Curves Cont'd

Prop Let $\text{Pic}(C)$, C a sm. curve

(i) If $\deg L \geq 2g$, then L is globally generated.

(ii) If $\deg L \geq 2g+1$, then L is very ample.

If $M \in \text{Pic}(C)$ such that $\deg M \geq 2g+1$, then

$h^i(M) = h^0(wC \otimes M^*) = 0$ as

$\deg(wC \otimes M^*) < 0$

This if $\deg L \geq 2g$, $h^0(L) = h^0(\mathcal{O}(\varphi)) + 4g + 1$

by R-R

If $\deg L \geq 2g+1$, $h^0(L) = h^0(L - \varphi) + 2$ by R-R

Up to C

Let's now investigate the curve C more closely.
If $g = 0$, $\deg w_c = -2$ so w_c is not effective.
If $g = 1$, $w_c = \mathcal{O}_C$ which is glob. gen but not ample (it defines a cat. morp $\mathcal{C} \to \text{spec } b$)

What is $g \geq 2$?

Lemma

(If $g \geq 2$, we define a finite morphism $\mathcal{C} \to \mathbb{P}^1$)

Proof

As $\deg w_c > 0$, in this case, it suffices to show w_c is glob. gen.

I.e., $h^0(w_c(-p)) = g - 1 \forall p \in C$.

By RFA, $h^0(w_c(-p)) = h^i(\mathcal{O}_p)$.

$$h^0(\mathcal{O}(p)) - h^0(\mathcal{O}(p)) = 1 + 1 - g = 2 - g$$

So it suffices to show $h^0(\mathcal{O}(p)) = 1$.

Suppose $h^0(\mathcal{O}(p)) = 2$ ($g - 1 \leq h^0(w_c(-p)) \leq g$)
If \(h^0(\mathcal{O}(P)) = 2 \) then \(\mathcal{O}(P) \) is a line bundle, and we have \(C \to \mathbb{P}^1 \) of degree 1 \(\Rightarrow \mathbb{P}^1 \).

Def: \(C \) is said to be **hyperelliptic** if there is a morphism \(f: C \to \mathbb{P}^1 \) of degree 2.

E.g.
- If \(g = 2 \) then \(\deg C = 2 \) so \(\phi_{\mathcal{O}_C} : C \to \mathbb{P}^1 \) has \(\deg 2 \Rightarrow C \) is hyperelliptic.

Fact: There are hyperelliptic curves of each genus.

Thm: Assume \(g \geq 2 \). Then \(\mathcal{O}_C \) is very ample \(\iff C \) is not hyperelliptic.

Proof: Given \(c \geq 2 \) it follows \(h^0(\mathcal{O}_C(-D)) = g - 2 \) for any \(\mathcal{O}_C \) of degree 2.
\(h_0(\Theta(C)) - h_1(\Theta(C)) = 2 - 1 = 1 \)

\(h_0(\omega_C(-D)) = h_1(\omega(D)) = h_0(\Theta(C)) - g - 3 \)

So \((\Theta(C))_d \) has degree 2 with

\(h_0(\Theta(C)) = 2 \) \((h_0(\Theta(C)) \leq 2 \Rightarrow h_0(\omega_C(-D)) \leq g - 1) \)

If \(\omega \) has degree 1 \(g(\omega) > 0 \) then

\(h_0(\omega) \leq 1 \)

Thus \((\Theta(C))_d \) has degree 2 with \(h_0(\Theta(C)) = 2 \)

\((\Theta(C))_d \) is \(\Theta(C) \) with degree 2.

So \((\Theta(C))_d \) is plane quartic.

Conversely, suppose \((\Theta(C))_d \) is plane quartic.

Then \(N_{\omega} = O_{\omega}(4) \), so \(\omega_C \sim \omega_2 \otimes O_{\omega}(4) \)

\(\sim O_{\omega}(4) \)
\(\odot C \subset \mathbb{P}^2 \) is canonically embedded if \(\omega_C \) is very ample \(\implies \) \(C \) not hyperelliptic.

First let us state, without proof, Max Noether's Theorem:

Max Noether's Theorem

If \(C \) is not hyperelliptic then the restriction map

\[h^0(\mathbb{P}^2, \mathcal{O}(n)) \to h^0(C, \omega_C^\otimes n) \]

induced by \(C \hookrightarrow \mathbb{P}^2 \) are surjective.

i.e. \(\bigoplus h^0(C, \omega_C^\otimes n) \)

is the graded homogeneous coordinate ring of the canonically embedded curve \(C \).

The above is the first step towards understanding the structure of the canonical
We next want to prove Clifford's Theorem.

Let d_1, d_2 be effective divisors on a curve C.

Then $\dim (D_1 + d_2) \leq \dim (D_1 E) + 1$

Proof

Consider $H^0(C, \mathcal{O}(D_1)) \times H^0(C, \mathcal{O}(E))$

$$\rightarrow H^0(C, \mathcal{O}(D_1 E))$$

$(s_1, f) \mapsto s_1 f$

By diagonalizing we get a morphism

$$\phi : |D_1| \times |E| \rightarrow |D_1 E|$$

$(s_1, f) \mapsto s_1 f$

This map is obviously finite to one, a
there are only finitely many ways to decompose an divisor into 2 eff. divs.

Thus \(\dim(T_m E) = \dim(D) + \dim(E) \)
\(\leq \dim(D + E). \)

Clifford's Thm

Let \(D \) **be an effective divisor on** \(C \)
with \(h^0(D|D) > 0, \) \(g(C) \geq 1. \)

Then \(\dim(D|D) \leq \frac{1}{2} \deg(D), \) **with equality occurring** if and only if \(D = qD = cC \) **or** \(C \) **is hyperelliptic,** \(D = L^2 \) **for** \(L \) **a** \(2 \)-**gon** **on** \(C. \)

\(\text{C. i.e. } \deg f = 2, (q(C) \geq 2) \)

Proof

If \(D \) is effective \& \(h^0(D|D) > 0, \) \(cC - D \)

is effective. By the lemma
\[\dim(D_1 + \dim(W_c - D_1) \leq \dim(W_c) = g - 1 \quad (1) \]

\(\text{OtoH} \)

\[\dim(D_1 - \dim(W_c - D_1) = \deg G + g \quad (RR) \]

(1) + (2) gives

\[2 \dim(D_1) \leq \deg D \]

\[\dim(D_1) \leq \frac{\deg D}{2} \quad \text{and} \]

Next, suppose \(g \) is a gld \(D = \emptyset \).

We proceed by induction on \(n \). If \(n \neq 1 \),

\[\dim(L_1) = 1 = \frac{\deg(L)}{2} \quad \text{we claim} \quad \dim(L_1)^{\perp} = \Lambda \]

Next, \(L \) is bpf \(\ell_0(L) \geq 2 \) and we have

\[\ell_0(L) \cap L^2 = \ell_0(L) \]

Taking determinants \(\Rightarrow N = L^{-1} \Rightarrow \)

\[N \Rightarrow H^0(L) \otimes \mathbb{Q} \Rightarrow L \Rightarrow \]
\[0 = \mathcal{L}^{-1} \rightarrow \mathcal{O}_C \rightarrow \mathcal{L} \rightarrow 0 \]
\[0 = \mathcal{L}^{-1} \rightarrow \mathfrak{S}^2 \rightarrow \mathcal{L}^+ \rightarrow 0 \]

\[\log(\mathcal{L}^+) \leq 2(n+1) - n = n + 2 \]

\[\phi_+ \phi_\infty \rightarrow \mathcal{O}_C \rightarrow h(\mathcal{L}^+) \geq n+1 \]
\[\phi_+ \phi_\infty \rightarrow \mathcal{O}_C \rightarrow h(n) \]

Next suppose \(D \neq 0 \). We claim \(C \) is hyperelliptic.

\[\deg D = 2 \dim \mathcal{O}_C \] is even. We have to reduce to \(n \neq \dim \mathcal{O}_C \). If \(n \leq 1 \) and \(D \) is a \(g^1_2 \) \Rightarrow C hyperelliptic.
If \(n = \dim \{D\} \geq 2 \), choose \(E \in \langle \omega_c - D \rangle \)

Fix \(p, q \in C, \ p \in \text{Supp}(E), \ q \notin \text{Supp}(E) \).

As \(\dim \{D\} \geq 2 \), \(3 \notin \{D\} \) st.

\(p, q \in \text{Supp} \ D \).

Let \(D' = \text{DNE} \) (largest div contained in both \(D, E \)).

Since \(q \notin \text{Supp}(D') \), \(\deg D' < \deg D \).

\(p \in \text{Supp}(D') \Rightarrow \deg D' > 0 \).

Have
\[
0 \rightarrow \mathcal{O}(D') \rightarrow \mathcal{O}(D) + \mathcal{O}(E) \rightarrow \mathcal{O}(D + E - D') \rightarrow 0
\]

Taking global sections,
\[
\dim \{D\} + \dim \{E\} \leq \dim \{D'\} + \dim \{D + E - D'\}
\]

\(\omega_c - D \)

\(\omega_{c-D'} \)

\(\leq \dim \{\omega_c\} \) by lemma
\[\dim(D') - \dim(D') = d + 1 - g \]
\[\frac{1}{2} d \quad \dim(D') = -\frac{1}{2} d + g - 1 \]
\[\dim(D') + \dim(D') = g - 1 = \dim(D') \]

Thus we must have
\[\dim(D') + \dim(W_c - D') = d + g - 1 \]
\[\dim(D') - \dim(W_c - D') = d + g - 1 \]
\[\Rightarrow \dim(D') = \frac{1}{2} \deg(D') \]

Thus we see \(C \) is hyperelliptic by induction.

To see \(D \) is a multiple of \(g' \), let \(r = \dim(D') \). Consider
\[\dim(D') + (g - 1 - r) g' \]
\[\text{deg} D = \deg D - 2r + 2(g-1) = g-2 \]
\[\dim \geq \dim(D1 + (g-1-r)) = g-1 \]
\[\Rightarrow \dim(D1 + (g-1-r)g2 = K_c \]
\[\text{Fact C hyperelliptic} \Rightarrow K_c = (g-1)g2 \quad \text{(soon)} \]

\[\Rightarrow \dim = g2 \]

Ref:
1. If \(f \) is a b.i. with \(h^1(f) \geq 1 \), define
2. \[\text{Cliff}(L) = \deg L - 2\dim L - 1 \]
3. \[\text{Cliff}(C) = \min \{ \text{Cliff}(C) \mid h^1(C) \geq 2 \geq h^0(C) \geq 2, g \geq 3 \} \]
Clifford's Theorem: \(\operatorname{Cliff}(C) \geq 0 \) and equality occurs iff \(C \) is hyperelliptic. The Clifford genus is one of the most important invariants of a curve.

If \(C \) is hyperelliptic, \(L = g \frac{1}{2} \)

1. \(\Phi: C \to \mathbb{P}^1 \). Then
2. \(\Phi \) is the only \(g \frac{1}{2} \) on \(C \).
3. \(\omega_C = (g-1)L \).

Proof: Consider \(\Phi: C \to \mathbb{P}^1 \). \(\Phi \) is not a closed immersion, we claim it is also not birational.

Let \(p \neq q \in L \). We have that \(q \) is a base point of \(L \omega_C - p \) \(\Phi \) \(\omega_C(p) = \Phi \omega_C(p) \).

(Show that it follows by some arguments.)
so \(\deg \omega_c \geq 2 \). Let \(u = \deg \omega_c \) and
let \(d = \deg (\omega_c(c)) \leq p g^{-1} \).

\[2g - 2 = d u \implies d \leq g - 1. \]

If \(X = \text{norm. of } \omega_c(c) \)

\[f \]

\[X \implies \omega_c(c) \leq p g^{-1} \]

\[\text{norm.} \]

\[\deg M = d, \quad h^0(M) \geq g \geq \deg M + 1 \]

\[\leq g - 1 \]

\[\text{which did not use the claim!} \]

The first part of Cliff's Theorem:

\[h^0(M) \leq \frac{1}{2} \deg M + 1 \] if \(h^1(M) > 0 \)

so need \(h^1(M) = 0 \). Then

\[h^0(M) = h^0(cM) = \deg M + 1 - g(X). \]

So \(g(X) = 0 \implies X \cong \mathbb{P}^1 \) and then need

\[h^0(M) = \deg M + 1, \]
so \(M \cong \Theta \pi_i (g^{-1}) \)

Further, \(f = \phi_m \) is a closed end

\((M \circ \alpha) \implies \phi_m(\alpha) = \pi^1 \) and \(\phi \)

fades

\[\begin{array}{c}
C \to \pi^1 (g^{-1}) \to \pi^1 \left(\phi^{-1} \right) \to C \end{array} \]

\((g^{-1})\)-uple embedding

and must have \(n = \deg \phi_{m} = 2 \).

As \(g \) identifies \(p_1 \) for \(p+q \) any \(g_2 \)

there must be a unique \(g_2 \) \& with

we must see \(\phi \circ g^{-1} = g \)

we further see \(g \circ \phi^{-1} = g \)

from \(\text{cat} \).