Theorem

\[\text{R UFD } \Rightarrow \text{ R[x] UFD} \]

Proof

(i) Existence of factorization

Last time saw it suffices to show existence of factorization for \(p(x) \in \mathbb{F}[x] \) primitive.

Let \(\mathbb{Q} \) be the field of fractions of \(\mathbb{R} \).

If \(\mathbb{Q}[x] \) is a P.I.D. \(\Rightarrow \mathbb{Q}[x] \) is a U.F.D.

If \(p(x) = A(x)B(x) \), \(A(x), B(x) \in \mathbb{Q}[x] \) units

Then we showed (Gauss' Lemma)

\[\exists a, b \in \mathbb{Q} \quad \text{s.t.} \quad a(x) = aA(x) \in \mathbb{R}[x] \]

\[b(x) = bB(x) \in \mathbb{R}[x] \]
and $p(x) = a(x) b(x)$

Then if $p(x) = A_1(x) \ldots A_n(x)$ is a factorization into irreducibles in the UFD $R(x)$

Have $p(x) = a_1(x) \ldots a_n(x)$

$a_i(x) \in R_i(x) \subset R(x)$ for some

$k \in \mathbb{Q}$

Further $p(x)$ primitive $\Rightarrow a_i(x)$ primitive

Hence

$A_i(x) \in \mathbb{Q}[x]$ irreducible

$\Rightarrow a_i(x) \in \mathbb{Q}[x]$ irreducible (as $a_i(x)$ primitive)

So have factorized $p(x)$ as a product of irreducibles.

(Cii) Uniqueness of factorization

Notice that $a_i(x) \in \mathbb{Q}[x]$ irreducible and $\deg a_i(x) \geq 1$
$\Rightarrow a_i(x)$ primitive.

Suppose

$p(x) = r_1 \cdots r_n \; a_1(x) \cdots a_n(x)$ is a

factorization into irreducibles, $\deg r_i = 0$, $\deg a_i(x) \geq 1$

Then $r_1 \cdots r_n$ = gcd of coeffs of $p(x)$

($= \text{"content" of } p(x)$)

and $a_1(x) \cdots a_n(x)$ is primitive.

(else $f \mid p$ prime dividing each a_i

as $\mathbb{R} \text{ UFD } \Rightarrow d \mid a_i$ for some $d \in \mathbb{R}$)

\mathbb{R} UFD, r_i's are the essentially unique

prime factors of the content of $p(x)$ so

it suffices to show, if

$q(x) := a_1(x) \cdots a_n(x)$ primitive, $\deg q \geq 0$

then the factorization of the primitive poly $q(x)$

is unique,

let $q(x) = b_1(x) \cdots b_m(x)$, $b_i \in \mathbb{R}[x] \text{ irreduc}

poly$.

As \(q \) is primitive, \(b_i(x) \) are all primitive.

By uniqueness of factorization in \(\mathbb{Q}(\sqrt{d}) \),

we can assume \(n = m \) and \(a_i(x) \) is

associated to \(b_i(x) \) in \(\mathbb{Q}(\sqrt{d}) \), i.e.,

\[
\exists \delta \in \mathbb{Q} \quad \text{s.t.} \quad a_i(x) = \delta \cdot b_i(x)
\]

\[
\text{for } x_i, y_i \in \mathbb{R}
\]

\[
y_i \cdot a_i(x) = x_i \cdot b_i(x)
\]

As \(a_i, b_i \) primitive, the gcd of the

coefficients ("content") of \(y_i \cdot a_i(x) \) is \(y_i \)

whereas the content of \(x_i \cdot b_i(x) \) is \(x_i \).

As the gcd is unique up to

associate,

\(x_i \) and \(y_i \) are associated

\(\Rightarrow \ x_i / y_i \in \mathbb{R}^* \) is a unit in \(\mathbb{R} \)
\[a_i(x), b_i(x) \text{ are associates in } \mathbb{R}[x] \]

Euclidean Domains

Definition

An integral domain \(R \) is called an **integral domain** if there is a function \(N : R \to \mathbb{Z}_{\geq 0} \) with \(N(0) = 0 \) and \(N(x) > N(y) \) for all \(x, y \in R \) with \(x \neq y \). We can find \(q, r \in R \) such that

\[a = qb + r \]

with \(r = 0 \) or \(N(r) < N(b) \).

The function \(N \) is called the **norm**.

Examples

(i) \(\mathbb{Z} \) with \(N(a) = |a| \)

(ii) \(F[x] \) with \(F \) a field and
\[N(p(x)) = \deg p(x). \]

Two main facts we will prove:
(i) Every Euclidean domain is a PID
(ii) Have an algorithm (the Euclidean algorithm) to compute the gcd in a Euclidean Domain

THEM R Euclidean Domain

\[\Rightarrow R \text{ P.I. D} \]

If let \(I \neq (0) \) CR be an ideal.
Let \(d \in I \) be an nonzero element with minimum norm \(N(d) \).
We claim \((d) = I\). Let \(a \in I \).
Then \(r \leq r \) with \(a = qd + r \) and \(r = 0 \) or \(N(r) < N(d) \). As \(r = a - qd \in I \)
and if the minimum norm, we must have \(r = 0 \Rightarrow a \in \mathfrak{c}(d) \).

As \(R \neq \mathfrak{d} \Rightarrow R \neq \mathfrak{u} \neq \mathfrak{d} \)
we may talk about the gcd of two elements \(a, b \in R \setminus \{0\} \) (gcd is defined up to associates).

Proposition: Let \(R \) be E.D. and \(a, b \) nonzero elements of \(R \). Then any generator of \((a, b) \) is a gcd of \(a, b \).

Proof: Suppose \((a, b) = (d) \).

Then \(a \in (d), \ b \in (d) \Rightarrow d \mid a \) and \(d \mid b \).

Suppose \(e \mid a \) and \(e \mid b \)

i.e. \(a = xe, b = ye \) so \((a, b) \leq (e) \).

Then \((d) \leq (e) \Rightarrow d = ye \)

\[\Rightarrow e(d). \]
The Euclidean Algorithm is as such:

Let \(a, b \in \mathbb{R} \) an E.D. / 6 to 1

Then we can write:

\[
\begin{align*}
\qquad a &= q_0 b + r_0 \quad (0) \\
\qquad b &= q_1 r_0 + r_1 \quad (1) \\
\qquad r_0 &= q_2 r_1 + r_2 \quad (2) \\
\qquad r_1 &= q_3 r_2 + r_3 \quad (3) \\
\vdots & \quad \qquad \vdots \\
\qquad r_{n-2} &= q_n r_{n-1} + r_n \quad (n) \\
\qquad r_{n-1} &= q_{n+1} r_n \quad (n+1)
\end{align*}
\]

where \(r_n \) is the last nonzero remainder.

This algorithm always terminates after finitely many steps because

\[N(b) \geq N(r_0) > N(r_2) > N(r_3) \mathrel{\ldots} \]

and any sequence of integers \(\geq 20 \)
eventually reaches 0.

Thus let \(r_n \) be the last nonzero remainder in the Euclidean Algorithm above. Then \(r_n \) is a gcd of \(a, b \).

From (n+1) we see

\[r_{n-1} \in (r_n). \]

But then (n) shows

\[r_{n-2} = q_n r_{n-1} + r_n \in (r_n) \]

Then (n-1):

\[r_{n-3} = q_{n-1} r_{n-2} + r_{n-1} \in (r_n) \]

\[\Rightarrow r_{n-3} \in (r_n) \]

and so (in general \(r_{n-k} = q_{n-1} r_{n-2} + r_{n-1} \in (r_n) \))

on

and the terms \(r_{n-k+1}, r_{n-k+2} \in (r_n) \) by
induction on Γ_{n+2}, \(c = 9 \), \(\ldots, n+2 \\
\Gamma_1 = 5, \quad \Gamma_2 = 9 \)

Thus \(a, b \in (\Gamma_n) \) and \(\Gamma_n \) is a common divisor, i.e., \((9, 5) \leq (\Gamma_n) \)

It suffices to show \(m \in (9, 5) \)

(0) shows \(m \in (9, 5) \). Then (1) shows \(m \in (9, 5) \). Continuing in this way (by induction) \(m \in (9, 5) \)

\[\square \]