Recall

As a set \(\text{Har} \subseteq \text{Mg} \)

\[
\text{Har} = \{ C \in \text{Mg} \mid \text{gen}(C) \leq \frac{1}{2^3} \}
\]

As a line bundle

\[
\text{Har} := \frac{1}{(2g-2)(g-1)!} \prod_{k=1}^g (E_{K_1} \otimes [2])
\]

\(p_c : E^k \rightarrow E, \quad \Pi_k : E^k \rightarrow \text{Mg} \)

\(K_1 := p_{c*}(\omega_{E^1}) \)

\(Z \) parameterizes \((p_1, \ldots, p_k) \) s.t. \(h^0(C, \mathcal{O}_C) \geq 2 \)

\([E_C] = \Pi_k E_{P_1} \ldots (P_k) \)

To construct it as a scheme

\[
\begin{align*}
0 & \rightarrow O_{E^1} \rightarrow O_{E^m} (\Sigma A_{i_1} \otimes i_{1m}) \rightarrow O \rightarrow 0 \\
0 & \rightarrow O_{E_{i_1}} \rightarrow O_{E_{i_{1m}}} \rightarrow \Sigma A_{i_1} \rightarrow 0
\end{align*}
\]
\[p: E^k \rightarrow E_k \] is projection onto first \(k \) factors.

Applying \(p \)

\[0 \rightarrow P O \rightarrow \mathbb{R}^1 \rightarrow P O \rightarrow E^k \]

\[\rightarrow \mathbb{R}^1 \rightarrow O \rightarrow (\leq \delta_{j+1} e^1) \rightarrow 0 \]

If \((p_1, \ldots, p_k) \in E^k \)

\[h(0) = k \Rightarrow P O \leq \delta_{j+1} \]

is local. free at \(k \)

\[h'(c, 0) = \omega(c_0) = g \]

so \(\mathbb{R}^1 \rightarrow P O \rightarrow E^k \) is local. free at \(g \)

The fibre at \(\alpha \) at any point

\[\varphi \leq \epsilon \psi \in E^k \]
\[0 \to H^0(\mathcal{O}_C) \to H^0(\Theta_{\mathcal{E}^p_i}) \xrightarrow{\alpha} H^0(\Theta_{\mathcal{E}^p_i} \otimes \mathcal{E}^p_i) \to H^1(\mathcal{O}_C) \]

Here \(\alpha \) is not injective.

\[C \to H^0(\mathcal{O}_C(3\mathcal{E}^p_i)) \cong \mathbb{Z} \]

\(\mathbb{Z} \) is the locus of fixed points of \(g \).

\(z \) is not injective at \(g \).

To describe the class of \(Z \), we appeal to the following:

Theorem (Porteous)

\(X \) smooth / \(C \), \(\phi : E \to F \) morphism of vector bundles of ranks \(n \) and \(m \).

\[X_{k} (\phi) := \{ p \in X \mid \text{rk} (\phi_p) \leq k \} \]

Assume \(X_{k} (\phi) \) has maximal codimension \(m - k \) \((n - k)\).
Then \[
\left[\chi_k (\mathcal{O}) \right] = \Delta_{m-k+n-k} \mathcal{C}(F-E) /
\]
where if \(a(t) = \sum a_k t^k \) formal power series

\[
\delta_{p,q} := \text{det} \begin{bmatrix}
 a_p & a_{p+1} & \cdots & a_{p+q-1} \\
 a_{p-1} & \ddots & \ddots & \ddots \\
 \vdots & \ddots & \ddots & \ddots \\
 a_{p-q+1} & \cdots & \cdots & a_p \\
\end{bmatrix}
\]

To apply this, we need to know \(\mathbb{Z} \mathcal{C}^{ab} \) has codimension \(g-(\frac{g}{2}+1) = k \).

This is easy to deduce from the following classical facts: Little Huraity space

\[
H_{g,d} := \sum \mathbb{C}^m \text{ of degree } d, \text{ genus } \frac{g}{2}, \text{ smooth,}
\]

is irreducible of \(\dim = 2g-5+2d \) (Clebsch)

(2) the map \(H_{g,d} \to \mathcal{M}_g \) is generically finite
This \(\Rightarrow \) \(\forall r \in \mathbb{R} \), \(a \in \mathbb{R}^{3g-4} \)

\(\mathbb{Z} \) \(\Rightarrow \) \(\mathbb{Z} \) is fixed, \(\text{dim} \, \mathbb{Z} = 3g-3 \)

so \(\mathbb{Z} \) is the cohomology \(H \).

Then (Harris–Mumford, Harris)

(i) \(\text{Euler} \) = \(c \alpha \) for some constant \(c \)

(ii) In fact \(c = \frac{(2h-4)!}{k! (h-2)!} \).

PP we will only do (ii). Harris–Mumford did (ii) by intersecting \(H \) with explicit test curves, Kempf did (ii) using Riemann–Roch.

Applying Riemann

\[
\{ z \} = \sum_{g \leq n \leq \frac{g}{2}} \varepsilon \left(C \cap (R_{\text{gen}}(E_{n}); \mathbb{C}^1) \right)
\]
\[C_{g-2k+1} \left(\sum_{\Delta_1, \ldots, \Delta_k} e^{\Delta_1 + \cdots + \Delta_k} \right) \]

\[p! \Theta(\varepsilon, \Delta_1, \ldots, \Delta_k) - 1 \]

Chern classes are expressible as polynomials in \(c_i \) \[\text{Exercise} \]

so \([E] \) is poly in \(c_i \) \(+ \) \(p! \Theta(\varepsilon, \Delta_1, \ldots, \Delta_k) \)

and \(\text{GR} \rightarrow [E] \) is given by a poly. in class of the form \(\Phi_{\ast} \) \[\text{poly. in } \left[\sum_{j=1}^{r} \varepsilon_j \right] \left[\sum_{j=1}^{r} \Phi_j \right] \] for varying \(j \)

terms of \(\text{ch}(\varepsilon, \Delta_1, \ldots, \Delta_k) \) \(\text{td}(w_1) \)

Let's simplify this further.

\[\text{Part } [E] \left[\varepsilon_1, \varepsilon_2 \right] = [E] \text{, } \text{"obvious"} \]

and the idea is to repeatedly use the
push-pull formula

$$P(\Delta^1_{k+1}, \phi^* C^3_2) = \gamma, \quad \gamma \in A^*(E_1, \mathcal{Q})$$

Try to express as many terms as possible in the form $\phi^* (g), \quad g \in A^*(E_1, \mathcal{Q})$

We have the following "obvious" identity:

$$[\Delta_i^{\gamma+1}] \cdot [\Delta_j^{\gamma+1}] = [\Delta_i^{\gamma+1}, \phi^* [\Delta_j^{\gamma+1}]]$$

If (γ^i) s.t., $P_i = P_{k+1}$ and $P_j = P_{k+1}$

for $i \neq j$

$$[\Delta_i^{\gamma+1}] \cdot K_j = [\Delta_j^{\gamma+1}] \cdot P^* K_j$$

This lets us deal with any monomial in which no repeated $[\Delta_i^{\gamma+1}]$, $[K_j^{\gamma+1}]$ term appears.

E.g.: $P(\Delta_1^{k+1}, \Delta_2^{k+1}, \Delta_3^{k+1}, K^{k+1})$
\[
- \mathbb{P}(\Delta_{1,1}^{c_1+1} P^* \Delta_{1,2} P^* \Delta_{1,3} P^* K_1) \\
= \Delta_{1,2} \Delta_{1,3} K_1
\]

To deal with powers of \([\Delta_{j,k+1}] \) use the self-intersection formula:

\[e : Y \times X \to Y \text{ smooth} \]
\[Y \times Y = \bigotimes (C_0(N)) \]
\[N \text{ normal bundle} \]

[Ha, pg 431]

\[
[\Delta_{j,k+1}]^2 = c_1(N) \bigotimes_{j+1} \Delta_{j+1}
\]

\[
= - c_1(-J_2 q)
\]

\[
= - c_1(P_j^* S^i \epsilon_i/M)
\]

\[
[\Delta_{j,k+1}]^2 = -[\Delta_{j,k+1}] \cdot P^*(K_j)
\]

They \([Z_j]\) can be written as a polynomial on the cycle \([\Delta_{c_1+j}]\), \([K_j]\) and \(P^*(K_{j+1})\) for all \(c_1 \geq j\).
We rewrite the last term:

Flat - Pullback of Cycles

(Prop 1.7) says

\[
A \rightarrow B \quad \xi \downarrow \times \quad \xi \text{ proper} \quad C \rightarrow D \quad \bigwedge h
\]

flat

\[\xi^* f \alpha = h^* g_\ast \alpha \quad \text{for } \alpha \in A^k\]

Apply to

\[e^{k-1} P_{\text{flat}} e \quad \Rightarrow \quad P_{\ast e} (k^e_{\text{ker}}) \]

\[\pi \downarrow \times \downarrow \pi \quad e^k \rightarrow \text{Mg} \quad \pi_k \]

[clar] poly in \(\pi_k\), \(\pi_k^\ast \) (poly \(\Delta_{i,j}^k\), \(\pi_k^\ast \) \(\text{poly} \), \(\pi_k^\ast \) \(\text{ker}^e\))

Factor

\[\pi_k: e^k \rightarrow e^k \rightarrow \ldots \rightarrow \text{finally}\]
and using above identities
get C[t\nu] poly in T\nu (K^2)

(P_{\nu} C D c_{\nu}, \mu) = \mu^2 \delta_{\nu \mu}\ \text{in the final step there are no diagonals left)}

Only one with correct dim is

K = T\lambda (K^2)

\Rightarrow E[h\nu] = c_2 \ b\ \text{by Mukunda's formula}

B.