Nilpotent Operators

Very far from diagonalizable.

\(V \text{ fin. dim } v.s. \ k, \ \phi \in L(V, V), n = \text{dim} V \)

Notation \(\phi^m := \underbrace{\phi \cdots \phi}_{\text{m times}} \)

Proposition

\(\phi \in L(V, V) \) as above, \(k = \mathbb{C} \).

T.f.a.e. ("the following are equivalent")

(i) The only eigenvalue of \(\phi \) is 0 (i.e., 0 is an eigenvalue)

(ii) \(\exists m \leq n = \text{dim} V \) s.t. \(\phi^m = 0 \)

Proof (i) \(\Rightarrow \) (i) Let \(v \neq 0 \) be an eigenvector. So \(\phi(v) = \lambda v \)
\[0 = \phi^m = \phi \cdots \phi (v) = \phi^{m-1} (v) = \cdots = \phi (v) = v \]

(i) \implies (ii)

We do this by induction on \(n = \dim V \).

If \(n = 1 \), \(\phi = [a] \) for some \(a \). Then:

\[X_\phi (a) = \text{det} [a - \lambda] = a - \lambda \]

So, if 0 is an eigenvalue,

\[X_\phi (0) = 0 \implies a = 0 \implies \phi = 0 \]

so (ii) holds in this case.

Now let \(V \) be a vector space of \(\dim n \) and \(\phi \in \mathcal{L}(V, V) \) such that 0 is the sole eigenvalue.
Then $\ker \phi \neq 0$ since \mathbb{C} is an ℓ-tale.
and $W := \text{Im } \phi \leq V$ has $\dim \leq n$ by
the rank-nullity theorem.
W is an invariant subspace (as we have
seen) so consider $\phi \in L(W, W)$. If
$\dim W = 0$, $\phi = 0$ and we are done.
Otherwise, $X \phi_W$ is a polynomial of
degree ≥ 1 over \mathbb{C}, which ϕ has a
root.
So ϕ_W has an ℓ-value.
ℓ-values of ϕ_W are also ℓ-values of ϕ
ℓ-values of ϕ_W are also ℓ-values of ϕ (as
$\phi(s) = \lambda s$, $s \in W \Rightarrow \phi(s) = \lambda s$),
t as an element in V, so ϕ is the
sole ℓ-value of ϕ_W.

Thus \(1 \leq m \leq n-1 \) s.t. \(\phi^m_w = 0 \) by induction.

Now \(W = \text{Im} \phi \), so, \(\forall \omega \in U \), \(\phi(\omega) \in W \)

\(\Rightarrow \phi^m \cdot \phi(\omega) = 0 \). Thus \(\phi^{m+1} = 0 \).

\(\phi^m (\phi(\omega)) \)

This gives the claim.

Definition. We say the linear operator \(\phi \) is nilpotent if \(\phi^m = 0 \).

Example.

\[\phi : \mathbb{C}^4 \to \mathbb{C}^4 \]

\[\phi(x_1, x_2, x_3, x_4) = (y_1, y_2, y_3, 0) \]

"Leftward shift"
Then \(\phi^2(x_1 y_1 z_1 w) = \phi(y_1 z_1 w, 0) \)

\[
= (y_1 z_1 w, 0, 0)
\]

\(\phi^3(x_1 y_1 z_1 w) = (w, 0, 0, 0) \)

\(\phi^4(x_1 y_1 z_1 w) = (0, 0, 0, 0) \)

So \(\phi \) is nilpotent.

You can also see this from the characteristic polynomial.

W.r.t. standard basis \(B \)

\[
M(\phi; B, B) = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

So \(\chi_\phi(x) = \det \begin{pmatrix}
-x & 1 & 0 & 0 \\
-x & 0 & 1 & 0 \\
0 & -x & 0 & 0 \\
0 & 0 & -x & 0
\end{pmatrix} \)
This is upper Λ.

Exercise (a homework & Q)

A upper $\Lambda \Rightarrow \text{det} A = q_{11} \ldots q_{nn}$

(the diagonal term)

so $\chi_p(A) = (\lambda - 1)^4 \lambda = \lambda^5$

Thus 0 is the only eigenvalue

Jordan Normal Form

This is a very important topic. It is also covered in ch 3.D of Axler.

We have seen in the example above that left-shift operators give examples of nilpotent operators.

More generally, you can construct nilpotent operators by combining left-shifts:
Example

$\phi : C^5 \to C^5$

$(x, y, z, w, u) \mapsto (y, z, 0, 0, 0)$

Looks like two left-shifts (on $C^3 \oplus C^2$) combined.

It has matrix (in standard bases)

$$M(\phi, B, B) = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

We have $\phi^3 \neq 0$.

We will show any nilpotent operator is, in a suitable basis ("the Jordan basis"), a combination of left-shifts, as in the above example.
Definition
definition we say \(\phi \in \mathcal{L}(U, U) \) is principal if there exists \(v \in V \) such that
\[\phi^n(v) = 0 \]
and further \(\phi, \phi(v), \ldots, \phi^{n-1}(v) \) form a basis of \(V \), where \(n = \dim V \).

Prop \(\phi \in \mathcal{L}(U, U) \) is principal if and only if \(\exists \) a basis \(B \) of \(V \) s.t.
\[M(\phi, B, B) = J_n \text{ value} \]

Left-shift matrix of \(\sigma \times n \)
\[J_n := \begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{pmatrix} \]
i.e. $\mathfrak{m} = (a_i)_{i \leq 1}$ where $\sum a_{i-1} i = 1$, $2 < i \leq n$

I.e. principal maps are left-shift in a suitable basis $\phi(b_1 \ldots b_n) = (b_2 \ldots b_{n-1} 0)$

pf

Assume ϕ is principal, let $B = \phi^{-1}(1), \phi^{-2}(1) \ldots, \phi^{-n}(1)$

Then $\phi(b_1 \phi^{-1}(1) + b_2 \phi^{-2}(1) + \ldots + b_n \phi^{-n}(1) + 0)$

$= b_2 \phi^{-1}(1) + b_3 \phi^{-2}(1) + \ldots + b_n \phi^{-n}(1) + 0$

Since $\phi^{-n}(1) = 0$

i.e. ϕ is a "left-shift" as req'd.

Conversely, suppose we have a basis $B = \phi_1, \ldots, \phi_n$ s.t.
\[\phi(b_1v_1 + \ldots + b_nv_n) = b_2v_1 + b_3v_2 + \ldots + b_{n-1}v_{n-1}\]

Then
\[
\begin{align*}
\phi(v_n) &= v_{n-1} \\
\phi^2(v_n) &= v_{n-2} \\
& \vdots \\
\phi^{n-1}(v_n) &= v_1 \\
\phi^n(v_n) &= 0
\end{align*}
\]

Hence \(\phi\) is principal with \(\alpha = v_n\).

Theorem (Structure Theorem for Nilpotent Maps) Let \(\phi \in \mathcal{L}(V)\) be nilpotent, \(n = \dim V\). Then there exist invariant subspaces \(U_1, \ldots, U_k\) of \(V\) such that \(V = U_1 \oplus \ldots \oplus U_k\) and
\(\varphi_{i,u_i} \in \mathcal{L}(u_i; u_i) \) is principal for all \(i = 1, \ldots, k \).

Preliminary remarks

Note that, by the previous proposition, the theorem is equivalent to saying that there exists a basis \(B \) for \(U \) such that

\[
M(\varphi, B, B) = \begin{pmatrix}
J_n & 0 & \cdots & 0 \\
0 & J_n & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & J_n_k
\end{pmatrix}
\]

where \(J_n \) are left-shift matrices of size \(n \times n \).

This in turn is the same as saying that there exist \(x_1, \ldots, x_k \in U \) such that
(a) $\varphi_1, \varphi_2, \ldots, \varphi^{n-1} \varphi_1, v_1, \varphi v_2, \ldots, \varphi^{n-1} v_2$

\[\vdots \quad \varphi v_k, \ldots, \varphi^{n-1} (v_k) \]

is a basis.

(b) $\varphi^n v_1 = 0$, $\varphi^n v_2 = 0$, \ldots, $\varphi^n (v_k) = 0$.

So the claim is equivalent to

φ nilpotent \Rightarrow $\exists \, v_1, \ldots, v_k \in V$ satisfying

φ nilpotent \Rightarrow $\exists \, v_1, \ldots, v_k \in V$

(a-b) (This is Axler's version, pg 221)

(a) (b) (This is Axler's version, pg 221)

We prove the claim by induction on $n = \dim V$.

If $n = 1$, $\varphi : V \to V$ is the zero map (as it is nilpotent) and the claim is obvious.

Assume $n \geq 2$. If $\varphi = 0$ the claim is again obvious (take $v_1 = \mathbb{v} = 2$)
Omitting we use the same trick as before. Set \(W = \text{Im} \varphi \subseteq V \). As \(\varphi \) is nilpotent, \(\ker \varphi \to (a) \) (e-value) and hence \(\dim W \leq \dim V \) (by rank-nullity).

By induction, we may decompose

\[W = U_1 \oplus \ldots \oplus U_r \]

s.t. \(\varphi |_{U_i} \) is principal.

Thus \(\exists u_i \in U_i \) with

\[\varphi^{ni}(u_i) = 0 \quad \text{for some } ni \]

and \(\varphi^{ni}(u_i) = a_i \) for all \(1 \leq i \leq n \).

As \(u_i \in U_i \subseteq V \) s.t.

\[\varphi(u_i) = a_i u_i \]
So set $V_i = \text{Span} \{ u_i, \phi(u_i), \ldots, \phi^{n_i-1}(u_i) \}$

Clearly $\phi(V_i) = U_i$.

Claim 1. $\phi(u_i), \phi^2(u_i), \ldots, \phi^{n_i}(u_i)$ give a basis for U_i.

Proof of claim 1. We have to show that $\phi(u_i), \phi^2(u_i), \ldots, \phi^{n_i}(u_i)$ are linearly independent.

Suppose $\lambda_0 u_i + \lambda_1 \phi(u_i) + \cdots + \lambda_{n_i} \phi^{n_i}(u_i) = 0$.

Applying ϕ

$\lambda_0 \phi(u_i) + \lambda_1 \phi^2(u_i) + \cdots + \lambda_{n_i} \phi^{n_i+1}(u_i) = 0$

$\phi(u_i), \phi^2(u_i), \ldots, \phi^{n_i}(u_i)$ a basis of U_i.
But then \(\lambda n; \phi^*(u_i) = \lambda n; \phi^{i-1}(u_i) = 0 \)

\[\Rightarrow \lambda n; = 0 \text{ as well, so the claim is proven.} \]

Since \(\phi(u_i) = u_i \), \(u_i \) are invariant and further \(\phi \mid_{u_i} \) is principal, since

\[\phi^{*i+1}(u_i) = \phi^{*i}(u_i) = 0, \]

Claim 2: \(\exists T \in \ker \phi \) s.t.

\[V_1 \oplus \ldots \oplus V_c \oplus T = V \]

This will finish the proof \((\phi \mid_{T} = 0 \text{ is trivial})\).

Let \(V' = V_1 + \ldots + V_c \). We firstly claim that this is a direct sum.

Suppose \(x_i \in V_i, 1 \leq i \leq c \) and \(\sum x_i = 0 \)
$\Rightarrow \sum \phi(x_i) = 0$. But $\phi(x_i) \in U_i$ and then $\phi(x_i) = 0 \forall i$, as the U_i form a direct sum.

we can write

\[x_i = q_0 u_i + q_1 \phi(v_i) + \ldots + q_n \phi^n(v_i) \]

and then $\phi(x_i) = 0$

$\Rightarrow a_0 \phi(v_i) + a_1 \phi^2(v_i) + \ldots + a_n \phi^n(v_i)$

$\Rightarrow q_0 = a_1 = \ldots = a_{n-1} = 0$

so $x_i = a_n \phi^n(v_i)$ for some scalars $a_n \in U_i$

$\Rightarrow \sum x_i = 0 \Rightarrow \sum a_n \phi^n(v_i) = 0$

$\Rightarrow a_n = 0 \forall i$ (since U_i form a direct sum)
\[X_i = 0. \]

So \[V' = \bigoplus_{i=1}^e V_i. \]

To finish the proof, any basis for \(V' \)
can be extended to a basis for \(V \).

In particular, extend the basis
\[\phi: V \rightarrow \mathbb{F} / \mathbb{F} \]
by adding in the basis elements
\[t_i, \ldots, t_k. \]

Since \(\phi(V') = \mathbb{F} = \text{Im} \phi \), for each \(t_i \)
exists \(w_i \in V' \) s.t.
\[\phi(t_i) = \phi(w_i). \]

Let \(t_i' = t_i - w_i \in \ker \phi. \)
Then \(\text{Span } \mathcal{E} \setminus \mathcal{V} \setminus \{e_i \mid 1 \leq i \leq l, 1 \leq j \leq \nu_i \} \setminus \{e_j \mid 1 \leq i \leq k \} = V \)

And this list must remain a basis (it was correct length), so set

\[T = \text{Span } (t_1, \ldots, t_{k-1}) \]

Then \(V = U' \otimes T \) and \(\phi \big|_T = 0 \), as required.