Prove \(R \text{ U.F.D} \Rightarrow RC \text{K} \text{ U.F.D} \)

Recall we proved:

Gauss's Lemma

Let \(R \) be a U.F.D with quotient field \(\mathbb{Q} \). Let \(p(x) \in RC \text{K} \). Then if \(p(x) \) is reducible in \(\mathbb{Q} \text{K} \), it is also reducible in \(RC \text{K} \).

Greatest Common Divisors in UFD's

Let \(R \) be an integral domain.

Definition Let \(a \neq 0 \in R \). We say \(d \mid a \) is a divisor of \(a \) if \(a = bd \) for some \(b \in R \).

Now let \(a, b \) be nonzero elements of \(R \).

A **gcd** or greatest common divisor...
of \(a, b \) is an element \(d \) such that

(i) \(d \mid a \) and \(d \mid b \)

(ii) If \(c \mid a \) and \(c \mid b \) then \(c \mid d \)

Lemma

Let \(a, b \) be nonzero elements of \(\mathbb{R} \). Suppose \(d_1 \) and \(d_2 \) are both gcd \(a, b \). Then \(d_1 \) is an associate of \(d_2 \) i.e. \(d_1 = u d_2, u \in \mathbb{R} \) a unit.

If we have \(d_1 \mid d_2 \) and \(d_2 \mid d_1 \), by definition, so

\[
d_1 = \alpha d_2, \quad d_2 = \beta d_1
\]

\[
\Rightarrow \quad d_1 = \alpha \beta d_1
\]

Let \(d_1 \) be so by cancellation \(\alpha \beta = 1 \)

So \(\alpha, \beta \) are units and \(d_1 \) is an associate of \(d_2 \).
Then let \(R \) be a UFD. Then any two non-zero elements \(a, b \in R \) have a GCD.

Proof

Factorize \(a = u_1 x_1 \cdots x_r \)

\(b = u_2 y_1 \cdots y_s \)

\(u_1, u_2 \) units, \(x_1, y_1 \) irreducible.

Let \(\mathcal{P} = \{ P_1, \ldots, P_n \} \) be a collection of pairwise non-associate irreducible elements s.t. each irreducible factor of \(a \) and \(b \) is an associate of some \(P_i \).

This set can be formed as such:

If \(P_i = x_i \). Then let \(P_2 \) be the first element of \(\{ x_2, \ldots, x_i, y_1, \ldots, y_s \} \) not an associate of \(x_i \).
Let p_3 be the first element after p_2 not an associate of p_1, p_2 etc... so we can write

$$a = c_1 \cdot p_1 \cdots p_n$$

$$b = c_1 \cdot p_1 \cdots p_n$$

for integers \(c_i, p_i \geq 0 \)

Set \(d = \min \{ p_1, p_2 \cdots p_n \} \) so... we claim \(d \) is a gcd of \(a, b \).

Obviously \(d | a, d | b \).

Suppose \(e | a, e | b \).

Let \(e = e_1 e_2 \cdots e_{n+1} \in \mathbb{Z} \) be a factorization of \(e \)
Each \(q_i \mid e \Rightarrow q_i \mid a, q_i \mid b \)

But \(q_i \) is prime (i.e., \(\mathbb{Z}_{p_i} \) prime in \(\mathbb{Z}_{p_i} \))

So \(q_i \) must divide some irreducible \(p_j \)

i.e., \(q_i \) and \(p_j \) are associated.

So we can write

\[
e = c_1 \cdot p_1 \cdots p_n
\]

\(c_i \) are units \(\Rightarrow c_i \geq 0 \) integers

But \(e \mid a, e \mid b \Rightarrow c_i \leq e_i \)

\(c_i \leq e_i \)

So \(c_i \leq \min \{e_i, f_i\} \Rightarrow e_i \)

\[\Rightarrow e \mid d.\]

Definition: let \(R \) be a U.F.D.
A polynomial \(p(x) \in \mathbb{F}[x] \) is said to be primitive if the gcd of its coefficients is 1.

Proposition

Let \(R \) be a U.F.D and \(\mathbb{Q} \) its field of fractions. Let \(p(x) \in \mathbb{F}[x] \) be primitive. Then \(p(x) \in \mathbb{F}[x] \) is irreducible if and only if \(p(x) \in \mathbb{Q}[x] \) is irreducible in \(\mathbb{Q}[x] \).

Proof

If \(p(x) \in \mathbb{Q}[x] \) is reducible then by Gauss' lemma, \(p(x) \in \mathbb{F}[x] \) is reducible.

Conversely, suppose \(p(x) = A(x)B(x) \in \mathbb{F}[x] \).
is reducible, where $A(x), B(x)$ are not units. Since $p(x)$ is primitive, neither $A(x)$ nor $B(x)$ can be constant polynomials (else the coefficients would be divisible by this non-unit constant).

Thus $A(x), B(x)$ are nonunits in $\mathbb{Q}[x]$ (as they are nonconstant)
so $p(x) \in \mathbb{Q}[x]$ is reducible.

Tim

Let R be a UFD. Then $R[x]$ is a UFD.

Proof

Let $p(x) \in R[x]$. Let $d \in R$ be the
gcd of the coefficients of $p(x)$.
\[p(x) = d q(x) = q(x) \text{ primitive} \]

If \(R \) is a UFD, \(d \in R \Rightarrow \text{can factor} \ \ d \in R \\
\]

as a product \(d = u_1 d_1 \cdots d_n \), \(d_i \) irreducible

Further \(d_i \in R[\mathbb{C}] \) still irreducible

(\(u \) is constant) and the factorization

\(d = u_1 d_1 \cdots d_n \in R[\mathbb{C}] \) is still

esentially unique for the same reason.

So it suffices to show that the

primitive polynomial \(q(x) \) has an essentially

unique factorization.

Let \(Q \) be the field of fractions of \(R \),

then \(Q[\mathbb{C}] \) is a P.I.D. and so

\(Q[\mathbb{C}] \) is a U.F.D.

Now recall that in the course of
Proving Gauss’s Lemma we showed, if \(p(x) = A(x) B(x) \), \(A(x), B(x) \in \Omega[x] \) nonunits,

then there exist \(\alpha, \beta \in \Omega \) s.t.

\[a(x) := \alpha A(x) \in \mathcal{R}[x] \]

\[b(x) := \beta B(x) \]

and \(p(x) = a(x) b(x) \) is reducible.

Thus if \(p(x) \) is a \(\mathcal{R}[x] \) monic

\[p(x) = A_1(x) \cdots A_n(x) \]

is a factorization into irreducibles in \(\mathcal{R}[x] \).

If \(\mathcal{Q}[x] \)
we have a factorization

\[p(x) = q_1(x) \cdots q_m(x) \in \mathcal{Q}[x] \]

\[q_i(x) \in \mathcal{Q}[x] \]

\[q_i(x) = \alpha \in \mathcal{Q} \]

\[q_i(x) = \alpha A_i(x) \]

\[\alpha, \alpha \in \mathcal{Q}, \alpha \]
For $f(x)$ primitive
\[p(x) \quad \text{primitive} \quad \Rightarrow q_i(x) \quad \text{primitive} \quad \forall 1 \leq i \leq n \]

As $A_i(x) \in \mathbb{Q}[x] \text{ is irreducible,}$

so is $q_i(x) \in \mathbb{Q}[x] \Rightarrow q_i(x) \text{ is irreducible}$

is irreducible (by Prop. above)

so we have a factorization of $p(x)$ by irreducible

Next time $p(x) = q_1(x) \ldots q_n(x) \in \mathbb{Q}[x]$ is

unique.