Today!

Why should you care about syzygies?

(no proof today!)

Syzygies = relations amongst eq's of a variety. (Scheuer, ca 1850)

E.g. (Twisted cubic)

\[\mathbb{V} : \mathbb{P}^1 \to \mathbb{P}^3 \]

\[[u:v] \mapsto [u^3 : u^2v : uv^2 : v^3] \]

\[X = \mathbb{V}(\mathbb{P}^1) \subseteq \mathbb{P}^3 \]

\(X \) is the intersection of 3 quadric surfaces

\(\mathbf{f}(x, y, z, w) = yw - z^2 \)

\(g = yz - xw \)

\(h = xz - y^2 \)

Two independent syzygies

\[xf + yg + zh = 0 \]

\[yf + zg + ch = 0. \]
Hilbert's setup

\[S = \mathbb{C}[x_1, \ldots, x_n] \]

Graded ring: \(S_d = \mathbb{C} \) hom. polys of degree \(d \)

Let \(M \) be a f.g. graded \(S \) module

E.g. \(S(-n) \) is the graded \(S \) module which, as an ungraded module, is just \(S \), but as a graded module has

\[S_d(-n) = S_{d-n} = \mathbb{C} \) hom. polys of degree \(d-n \)

A free graded module is, by definition, a sum of twisted modules \(S(m) \).

If \(M \) is an f.g. graded \(S \) module, have

Hilbert function

\[f_M : \mathbb{Z} \to \mathbb{Z} \]

\[d \mapsto \dim_s M_d \]

The Hilbert polynomial is written \(P_M \)

\[(P_M(x) = \frac{x}{(x-1)} \) for \(d \geq 0) \]
Let's define some invariants of M.

Hilbert Syzygy Theorem (1890)

If M, f.g. graded, $S = \mathbb{C}[x_1, \ldots, x_n]$ module

Then M has a minimal free resolution

$$0 \rightarrow M \rightarrow F_0 \rightarrow F_i \rightarrow \cdots \rightarrow F_n \rightarrow 0$$

of length at most $n+1$.

Free means each F_i can be written

$$F_i = \oplus S(-i-j)$$

Minimal means each $S_i : F_i \rightarrow F_{i-1}$ take a basis of F_i to a minimal set of generators for $\text{Im}(S_i)$.

It guarantees F_0 is unique up to iso.

Each map S_i in the resolution $F_i \rightarrow M \rightarrow 0$ is required to be homogeneous of degree zero.
Thus, the twistsings $S(n)$ appearing keep track of the degrees of the polynomials defining S.

E.g. $X \subseteq \mathbb{P}^3$ the twisted cubic as before.

The homogeneous coordinate ring S/I_X ($S = \mathbb{C}[x,y,z]$) has minimal resolution

$$0 \to S \to S \to S(-2) \oplus S(-3) \to 0$$

$$A = \begin{bmatrix} yz - z^2, & y^2 - xy, & x^2 - y^2 \end{bmatrix}$$

$$B = \begin{bmatrix} x & y \\ y & z \\ z & w \end{bmatrix}$$

The Betti table is the table with $(i,j)_{th}$ entry

E.g. For twisted cubic

$$\begin{array}{ccccc}
 & 0 & 1 & 2 & 3 \\
0 & 1 = b_9 & 0 = b_10 & 0 & 0 \\
1 & 0 = b_{91} & 3 = b_{11} & 2 & 0
\end{array}$$
we will see next week how to generalize the above vastly. E.g. a rational normal curve of degree d has the following Betti table

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>d-1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(d)</td>
<td>2(d)</td>
<td>...</td>
<td>(d-1)(d) = (d-1)</td>
<td></td>
</tr>
</tbody>
</table>

Hilbert's original motivation in defining the Betti numbers b_{ij} was that f^n_M (and also P_i) be written in terms of them.

Namely, set

\[\Delta_{ij} := \sum (-1)^i b_{j-i, i} \]

Hilbert proved

\[f_M(d) = \sum (-1)^{i+1} \binom{n+\ell - i - j}{n} \Delta_{ij} \]
The quantities \(\binom{n-d-i}{n} \) are polynomial in \(d \) in the range \(n-d-j \geq 0 \). But we set \(\binom{a}{n} \) if \(a < n \).

Objective of the Course

Study conjectures relating Betti nos. of curves to their Brill-Noether theory, with application to the moduli space of curves.

Recall a curve. The Brill-Noether loci and

\[W_d^r(C) := \bigcap \{ L \text{ of degree } d, h^0(L) \geq r+1 \} \]

If \(C \) is general, these are all smooth of dimension

\[\delta_d(C, \subseteq) := g - (r+1)(g-d+r)
 = h^0(\mathcal{O}_C) - h^0(C) h'(C) \]
For special cases, $\omega^d_+(\mathbb{C})$ may have higher dim than usual.

Some invariants:

Genus \(\text{Gen}(C) := \min \{ d \mid \omega^1_+ = 0 \} \)

\[= \min \{ d \mid \exists \text{ map } C \to \mathbb{P}^3 \} \]

Clifford Index

\[\text{Cliff}(C) = \min \{ \deg(A) - 2r(A) \mid A \in \text{Pic } C, \deg A \leq g-1, \lambda(A) \geq 2 \} \]

let \(C \) be a curve, \(L \) a l.b.

\[\Psi_C(C) := \bigoplus_n \text{H}^0(C, nL) \]

is a graded \(S := \text{Sym}(\text{H}^0(C, L)) \) module

\[\mathfrak{p}_i q(C_1, L) := \mathfrak{p}_i q(C, L) \text{ (out } (C_1, L) \text{ if understood)} \]
Here are some sample results (for L u.a.)

- Castelnuovo–Mumford

\[\text{deg}(C) \geq 2g+1 \implies C \subseteq \mathbb{P}^r \text{ projective normal} \]

\[(C \implies b_{0,j} = 0 \text{ for } j \geq 2) \]

- Green (84)

\[\text{deg}(C) \geq 2g+1+p \implies F^{i,j} = 0 \text{ for } i \leq p, j \geq 2 \]

For \(L = w_C \)

- Noether If \(C \) is not hyperelliptic (i.e. cliff 2)

\[\phi_{w_C} : C \to \mathbb{P}^{g-1} \text{ is proj. normal} \]

- Enriques–Petri–Babbage

If further \(\text{cliff}(C) \geq 2 \), \(L \) is gen. by quadrics (i.e. \(b_{1,j} = 0 \) for \(j \geq 2 \))
Green's Conjecture (84)

If \(p < \text{cliff}(C) \) then \(\Phi_{p,2}(C, \omega) = 0 \)