Simplicity of A_n continued.

Last time we saw A_5 is simple. We almost, but did not quite, prove the following in the course of the proof:

Lemma. Any two 3-cycles are conjugate in A_n, $n \geq 5$.

Proof. We will show any 3-cycle $(a \, b \, c)$ is conjugate to $(1 \, 2 \, 3)$.

Let x_1, \ldots, x_{n-3} be s.t. $x_1, x_2, x_3, \ldots, x_{n-3}$ = $1, \ldots, n^3$.

Let $\sigma \in \text{Sym}(n)$ be the permutation

$$
\begin{pmatrix}
0 & 2 & 3 & 4 & 5 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
\end{pmatrix}
$$
Let \(\gamma = (4 \\ 5) \)
and set \(\gamma = 0 \).

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & \cdots & n \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 \\
\end{array}
\]

we have

\[
6 (123) 6^{-1} = (a \\ b \\ c)
\]

and

\[
\gamma (123) \gamma^{-1} = (a \\ b \\ c)
\]

But either 6 or \(\gamma \) is even, so one way or the other \((123)\) and
\((a \\ b \\ c)\) are conjugate in \(\text{An} \).

Next, we have:

Lemma: \(\text{An} \) is generated by 3 cycle

for \(n \geq 5 \).
Let \(G \in S_n \). Then \(G \) is a product of an even number of transpositions:
\[
G = (y_1, y_2) \cdot \ldots \cdot (y_{2k-1}, y_{2k})
\]

It suffices to show each product of transpositions is a product of 3 cycles.
Let \(\alpha, \beta \) be 2 transpositions.

If \(\alpha = \beta \) then
\[
\alpha \cdot \beta = 1 = (1 \ 2 \ 3)^3 \quad \checkmark
\]

If \(\alpha = (a \ b) \) and \(\beta = (b \ c) \) for \(a, b, c \) distinct
\[
\alpha \cdot \beta = (a \ b \ c) \quad \checkmark
\]

If \(\alpha = (a \ b) \) and \(\beta = (c \ d) \) for \(a, b, c, d \) distinct
\[
\alpha \cdot \beta = (a \ b \ c) (b \ c \ d) \quad \checkmark
\]

Let's introduce a small amount of abstraction. If \(\phi : X \to Y \) is a
A bijection \(f: S_\infty \rightarrow S_\infty \)
\(\phi \rightarrow \phi^{-1} \phi \)
\(f \Rightarrow x \rightarrow x \)

if \(|x| = n < \infty \) then we have

\(X = \frac{1}{m} x_1, \ldots, x_m \) for some elements \(x_1, x_\infty \) and have a bijection

\(\frac{1}{m} x_1, \ldots, x_m \rightarrow \frac{1}{m} x_1, \ldots, x_m \)
\(i \rightarrow x_i \)

Giving an iso
\(S_\infty \Rightarrow S_n \)

Setting \(A_{\infty} := \{ s \in S_\infty \mid F_\phi(s) \in A_n \} \)

\(= F_\phi^{-1}(A_n) \)

de\'line, the algebraic group of \(A_\infty \), which
is isomorphic to $A_n : F_p : A_x \to A_n$.

Thus A_n is simple for $n \geq 6$.

Proof

We have already proven this in the case $n=5$.

We will prove the result by induction.

Suppose $n \geq 6$ and A_j is simple if $5 \leq j < n-1$.

Let $N \leq A_n$, $N \neq 1$. All 3 cycles are conjugate in A_n and A_n is generated by 3-cycles, so if N contains one (hence all) 3-cycles, $N = A_n$, which is what we want.

So it suffices to show N contains some 3-cycle.
An acts on \(S_1, S_2, \ldots, S_n \) in the natural way, let \(H_i \leq A_n \) be the stabilizer of \(r \in S_i \), \(\cdots \in S_n \).

Then \(H_i \cong A_{n-1} \) (\(H_i \cong A_{n-1} \), \(X = S_1, S_2, \ldots, S_n \)).

So \(H_i \) is simple by induction.

Now \(N N H_i \triangleleft H_i \).

Thus either \(N N H_i = H_i \) or \(N N H_i = 1 \).

If \(N N H_i = 2H_i \), then \(N \) contains a 3-cycle (\(\sigma \), \(H_i \cong A_{n-1} \), \(\sigma \sigma \sigma) \) so it suffices to show \(N N H_i \neq 1 \).

Let \(6 \neq \sigma \in N \).

Claim 6 is conjugate to some \(6^c \neq 6 \) with \(6(\epsilon) = 6^c(\epsilon) \) for some \(\epsilon \).

Pf of claim: Let \(r \) be the longest length
of a disjoint cycle in \mathcal{G}.

$G = (\alpha_1, \ldots, \alpha_r)$ with

disjoint.

Case 1 $r \geq 3$. Consider $g = (\alpha_3, \alpha_4, \alpha_5)$ and

set $g^c = g \circ g^{-1}$

$g^c (\alpha_2) = \alpha_4$ but $g (\alpha_2) = \alpha_3$

so $G \neq G^c$ but $6 (\alpha_2) = 6^c (\alpha_2) \neq \alpha_3$

Case 2 $r = 2, \Rightarrow G$ is a product of

transpositions.

If $G = (\alpha_1, \alpha_2)(\beta_1, \beta_2)$ is a product of

2 transpositions, take

$g = (\alpha_1, \beta_1, \alpha_2)$

$g \circ g^{-1} = (\alpha_1, \beta_1, \alpha_2)(\alpha_2, \beta_2) \neq G$ but

both fix any element of

$\beta_1, \ldots, \alpha_2 \in \mathcal{G} \setminus \{\alpha_1, \beta_1, \alpha_2\}$. \]
Suppose \(S = (x_1 x_2) (B_1 B_2) (x_1 x_2) (\ldots) \) is a product of at least 3 transpositions.

Set \(S' = g S g^{-1} \) for \(g = (x_1 x_2) (B_1 B_2) \)

- \(S'(x_1) = S(x_1) \)
- \(S'(B_1) = B_2 + S(B_1) \)

So, from the claim \(S, S' \in N \) with \(S^{-1} S' \neq id \) and \(S^{-1} S' (i) = i \)

Then \(S^{-1} S' \in N \cap H \), which finishes the proof.

Q.E.D.