Recall we were constructing the sign homomorphism \(\eta : S_n \to \mathbb{Z}_2 \), we defined the function \(\eta \) as such: let \(\alpha = \alpha_1, \ldots, \alpha_n \) be a complete factorization and

\[
\eta(\alpha) = (-1)^{n-r}
\]

If \(\gamma = (a, b) \) is a transposition, we saw that \(\eta(\gamma) = -1 \)

Now, if \(\alpha = (a_1, \ldots, a_r) \) then

\[
\alpha = (a_1, a_r)(a_1, a_{r-1}) \ldots (a_1, a_2)(a_1, a_1)
\]

Hence any cycle (and thus any permutation) can be written as a product of transpositions.
This holds if \(\beta \in S_n \). Then \(\text{sgn}(\alpha \cdot \beta) \)
\[
= \text{sgn}(\alpha) \cdot \text{sgn}(\beta)
\]

pf

As any permutation can be written as a product of transpositions, it suffices to consider the case \(\alpha \cdot \beta \) is a transposition (\(\alpha \) then \(\text{sgn}(T_1 \cdots T_m \cdot \beta) \))
\[
= \text{sgn}(T_1) \cdot \text{sgn}(T_1 \cdots T_m) \cdot \text{sgn}(\beta)
\]
\[
= \text{sgn}(T_1) \cdots \text{sgn}(T_m) \cdot \text{sgn}(\beta)
\]
\[
= \text{sgn}(T_1 \cdots T_m) \cdot \text{sgn}(\beta)
\]
\[
= \text{sgn}(\alpha) \cdot \text{sgn}(\beta)
\]

So suppose \(\alpha = (a \ b) \) and let
\(\beta = B_1 \cdots B_r \) be a complete factorization
Then \(a, b \) appear in precisely one cycle
Case 1: a and b appear in the same cycle B_i.
Writing $B_i = (a \ c_i \ \cdots \ c_e \ b \ c_{e+1} \ \cdots \ c_m)$ we compute

$$AB_i = (a \ b) (a \ c_i \ \cdots \ c_e \ b \ c_{e+1} \ \cdots \ c_m)
$$

$$= (a \ c_i \ \cdots \ c_e \ b \ c_{e+1} \ \cdots \ c_m)$$

Thus, the complete factorization of AB_i is a product of $(n+1)$ disjoint cycles and $\text{sgn}(AB_i) = -\text{sgn}(B) = \text{sgn}(A) \text{sgn}(B)$

Case 2: a and b appear in distinct cycles B_i and B_j.

$$B_i = (a c_i \ \cdots c_e) \ B_j = (b c_{e+1} \ \cdots c_m)$$

$$\ (a \ b) (a c_i \ \cdots c_e) (b c_{e+1} \ \cdots c_m)
$$

$$= (a c_i \ \cdots c_e b c_{e+1} \ \cdots c_m)$$
To each fact, \(\det AB \) is a product of
\(n-1 \) disjoint cycles and \(\text{sgn}(AB) = -\text{sgn}(B) \) if

Let \(k = \mathbb{Q} \) or \(\mathbb{R} \).
Let \(GL_n(k) \) be the set of all
n\times n \text{ matrices with non-zero determinant}
is a group with product given by
matrix multiplication.
The function \(\det: GL_n(k) \rightarrow k^* \)
\(\det(A \cdot B) = \det(A) \cdot \det(B) \)

and hence is a homomorphism.

Subgroups

Let \(H \) be a subset of a group \(G, \cdot \)
we say \(H \) is a subgroup if the
following hold: (i) \(H, \cdot \) is a
"
(i) \(H \times \mathbb{C}H, \ x^{-1} \in H \)

Notice that if \(H \) is a subgroup, then \(H \) is itself a group with respect to the operation \(* \). If \(H \) is a subgroup in \(G \), we write \(H \leq G \).

Examples / Nonexamples

(i) The set \(\mathbb{Z} \) of even integers is a subgp of \(\mathbb{Z} \) (how about odd integers?)

(ii) \(\mathbb{Q} \) is not a subgp of \(\mathbb{Q} \)

(iii) Let \(SL_n(\mathbb{F}) \) be the subset of \(GL_n(\mathbb{F}) \) consisting of matrices \(A \) with \(\det A = 1 \). Then \(SL_n(\mathbb{F}) \leq GL_n(\mathbb{F}) \).

(iv) The set of even permutations \(\Sigma \in S_n | \text{sgn}(\Sigma) = 1 \) is a subgp of \(S_n \).
Prop (The Subgroup Criterion)
A subset \(H \) of a group \(G \) is a subgroup if and only if \(\forall x \in H \) and \(\forall y \in H \),
\(xy \in H \) and \(y^{-1} \in H \).

Proof: If \(H \leq G \), then \(H \) is a group if
\(\forall x \in H \) and \(\forall y \in H \),
\(xy^{-1} \in H \) and \(x^{-1} \in H \).

Suppose \(\forall x \in H \), \(\forall y \in H \), \(xy^{-1} \in H \).
Then, setting \(x = 1 \), we see that \(\forall y \in H \), \(y^{-1} \in H \)
(assump. (iii) of subgp.). Now if \(xy \in H \)
then \(x, y^{-1} \in H \) and \((xy)^{-1} = x(y^{-1})^{-1} \)
so \(xy \in H \) which is assump. (iii).

If \(n \) is an integer and \(x \in G \),
then we define \(x^n = x \cdot x \cdots x \quad (n \text{ copies}) \),
\(x^0 = 1 \), \(n \in \mathbb{Z} \),
\(x^{-n} = (x^n)^{-1} \quad (n < 0) \).
The cyclic subgroup \(\langle x \rangle \) generated by \(x \) is the subgroup
\[\{ x^n \mid n \in \mathbb{Z} \} \]

Clearly \(\langle x \rangle \) is a subgroup of \(G \).

Let \(x \in G \) (\(G \) a gp). The order \(|x| \) of \(x \) is defined to be the least positive integer \(n \) s.t. \(x^n = 1 \). If \(|x| \) is not a positive integer, we say that the order is infinity.

Prop.
Let \(x \in G \). Then \(|x| = \) the number of elements in \(\langle x \rangle \).

Pf. If \(|x| = 1 \) then \(|x| = 1 = \# \langle x \rangle \).
So suppose \(|x| > 1 \), let \(m \) be non-negative integers and suppose \(0 \leq l \leq m \in \langle x \rangle \).
Then \(x^e + x^m \). Indeed, if \(x^e = x^m \)
then \(x^{m-e} = 1 \) contradicting that \(m-e < |x| \).

Then the set \(\{ x^1, x^2, \ldots, x^{|x|-1} \} \) consists of \(|x|\) distinct elements. It suffices to show \(\exists (x_1 x_2 \cdots x_r) \Rightarrow \exists (x) \)

So let \(x^n \in \langle x \rangle \). Write
\[
h = m \mid x \mid + r, \quad 0 \leq r < |x|
\]

using the division algorithm.

Then \(x^n = x^{m\mid x \mid + r} = x^m \cdot x^r \).

\[
\begin{align*}
\Rightarrow x^r & \in \langle x \rangle \\
\Rightarrow x^r & \in \{ x^1, x^2, \ldots, x^{|x|-1} \}
\end{align*}
\]

Prop: Let \(H_i : \forall i \geq 1 \) be any family of subgroups of \(G \) then the intersection \(\cap H_i \)
is a subgp of G.

Proof. Let $x, y \in \bigcap H_i$. Then $x y^{-1} \in H_i$ for all i. Thus $x y^{-1} \in \bigcap H_i$.

But then $x y^{-1} \in \bigcap H_i$.

So $\bigcap H_i \leq G$. \[\text{i.f.} \quad G.\]

Now let X be any subset of G.

The subgroup generated by X, written $\langle X \rangle$, is defined to be the intersection of all subgroups $H \leq G$ containing the set X.

$$\langle X \rangle = \bigcap \{ H \leq G \mid X \subseteq H \}.$$

Notice that if H is a subgroup of G containing X, we have
\langle x \rangle \leq H

Hence \langle x \rangle \text{ is the smallest subgroup of } G \text{ containing } x.