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Abstract

We have developed a Python package (cvxfit) which takes as input values of func-
tions evaluated at points in the function domain and returns a convex fit to the given
data. The result is a concise model that describes the data and can be readily used in
larger problems which may benefit from the convexity and the simplicity of represen-
tation. The package is available at https://pypi.python.org/pypi/cvxfit/.

1 Introduction

In many real-life optimization scenarios, we have very limited data about the functions used
in the optimization models, especially if the objective or constraint functions are expensive to
evaluate, e.g., when function computations require running a complicated experiment. The
choices of functions used in those cases are dictated more often by analytical convenience
than modeling fidelity. In such situations it may be helpful to come up with automatic
approximations based on the limited measurements. Such approximations may either be
used standalone or may be used to inform future function computations.

1.1 Basic problem

We assume that given a “ground truth” function f : Rn → R, the information about f is
only given by a set of N possibly noisy measurements {xi, yi}Ni=1 satisfying xi ∈ Rn, yi ∈ R
and yi = f(xi) + wi for all i where wi is independent zero mean noise. A fitting problem
that generalizes [MB09] may be formulated as follows:

minimize
N∑
i=1

L (fl(xi)− yi) (1)
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where θ (implicit in fl) is the optimization variable representing the parameters of fl, and l
specifies a class of convex functions fl. L is a convex loss function which penalizes mismatch
from the given measurements. The function class fl and the penalty function L are in general
supplied by the end user, although heuristics based on cross validation and user specified
error criteria can help determine some of them. The problem (1) is non-convex in general.
We consider some special forms of this general problem in our project:

• Piecewise linear (PWL): In this case the optimization problem (1) looks like

minimize
N∑
i=1

L

((
max

j∈{1,...,k}
aTj xi + bj

)
− yi

)
(2)

where θk = {aj, bj}kj=1 are the optimization variables for model order k ∈ Z+ with
aj ∈ Rn, bj ∈ R.

• Piecewise quadratic (PWQ): The corresponding optimization problem looks like

minimize
N∑
i=1

L

((
max

j∈{1,...,k}
xTi Pjxi + qTj xi + rj

)
− yi

)
(3)

where θk = {Pj, qj, rj}kj=1 are the optimization variables for model order k ∈ Z+ with
Pj ∈ Sn

+, qj ∈ Rn, rj ∈ R.

2 Implementation

We have implemented the convex function approximation module cvxfit in Python using the
scientific computation library scipy. The current implementation includes a class CvxFit

which constructs a convex approximation to the given measurements. The package can be
downloaded from https://pypi.python.org/pypi/cvxfit/.

2.1 Code Example

Given a set of points stored as an N × n scipy array X and corresponding function values
in the array Y, an approximation with 10 hyperplanes is obtained by running the following
code:

from cvxfit import CvxFit

cvxfit_obj = CvxFit(X, Y, k=10, type=’pwl ’)

cvxfit_obj.fit()

We can get the value of the fit at a point x by calling cvxfit obj.evaluate(x). The actual
coefficients of the fit can be had by calling cvxfit obj.get coefficients().

Performance of the algorithm for a specific example is illustrated in Figure 1.
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Figure 1: Approximating the function f(x) = ‖x‖2.

2.2 Technical details

The fitting algorithm is similar to a K-means clustering algorithm similar to the one de-
scribed in [MB09], and involves a sequential convex programming approach. It consists of
an initialization step involving clustering points in the domain and two main steps, repeated
till convergence:

1. Clustering: Each (xi, yi) ∈ Rn+1 is assigned to one of k clusters. This is done by
choosing the cluster identity ci associated with a point (xi, yi) to be

ci = c ((xi, yi)) = argmaxj=1,...,k a
T
j xi + bj.

2. Fitting: A separate affine function is fit to the data associated with each cluster. This
is done by minimizing an objective similar to the one defined in (1). Note that if L
is convex, then this step involves solving a convex problem. For the cluster c, in the
piecewise linear case, this takes the following form:

minimize
∑
i:ci=c

L
(
aTj xi + bj − yi

)
, i = 1, . . . , k. (4)

For the piecewise quadratic case, we get the following:

minimize
N∑

i:ci=c

L
(
xTi Pjxi + qTj xi + rj − yi

)
, i = 1 . . . , k. (5)

In this step, we can add a regularization term to the objective while solving for the coefficients
{aj, bj} for the piecewise linear case and to {Pj, qj, rj} for the piecewise quadratic case. For

3



the piecewise linear fits, we apply the regularization λ(‖aj‖2+b2j) to the objective function in
(4), whereas for the piecewise quadratic fit, we apply the regularization term λ‖Pj‖2F to the
objective function in (5). An initial clustering is obtained by applying K-means++ [AV07]
in Rn to the points {xi}Ni=1.

3 Examples

In this section we suggest a few use cases of convex fits to data.
Example 1. Model order reduction: One distinctive feature of our fitting software, is that
the user can specify the order of the model, e.g., the number of hyperplanes k used in the
approximation. Given a convex function f(x) : Rn → R specified by a large number of
hyperplanes, a simple model reduction can be obtained as follows:

(i) Evaluate the function f(x) at sampling points {xi}Ni=1.

(ii) Use cvxfit with {xi, f(xi)}Ni=1 and the desired new model order k as an input.

This can be used to obtain an order k approximation to the convex hull of a set of points on
the graph of a convex function. An assymetric loss function can be used in order to preserve
the overfit of the convex hull with respect to the underlying function. This is illustrated in
Figure 2.

Example 2. Alternative to DCP: Assume that one of the constraints in a convex optimiza-
tion problem is known to be convex, but writing it according to a given DCP rule set can
be complicated or requires reformulation of the problem. If one can accept an approximate
solution, she can replace this constraint with an approximation obtained using cvxfit. This
can also reduce the computation and memory load in solving the original problem in some
scenarios.

Example 3. Approximate dynamic programming: Consider the following problem:

Problem: Find optimal initial control action u∗0(x) for an infinite horizon control problem
with the (convex) value function

V0(x) = minimize
∞∑
t=0

‖xt‖1 +
∞∑
t=0

‖ut‖1

subject to xt+1 = Axt +But, x0 = x,

(6)

where ut ∈ R, xt ∈ R3, for 0 ≤ t <∞, are the optimization variables.

Approach: Either solve full problem in (6) or using an approximation Ṽ0 to V0, solve

ũ∗0(x) = argmin
u

(‖u‖1 + ‖x‖1 + Ṽ0(Ax+Bu)). (7)
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Figure 2: The underlying function f(x) is piecewise linear of order 15. f̃(x) is a piecewise
linear approximation of order k = 3, obtained using `1 loss (left) and ‘asymmetric `1’ loss
(right).

In real-time applications where solving (6) is too slow, a speed-up can be obtained as follows:
First compute Ṽ0 offline, which is done by solving (6) for a sample of N points from the state
space. The optimal policy can then be computed at each time instance t by solving (7). We
plot the optimal policies (both exact and approximate) in Figure 3 for various values of the

state given A =

1 0.1 0
0 1 0.1
0 0 0

 and B =

0
0
2

. We see that the approximate policy is quite

similar to the exact one.

4 Concluding thoughts and future work

In this section, we outline several features we are working on, in addition to testing our code
on datasets.

• Dimensionality: Shown examples are for low dimensions; the general question of how
convexity helps in higher dimensions remains open.

• Parameter selection: Although we choose defaults based on cross validation with
sample problems, in the end the user has to use his domain specific knowledge to choose
the type of fit or the parameters involved.
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Figure 3: Optimal time zero policy u∗0 obtained by solving (6) and the approximated policy
ũ∗0 obtained by solving (7). The values of the initial state vector is x = (0.3, a, 0), where
a ∈ R varies between −2 and 2.

• Regularization: We use regularization to improve the fitting and to impose priors
about the unknown coefficients (e.g., if there are insufficient points in a cluster). The
regularization parameter was chosen based on sample problems.

• Loss functions: We experimented with different loss functions L like square, huber,
`1 norm. While we did not see much qualitative variations in the quality of fit, specific
choices of loss functions can be critical for noisy data in general.

• General convex models: We tried preliminary fits with some different models, e.g.,
second order cones (SOC). The quality of fit in general depends on the “closeness” of
f to the chosen model.
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