Math 120. Groups and Rings
Midterm Exam (November 8, 2017)

2 Hours

Name: _______________________

Please read the questions carefully. You will not be given partial credit on the basis of having misunderstood a question, and please show all work.

If your solution does not fit in the indicated space, please use the back of the same page. This is a closed book exam.

There are 7 questions giving a total of 105 points in this midterm.

You must sign below (indicating your agreement with) the following honor pledge: I pledge my honor that I have not used electronic machines of any sort, contact with other human beings, or any references for mathematical assistance in connection with my work on this exam.

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105</td>
<td></td>
</tr>
</tbody>
</table>
1. The cycle type of a permutation $\sigma \in S_n$ is the list (m_1, \ldots, m_r), where the m_i are the lengths of disjoint cycles in the complete factorization of σ, ordered such that $m_1 \leq m_2 \leq \ldots \leq m_r$.

(i) (10 pts) Suppose two permutations σ and σ' in S_n are conjugate (i.e. $\sigma' = g \sigma g^{-1}$ for some $g \in S_n$). Show that σ and σ' have the same cycle type.

Answer: If $\alpha, \beta \in S_n$ then $(g \alpha g^{-1})(g \beta g^{-1}) = g \alpha \beta g^{-1}$. Now observe
\[g(\alpha_1, \ldots, \alpha_r)g^{-1} = (g(\alpha_1), \ldots, g(\alpha_n)). \]
Thus if $(\alpha_1, \ldots, \alpha_r)$ is an r-cycle, then $g(\alpha_1, \ldots, \alpha_r)g^{-1}$ is an r-cycle, and disjoint cycles are left disjoint under conjugation.

This formula will be used again in Q2.

(i) (5 pts) Show that any two 3-cycles in A_n are conjugate for $n \geq 5$.

Answer: See notes to Lecture 12, page 1.
2. (i) (12 pts) Show that S_n, $n \geq 2$ is generated by the two elements $(1, 2, \ldots, n)$ and $(1, 2)$.

Answer: We need to show $\langle (1, 2, \ldots, n), (1, 2) \rangle$ includes all permutations (i, j). Applying the formula we worked out in the course of Q1(i),

$$(1, \ldots, n)(i, i + 1)(1, \ldots, n)^{-1} = (i + 1, i + 2),$$

so $\langle (1, 2, \ldots, n), (1, 2) \rangle$ includes $(1, 2), (2, 3), \ldots, (n - 1, n)$. Next $(2, 3)(1, 2)(2, 3)^{-1} = (1, 3), (3, 4)(1, 3)(3, 4)^{-1} = (1, 4)$ etc, so $\langle (1, 2, \ldots, n), (1, 2) \rangle$ includes $(1, 2), (1, 3), \ldots, (1, n)$. Lastly, $(i, j) = (1, i)(1, j)(1, i)^{-1}$.

(ii) (3 pts) Show that the alternating group A_n is generated by 3-cycles for $n \geq 3$.

Answer: See notes to Lecture 12, page 2.
3. (i) (2 pts) Show S_n has the same number of even permutations as of odd permutations.

 Answer: See notes to Lecture 9, page 7.

 (ii) (2 pts) Let H be a subgroup of a group G. Show that the number of *left* cosets of H in G equals the number of *right* cosets of H.

 Answer: See notes to Lecture 6, page 8.

 (iii) (2 points) Do there exist groups of infinite order such that each element has *finite* order? Justify with either a proof or an example.

 Answer: Yes, e.g. \mathbb{Q}/\mathbb{Z}.

 (iv) (2 pts) Show that if G is a group such that every non-identity element has order 2, then G is abelian.

 Answer: We have $a^{-1} = a$ for all $a \in G$. So $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.

 (v) (3 pts) State and prove the Class Equation on the order of a finite group.

 Answer: See notes to Lecture 13, page 9.

 Answer: See notes to Lecture 15, page 9.
4. (i) (10 pts) A Mersenne prime is a prime number \(p = 2^n - 1 \) for some integer \(n \). Suppose \(2^n - 1 \) is a Mersenne prime and \(G \) is a finite group of order \(2^n(2^n - 1) \). Show that \(G \) is not simple.

Answer: Suppose \(G \) is simple. Then \(n_p > 1 \), \(n_p = 1 \mod p \) and \(n_p \) divides \(|G| \), so \(n_p = 2^n \). This gives \(2^n(p-1) \) elements of order \(p \). But any Sylow 2-group has \(2^n \) elements, none of which have order \(p \), so we have found \(|G| = 2^n(p-1) + 2^n \) elements. In particular, \(n_2 = 1 \) contradicting that \(G \) is simple.

(ii) (5 pts) Prove if that if a prime number \(p \) does not divide an integer \(a \) then \(a^{p-1} = 1 \mod p \).

Answer: See notes to Lecture 8, page 7.
5. (i) (6 pts) Let H be a finite abelian p-group, for a prime p (i.e. $|H| = p^n$ for some $n \geq 1$). Let r_H denote the number of elements of order p in H. Show $r_H = -1 \mod p$.

Answer: The set $S = \{1\} \cup \{\text{elements of order } p\}$ forms a subgroup, hence $|S| = 0 \mod p$ and thus $1 + r_H = 0 \mod p$.

(ii) (1 pt) Let G be a finite p-group, not necessarily abelian. If $g \in G$ has order p, show the same is true for all of its conjugates hgh^{-1}, $h \in G$.

Answer: $(hgh^{-1})^p = hg^p h^{-1}$.

(iii) (6 pts) Let G be as in (ii). Show that the number of elements r_G of order p in G satisfies $r_G = -1 \mod p$.

Answer: The number of elements $x \in Z(G)$ of order p equals -1 modulo p. Now suppose $x \notin Z(G)$ has order p. By the above, its entire conjugacy class consists of elements of order p, and this conjugacy class has size a positive power of p, i.e. this class has size equal to 0 modulo p. Thus $r_G = -1 \mod p$.

(iv) (2 pts) Let G be as in (ii), (iii). Let S_G be the number of subgroups of G of order p. Show $S_G = 1 \mod p$.

Answer: By the usual counting trick, $S_G(p - 1) = r_G$ which immediately gives the claim.
6. (i) (5 pts) Let \(G \) be a group and let \(Z(G) = \{g \in G \mid hg = gh \text{ for all } h \in G\} \) denote the center. Prove that if \(G/Z(G) \) is cyclic then \(G \) is abelian.

Answer: This is done in Lecture 14, page 5.

(ii) (5 pts) Let \(G \) be a finite \(p \)-group, for a prime \(p \) (i.e. \(|G| = p^n \) for \(n \geq 1 \)). Show that \(Z(G) \) is non-trivial.

Answer: This is done in Lecture 14, page 4.

(iii) (5 pts) Let \(G \) be a group of order \(p^2 \), for a prime \(p \). Show that \(G \) is abelian.

Answer: This is done in Lecture 14, page 4.
7. Let F be a field and consider the polynomial ring $F[x]$ in one variable. Recall that for any $\alpha \in F$, the evaluation homorphism $ev_\alpha : F[x] \to F$ is defined by $ev_\alpha(p(x)) = p(\alpha)$ for any polynomial $p(x) \in F[x]$.

(i) (3 points) Prove that the kernel of ev_α is the ideal $(x - \alpha) = \{r(x - \alpha) \mid r \in F[x]\}$.

You may use without proof the following fact: any ideal $I \subseteq F[x]$ is generated by a single polynomial $f(x) \in F[x]$, i.e. $I = (f(x))$.

Answer: The kernel is not everything (why?), so ker(ev_α) = $(f(x))$ where deg(f) > 0 and $(x - \alpha) \in$ ker(ev_α), so $(x - \alpha) = g(x)f(x)$. Comparing degrees, must have deg(g) = 0 so $(x - \alpha) = (f(x))$.

(ii) (2 points) A root of a polynomial $p(x) \in F[x]$ is an element $\alpha \in F$ such that $ev_\alpha(p(x)) = 0$.

Let $p(x) \in F[x]$. Show that we may write $p(x) = q(x)r(x)$ for polynomials $q(x), r(x) \in F[x]$ with deg $q(x) = 1$ if and only if $p(x)$ has a root in F (deg denotes the degree of the polynomial).

Answer: If $p(x)$ has a root α, $p(x) \in (x - \alpha)$ by (i) so $p(x) = (x - \alpha)r(x)$. Conversely, if $p(x) = (x - \alpha)r(x)$ for some α then obviously $p(x)$ has a root α.
(iii) (10 points) A polynomial \(p(x) \in F[x] \) is said to be irreducible if there do not exist polynomials \(q(x), r(x) \in F[x] \) with \(\deg q(x) \geq 1, \deg r(x) \geq 1 \) and \(p(x) = q(x)r(x) \).

Let \(F = \mathbb{Z}/2\mathbb{Z} \). Find all irreducible polynomials \(p(x) \in F[x] \) with \(\deg(p(x)) \leq 4 \).

Answer: This was intended mostly as a bonus question (a few people did at least sincerely attempt it).

Firstly, the constant polynomials 0, 1 and the linear polynomials \(x, x+1 \) are irreducible. For higher degrees, note that by (ii) any irreducible polynomial has no roots, i.e. \(f(0) \neq 0 \) (so the constant term is nonzero) and \(f(1) \neq 0 \). So let \(f(x) = x^2 + ax + 1 \) be a quadratic. It is irreducible if and only if \(f(1) \neq 0 \) (using (ii)), which happens precisely for \(x^2 + x + 1 \). For cubics \(f(x) = x^3 + ax^2 + bx + 1 \), then again (ii) shows \(f(x) \) is irreducible if and only if \(f(1) \neq 0 \) (*why?*), so \(x^3 + x^2 + 1, x^3 + x + 1 \) are all the irreducible cubics.

Lastly consider quartics \(f(x) = x^4 + ax^3 + bx^2 + cx + 1 \) with \(f(1) \neq 0 \) (which is necessary, but no longer sufficient, for irreducibility). By (ii) the only way such an \(f(x) \) could fail to be irreducible is if \(f(x) = g(x)h(x) \) for two quadratics with no roots, i.e. we must have \(f(x) = (x^2 + x + 1)^2 = x^4 + x^2 + 1 \). Thus \(x^4 + x^3 + x^2 + x + 1, x^4 + x^3 + 1, x^4 + x + 1 \) are all the irreducible quartics.