1. **(1 point)** Suppose \(\phi : V \to W \) is a linear map, and \(v_1, \ldots, v_k \in V \) are vectors such that \(\phi(v_1), \ldots, \phi(v_k) \) are linearly independent. Show that \(v_1, \ldots, v_k \) are linearly independent.

2. **(1 point)** Suppose \(V, W \) are finite dimensional vector spaces over \(F \) and \(\phi : V \to W \) is a linear map.

 (a) Show that \(\phi \) is injective if and only if there exists a linear map \(\psi : W \to V \) such that \(\psi \circ \phi = \text{id}_V \) (where \(\text{id}_V \) is the identity map \(V \to V \)).

 (b) Show that \(\phi \) is surjective if and only if there exists a linear map \(\theta : W \to V \) such that \(\phi \circ \theta = \text{id}_W \).

3. **(2 points)** Suppose \(U, V, W \) are finite dimensional vector spaces over \(F \) and \(\phi : U \to V, \psi : V \to W \) are linear maps.

 (a) Show that \(\dim \ker(\psi \circ \phi) \leq \dim \ker \phi + \dim \ker \psi \).

 (b) Show that \(\dim \im(\psi \circ \phi) \leq \min\{\dim \im \phi, \dim \im \psi\} \).

The next two questions will require you to read about direct sums (Axler, page 21).

4. **(2 points)** Consider \(V = \{ p : \mathbb{R} \to \mathbb{R} \mid \exists a_0, \ldots, a_3 \in \mathbb{R} : p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \forall x \in \mathbb{R} \} \), the vector space of polynomials over \(\mathbb{R} \) of degree at most 3. Let \(W \) be the subspace \(\{ p \in V \mid p(2) = 0 \} \).

 (a) Find a basis for \(W \).

 (b) Extend this to a basis for \(V \).

 (c) Find a subspace \(U \) of \(V \) such that \(V = W \oplus U \) is a direct sum.

5. **(2 points)** Suppose \(V \) is a vector space and \(U_1, \ldots, U_m \) are subspaces of \(V \) such that each \(U_i \) is finite-dimensional (however, you may not assume that \(V \) is finite-dimensional).

 (a) Prove that the sum \(U_1 + \cdots + U_m \) is finite-dimensional, and moreover that

 \[
 \dim(U_1 + \cdots + U_m) \leq \dim U_1 + \cdots + \dim U_m .
 \] (1)

 (b) Show that equality holds in (1) if, and only if, \(U_1 + \cdots + U_m \) is a direct sum.

6. **(2 points)** If \(f : U \to V \) is a linear map, and \(B_1, B_2 \) are bases for \(U \) and \(V \), we write \(M(f; B_1, B_2) \) for the matrix of \(f \) with respect to the bases \(B_1, B_2 \). Our goal in this question is to compute matrices with respect to different bases.

 Consider \(V = \mathbb{R}^3 \) and \(\phi : V \to V \) given by

 \[
 \phi(x, y, z) = (x + 2y + 3z, 4x + 5y + 6z, 7x + 8y + 9z) .
 \]

 Let \(B_1 = e_1, e_2, e_3 \) be the standard basis for \(\mathbb{R}^3 \).

 (a) Write down \(M(\phi; B_1, B_1) \).

 (b) Write \(u_1 = \phi(e_1) = (1, 4, 7) \) and let \(B_2 = u_1, e_2, e_3 \). Compute the matrices \(M(\text{id}_V; B_1, B_2) \) and \(M(\phi, B_1, B_2) \).
(c) Write \(u_2 = \phi(e_2) = (2, 5, 8) \) and let \(B_3 = u_1, u_2, e_3 \). Compute the matrices \(M(\text{id}_V; B_2, B_3) \) and \(M(\phi, B_1, B_3) \).

(d) Find bases for \(\text{Im}\phi \) and \(\text{Ker}\phi \).

1. (Bonus Question, for extra credit) Axler, 3.C, Question 5