Surfaces

Def: A smooth surface is a smooth projective variety of dim 2 (i.e.,
we usually write S or X for a surface.

The Intersection Pairing

X sm. surface

Let $C \subset X$ be a smooth curve and $D \subset X$
a very ample divisor. By Bertini,

$\exists Y \sim D$ smooth s.t. $C \cap D$ mond

transversally. Define $i(C, D) := \deg_C \Theta_C(D)$

Lemma: In the situation above,

$i(C, D) = \#(C \cap D')$
pf Follows from
\[0 \to O_c (C-D) \to O_c \to O_c \to O \to 0 \]

In particular, \(\#(C \cap D) \) does not depend on the choice of \(D \). Further, if \(D \) and \(C \) is also very ample, \(D \) \& \(D \cap D \) meet transversally,
\[
\iota (C \cap D) = \# (C \cap D) = \# (D \cap C) = \iota (D \cap C)
\]
\[
\deg_c (O_c (D)) \quad \deg_D (O_D (C))
\]

Theorem

\(\exists \) a pairing \(\iota : \text{Div}_X \times \text{Div}_X \to \mathbb{Z} \)

s.t.
\(\iota \) is \((C \cap D) = \# (C \cap D) \) for \(C \cap D \) smooth meeting transversally
\(\iota \) is \(C \cap D = \iota (D \cap C) \) (Symmetry)
(iii) \(i(C_1 + C_2, D) = i(C_1, D) + i(C_2, D) \) (additivity)

(iv) \(C_1 \sim C_2 \Rightarrow i(C_1, D) = i(C_2, D) \)

Proof: Let \(B \subseteq Div(X) \) be the set of s.a. divisors. We first define \(i : B \times B \to \mathbb{Z} \). If \(c \in B \) is fixed, we define \(CC(D) \) as such: let \(C' \sim C \) s.t. \(C' \) smooth and \(D' \cap D \) s.t. \(D' \) smooth \(\cap D \) meets \(C' \) transversally.

\[i(C, D) := i(C', D') = \#(C' \cap D') \]

We've already observed that this does not depend on the choice of \(D' \). It is also symmetric and \(i \) does not depend on the choice of \(C' \).
To extend \(\hat{c} \) to all of \(\text{Div}_X \times \text{Div}_X \) we:

Exercise Any \(D \in \text{Div}_X \) has \(D \sim A - B \)

for \(A, B \) u.a.

Then for \(D_1, E \in \text{Div}_X \), write

\(D \sim A_1 - B_1, E \sim A_2 - B_2 \), \(A_i, B_i \) u.a.

and define

\[
\hat{c}(D, E) = \hat{c}(A_1, A_2) - \hat{c}(A_1, B_2) - \hat{c}(B_1, A_2) + \hat{c}(B_1, B_2)
\]

This is independent of the choices and has the required properties.

Remark If \(C \) smooth, \(D \) arbitrary, the above shows \(\hat{c}(C, D) = \deg(C \cap D) \)
Exercise 2.1 \[C^2 = \deg \mathcal{O}_C(C) = \deg \mathcal{O}_{C/X}(C) \]

If \(C \subseteq X \) smooth

\[\omega_C = (\omega_X \otimes \mathcal{O}_{C/X})|_C \]

so

\[2g - 2 = \varepsilon(C, \omega_C + C) \]

Exercise 2.3 \(C \subseteq P^2 \) of degree \(d \)

\[2g - 2 = (\mathcal{O}(d), \mathcal{O}(d-3)) \]

\[= d(d-3)(\mathcal{O}(5), \mathcal{O}(1)) \]

\[= d(d-3) \text{ (two lines meet transversally in 10 points)} \]

Theorem (R-R for Surfaces)

Let \(D \subseteq X \) be a divisor on a surface.

Then

\[\chi(C \otimes \mathcal{O}(D)) = \frac{1}{2} (D, D - \omega_C) + \chi(\mathcal{O}_X) \]
pf observe that both sides only depend on the linear equivalence class (D).
So we can set \(D = C - E \) (\(C, E \) smooth).
Consider the s.e.s.'s
\[
\begin{align*}
0 & \to \mathcal{O}(C-E) \to \mathcal{O}(C) \to \mathcal{O}_E(x) \to 0 \\
0 & \to \mathcal{O}_x \to \mathcal{O}(C) \to \mathcal{O}_C \to 0
\end{align*}
\]
\[
\chi(\mathcal{O}_x(D)) = \chi(\mathcal{O}_x(0)) - \chi(\mathcal{O}_E(0)) \\
= \chi(\mathcal{O}_x) + \chi(\mathcal{O}_C) - \chi(\mathcal{O}_E) \\
= \chi(0) + \deg(\mathcal{O}_{C-0}) + 1 - g_C - (\deg(\mathcal{O}_B(0)) + 1 - g_E)
\]
By example 2

\[g_c = \frac{1}{2} (c, c + wc) + 1 \]

\[g_E = \frac{1}{2} (E, E + wc) + 1 \]

So \[\chi(\Omega^c_\omega (C)) = \chi(\Omega^c_\omega) + (c, c) \]

\[-\frac{1}{2} (c, c + wc) - (c, E) \]

\[+ \frac{1}{2} (E, E + wc) \]

\[= \chi(\Omega^c_\omega) + \frac{1}{2} (c - E, c - E - wc) \]

Some Basic Hodge Theory

A very small amount of Hodge theory is fairly essential to study surfaces \(\mathbb{C} \).

Let \(X \) be a smooth complex surface. Consider \(X \) with the Euclidean topology, call this \(X^F \). Then let
$H^k(X, \mathbb{C}) := H^k(X^c, \mathbb{C})$

the Čech cohomology of the constant sheaf \mathbb{C}.

The Hodge index theorem says

\[
H^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}(X)
\]

where $H^{p,q}(X) := H^q(X, \Omega^p_{\mathbb{C}})$.

Here this is the ordinary cohomology for projective varieties that you are used to (by GAGA Theorem). It's also coh. in fine top).

Further there is a "complex conjugation" $f_{c}^{H^{p,q}} : H^{p,q} \to H^{q,p}$.

Further there is a "complex conjugation" $f_{c}^{H^{p,q}} : H^{p,q} \to H^{q,p}$.

\[\Rightarrow \quad h^{p,q}(X) = h^{q,p}(X)\]

\[h^{p,q} = \dim H^{p,q}\]

Next, recall that, in Euclidean top, we have
the Exponential Exact Sequence

\[0 \to \mathbb{Z} \to \Omega^{\infty}_{X} \to \Omega^{a}_{X} \to 0 \]

of sheaves of additive groups, where

\[\Omega^{\infty}_{X} \] is the sheaf of holomorphic \(f_{X} \)

\[\Omega^{a}_{X} = \text{invertible sheaf} \]

One has

\[\text{Pic}(X) \to H^{1}(\Omega^{a}_{X}) \]

The boundary map gives

\[\text{Pic}(X) \xrightarrow{\partial} H^{2}(\mathcal{O}^{\ast}_{X}) \to H^{2}(\Omega^{a}_{X}) = H^{0}(\mathcal{O}_{X}) \]

The map \(H^{2}(\mathcal{O}_{X}) \xrightarrow{\alpha} H^{2}(\mathcal{O}_{X}) \) is the projection.

Set \(H^{\prime \prime}(\mathcal{O}_{X}) := H^{2}(\mathcal{O}_{X}) \cap H^{1}(\mathcal{O}_{X}) \)
The above shows (a) \(H^{2,0} = H^{0,2} \)

\[\text{Im}(B) \leq H^{1,1}(X, \mathbb{Z}) \]

Fact \(\text{Im}(B) \cong H^{1,1}(X, \mathbb{Z}) \)

Defn \(H^{1,1}(X, \mathbb{Z}) = \text{Im}(B) \) is called the Neron–Severi group, \(\text{NS}(X) \). It is a finitely generated Abelian group.

There is further an Abelian group

\[\text{Num}(X) := \text{Pic}(X) / \text{numerical equivalence} \]

where \(L \sim L' \) \(\text{num} \) if \(\langle L, M \rangle = \langle L', M \rangle \) for all \(M \in \text{Pic}(X) \)

It is a Theorem of Neron that

\[\text{Num}(X) \cong \text{NS}(X) / \text{Torsion} \]

So \(\text{Num}(X) \) is free Abelian group
The rank \(p(x) := \text{rk} \text{ Num}(x) \) is called the Picard rank of \(x \).

\[\text{Thm (Hodge Index Thm)} \]

Let \(H \) be ample on the surface \(X \).

Let \(D \in \text{Pic}(X) \) s.t. \(D \) is not numerically trivial (i.e. \(D \not\sim 0_X \)) and \(D \cdot H = 0 \). Then \(D^2 < 0 \).

\[\text{Proof} \]

Suppose \(D^2 \geq 0 \).

If \(D^2 = 0 \), then since \(D \) is not numerically trivial, \(\exists E \in \text{Pic}(X) \) with \((D \cdot E) \neq 0 \).

Consider \(E' := (H^2)E - (E \cdot H)H \)

Then \(E' \cdot H = 0 \) and \((D \cdot E') = (H^2)(E \cdot H) \)

(\(\text{note } H \text{ ample } \implies (H^2) \neq 0 \))
Consider $D' = nD + E'$. We still have $(D', H) = 0$.

But $(D')^2 = 2n(D, E) + E^2 > 0$ for suitable n.

Thus we reduce to the case $(D)^2 \geq 0$.

Consider $H' = D + nH$.

Exercise. For $n > 0$, for ample H', ample, $(D, H') = (D)^2 > 0$.

So $(D, H') = (D)^2 > 0$ for n sufficiently large.

$(H', K_C - nD) < 0$

As H' ample this $\Rightarrow h^0(K_C - nD) = 0$.

So $R^1 \Rightarrow h^0(nD) - h^1(nD) = \frac{1}{2} (nD \cdot K_C - K_C) + \gamma(\mathcal{O}_X)$.

So $R^2 \Rightarrow h^0(nD) - h^1(nD) = \frac{1}{2} (nD \cdot K_C - K_C) + \gamma(\mathcal{O}_X)$.

(As $n^2(D)^2$ term dominates.)
\(\Rightarrow \quad h^0(n \mathcal{D}) > 0 \quad \text{for} \quad n \gg 0 \)

\(\Rightarrow \quad (n \mathcal{D} \cdot H) > 0 \quad \text{for} \quad n \gg 0 \)

(As \(nH \approx a_2 \) using Bertini)

\(\Rightarrow \quad (D \cdot H) > 0 \)

Contradiction.

Corollary

Consider the non-degenerate bilinear form

\[\text{Num}(X) \times \text{Num}(X) \rightarrow \mathbb{R} \]

\[(C_1, C_2) \rightarrow i(C_1, C_2) \]

Then \(\mathcal{O}_R \) has index \(\sum_1 \mathcal{p}(C_1 - 1) \)

\(\mathcal{P} \) is a bilinear form on the real vector space \(\text{Num}(X) \otimes \mathbb{R} \). As it is non-degenerate, by standard facts, it
can be diagonalized to a form which is diagonal with \(\pm 1 \) on the diagonal.

Index \(= (\#(+1's), \#(-1's)) \) on diag.

The form is not negative definite, since

3 \(H \in \text{Pic}(K) \) with \(H \) u.a. and so

\((H)^2 > 0 \).

Choose an orthogonal basis extending \(H \). By the H.I.T all elements of the basis other than \(H \) must have the same.