\[\frac{\text{Hodge Index Thm}}{\times \text{ surface.}} \]

\[\text{Num} \times \text{Num} \rightarrow \mathbb{Z} \]
\[c, D \rightarrow \text{sign} \left(\chi_f \right) \]
\[\text{has signature} \ (1, \chi_f(x) - 1) \]

PF

From last time, we are left with proving:

H example, \(D \in \text{Pic}(X) \) not numerically trivial with \(D \cdot H = 0 \) \(\Rightarrow \) \(D^2 < 0 \).

We first rule out \(D^2 = 0 \).

If \(D^2 = 0 \), then since \(D \) is not numerically trivial, \(E \in \text{Pic}(X) \) with \((D \cdot E) = 0 \).

Consider \(E' := (H)^2 E - (E \cdot H)H \).

Then \(E' \cdot H = 0 \) and \((D \cdot E') = (H)^2(E \cdot H) \neq 0 \).
Consider $D' = hD + E'$

we still have $(D', H) = 0$, but now

$$(D')^2 = 2n (D \cdot E) + h^2$$

so for suitable n we reduce to the case $(D)^2 > 0.$

Set $H' = D + nh$.

Exercise For $n \gg 1$, H' ample.

So $(D \cdot H') = (D)^2 > 0$.

For $n \gg 1$, $(H' \cdot \omega_X - nD) < 0$

$\Rightarrow \mu(C, \omega_X - nD) = 0$ for $C = nh^2$.

$\Rightarrow \mu(C, \omega_X - nD) = h^2 \mu(nD) = 0$

so $\mu = \mu(nD) - \mu(nD) = \frac{1}{2} (nD \ln D - c_X)$
\[+ X(\Theta x) \]
\[\Rightarrow \text{for } n \gg 0 \]
\[(\text{as } n^2 (D)^2 \text{-term dominate}) \]
\[\Rightarrow \text{if } (nD \cdot H) \gg 0 \text{ for } n \gg 0 \]
\[\Rightarrow \text{using} \quad \text{Beating for } n \gg 0 \]
\[\Rightarrow (D \cdot H) \gg 0 \]

Contradiction.

FLATNESS

(Until Ch 24)

Motivation: we want to consider "families" of varieties.
Define A a ring, $M \in \text{Mod}_A$.

Then M is flat (as an A-module) if the (right exact) functor $M \otimes_A -$ is exact.

Let me list some basic facts from commutative algebra (see e.g. [4], §1.2):

Prop

1. Free A-modules are flat.
2. M, N flat $\Rightarrow M \otimes_A N$ flat.
3. M, N flat $\Rightarrow M \otimes_A N$ flat.
4. Let B be an A-algebra. M flat A.
 $\Rightarrow M \otimes_A B$ flat $\Rightarrow B$.
5. Suppose B is a flat A algebra.
6. Suppose $B \in \text{Mod}_B$ flat. Then M is flat as an A module.
Theorem (Ziu, Thm 2.4)

If \(M \in \text{Mod}_A \), then \(M \) is flat \(\iff \)

\(\forall I \subseteq A, \text{ ideal, } I \otimes_A M \rightarrow IM \) is an isomorphism.

E.g.: \(\frac{2}{22} \) is not flat \(\mathbb{Z} \) because

\(\frac{22 \otimes \mathbb{Z}}{2/22} \rightarrow \mathbb{Z} \otimes \mathbb{Z} \frac{2/22}{22} \)

\[\mathbb{Z} \]

\[\frac{2}{22} \]

\[\mathbb{Z} \]

\(\frac{2}{22} \) becomes trivial, so it can be moved over.

Important Corollary

Let \(A \) be a principal ideal domain.
Then an A-module M is flat if and only if it is torsion-free over A.

Proof

Let $I = (a)$ be an ideal.

Consider $\tau_a: A \to I$

$x \rightarrow ax$

We have $M = A \otimes_A M \xrightarrow{\tau_a \otimes id} I \otimes_A M$

$g \downarrow$

$\tau_a \otimes id$

\downarrow

f

IM

So f is an iso \implies g is an iso

\implies g is injective (as it is always surj)

\implies $a \cdot m = 0 \implies M = 0$

$\implies a$ is not a torsion elt.

$\implies a$ is not a torsion elt.

So this holds if I is torsion free over A.
Prop (Flatness is Local)

An A module M is flat \iff M_p is a flat A_p module

A_p is a prime.

Pf: Suppose M is a flat A-module.

Let $0 \to N' \to N \to N'' \to A_p$ module

\[\Rightarrow 0 \to M \otimes A N' \to M \otimes A N \to M \otimes A N'' \to \]
\[M \otimes A N_p \to M \otimes A N_p \to M \otimes A N_p \]

\[\Rightarrow \text{extra } \]

\[\Rightarrow M_p \text{ flat } A_p \text{ prime.} \]

Conversely, suppose M_p is a flat A_p module U_p.
\[
\begin{align*}
&0 \to N' \to N \to N'' \to 0 \text{ be exact} \\
&\text{sequence of } A \text{ modules} \\
&0 \to K \to \bigoplus_{A} N' \to \bigoplus_{A} N \to \bigoplus_{A} N'' \to 0 \\
&\text{Want } K = 0. \\
&\text{Enough } K_{p} = 0 \text{ if } p \in \mathfrak{p} \text{ prime.} \\
&\text{Enough localization exact, } \\ &\text{which gives the claim.} \\
\end{align*}
\]

We can now deliver flatness on schemes.

\textit{Definition: } \text{If } F \in \text{QCoh}(X) \text{ is flat at } p \in X \text{ if } \tilde{F}_{p} \text{ is a flat } \mathcal{O}_{X, p} \text{ module.} \\
\text{If } \tilde{F} \text{ is flat at } p \text{ and } \tilde{F}_{p} \text{ is a flat at all points.} \\
\tilde{F} \text{ is flat if it is flat at all points.} \\
\text{If } \pi : X \to Y \text{ (} X, Y \text{ scheme) is} \\
\text{flat at } p \in X \text{ if } \mathcal{O}_{Y, p} \text{ is a flat} \\
\mathcal{O}_{X, p} \text{ module.}
It is flat if it is flat at all \(p \in X \).

More generally, with \(\mathcal{F} \) above, \(\mathcal{F} \in \mathbf{QG} \text{h}(A) \) is flat over \(Y \) at \(p \in X \)
if \(\mathcal{F}_p \) is a flat \(\mathcal{O}_{Y,p} \)-module.

\textbf{Vacir 24.2.4 Exercise}

\(B, A \) alg. Ten \(B \to A \) flat \(\implies \)
\(\text{Spec } A \to \text{Spec } B \) flat.

More generally, \(B \to A \) alg. map, \(M \) an \(A \)-mod, ten \(M \) is \(B \)-flat \(\implies \)
\(M \) is flat over \(\text{Spec } B \).

Flatness is preserved by base change, has
a transitivity property etc (Ex 24.2.4)
(Ex 24.2.5)
0. THM (Takii) Ex. 24.2.8)

Cohomology commutes with flat base change.

\[
\begin{array}{cccc}
X' & \to & X \\
\downarrow \pi & & \downarrow \pi \\
Y' & \to & Y \\
\downarrow \rho & & \\
\text{flat} & & \\
\end{array}
\]

\(F \subset H^0(X)\).

Then \(\rho^* \) a natural iso

\[
\rho^* (R^i \pi_* F) \cong R^i \pi'_* \rho'^* F
\]

Here are some more useful results.

Prop: \(f: X \to Y \) flat, \(Y \) irreducible.

Then every non-empty, open subset \(U \subset X \) dominates \(Y \) (i.e. \(f(U) \subset Y \) is dense).
PF wlog \(\eta \) affine \(\mathcal{U} = \text{Spec} A \to \text{Spec} B \) flat.

\(B = A \) flat.

Let \(\eta \) be the generic point of \(X \).

\(\mathcal{U} = \{ \text{nilpotents} \} \) the nilradical of \(A \).

\[B/\mathcal{U}B = B \otimes A/\mathcal{U}A \leq B \otimes A \text{Frac}(A/\mathcal{U}A) \]

by flatness \[B \otimes A k(\eta) \]

\[\to \mathcal{O}(\mathcal{U} \cap \eta) \]

We wish to show \(\mathcal{U} \cap \eta \neq \emptyset \).

But otherwise \(B = \mathcal{U}B \) so \(B \) is nilpotent,

which \(\Rightarrow A \) nilpotent \(\Rightarrow \mathcal{U} = \emptyset \).
Flatness + Tor

Let M be an A-module. Then free resolutions exist, so, for any other module N

$$
\cdots \to F_2 \to F_1 \to F_0 \to N \to 0
$$
a free resolution.

Then $\text{Tor}_i^A(M,N)$ is defined to be the homology of $F_0 \otimes_A M$ at the ith stage.

Some basic properties (Vakil Ch. 23):

- $\text{Tor}_0^A(M,N) \cong M \otimes_A N$
- $\text{Tor}_1^A(M,N) \cong \text{Tor}_1^A(N,M)$
- Tor is symmetric
- It follows from the derived functor formalism that, if
$0 \to N' \to N \to N'' \to 0$ s.e.s.

Then we have

$\Rightarrow \text{Tor}_i^A(M, N') \to \text{Tor}_i^A(M, N)$

$\Rightarrow \text{Tor}_i^A(M, N'') \to M \otimes_A N' \to M \otimes_A N'' \to 0^{(4)}$

Corollary (Ex 24.3.C, Vakil)

If N'' as above is flat, Marshall's, we have:

$0 \to M \otimes_A N' \to M \otimes_A N \to M \otimes_A N'' \to 0$

If M flat $\Rightarrow \text{Tor}_i^A(M, -) = 0$ for

$c > 0$ by defn.

But $\text{Tor}_i^A(M, N'') = \text{Tor}_i^A(N'', M) = 0$
(1) $0 \to \mathfrak{m} \otimes_A N' \to \mathfrak{m} \otimes_A N \to \mathfrak{m} \otimes_A N^n \to 0$

Exact from (atl).

Exercise 23.1.0

Show $\text{Tor}_1^A (M, N) = 0 \Rightarrow M \text{ flat}$

($\text{Tor}_1^A (M, N) = 0 \Rightarrow M \text{ flat}$)

Theorem

$M \in \text{Mod}_A$ is flat

$\Rightarrow \text{Tor}_1^A (M, A/I) = 0 \forall I \subseteq A$ ideal

Proof

By above exercise it suffices to show $\text{Tor}_1^A (M, N) = 0$ finitely generated.

We prove the claim by induction on the number of generators of N. If $n = 1$, $A \otimes M \to N \Rightarrow N = A/(0)$, so this is our assumption.
Else, we have
\[0 \to A \xrightarrow{f} N \to Q \to 0 \]
\[\xrightarrow{\text{Ann}(an)} \]

Further, \(Q \) is generated by \(\mathbb{F}(a_i), i \leq n-1 \)
\[\to \text{Tor}^1(A, M, N) \]
\[\to \text{Tor}^1(M, Q) \]
\[\to 0 \]