] P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu, "Highdimensional covariance estimation by minimizing ℓ_{1}-penalized logdeterminant divergence," Electron. J. Statist., vol. 5, pp. 935-980, 2011. [Online]. Available: http://dx.doi.org/10.1214/11-EJS631
[2] J. Demmel, "The componentwise distance to the nearest singular matrix," SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 1, pp. 10-19, 1992. [Online]. Available: http://dx.doi.org/10.1137/0613003
[3] F. Han, H. Lu, and H. Liu, "A direct estimation of high dimensional stationary vector autoregressions," Journal of Machine Learning Research, vol. 16, pp. 3115-3150, 2015.

[^0]: M. Rao and A. Goldsmith are with the Dept. of Electrical Engineering, Stanford University, Stanford, CA 94305, USA (e-mail: milind@stanford.edu, andrea@ee.stanford.edu).
 T. Javidi is with the Dept. of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA (e-mail: tjavidi@ucsd.edu).
 Y. Eldar is with the Dept. of Electrical Engineering Technion, Israel Institute of Technology, Haifa 32000, Israel (email:yonina@ee.technion.ac.il)

