1. (Worth two questions) We are going to prove the Zassenhaus Lemma, giving a generalization of the Second Isomorphism Theorem. Let G be a group. Let $A \unlhd A^*$, $B \unlhd B^*$ be four subgroups of G.

(a) Show that, if N, M are two normal subgroups of any group then NM is a normal subgroup. Using this, show $D := (A \cap B^*)(A^* \cap B)$ is a normal subgroup of $A^* \cap B^*$.

(b) Prove:
\[\frac{A(A^* \cap B^*)}{A(A^* \cap B)} \cong \frac{A^* \cap B}{D}. \]

(c) Use the symmetry between A and B to conclude
\[\frac{A(A^* \cap B^*)}{A(A^* \cap B)} \cong \frac{B(B^* \cap A^*)}{B(B^* \cap A)}. \]

(This result is due to Zassenhaus (1934), who used it to simplify the proof of the Schreier Refinement Theorem.)

2. (Worth two questions) Let G be a finite p-group.

(a) Let H be a subgroup which is not normal and let X be the set of conjugates of H, under the G action. Consider the conjugation action of H on X (obtained by restricting the G action). Show there are at least p orbits of size 1.

(b) From the previous part, there is some $g \in G$ such that $gHg^{-1} \neq H$ and $\{gHg^{-1}\}$ forms its own orbit. Using this, show that the normalizer $N_G(H)$ is strictly larger than H.

(c) A subgroup H is maximal if $H \leq H'$ implies the subgroup $H' \in \{H, G\}$. Show that every maximal subgroup of G is normal.

3. Prove that the center $Z(S_n)$ is trivial (i.e. $Z(S_n) = \{1\}$) for $n \geq 3$.

4. A Dihedral Group D_{2n} for $n \geq 2$ is a group of order $2n$ generated by two elements s, t such that
\[s^n = 1, \quad t^2 = 1, \quad tst = s^{-1}, \]
see §1.2 of D&F. Show that every group of order $2n$ is either cyclic or dihedral, for p a prime.

5. Prove there is no simple group of order 36.

6. The quaternions is a group Q with order eight and two generators a, b such that
\[a^4 = 1, \quad b^2 = a^2, \quad bab^{-1} = a^{-1}. \]

(a) Show that Q has a unique element of order two, and that this element generates the centre $Z(Q)$.

(b) Show that every subgroup of Q is normal.

Write up solutions to the following exercises from Dummit and Foote.

- Section 4.5: 6, 8, 19.