Theorem (Structure Theorem for Nilpotent Maps)

If V is a vector space and $\Phi \in L(V)$ is nilpotent, $n = \dim V$.

Then there exist invariant subspaces U_1, \ldots, U_e of V such that

$$V = U_1 \oplus \cdots \oplus U_e$$

with $\phi \in L(U_i, U_i)$ principal for all i.

For all $i = 1, \ldots, e$.

Preliminary Remarks

By what we saw last time, this theorem is equivalent to saying that \exists a basis B for V s.t.
\[M(\phi ; B, B) = \begin{pmatrix}
J_{n_1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & J_{n_k}
\end{pmatrix} \]

where \(J_{n_i} \) are left-shift matrices of size \(n_i \) (\(n_i = 1 \Rightarrow J_1 = 0 \)).

This in turn is the same as saying that there exist \(v_1, \ldots, v_k \in \mathbb{V} \) s.t.

\[(a) \phi v_1, \phi^2 v_1, \ldots, \phi^{n_1-1} v_1, v_2, \phi v_2, \phi^2 v_2, \ldots, \phi^{n_2-1} v_2, \ldots, v_k, \phi v_k, \ldots, \phi^{n_k-1} v_k \]

is a basis.

\[(b) \phi v_1 = 0, \phi^2 v_2 = 0, \ldots, \phi^{n_k} v_k = 0. \]

So the claim is equivalent to
\(\phi \) nilpotent \(\Rightarrow \exists n_1, \ldots, n_k \) satisfying (a), (b) (Axler, pg 271)

If we prove the claim by induction on \(n = \dim V \).

If \(n = 1 \), \(\phi : C \to C \) is the zero map. (\(\sim \) its nilpotent) and the claim is obvious. \((M(\phi; B; B) = 0 = G_{3,3})\)

Assume \(n \geq 2 \). If \(\phi = 0 \), the claim is again obvious (take \(n_1 = n_2 = 2 \)).

Otherwise we use the same trick as earlier. Set \(W = \text{Im} \phi \subseteq V \). As \(\phi \) is nilpotent, \(\ker \phi \neq 0 \) (as \(0 \) is an \(e \)-value) and hence \(\dim W < \dim V \) (by rank-nullity). By induction, we may decompose
\(\omega = \omega_i \oplus \cdots \oplus \omega_e \)

s.t. \(\phi \) is principal. Thus \(\exists \epsilon_i \in \Omega \)

with \(a_i , \phi(a_i), \ldots , \phi^n(a_i) \) a basis of \(\mathcal{A}_i \) for some \(n_i \) and \(\phi(a_i) = 0 \)

for all \(1 \leq i \leq e \).

As \(a_i \in \mathcal{A}_i \subseteq \omega_i \), \(\exists v_i \in V \) s.t. \(\phi(v_i) = a_i \).

So set \(V_i = \text{Span}(v_i, a_i = \phi(a_i), \ldots , \phi^{n_i}(a_i)) \)

Clearly \(\phi(V_i) = a_i \) and so \(V_i \) is invariant. We want to show that \(\phi_{v_i} \) is principal.

Claim \(v_i, \phi(v_i), \ldots , \phi^{n_i}(v_i) \) give a basis for \(v_i \).
Proof of claim 1

We have to show $\psi, \phi(\psi), \ldots, \phi^n(\psi)$ are linearly independent.

Suppose $\lambda_0 \psi + \lambda_1 \phi(\psi) + \ldots + \lambda_n \phi^n(\psi) = 0$

Applying ϕ to $\phi(c_i)$

$\lambda_0 \phi(\psi) + \lambda_1 \phi^2(\psi) + \ldots + \lambda_i \phi^{i+1}(\psi, c_i) = 0$

$\phi^n(c_i)$

$\Rightarrow \lambda_0 = \ldots = \lambda_{n-1} = 0 \Rightarrow c_i, \phi(c_i), \ldots, \phi^{n-1}(c_i)$ give a basis.
of U_i.

But then $\lambda n_i \phi_{n_i}^i(U_i) = \lambda n_i \phi_{n_i}^{n_i+1} = 0$

$\Rightarrow \lambda n_i = 0$ as well, so the claim is proven.

So we see ϕ_{U_i} is principal. We could be done if

$$V = U_1 \odot \ldots \odot U_e.$$

This is not quite true, because there may be extra elements in the kernel to account for.

Claim 2: $V = U_1 \odot \ldots \odot U_e \odot T$

This will finish the proof, as $\phi_{T,0}$ is a sum of principal self-shifts (of size 1).
pf of claim

Let $V = V_1 + \ldots + V_l$. We firstly claim that this is a direct sum.

Suppose $x_i \in V_i$, $1 \leq i \leq l$ and $\sum x_i = 0$. But $\phi(x_i) \in U_i$ and

Then $\phi(x_i) = 0 \forall i \geq 0$ the u_i form a direct sum.

We can write

$$x_i = a_0 v_i + a_1 \phi(v_i) + \ldots + a_{n_i} \phi^{n_i}(v_i)$$

But $\phi(x_i) = 0$

$\implies a_0 \phi(v_i) + a_1 \phi^2(v_i) + \ldots + a_{n_i} \phi^{n_i}(v_i) = 0$

$\implies a_0 = a_1 = \ldots = a_{n_i-1} = 0$
So \(x_i = a_i \phi_i^n(v_i) \) for some scalars \(e_i \).

As \(\sum x_i = 0 \) \(\Rightarrow \sum a_i \phi_i^n(v_i) = 0 \)

\(e_i \).

\(\Rightarrow a_i = 0 \) \(e_i \) (Since \(e_i \) form a direct sum).

\(\Rightarrow x_i = 0. \)

So \(V = \bigoplus_{i=1}^e V_i \).

To finish the proof, any basis for \(V \)

can be extended to a basis for \(V \).

In particular, extend the basis \(\phi_i^n \) to a

\(\sum_{i=1}^e \phi_i^n v_i \), \(1 \leq i \leq e \), \(1 \leq i \leq n \) to a
basis V by adding in the basis elements t_1, \ldots, t_k.

Since $\phi(v') = \omega = \text{Im} \phi$ for each t_i

exists $v_{i}' \in V$ s.t. $\phi(t_i) = \phi(v_{i}')$

let $t_i' = t_i - v_{i}' \in \ker \phi$

then $\text{Span} \subseteq \phi(v_{i}') \mid i = 0, 3, 0 \leq i \leq \ell$

so $\text{Span} = \phi(v_{i}')$

and this list must remain a basis

if it has correct length

set $T = \text{Span} (t_1', \ldots, t_k')$

then $V = V' \oplus T$ and $\phi|_T = 0$, as requested.
Jordan Normal Form

We now return to the study of general linear operators ϕ.

Our first task is to break a space V down into ϕ-invariant subspaces. We want our pieces to have a simple behaviour. We want our pieces to generalize both eigenspaces and invariant subspaces.

Spaces U_i st. $\phi(U_i) \subseteq U_i$.

Define V a vector space over \mathbb{K}, $\phi \in L(V, V)$.

Suppose $x \in \mathbb{K}$, $v \in V$ is st.

$$(\phi - \lambda \text{id})^m (v) = 0$$

for some m. Then we call (λ, v) a generalized eigenpair. λ is the generalized
eigenvalue, \(\lambda \) is the generalized eigen vector with gen. e-value \(\lambda \).

If \((\lambda, v) \) is a gen. eigenpair, then

\[
G(\lambda, \phi) := \{ v \in V : (\phi - \lambda I_d)^m v = 0 \text{ for some } m \in \mathbb{Z}_+ \}
\]

\[
= \bigcup_{k \in \mathbb{N}} \ker (\phi - \lambda I_d)^k
\]

is a generalized eigenspace.

Defn

Let \(p(x) \in \mathbb{P}(\mathbb{R}) \) be a polynomial,

and \(\phi \in \mathcal{L}(V, V) \) (\(V \) vs. \(k \)).

Say \(p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n \)

we define \(p(\phi) := a_0 + a_1 \phi + a_2 \phi^2 + \ldots + a_n \phi^n \in \mathcal{L}(V, V) \)
Exercise (will be on Hand)

If \(p(x), q(x) \in \mathbb{P}(k) \)
then \(p(\phi) q(\phi) = (pq)(\phi) = q(\phi)p(\phi) \)

Lemma

Suppose \(\dim V=n \)
Then \(GC(\phi, \phi) = \ker(\phi-\text{id})^n \)
(i.e. we only need the power \(n=\dim V \))

Proof

By definition,
\[
GC(\phi, \phi) = \bigcup_{k \in \mathbb{N}} \ker(\phi-\text{id})^k
\]
so \(\ker(\phi-\text{id})^n \leq GC(\phi, \phi) \) from the def.

On the other hand, suppose \(\psi \in GC(\phi, \phi) \).
Let $\Psi = \phi - \lambda \text{id}$. We have

$$\Psi^m v = 0$$

for some m. So let $W = \text{Ker} \Psi^m$. Then W is invariant for W. If $w \in W$ then $\Psi^{m-1}(\Psi(w)) = 0$

$$\Rightarrow \Psi^m(\Psi(w)) = 0$$

$$\Rightarrow \Psi(w) \in W.$$

Further, $\Psi|_W$ is nilpotent as $\Psi^m = 0$.

It follows that we can write $\Psi|_W$ in the form

$$\begin{bmatrix} \mathbb{E} & \mathbb{E} \\ \mathbb{E} & \mathbb{E} \end{bmatrix} \Rightarrow \Psi|_W = 0$$

$$\Rightarrow \dim W = 0$$

$$\Rightarrow \Psi^m = 0$$

$$\Rightarrow v \in \text{Ker} \Psi^m.$$