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Whether an idea, information, or infection diffuses throughout
a society depends not only on the structure of the network of
interactions, but also on the timing of those interactions. People
are not always available to interact with others, and people dif-
fer in the timing of when they are active. Some people are active
for long periods and then inactive for long periods, while others
switch more frequently from being active to inactive and back.
We show that maximizing diffusion in classic contagion processes
requires heterogeneous activity patterns across agents. In particu-
lar, maximizing diffusion comes from mixing two extreme types of
people: those who are stationary for long periods of time, chang-
ing from active to inactive or back only infrequently, and others
who alternate frequently between being active and inactive.
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Networks of interactions are the backbone of a range of diffu-
sion processes from the spread of simple bits of information

to the spread of diseases (e.g., refs. 1–10). Whether and how
things diffuse depend on the time patterns of when various nodes
in a network are active and can interact with each other. Despite
the important role of timing in diffusion, little is known about
that role. In this paper we provide a theoretical analysis of how
the timing of interactions affects a simple diffusion or contagion
process.

It is well known that people’s activity patterns are far
from being independent of time and history. For example,
“burstiness”—consecutive periods of activity followed by consec-
utive periods of silence—has been documented in a multitude
of diffusion processes, from email and phone conversations to
gene expressions (11–17). It has also been shown that hav-
ing populations whose activity patterns are time or history
dependent can change the outcome of a diffusion process (13,
18–29), for instance with bursty activity patterns dampening
diffusion.

However, it is also clear that people differ in the timing of their
active periods. For instance, some people check email on a very
frequent and intermittent basis, while others have greater time
between activities but then spend a longer time active once they
are. Thus, to really understand how activity patterns affect dif-
fusion one should at least consider the possibility that different
individuals behave differently. As we show, this turns out to make
a big difference. We show that heterogeneity in activity patterns
across agents is in fact necessary for maximizing the extent of
a diffusion and can substantially increase the expected reach of
diffusion processes. Heterogeneity is not just a complication in
modeling, but actually systematically changes the way that dif-
fusion works. Activity patterns, like bursty ones, that dampen
diffusion if everyone adopts them, actually enhance diffusion
when matched with opposite behaviors by some other fraction
of the population.

The model that we examine is a variation on the widely stud-
ied SIR (susceptible, infected, recovered) model (30), which has
its roots in the Reed–Frost model (see ref. 31 for background).
Some node of a network is the first one infected with a disease
or an idea or a meme, etc. The infection then spreads at random
through the network. Nodes are either infected or susceptible.
They begin as all being susceptible and become infected if they

interact with a contagious neighbor. Once infected, agents are
contagious for T periods and then cease to be contagious. Thus,
diffusion spreads by having an infected and contagious node
interacting with any of its neighbors who are susceptible. The
process that we analyze is “simple” in that it takes interaction
with only one neighbor to become infected (32). The complica-
tion is that the spread from one node to another occurs only if
they are both active and manage to meet within the time during
which the first node is still contagious. This depends on both of
their activity patterns.

In our model, the probability that a node is active is not inde-
pendent of time. On average, nodes are randomly active during
any given period with a probability �> 0, but the probability
is not independent of the history of that node’s past behavior.
Nodes’ active times follow a Markov chain: The probability that a
node is active in one period depends on whether it was active last
period. In addition, what most distinguishes our analysis is that
neighboring nodes can be following completely different Markov
processes. For instance, some nodes are more likely to be active
if they were active last period, while others are less likely to be
active if they were active in the last period.

Three benchmark types of Markov processes figure promi-
nently in our results. We refer to nodes with extreme positive
autocorrelation (nodes very likely to remain active for many con-
secutive periods and then once they switch to remain inactive for
many consecutive periods) as “sticky” nodes, nodes with extreme
negative autocorrelation (where they change from active to inac-
tive and back very frequently) as “reversing” nodes, and nodes
who are just randomly on or off in every period with the same
probability independently of history as “Poisson” nodes.

Significance

The contagion of disease and the diffusion of information
depend on personal contact. People are not always available
to interact with those around them, and the timing of people’s
activities determines whether people have opportunities to
meet and transmit a germ, idea, etc., and ultimately whether
widespread contagion or diffusion occurs. We show that, in
a simple model of contagion or diffusion, the greatest lev-
els of spreading occur when there is heterogeneity in activity
patterns: Some people are active for long periods of time
and then inactive for long periods, changing their availabil-
ity only infrequently, while other people alternate frequently
between being active and inactive. This observation has pol-
icy implications for limiting contagious diseases as well as
promoting diffusion of information.
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To better understand these three types, consider workers in a
large firm who spend � of their time near their offices with their
doors open for interaction with other coworkers on their team
and then 1�� of their time working on projects with closed
doors or away from their offices. Let us think of periods as
hours. Sticky agents are those who schedule their closed-door
time in large clumps, so that they are unavailable for some num-
ber of hours in a row and then available with an open door for
some number of hours in a row, etc., so that they schedule their
sequestered work time in contiguous segments spending days in
a row on a project and then days in a row available in the office.
If they are available with an open door at some point, they are
more likely to be available the next hour, and conversely if they
are occupied or away, then that is also likely to persist. Pois-
son agents are people who just randomly schedule closed-door
time with no particular pattern. Reversing agents are people who
prefer to alternate, so they work on a project for an hour, then
open their door and interact for an hour, and then close their
door and work for an hour, etc., alternating project time with
interaction time.

We emphasize that we still maintain that the timing of activity
is independent across nodes and nodes must all have the same
average level of activity—so that every node is active a fraction
of � of all periods. In the office example, all workers have the
same amount of time with their doors open; it is how they sched-
ule their open-door periods that may differ and matter. The key
in our analysis is allowing different nodes to have different time
dependencies in their behaviors.

Our main results illustrate that configurations of nodes that
maximize the extent of diffusion, as well as the probability of an
epidemic, are those that have different Markov chains for dif-
ferent nodes. We show that it is never maximizing to have all
nodes follow the same Markov chain: Heterogeneity is necessary
to maximize diffusion. We also fully characterize the maximiz-
ing structure of heterogeneity for a few simple networks such
as chain and star networks, providing the basic intuition as to
why it is useful to have heterogeneity and illustrating that it can
help. Combining nodes with extreme positive autocorrelation
(sticky nodes) with others who have extreme negative autocor-
relation (reversing nodes) is optimal in such simple networks.
As a by-product, this also shows which structures minimize dif-
fusion (generally homogeneous sticky nodes). Depending on
the application, one may wish to maximize or minimize diffu-
sion. Regardless of what one wishes to do, understanding how
heterogeneity matters is essential for shaping policy. As the
general problem of characterizing the optimal structures for
complex networks appears intractable, we analyze some others
by simulation.

Fig. 1 illustrates how much of a difference having hetero-
geneity can make. We examine diffusion on an Erdős–Renyi
random network (a network on n nodes where there is an edge
between any two nodes with probability p, independently across
pairs) in which agents are either Poisson (they are active each
period with probability �) or sticky (they are either active in all
periods with probability � or inactive in all periods with prob-
ability 1��). Fig. 1 shows how the probability of all nodes
becoming infected behaves as we vary the relative fraction
of Poisson and sticky nodes (and similar results hold for the
expected fraction of infections). Consistent with the previous
literature, if all nodes are sticky, diffusion is less likely than
when all nodes are Poisson. However, when we allow agents
to have heterogeneous behavior, the likelihood of full diffu-
sion is maximized when some agents are sticky and some are
Poisson.

To understand why heterogeneity increases diffusion, consider
an agent who has recently been infected (and was just active). To
maximize the chance of diffusion, it is best if this agent behaves
in a positively correlated way—a sticky way—so that she is more

Fig. 1. The probability that all nodes get infected as a function of the
fraction of non-Poisson (sticky) nodes in an Erdős–Renyi random network,
when agents are either Poisson (i.i.d. active in each period) or sticky (they
stay in the same state they were in the starting period, with a random
starting state). When around 40% of nodes are sticky and the rest are Pois-
son, the likelihood of a full diffusion is three times more than when all
nodes are Poisson. Clearly, mixing bursty behavior with nonbursty behav-
ior substantially helps the diffusion. See SI Appendix for details behind the
simulation.

likely to remain active during the immediate periods after infec-
tion, while she is contagious. On the other hand, when an agent
is not yet infected, then being sticky lowers probabilities of trans-
mission, since if a sticky agent happens to be inactive, then there
is little chance of becoming active in the near future to become
infected. So, sticky agents are poor receivers but good senders.
Conversely, reversing agents are good receivers but poor senders.
The key is that the gain from matching a good sender and a
good receiver outweighs the loss from putting together a poor
sender and a poor receiver, since both matchups happen when
we pair different types of agents together. There is a positive syn-
ergy from a sticky agent’s sending ability and a reversing agent’s
receiving ability: They each maximize each other’s chance of a
successful transmission when the sticky agent is sending and the
reversing agent is receiving. On the other hand, sometimes the
roles are switched. The key to the gain from heterogeneity is
that there is not much loss from pairing them when the roles are
reversed. The sticky agent is a poor receiver no matter who she
is paired with and it makes little difference what that choice is.
Hence, pairing sticky and reversing agents maximizes the send-
ing advantage of the sticky agents and the receiving advantage of
the reversing agents, without much loss from the receiving disad-
vantage of the sticky agent facing a reversing sender. Optimality
requires this sort of pattern.

It is important to emphasize that this is not a small effect: As
seen in Fig. 1, changing just under half of the agents in a Pois-
son population to be sticky increases the chance of full contagion
by almost a factor of 3 in a uniformly random network. (We
see similar orders of magnitude for getting a fraction of nodes
infected, also get even bigger gains from mixtures of reversing
and sticky agents, and also explore other metrics for comparison
in SI Appendix.)

This has implications since diffusion processes are critical in
many settings from spreading news about a new program or idea
to inhibiting the spread of a disease, false rumor, or computer
virus. In some of these settings it may be possible to incentivize
agents to even slightly alter activity patterns to enhance diffusion
or, in a case in which contagion is detrimental, to dampen the
diffusion.

The Model
There are n � 3 agents, with labels i 2N = {1, . . . ,n} connected
in a network represented by a simple graph G =(N , g), where
g ✓N 2 and ij 2 g if agent i and agent j are linked.
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Time passes in discrete periods t 2 {1, 2, . . .}. (We work in
discrete time to easily admit negative autocorrelation. For this
problem, discrete time seems to simplify rather than complicate
the analysis and intuitions.) Agents are either active or inac-
tive in a given period. Activity is independent across agents. An
agent is active with a probability �2 (0, 1) in any given period,
on average. We assume the long-run average activity levels are
the same for all agents. By focusing on agents who are homoge-
neous in how often they participate, we can isolate the effect of
heterogeneities in the timing of participation on diffusion.

In particular, an agent’s activity follows a Markov chain. If an
agent i is active in period t , then she or he is inactive in period t +
1 with probability pi and active with probability 1� pi . Similarly,
if an agent i is inactive in period t , then she or he is active in
period t +1 with probability qi and inactive with probability 1�
qi . This is shown in Fig. 2.

For any fixed �, an agent is then completely characterized
by pi or equivalently by qi . In particular, the following equality
must hold,

�pi =(1��)qi ,

which is just the usual balance equation of the Markov chain,
given that � is the steady-state probability of activity. Some useful
rewritings of this equation are

�
1��

=
qi
pi

, �=
1

1+ pi
qi

, qi = pi
�

1��
.

So, our agents are completely described by pi , given any fixed �.

Three Benchmark Types. There are three levels of autocorrela-
tion that serve as benchmarks.

A Poisson agent is one who has pi =1��=1� qi . This is an
agent who is active at every period with probability �; that is, her
state is i.i.d. over time.

A sticky agent is one who has pi and qi both “near” 0. This is an
agent whose state is (almost) perfectly autocorrelated over time.
In particular, let sticky agents be those who are either always on
(with probability �) or always off (with probability 1��). So this
is the limit of a Markovian agent as min[pi , pi �

1�� ]! 0, but one
that is degenerate.

A reversing agent is one with the maximal possible p and q
(maximal negative autocorrelation): So p=1 if � 1/2 and p=
(1��)/� if �� 1/2. Similarly, q =1 if �� 1/2 and q =�/(1�
�) if � 1/2. Thus, the state of a reversing agent is as negatively
serially correlated as possible, switching back and forth between
being active and inactive as frequently as possible. In the case in
which �=1/2, a reversing agent simply reverses its state every
period.

Poisson, sticky, and reversing agents are canonical cases: one
with no autocorrelation, one with maximal positive autocorrela-
tion, and the other with maximal negative autocorrelation. Of

Fig. 2. Activity Markov chain of agents.

course, there are other levels of autocorrelation in an agent’s
state, and we admit arbitrary cases in our general analysis.

Diffusion. Some agent is initially infected. All other agents are
initially susceptible. Once an agent becomes infected, the agent
stays infected forever after. An agent can transmit infection for
T periods after being infected. We say that such an agent is
“contagious” during those time periods. In each period, an agent
who is contagious transmits the infection to a neighbor if and
only if both he and his neighbor are active and his neighbor is
susceptible.

Line Networks and Canonical Agents
We begin our analysis by looking at networks that are “lines”—
a tree in which no agent has degree more than two. Fig. 3 is a
line network with five nodes. These networks illustrate the main
ideas and intuitions and permit a complete characterization of
the maximizing configurations when we restrict our attention to
the canonical agents.

We begin with an analysis of diffusion with only Poisson
and sticky agents—as these are sufficient to provide the basic
intuitions about how heterogeneity helps with improving diffu-
sion. After establishing results on optimal configurations with
these types, we then add in the reversing agents, showing that
optimal configurations mix the extreme agents: sticky and revers-
ing agents. Finally, we turn to an analysis with general agent
types.

Poisson and Sticky Agents. Let PS denote the probability that
a Poisson agent who is infected transmits to a sticky neigh-
bor who is susceptible within T periods; and similarly define
SP , PP , and SS . Similarly, let PPP denote the probability
that there is full transmission among three Poissons in a line—
where transmission must occur within a new T period for each
successive interaction. So, once infected, a person can pass
the disease or idea along to a neighbor for T periods from
the date of the current agent’s first infection. Likewise, we
define PSP , and so forth. We abuse notation and occasionally
also use this notation to refer to a particular configuration of
agents.

When we consider the transmission in a line, we presume that
the initially infected agent is a node at one end and that the agent
is then randomly active with probability � in the first period. If we
instead assumed that the first agent begins by being active, then
the first agent should always be sticky, and that would just push
the whole problem back one agent.

In all of the analysis that follows, we presume that agents have
the same overall probability of being active, but differ only in
timing. Our interest is in seeing how the patterns of timing mat-
ter, and holding constant the overall level of activity allows us to
isolate how patterns of autocorrelation matter.

Proposition 1. Consider three agents in a line, with all agents being

independently active with probability �2 (0, 1) in steady state, and

who once infected can transmit for some positive integer number of

periods T . The configuration of Poisson and sticky agents that max-

imizes both the expected number of infections and the probability

that all agents become infected is uniquely

• PSP if �<�⇤, and

• PPP if �>�⇤,

where �⇤
is the unique solution in (0, 1) to

�=


1� (1��2)T

1� (1��)T

�
2 [1]
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Fig. 3. A line network with five nodes.

if we are maximizing the probability of total infection and

�=

⇥
1� (1��2)T

⇤⇥
2� (1��2)T

⇤

[1� (1��)T ][2� (1��)T ]
[2]

if we are maximizing the expected number of infected nodes. (For

any T , there is a unique fixed solution to [1] and [2] in (0, 1), as

we show in the proof. 1 and 0 are also solutions, but uninteresting

ones, as then agents are either always or never active, in which case

the time series of their activity is irrelevant.) The interior solution of

[2] is smaller than that of [1].

The proof of Proposition 1 and the proofs for all other
propositions and theorems are in SI Appendix.

To understand the trade-offs that drive heterogeneity note
that once an agent is infected, it is best to have that agent be
sticky because a recently infected sticky agent remains active
while she is contagious. However, when an agent is not yet
infected, it is best to alternate states randomly, to enhance coor-
dination probabilities. Sticky agents are poor receivers but good
senders, and Poisson agents are good receivers but poor senders.
Such dynamics make it optimal to connect a sticky sender and
a Poisson receiver. Moreover, the probabilities of transmission
have synergies—matching sticky senders with Poisson receivers
increases overall probability more than the subsequent loss due
to then having to subsequently alternate a Poisson sender with a
sticky receiver. Under a wide range of activity levels, the advan-
tages of having heterogeneity outweigh the losses from having
the receiver be sticky.

The point of considering the “optimal” configuration is not
necessarily to suggest that there is some mechanism designer or
planner who can control the system, but to show that heterogene-
ity enhances diffusion in certain contexts and to understand why
this occurs—by showing that it maximizes diffusion, we can see
that it definitely enhances diffusion. Our simulations also show
that this is not a small effect.

We now show that this intuition extends to longer lines.

Proposition 2. Consider an odd number of agents in a line, with

all agents being independently active with probability �2 (0, 1) in

steady state, and who once infected can transmit for some positive

integer number of periods T . Start with one end node being infected

and let �⇤ 2 (0, 1) solve [1] and �⇤⇤
be the interior solution of �=⇥

1� (1��)T
⇤
2. Then 0<�⇤⇤ <�⇤ < 1 and the configuration that

maximizes the probability of overall infection is

• PSSSS . . .SP if �<�⇤⇤,
• PSPSP . . .SP if �⇤⇤ <�<�⇤, and

• PPPPP . . .PP if �>�⇤.
As we saw in Proposition 1, there are similar results for the case

of maximizing the expected extent of the diffusion. The cutoff
expressions become more complex with longer lines, and so in
Proposition 2 we simply provide the analysis for the probability
of overall infection. We can still see the gain from heterogeneity
in the following simulation.

To see the extent of the gain from alternation, consider the
following results from simulations. We compare the infections
in a line of five nodes in which all of the nodes are Poisson to
one in which they alternate Poisson and sticky. One of the nodes
is picked at random to be infected and we set T =2. We show
the comparisons for a full range of �. For each of 30 values of �
we run 50,000 iterations of drawing a random network and run-
ning an infection. The reported values for each � value are the
average over the 50,000 iterations.
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Fig. 4. The ratio of the infection probabilities under alternating Poisson and sticky nodes over that for all Poisson nodes, on chains of five nodes with one
randomly infected. (A) Ratio of probability of getting at least half of nodes infected. (B) Ratio of probability of getting all nodes infected.
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We see in Fig. 4 that the gains from alternating sticky with
Poisson compared with having just Poisson can be very large,
more than 400%, while the reverse advantage that appears at
high levels of � is relatively negligible.

In the Introduction, we discussed how recent studies showed
that bursty (i.e., sticky) behavior slows down the diffusion (19).
One may ask whether our results contradict those findings,
and the answer is no. In our setting, SS · · ·S is dominated by
PP · · ·P , which confirms those results. What we prove, however,
is that one should not conclude that Poisson behavior is optimal,
as those results did not admit heterogeneity. When we consider
all possibilities (as in Fig. 1), mixing sticky/bursty behavior with
nonbursty behavior substantially improves the diffusion.

We next show that maximizing the probability of a full infec-
tion tilts the balance more toward sticky nodes at key junctures
or “hubs.” To expand on this point, we study the diffusion pro-
cess on a “star” network. A star network has a central node and
n leaves connected to the center. For example, in Fig. 5 we see a
star network with four leaves.

Proposition 3. Consider agents in a star network with n leaves, with

all agents being independently active with probability �2 (0, 1) in

steady state, and who once infected can transmit for T =2 periods.

Start with some random leaf being infected. Then, for any �, there

exists some N such that if n �N , then the configuration that max-

imizes the probability of a full contagion is to have an S node in the

center and P nodes on the leaves.

To see why Proposition 3 is true, note the following. First,
consider whether the infected leaf infects the center node. This
does not depend on how many other leaf nodes there are. Sec-
ond, consider how the center node interacts with other nodes
once infected. Here there is an advantage to having the cen-
ter be sticky, so that it can transmit in both periods once it is
infected. This advantage grows with the number of leaves. Thus,
the advantage to having it be sticky as a sender grows with its
degree, while the disadvantage of having it be sticky as a receiver
does not depend on degree. As degree grows, the advantage can
become overwhelming as the expected gain in the diffusion from
having the center be sticky compared with Poisson grows in the
number of nodes.

Proposition 2 shows that for �>�⇤, the configuration that
maximizes the expected number of infected nodes does not
include S agents. In contrast, Proposition 3 claims that including
sticky behavior is always optimal for agents at sufficiently central
junctures. Note that hubs appear in various kinds of networks,
from human brain (33, 34) to social networks (35) to computer

Fig. 5. A star network with four leaves.

networks (36), and Proposition 3 suggests that in designing the
activity patterns of such nodes with high degrees, autocorrelated
behavior can be optimal.

In the next section, we show how “extreme heterogeneity” (i.e.,
mixing sticky agents with reversing agents, as opposed to mixing
sticky and Poisson agents) further improves diffusion.

Reversing Agents. Continuing our comparisons, we now con-
sider what happens when we also consider reversing nodes.
Reversing nodes work very well when matched with sticky nodes
for low values of � and also when mixed with each other if � is
very high.

Proposition 4. Consider agents in line and begin with one end

node infected, but then randomly active in the first period of its

transmission. Suppose that all agents are independently active with

probability �2 (0, 1) in steady state and once infected can transmit

for some positive integer number of periods T . If �<�⇤, then any

configuration that maximizes the expected number of infected nodes

or the probability of overall infection involves R nodes.

Moreover, in the case of T =2, then the optimal configurations

involve only R and S nodes (Poisson nodes are not used in the

optimal configurations). Those optimal configurations are to have

full alternation of the form RSRSR . . .SR for low values of �,
all reversing nodes RRRRR . . .RR for high levels of �, and some

combinations of a string of RRRs and alternating SRSR . . .SR for

middle values of �.

Having a reversing node following a sticky node maximizes
the probability of transmission. For example, if �> 1/2, then the
probability of transmission from an infected sticky to a revers-
ing node is one. If the reversing node happens to be inactive
in one period, then it is active for sure in the next period and
then makes contact in at least one of the two periods. Thus,
the only loss from having alternating sticky and reversing nodes
is from having sticky nodes as receivers, which is biggest for
large values of �, at which point it is better go entirely to
reversing nodes.

Before moving to networks with cycles, we further illustrate
our results on a line of five nodes. This shows the differences
between various combinations of node types and shows how
much improvement comes from including extreme node types
and from heterogeneity.

In Fig. 6 we compare the infections in a line of five nodes
for various combinations of Poisson, sticky, and reversing nodes.
One of the nodes is picked at random to be infected and infected
nodes can transmit for T =2. We show the comparisons for a full
range of �. For each of 30 values of � we run 50,000 iterations of
running an infection and average the outcome.

Fig. 6B shows that for the objective of reaching at least half
of the nodes, alternating sticky and reversing leads to the best
outcomes for � up to about 2/3, and then all reversing is optimal
above that. This is as predicted from Proposition 4. Thus, sticky—
“bursty”—behavior is optimal in combination with reversing
for a wide range of values. Fig. 6A shows that for reaching a
quarter of the nodes all reversing works for a wider set of val-
ues, and reversing and sticky combinations work best only at
low values.

General Networks
We now consider more general networks. Obtaining a full char-
acterization once one introduces cycles into a network appears
intractable. The key complication is that a node could be getting
contact from several other nodes at once and asynchronously.
The full array of possibilities of which nodes become infected
when and how that depends on the full network structure and
activity patterns of all nodes explodes exponentially. Nonethe-
less, it is important to make sure that heterogeneity (and bursty)
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Fig. 6. Comparisons of infection probabilities under various configurations of nodes on lines of five nodes with one randomly infected. (A) Probability of
getting one-quarter of nodes infected. (B) Probability of getting one-half of nodes infected.

behavior can still be diffusion enhancing on such networks.
So, our main goal in this section is to show that heterogene-
ity still plays a substantial role in more complex networks, both
through a partial analytic result showing that some heterogeneity
enhances diffusion in any network and then via some simulations
on some richer networks.

General Agents and Expected Infection Levels. We now allow
agents to have any pi s, but still all agents have the same long-
run probability � of being active to focus on the timing patterns
rather than overall levels of activity.

The following result shows that in any network that has some
agents who are not in cycles the optimal configuration of agents
must involve some sort of alternation/heterogeneity. To make
the point that heterogeneity is always optimal, it is sufficient to
consider T =2, as the calculations are tractable for that case.

Proposition 5. Consider any path-connected network for which

there is at least one node that has degree one (a “leaf”) that sits

next to a degree two node. Suppose that each agent must be active

�< 1/2 of the time, independently across agents, and consider

T =2. Start with some node other than one of these two nodes

being infected. Any configuration of pi s that maximizes either the

expected number of infected nodes or the overall probability of full

contagion involves pi 6= pj for some i and j .

The proof takes advantage of some node that has degree one
and its neighbor, which allows us to obtain closed-form expres-
sions for their contagion, fixing the rest of the network. Once
nodes enter into cycles, it becomes intractable to calculate the
optimal configurations for nodes embedded in cycles.

As Proposition 5 relies on leaf nodes, it becomes important to
also check by simulation that heterogeneity makes a difference in
more general networks. To that end we now turn to some simula-

tions to show that the basic intuition that heterogeneity in types
can lead to higher rates of contagion extends to some more gen-
eral networks—and not just occasional leaf nodes—as we verify
via some simulations.

Illustrations on Random and Real-World Networks. We now
examine how diffusion on an Erdős–Renyi network with 40
nodes depends on the mixture of nodes’ activity patterns. We
consider a network with a probability of 1/4 per link, the expected
degree is almost 10, and the network is usually connected and has
many cycles. Again, we compare what happens with various con-
figurations of Poisson, sticky, and reversing nodes. Given that the
network is random, the various nodes end up randomly located in
the network. For each of 30 values of � we run 50,000 iterations
and average the outcomes.

Fig. 7A shows that a mixture of reversing nodes with sticky
nodes does better than any of the other configurations for � up
to about 0.3 and after that all reversing nodes take over. This is
similar to what we saw for line, and in Proposition 4, and here it
is more pronounced for getting a fraction of infected nodes of
0.25. Moreover, here the nodes are not explicitly placed in some
alternating fashion, but just randomly mixed in the population,
and still having sticky mixed with reversing nodes does better for
a substantial range of parameters. Interestingly, when we exam-
ine the probability of getting half of the nodes infected, then for
a middle range of � (near 1/3) it turns out that mixing reversing
with Poisson does better than mixing reversing with sticky nodes,
as we see in Fig. 7B. So, when and what heterogeneity is opti-
mal can depend on the objective and infection rate and network
structure.

We also examine how heterogeneity works on a real-world
social network. We simulate diffusion with various combinations
of Poisson, sticky, and reversing nodes on an Indian village net-
work with 155 nodes, where each node is a household from the
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Fig. 7. Comparisons of infection probabilities under various configurations of nodes for Erdős–Renyi random networks on 40 nodes. (A) Probability of
getting one-quarter of nodes infected. (B) Probability of getting one-half of nodes infected.

data of ref. 7 (village no. 77). Again, for each of 30 values of � we
run 50,000 iterations of running an infection and average the out-
comes. The results are very similar to the Erdős–Renyi random
network, as we see by comparing Fig. 8 to Fig. 7.

Remark. When calculating the probability of getting propor-
tion 0.5 infected, there is an “anomaly” in both Erdős–Renyi
and Indian village network simulations at �=0.5. Figs. 7B and
8B both admit a sharp decline in the probability of getting at

Fig. 8. Comparisons of infection probabilities under various configurations of nodes’ activity on an Indian village social network. (A) Probability of getting
one-quarter of nodes infected. (B) Probability of getting one-half of nodes infected.
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least half of the nodes infected exactly at �=0.5 for the all-
reversing case. The reason for this strange behavior is that (only)
when �=0.5, reversing nodes no longer have any randomness
and then exactly switch from being active to dormant in each
period. So when we start with half of the nodes active, they
miscoordinate with the other nodes exactly over time and never
infect the remaining half. Thus, essentially half the nodes will
never be infected, and the only way contagion reaches more than
half of the population is if more than half happen to be all path
connected to each other and start in the same state, which hap-
pens rarely (especially in the Indian village network in which the
network fractures into components when one considers only half
the nodes).

A Related Problem
There is a very different problem from diffusion that ends up
having a very similar logic applied and helps in further under-
standing our results, showing their reach. Imagine two people
who are lost in a city with no way to communicate. They under-
stand that it would be best for them to find each other by trying
to meet at one of the major landmarks. To keep things simple,
imagine that the city is New York and they each expect that
the logical meeting places are either the Empire State Build-
ing or the Statue of Liberty, as in the seminal discussion of
focal points in ref. 37. If they both go to each of the landmarks,
then there is a chance that they will miscoordinate (38, 39)—
going in the opposite order and thus missing each other. If,
instead, one of them just goes to one of the landmarks and stays
there, while the other alternates and goes to both, then they are
sure to meet.

To complete the analogy, and see that heterogeneity does
really improve coordination, consider three strategies that a per-
son trying to coordinate with another person might use, which
have parallels to our strategies above.

To be concrete, the game is that in each discrete time period
each person picks one of k available choices (e.g., which land-
mark to go to in the above example). The measurement of
success is how long it takes until the two people meet.

Consider three strategies that the people can follow, which
each have an analogous activity pattern in our analysis above and
are so labeled to make the analogy clear.

Poisson (P): In each period an agent makes a choice uni-
formly at random, hopping from one choice to another with
no memory and equal probability on each choice in any given
period.

Sticky (S): An agent picks one choice uniformly at random in
the first period and sticks with that choice forever.

Reversing (R): At the beginning of time, an agent uniformly
and randomly picks an order over the k choices and then
chooses them one by one in that order, never visiting a previ-
ously visited choice during the first k periods. After k periods,
the agent starts over and uniformly at random picks a new
ordering over the k choices and visits them in that order for
the next k periods and repeats this process each k period
indefinitely.

Now let us consider how long it takes two people to first meet
when using these strategies. First, it is clear that regardless of
which of these strategies they choose, the two agents have the
same probability of meeting in the first period—which is simply
1/k . This then makes it clear that having both agents play S is
the worst possible match: If they do not meet in the first period,
they will never meet, while under any other combination there is
a possibility of meeting in some later period. More generally, it
turns out that there is a unique combination that minimizes the
expected time to meeting: having one agent play S and the other

play R. This is an analog to our result in Proposition 4, which we
now state.

Using the labels above, let SR denote the expected time to
first meeting when one agent is S and the other is R. With similar
notation for other combinations, we have the following:

Claim 1. RS <PS =PP =PR<RR<SS .
The proof of the claim is not hard.
First, as we already argued SS does strictly worse than any

other strategy in terms of expected meeting time.
Second, it is easy to see that any combination with at least

one P has a chance of meeting in any given period that is 1/k
independent of history. Thus, PP =PS =PR.

Next comes the key argument that RS does better than PS ,
which then implies that RS <PS =PP =PR<SS . RS and PS
both have the same probability 1/k of meeting in the first period.
In period 2, conditional on not having met in the first period,
RS has probability 1/(k � 1) since now R no longer searches a
site that S is not choosing, while PS still has probability 1/k . By
period t < k , RS has probability 1/(k � t) of meeting conditional
on not having met yet and probability 1 by period k , while PS still
has probability 1/k in every period. So, RS does strictly better
than PS.

The only remaining pairing to consider is RR. RR does strictly
better than SS as already argued. To see that RR does worse
than PR concludes the proof. RR and PR have the same proba-
bility of meeting in the first period. In every subsequent period,
PR has a probability of 1/k of meeting. Instead, RR’s probabil-
ity gets worse in the second period. This is obvious if k =2, since
the two people just reverse locations and miss each other if they
missed each other in the first period. More generally, the prob-
ability that they meet in the second period conditional on not
meeting in the first period under RR is (k � 2)/(k � 1)2 < 1/k .
To see this, without loss of generality, let person 1 have made
choice 1 and person 2 have made choice 2 in the first period.
Now, if the first person chooses choice 2, they will not meet.
With the remaining probability of (k � 2)/(k � 1), under RR the
first person goes to a landmark that the second person will possi-
bly visit, and then conditional on that they meet with probability
1/(k � 1), and so the overall probability is (k � 2)/(k � 1)2 as
claimed. It is easy to extend this argument to see that this proba-
bility decays with each period, as the agents do not revisit places
to which they have already been, while the other agent is more
likely to visit those given that they did not meet before and so the
other agent is less likely to have been to those places yet.

Concluding Remarks
Heterogeneity in activity patterns within a population can sub-
stantially enhance diffusion, and matching extreme types of
agents next to each other can be optimal. The conclusion that
S agents hurt diffusion holds only when one requires all agents
to have the same activity patterns, and the relationship between
diffusion probability and fraction of agents with S behavior has
an inverse-U shape. We show this analytically in simple networks.
Given the intractability of finding fully optimal configurations in
general networks, we illustrated that the results extend to some
more complex networks by simulation.

The point here is not to fully characterize the optimal pat-
terns for diffusion, as it is both intractable and not clear what
one would do with such a characterization. The point instead
is to show that considering heterogeneity in diffusion processes
can have a big impact and to provide intuitions as to why. Nat-
ural next steps would be to investigate the further implications
of heterogeneity of activity in efficient vaccination policies and
enhancement of the diffusion of innovations by picking the best
“seeds.”

Throughout this paper, we considered a simple model
of diffusion—the so-called SIR model. The results may
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qualitatively and quantitatively change if one considers different,
more complex diffusion models such as the “threshold” diffu-
sion model (40), as some studies have shown that this can result
in qualitatively different results in terms of how network struc-
ture impacts diffusion (4). How heterogeneous activity patterns
impact diffusion in such models seems to be an interesting area
for future studies.

Finally, here we examined the optimal structure of agents with-
out constraints on the numbers of different types of agents. In
some settings it may be possible to incentivize or choose agents
to be S and others to be R. A logical next problem to study is
to consider a fixed, relatively small number of S agents (or inter-
mediaries who are “always active”) and pick the best “bursts”
(or best “intermediaries”) for the enhancement of the diffusion.
This “optimal bursts” (or “optimal intermediaries”) question

also leads to several follow-ups: Is this a computationally hard
problem? Would (as in ref. 35 for optimal seeds) a “greedy” algo-
rithm perform well in approximating the optimal placement of S
(or intermediary) agents? Similar to the exercise in ref. 7, Which
centrality measures perform well in practice for finding the opti-
mal placement of such agents? And, along the lines of ref. 41,
How many additional placements would have to be picked at
random to prompt a larger diffusion than the optimum?
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35. Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a

social network. Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (ACM, New York), pp 137–146.

36. Cohen R, Havlin S, Ben-Avraham D (2003) Efficient immunization strategies for
computer networks and populations. Phys Rev Lett 91:247901.

37. Schelling TC (1960) The Strategy of Conflict (Harvard Univ Press, Cambridge, MA).
38. Chassang S (2010) Fear of miscoordination and the robustness of cooperation in

dynamic global games with exit. Econometrica 78:973–1006.
39. Kempe D, Schulman LJ, Tamuz O (2016) Quasi-regular sequences and optimal

schedules for security games. arXiv:1611.07169.
40. Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83:1420–

1443.
41. Akbarpour M, Malladi S, Saberi A (2017) Just a few seeds more: Value of network

information for diffusion, 10.2139/ssrn.3062830.

Akbarpour and Jackson PNAS Latest Articles | 9 of 9


