Prop Let \(\mathcal{A} \colon \{ I \} \) be any family of subgroups of \(G \). Then the intersection \(\bigcap_{i \in I} H_i \) is a subgroup of \(G \).

Proof: Let \(x, y \in \bigcap_{i \in I} H_i \).

I.e., \(x, y \in H_i \) \(\forall i \in I \).

Thus \(xy^{-1} \in H_i \) \(\forall i \in I \) (\(H_i \) subgroup).

\(\Rightarrow xy^{-1} \in \bigcap_{i \in I} H_i \).

So \(\bigcap_{i \in I} H_i \subseteq G \)

let \(X \subseteq G \) be any subset
The subgroup generated by \(x \), written \(\langle x \rangle \), is defined to be the intersection of all subgroups \(H \leq G \) containing the set \(x \);

\[
\langle x \rangle = \bigcap \{ H \leq G \mid x \in H \}
\]

Notice that \(\langle x \rangle \) is a subgroup (by the previous Proposition) containing \(x \) and if \(H \) is any subgroup containing \(x \), then \(\langle x \rangle \leq H \). Thus \(\langle x \rangle \) is the smallest subgroup of \(G \) containing \(x \).

In case \(x = \exists x^2 \), then \(\langle x \rangle \) is the cyclic subgroup \(\langle x \rangle \) generated by \(x \), (because any subgroup containing \(x \) must contain all powers \(x^n \) of \(x \)).
If \(X \) is any set, then we can describe all elements of the subgroup \(\langle X \rangle \) generated by \(X \). If \(X = \emptyset \) then \(\langle X \rangle = \{ e \} \) is the trivial group, so take \(X = \emptyset \).

A word on \(X \) is an element
\[
e^1, \ldots, x^n, x^m \in G
\]

where \(e = 1 \), \(x \in X \), \(n \) any pos. integer.

Then \(\langle X \rangle \) is the set of all words on \(X \). (check)

Cyclic Groups

Define: A group \(G \) is cyclic if there exists an element \(g \in G \) such that \(G = \langle g \rangle \).

Example: \(\mathbb{Z} \) is cyclic with generator 1. It has infinite order.
Prop 2: If the unique cyclic group of infinite order, that is, if $G = \langle x \rangle$, where x has infinite order, then we have an isomorphism

$$\phi: \mathbb{Z} \rightarrow \langle x \rangle$$

$$n \mapsto x^n$$

Proof: The function ϕ is a homomorphism

Since $\phi(a + b) = x^{a+b} = x^a \cdot x^b = \phi(a) \cdot \phi(b)$

It is surjective by the definition of $\langle x \rangle$.

It remains to show it is injective.

Suppose $\phi(a) = \phi(b)$. Then $x^a = x^b$

$$\Rightarrow x^{a-b} = 1$$

As x has infinite order, this implies $a = b$ (else x^{a-b} for some $n > 0$).

So ϕ is injective.
Finite subgroups can be characterized entirely in terms of their order.

Proposition

Let $G = \langle x \rangle$ and $H = \langle y \rangle$ be two cyclic groups with $|x| = |y|$. Then we have an isomorphism $\varphi : G \to H$ such that $x^k \mapsto y^n$, for $n \leq |x| - 1$.

Proof

Recall that $G = \{1, x, \ldots, x^{\frac{|x|-1}{2}}\}$ and $H = \{1, y, \ldots, y^{\frac{|y|-1}{2}}\}$.

We see that φ is bijective. To show it is a homomorphism, firstly let $n \in \mathbb{Z}$ be an integer and write $n = m|x| + r$, $0 \leq r < |x|$. Then

\[x^n = (x^{|x|})^m x^r = y^{m|x|} x^r = y^n x^r\]
Then \(f(x^n) = f(x^r) = y^n = y^r \)

valid for any \(n \in \mathbb{Z} \)

Thus \(f(x^n \cdot x^m) = f(x^{n+m}) = y^{n+m} = y^n \cdot y^m \)

\(= f(x^n) \cdot f(x^m) \)

Notice that groups of order \(n \) exist for any \(n \geq 0 \):
\[\exists \mathbb{Z}_{m(\mathbb{Z}_n)} \mid m \in \mathbb{Z} \geq f \]

is a group of order \(n \)

We write the cyclic group as \(\mathbb{Z}_n \).

If \(a, b \in \mathbb{Z} \) and \(d = \gcd(a, b) \) is their gcd,

then \(d = ra + sb \) for integers \(r, s \) by the Euclidean algorithm.
The following proposition describes the order of any element of a cyclic group. First we need:

Lemma.

Let $G = \langle x \rangle$ be a cyclic group and $n = |x| < \infty$. Suppose $x^m = 1$. Then n divides m.

Proof. Set $d = \gcd(n, m)$.

So $d = mn + sm$ \quad \text{where } s \in \mathbb{Z}$

$x^d = x^m \cdot x^{sm} = 1$

As $d \mid n$ we have done by the definition of $|x|$.

Thus let $G = \langle x \rangle$ be a cyclic group and $n = |x| < \infty$. Then $|x^m| = \frac{n}{\gcd(m,n)}$.

pf Let \(d = \gcd(m, n) \)

\[m = ad \quad n = bd \quad \text{for} \]

coprime integers \(a, b \). So \(b = \frac{n}{\gcd(m, n)} \)

we have \(x^m b = x^{ad} b = x^{ad} \)

\[(x^m)^b = x^b = x^{an} = 1 \]

Thus, the lemma above \(|x^m| \) divide \(b \).

Set \(c = |x^m| \)

Then \(1 = x^m \cdot c \quad \Rightarrow \quad |x| \quad \text{divide} \quad mc \)

\[n \mid mc \quad \Rightarrow \quad b \mid ac \]

\[bd = ad \cdot c \]

As \(\gcd(a, b) = 1 \) this implies \(b \mid (x^m) \)

Thus \(|x^m| = b \quad (a, \ b, \ |x^m| = b \quad \text{as well}) \)

as required.