Fundamentals

\[S = k \times r_1 \ldots \times r_3 \]

\[0 \to M_1 \to M_2 \to M_3 \to 0 \quad \text{short exact sequence of graded } S\text{-modules}. \]

Taking the \(i+j \)-th graded piece of the long exact sequence for \(Tor \):

\[\ldots \to Tor^i_{s} (M, k) \to Tor^i_{s} (M_1, k) \]

\[Tor^i_{s} (M_2, k) \to Tor^i_{s} (M_3, k) \to \ldots \]

Write

\[K_{i+1} (M) := Tor^i_{s} (M, k) \]

The above sequence is

\[\to K_{i+1} (M_3) \to K_{i+1} (M_2) \to K_{i+1} (M_1) \to K_{i+1} (M) \]

\[\ldots \to K_{i+1} (M_3) \to K_{i+1} (M_2) \to K_{i+1} (M_1) \to K_{i+1} (M) \to \ldots \]
"Long exact sequence of Kodaira cohomology"

Lemma "Semi-continuity"

\[\pi: X \rightarrow S \text{ flat, projective morphism of } \]
\[\text{f.t. schemes, } \pi_i S \text{ integral.} \]

Let \(\mathcal{L} \in \text{Pic}(X_i) \).

Assume \(h^0(X_i, \mathcal{L}_i), h^0(X_i, (g-1) \mathcal{L}_i), \)
\(h^0(X_i, (g-2) \mathcal{L}_i), h^0(X_i, (g+1) \mathcal{L}_i) \) are all
constant for \(S \subseteq S_1 \).

Then \(\psi: (S_1 \rightarrow \mathbb{Z} \)
\[S \rightarrow b \big(X_i, \mathcal{L}_i \big)_{\text{Pic}(X_i)} \]
is upper semi-continuous.

Proof wlog \(S = \text{Spec } R \) affine.

\[S_i = \pi_i \mathcal{L}_i, \quad F^i = \mathcal{H}^i_\pi (L^g), \quad \mathcal{F}^i_\mathcal{L} = \mathcal{H}^i_\pi (L^g) \]
\[F^i_\mathcal{L} = \mathcal{H}^i_\pi (L^{g+1}) \text{ all a.b.s.} \]
Consider the Koszul complex
\[\Lambda E \otimes F \to \Lambda E \otimes \delta_2 \to \Lambda E \otimes \delta_3 \]
of \(R \)-modules.
\[\delta (s, \ldots, s_p \otimes \tau) \to s(s, \ldots, s_p \otimes \tau \otimes s_i \otimes s_j) \]
where \(\delta \)
\[\big(\text{Nat} \otimes \text{Nat} \big) \to \text{Nat} \]
\[\text{Hom} \left(\big(\text{Nat} \otimes \text{Nat} \big), \text{Nat} \right) \]
\[\cong \text{Hom} \left(\big(\text{Nat} \otimes \text{Nat} \big) \otimes \text{Nat} \otimes \text{Nat}, \mathbb{L} \right) \]
But have \(\text{Nat} \otimes \text{Nat} \to \mathbb{L} \), \(\text{Nat} \otimes \text{Nat} \to \mathbb{L} \)
for \(g \in \text{Hom} \left(\big(\text{Nat} \otimes \text{Nat} \big), \text{Nat} \right) \)
For \(e \in \text{Spec}(R) \), \(\text{Spec}(X_{\text{proj}} \to \mathbb{L}) \) is the middle conv. of
\[\Lambda \text{Nat} \otimes \text{Nat} \otimes k(p) \rightarrow \Lambda \text{Nat} \otimes \mathbb{L} \otimes k(p) \]
\[\rightarrow \Lambda \text{Nat} \otimes \mathbb{L} \otimes k(0) \]
\[\Rightarrow \text{deg}(\varphi_p, L_p) = \dim \ker(\delta_2 \otimes L_p) \\
- \dim \text{Im}(\delta_1 \otimes L_p) \]

\[= \text{rk}(\Lambda^p \otimes \mathcal{F}_2) - \dim \text{Im}(\delta_2 \otimes L_p) \]

\[- \dim \text{Im}(\delta_1 \otimes L_p) \]

Suffices to show: \(\varphi : A \rightarrow B \) morph of

\[\text{f.g., free graded modules the function} \]

\[p \rightarrow \text{rk}(\varphi \otimes L_p) \]

is lower semi-continuous. But for \(r \in \mathbb{N} \)

\[\exists \text{p} \in \text{Spec} R | \text{rk}(\varphi \otimes L_p) < \frac{r}{2} \]

is closed, with ideal given by the

entire of the matrix \(\Lambda^p \varphi \)

The next proposition will be used in the

proof of the Hirschowitz–Ramanan theorem.
Notation

\(X \) projective variety, \(L \) p.6.
\(F \) coherent sheaf.
\(\Gamma_c(F; L) \) the graded \(\text{Sym}^r h^0(L) \)

\[\Gamma_c(F; L) \] is the graded \(\text{Sym}^r h^0(L) \)

module \(\Gamma_c(F; L) := \bigoplus q \quad h^0(X; qL \otimes F) \)

\[K_{p, q}(X, F; L) := K_{p, q} \left(\Gamma_c(F; L) \right) \]

Proof

Let \(X \) be a projective variety, \(L \) very ample and assume \(X \) is normally generated

\[(h^0(\mathbb{P}^r, \mathcal{O}(n)) \to h^0(X, L^n), \quad n \geq 1) \]

\[r = h^0(L) - 1 \]

Then

\[K_{p, q}(X, F; L) = h^0 \left(\mathbb{P}^r, \mathcal{I}_X^{p+1} (p+1)^2 \mathcal{I}_X \right) \]

\[0 \to \mathcal{I}_X \to \mathcal{O} \to \mathcal{O}_{\mathbb{P}^r}
\to 0 \to 0 \]
inclue
\[0 \to \bigoplus_{q \geq 0} H^0(\mathbb{P}^n, I_X \otimes \mathcal{O}(q)) \to \bigoplus_{q \geq 0} H^0(\mathbb{P}^n, \mathcal{O}(q)) \to \bigoplus_{q \geq 0} H^0(X, qI) \to 0 \]

by the assumption that \(X \) is normally generated.

Let
\[0 \to K_{p,1}(\mathbb{P}^n, \mathcal{O}(1)) \to K_{p,1}(X, I) \]
\[0 \to K_{p-1,2}(\mathbb{P}^n, I_X \otimes \mathcal{O}(1)) \to K_{p-1,2}(X, I) \]

so the claim follows from the next lemma.
Lemma \[k_{p,q}(\mathbb{P}^r, \mathcal{O}(1)) = 0 \text{ if } (p,q) \neq (0,0) \]

\textbf{Proof:} Set \(V = H^0(\mathbb{P}^r, \mathcal{O}(1)) = \mathbb{C}^{r+1} \)

We need to show:

\[V \otimes H^0(\mathbb{P}^r, \mathcal{O}(q-1)) \rightarrow V \otimes H^0(\mathbb{P}^r, \mathcal{O}(q)) \]

\[\rightarrow V \otimes H^0(\mathbb{P}^r, \mathcal{O}(q+1)) \]

is exact. (for \((p,q) \neq (0,0)\))

But we know that the Koszul complex

\[0 \rightarrow S' \rightarrow V \otimes S(-1) \rightarrow V \otimes S(-2) \]

\[S' := \text{Sym} V \]

is exact.

\[H^0(\mathbb{P}^r, \mathcal{O}(q)) = S_q \]

So the claim follows by considering the degree \(p+q\) strand of the Koszul complex.
Recall

Green's Conj.

For genus g curve

\[\text{Conj.}: \quad \text{deg} \mathcal{C}_{(g,0)} = 0 \implies p < \text{Cliff}(g) \]

\text{(or } p \geq g) \]

Equivalently,

\[\text{deg} \mathcal{C}_{(g,0)} = 0 \]

For \(p > g - \text{Cliff}(g) - 2 \) by S-D.

This is a deep conjecture and many people have tried to prove it (Eisenbud, Schreyer, Cossin, etc.).

Hirschowitz-Ramanan. Test it for \(g=2k-1 \).
Have seen: Kur et al.

\[\mathbb{E} C \in \text{gen}(C) \leq \mathbb{E} \]

Green's Conjecture predicts:

\[b \leq \lambda_k \]

\[\rightarrow \text{gen} \mathbb{C} \leq k \]

Idea: construct a divisor:

\[K_0 \leq M \text{ by } \text{parametrising} \]

\[\mathbb{E} C \in \text{gen}(C) \leq \mathbb{E} \]

and compare it to Kur.

\[C \leq \text{universal curve} \]

\[\mathbb{C} \]
Let M be the kernel of
\[0 \to M \to P \to O_{C(2)} \to O_C \to 0. \]
This relaxes $\varnothing_{p_{g-1}(2)}^2$.

We wish to study the locus of $C_{[\varnothing]}$ and $\varnothing_{p_{g-1}(2)}$.

For $b : C_{(\varnothing_{2C})}$ to \text{i.e.} $h^0(C_{(\varnothing_{2C})}) = 0$ $k-2$

\[h^0(P_{g-1}^k, \overline{\mathcal{M}}_{g-1}(2)) \to h^0(C \cap \overline{\mathcal{M}}_{g-1}(2)). \]

is not injective.

Study degeneracy locus of
\[R^1 \mathcal{F}_{\varnothing} \mathcal{M}_{g-1}(2) \to \mathcal{F}_{\varnothing} \mathcal{M}_{g-1}(2) \]