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1 Introduction

The standard mechanism design paradigm assumes that the auctioneer has full com-

mitment. She binds herself to follow the rules, and cannot deviate after observing the

bids, even when it is profitable ex post to renege (McAfee and McMillan, 1987). This

contrasts starkly with the way we model participants; incentive compatibility “requires

that no one should find it profitable to “cheat,” where cheating is defined as behavior

that can be made to look “legal” by a misrepresentation of a participant’s preferences or

endowment”(Hurwicz, 1972).

In this paper, we study incentive compatibility for the auctioneer. We require that

the auctioneer, having promised in advance to abide by certain rules, should not find

it profitable to “cheat”, where cheating is defined as behavior that can be made to look

“legal” to each participant by misrepresenting the preferences of the other participants. For

instance, in a second-price auction, the auctioneer can profit by exaggerating the second-

highest bid. Thus, as Vickrey (1961) observes, the first-price auction is “automatically

self-policing”, while the second-price auction requires special arrangements that tie the

auctioneer’s hands.1

To proceed, we must choose a communication structure for the bigger game played by

the bidders and the auctioneer. Clearly, if the bidders simultaneously and publicly an-

nounce their bids, then the problem is trivial, and reduces to the case of full commitment.

However, simultaneous public announcements are uncommon in real-world auctions. Most

bidders at high-stakes auction houses do not place bids audibly, and instead use secret

signals that other bidders cannot detect. These signals “may be in the form of a wink, a

nod, scratching an ear, lifting a pencil, tugging the coat of the auctioneer, or even staring

into the auctioneer’s eyes – all of them perfectly legal” (Cassady, 1967). Recently, many

bidders have ceased to be present in the auction room at all, preferring to bid over the

Internet or by telephone.2 Christie’s and Sotheby’s are legally permitted to call out fake

(‘chandelier’) bids to give the impression of higher demand; the New York Times reports

that, because of this practice, “bidders have no way of knowing which offers are real”.3

There are several reasons why real-world auctioneers accommodate private communi-

cation. First, bidders frequently desire privacy for reasons both intrinsic and strategic. A

mobile operator may be unwilling to publicize its value for a band of spectrum, because

its rivals will take advantage of this information. In recent spectrum auctions in Ireland,

the Netherlands, Austria, and Switzerland, the auctioneer did not disclose the losing bids,

1Rothkopf et al. (1990) argue that some real-world auctioneers avoid second-price auctions because
bidders fear that the auctioneer may cheat.

2The Wall Street Journal reports, “Many auction rooms are sparsely attended these days despite
widespread interest in the items being sold, with most bids coming in online or, even more commonly, by
phone”. Why auction rooms seem empty these days, The Wall Street Journal, June 15 2014.

3Genteel auction houses turning aggressive, The New York Times, April 24 2000.
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even after the auction (Dworczak, 2017).4 Second, auctioneers want to prevent collusion.

Thus, in many procurement auctions, bidders are forbidden from conferring - they must

submit their bids only to the auctioneer. Third, in auctions that take place over the Inter-

net, bidders are anonymous to each other, which prevents them from sharing information.

An industry newsletter5 for online advertising auctions reports:

In a second-price auction, raising the price floors after the bids come in al-

lows [online auctioneers] to make extra cash off unsuspecting buyers [. . . ] This

practice persists because neither the publisher nor the ad buyer has complete

access to all the data involved in the transaction, so unless they get together

and compare their data, publishers and buyers won’t know for sure who their

vendor is ripping off.

The second-price auction is incentive-compatible for the auctioneer only under strong

assumptions about the communication structure, such as simultaneous public communi-

cation. In this paper, we instead assume that the auctioneer engages in sequential private

communication with the bidders. This enables us to represent auction rules using the

tractable and familiar machinery of extensive game forms.

Consider any protocol ; a pair consisting of an extensive-form mechanism and a strategy

profile for the agents. The auctioneer runs the mechanism as follows: Starting from the

initial history, she picks up the telephone and conveys a message to the agent who is

called to play (an information set), along with a set of acceptable replies (actions). The

agent chooses a reply. The auctioneer keeps making telephone calls, sending messages

and receiving replies, until she reaches a terminal history, whereupon she chooses the

corresponding outcome and the game ends.

Suppose some utility function for the auctioneer. For instance, assume that the auc-

tioneer wants revenue. Suppose that each agent intrinsically observes certain features of

the outcome. For instance, each agent observes whether or not he wins the object, and

how much he pays, but not how much other agents pay.

By participating in the protocol, each agent observes a sequence of communication be-

tween himself and the auctioneer and some features of the outcome. Even if the auctioneer

deviates from her assigned strategy, agent i’s observation could still have an innocent ex-

planation. That is, when the auctioneer plays by the rules, there exist types for the other

agents that result in that same observation for i.

Given a protocol, some deviations may be safe, in the sense that for every type profile,

each agent’s observation has an innocent explanation. That is, every observation that an

4Dworczak (2017) studies how post-auction strategic interactions affect what information auctioneers
should publicly release. A participant in a spectrum auction in India reported, “Those in the war room
had to sign non-disclosure agreements to ensure we wouldn’t talk about auction strategy and discussions
to any one, during or after the auction.” (Auction action: How telcos fought the bruising battle for
spectrum, The Economic Times, March 30 2015.)

5How SSPs use deceptive price floors to squeeze ad buyers, Digiday, Sep 13 2017
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agent might have (under the deviation) is also an observation he might have when the

auctioneer is running the mechanism. For instance, when a bidder bids $100 in a second-

price auction, receives the object, and is charged $99, that observation has an innocent

explanation - it could be that the second-highest value was $99. Thus, in a second-price

auction, the auctioneer can safely deviate by exaggerating the second-highest bid.6

Instead of just choosing a different outcome, the auctioneer may also alter the way

she communicates with agents. For example, consider a protocol in which the auctioneer

acts as a middleman between one seller and one buyer. The seller chooses a price for the

object, which the auctioneer tells to the buyer. The object is sold to the buyer at that

price if and only if the buyer accepts, and the auctioneer takes a 10% commission. The

auctioneer has a safe deviation - she can quote a higher price to the buyer, and pocket

the difference if the buyer accepts.

A protocol is credible if running the mechanism is incentive-compatible for the auc-

tioneer; that is, if the auctioneer prefers playing by the book to any safe deviation. This

is a way to think about partial commitment power for any extensive-form mechanism.

The private-communication assumption is crucial for our analysis. The standard

mechanism design paradigm assumes that the auctioneer has no room to misrepresent

each agent’s behavior. We make the opposite assumption, allowing the auctioneer to

misrepresent any agent’s behavior to any other agent.7 Many real-world situations are

in-between. For instance, in typical auctions for art or wine, the auctioneer reveals the

clearing price but hides the identity of the winner (Ashenfelter, 1989).8 As another exam-

ple, the US National Resident Matching Program publishes aggregate statistics about the

match, but does not publish information that identifies individual doctors or hospitals.9

In general, which agents share information, and what information they share, depends on

context-specific features that are outside our framework. Fully private communication is

a tractable benchmark, so it is the focus of the present study.

Having defined the framework, we now consider how credibility interacts with other

design features. Most real-world auctions are variations on just a few canonical formats

- the first-price auction, the ascending auction, and (more recently) the second-price

auction (Cassady, 1967; McAfee and McMillan, 1987; Edelman et al., 2007).10 The first-

6An auctioneer running second-price auctions in Connecticut admitted, “After some time in the busi-
ness, I ran an auction with some high mail bids from an elderly gentleman who’d been a good customer
of ours and obviously trusted us. My wife Melissa, who ran the business with me, stormed into my office
the day after the sale, upset that I’d used his full bid on every lot, even when it was considerably higher
than the second-highest bid.” (Lucking-Reiley, 2000)

7Section 5.1 formalizes one sense in which private communication is a worst-case scenario for auctioneer
incentives.

8One justification keeping the winner’s identity secret is that it gives bidders incentives to defect from
collusive arrangements. However, publishing the clearing price does not rule out cheating, since each
losing bidder may believe that someone else placed the second-highest bid.

9The match rules also limit the information that participants can share. 2019 Main Residency Match
Participation Agreement for Applicants and Programs, Sections 4.4 and 4.6.

10The Dutch (descending) auction, in which the price falls until one bidder claims the object, is less
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price auction is static (“sealed-bid”) – each agent is called to play exactly once, and has no

information about the history of play when selecting his action. This yields a substantial

advantage: Sealed-bid auctions can be conducted rapidly and asynchronously, thus saving

logistical costs.11 The ascending auction is strategy-proof. Thus, it demands less strategic

sophistication from bidders, and does not depend sensitively on bidders’ beliefs (Wilson,

1987; Bergemann and Morris, 2005; Chung and Ely, 2007). The second-price auction

is static and strategy-proof; it combines the virtues of the first-price auction and the

ascending auction (Vickrey, 1961).

We study the implications of credibility in the independent private values (IPV) model

(Myerson, 1981). For now, we assume that the value distributions are regular and sym-

metric, and restrict attention to auctions in which only winning bidders make (or receive)

transfers. Under these assumptions, the second-price auction (with reserve) is the unique

strategy-proof static optimal auction (Green and Laffont, 1977; Holmström, 1979; Mil-

grom and Segal, 2002). The second-price auction is not credible, so no optimal auction

is strategy-proof, static, and credible. This raises two natural questions: Is any auction

static and credible? Is any auction strategy-proof and credible?

Our first result is as follows: The first-price auction (with reserve) is the unique static

credible optimal auction. This implies that, in the class of static mechanisms, we must

choose between incentive-compatibility for the auctioneer and dominant strategies for the

agents.

Static mechanisms include the direct revelation mechanisms, in which each agent sim-

ply reports his type. Thus, when designing credible protocols, restricting attention to

revelation mechanisms loses generality. The problem is that revelation mechanisms reveal

too much. For a bidder to have a dominant strategy, his payment must depend on the

other bidders’ types. If the auctioneer knows the entire type profile, and the winning

bidder’s payment depends on the other bidders’ types, then the auctioneer can safely de-

viate to raise revenue. This makes it impossible to run a credible strategy-proof optimal

auction. What happens when we look outside the class of revelation mechanisms - when

we use the full richness of extensive forms to regulate who knows what, and when?

For the next result, we discretize the type space, so that optimal clock auctions can

be represented as extensive form mechanisms.

Our second result is as follows: The ascending auction (with an optimal reserve) is

credible. Moreover, it is the unique credible strategy-proof optimal auction. No other

extensive forms satisfy these criteria.

Notably, this result does not use open outcry bidding to ensure good behavior by the

auctioneer. Given an ascending auction with an optimal reserve, the auctioneer prefers to

prevalent (Krishna, 2010, p.2).
11Using data from U.S. Forest Service timber auctions, Athey et al. (2011) find that “sealed bid

auctions attract more small bidders, shift the allocation toward these bidders, and can also generate
higher revenue”.
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Figure 1: An auction trilemma: In the class of optimal auctions in which only the winner
makes transfers, no auction is static, strategy-proof, and credible. Picking two out of
three properties uniquely characterizes each standard format.

follow the rules even though she communicates with each bidder individually by telephone.

If the auctioneer places chandelier bids, then she runs the risk that bidders will quit. In

equilibrium, this deters her from placing chandelier bids at any price above the reserve.

These results imply an auction trilemma. Static, strategy-proof, or credible: An

optimal auction can have any two of these properties, but not all three at once. Moreover,

picking two out of three characterizes each of the standard auction formats (first-price,

second-price, and ascending). Figure 1 illustrates.

Next, we generalize these results by relaxing the assumption that only winners make

transfers and that the distributions are symmetric. The credible static auctions are now

twin-bid auctions. This is a larger class that includes all-pay auctions and first-price

auctions with entry fees. In a twin-bid auction, each agent chooses from a set of feasible

bids, where a bid is a pair of numbers specifying what he pays if he wins and what he

pays if he loses. After taking all bids, the auctioneer chooses a winner that maximizes

revenue. Under mild assumptions, twin-bid auctions are not strategy-proof.

Under asymmetry, the static strategy-proof optimal auctions are virtual second-price

auctions: each bid is scored as its corresponding virtual value, and the winner pays the

least bid he could have reported while still having the highest score. Correspondingly, the

credible strategy-proof optimal auctions are virtual ascending auctions: bids are scored

according to their virtual values, so one bidder’s price may rise faster than another’s.

Thus, general extensive forms enable the auctioneer to credibly reject higher bids in favor

of lower bids, when it is optimal to do so.

For practical purposes, should an auction be static, strategy-proof, or credible? It

depends. Some Internet advertising auctions must be conducted in milliseconds, so latency

precludes the use of multi-round protocols. Strategy-proofness matters when bidders
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are inexperienced or have opportunities for rent-seeking espionage. Credibility matters

especially when bidders are anonymous to each other or require that their bids be kept

private. These real-world concerns are outside the model. Our purpose is not to elevate

some criterion as essential, but to investigate which combinations are possible.

1.1 Related work

We are far from the first to conceive of games of imperfect information as being conducted

by a central mediator under private communication. Von Neumann and Morgenstern

exposit such games as being run by “an umpire who supervises the course of play”,

conveying to each player only such information as is required by the rules (Von Neumann

and Morgenstern, 1953, p. 69-84). Similarly, Myerson (1986) considers multi-stage games

in which “all players communicate confidentially with the mediator, so that no player

directly observes the reports or recommendations of the other players.”

The papers closest to ours are Dequiedt and Martimort (2015) and Li (2017). In De-

quiedt and Martimort (2015), two agents simultaneously and privately report their types

to the principal, who can misrepresent each agent’s report to the other agent. If we re-

strict attention to revelation mechanisms, then our definition of credibility is equivalent

to their requirement that the principal report truthfully. However, this restriction loses

some generality, so our model instead permits the auctioneer to communicate sequentially

with bidders by adopting extensive-form mechanisms. Li (2017) proposes a definition of

bilateral commitment power, and also introduces the messaging game that we use here.

The definition in Li (2017) is restricted to dominant-strategy mechanisms, whereas cred-

ibility allows for Bayes-Nash mechanisms. Also, Li (2017) does not model the incentives

faced by the auctioneer, which is the entire subject of the present study.

Our paper is related to the literature on mechanisms with imperfect commitment,

in which some parts of the outcome are chosen freely by the designer after observing

the agents’ reports (Baliga et al., 1997; Bester and Strausz, 2000, 2001). Our paper also

relates to the literature that studies multi-period auction design with limited commitment

(Milgrom, 1987; McAfee and Vincent, 1997; Skreta, 2006; Liu et al., 2014; Skreta, 2015).

In this paradigm, the auctioneer chooses a mechanism in each period, but cannot commit

today to the mechanisms that she will choose in future. In particular, if the object remains

unsold, then the auctioneer may attempt to sell the object again. Essentially, these papers

have a post-auction game, and require that the auctioneer is sequentially rational. Our

machinery instead permits the auctioneer to misrepresent bidders’ preferences during the

auction.

Some papers model auctions as bargaining games in which the auctioneer cannot

commit to close a sale (McAdams and Schwarz, 2007a; Vartiainen, 2013). These papers

fix a particular stage game, in which players can solicit, make, or accept offers, and study
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equilibria of the repeated game. The auctioneer does not promise to obey any rules – she

is constrained only by the structure of the repeated game. In our model, the auctioneer

instead promises in advance to abide by certain rules, and can only deviate from those

rules in ways that have innocent explanations. Thus, if the auctioneer promises to run

a first-price auction, then she must conclude the auction after collecting the bids. By

contrast, McAdams and Schwarz (2007a) and Vartiainen (2013) permit the auctioneer to

restart play in the next period, exploiting the new information that she has learned.

Several papers study auctioneer cheating in specific auction formats, such as shill-

bidding in second-price auctions (McAdams and Schwarz, 2007b; Rothkopf and Harstad,

1995; Porter and Shoham, 2005) and in ascending auctions with common values (Chakraborty

and Kosmopoulou, 2004; Lamy, 2009). Loertscher and Marx (2017) allow the auctioneer

to choose when to stop the clocks in a two-sided clock auction. We contribute to this

literature by providing a definition of auctioneer incentive-compatibility that is not tied

to a particular format, and can thus be used as a design criterion.

Our paper contributes to the line of research that studies standard auction formats by

relaxing various assumptions of the benchmark model (Milgrom and Weber, 1982; Maskin

and Riley, 1984; Bulow et al., 1999; Fang and Morris, 2006; Hafalir and Krishna, 2008;

Bergemann et al., 2017, 2018). While the usual approach is to compare the standard

formats in terms of expected revenue, we instead characterize the standard formats with

a few simple desiderata. Of course, the desiderata of Figure 1 do not exhaust the con-

siderations of real-world auctioneers; factors such as interdependent values, risk aversion,

and informational robustness importantly affect the choice of format.

2 Model

2.1 Definitions

We now define the model. Proofs omitted from the main text are in Appendix B. The

environment consists of:

1. A finite set of agents, N .

2. A set of outcomes, X.

3. A type space, ΘN = ×i∈NΘi, endowed with σ-algebra F .

4. A probability measure D : F → [0, 1].

5. Agent utilities ui : X ×ΘN → R

6. A partition Ωi of X for each i ∈ N . (ωi denotes a cell of Ωi.)
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The partition Ωi represents what agent i directly observes about the outcome. Con-

ceptually, these partitions represent physical facts about the world, which are not objects

of design. They capture the bare minimum that each agent observes about the outcome,

regardless of the choice of mechanism.12

We represent the rules of the mechanism as an extensive game form with imperfect

information. This specifies the information that will be provided to each agent, the choices

each agent will make, and the outcomes that will result, assuming that the auctioneer

follows the rules. Crucially, we are not yet modeling the ways that the auctioneer can

deviate.

Formally, a mechanism is an extensive game form with consequences in X. This is

an extensive game form for which each terminal history is associated with some outcome.

Formally, a mechanism G is a tuple (H,≺, P, A,A, (Ii)i∈N , g), where each part of the

tuple is as specified in Table 1. The full definition of extensive forms is familiar to most

readers, so we relegate further detail to Appendix A. We restrict attention to mechanisms

with perfect recall and finite depth (that is, there exists some K ∈ Z such that no history

has more than K predecessors).

Table 1: Notation for Extensive Game Forms

Name Notation Representative element
histories H h
precedence relation over histories ≺
reflexive precedence relation �
initial history h∅
terminal histories Z z
player called to play at h P (h)
actions A a
most recent action at h A(h)
information sets for agent i Ii Ii
outcome resulting from z g(z)
immediate successors of h succ(h)
actions available at Ii A(Ii)

An interim strategy is a function from information sets to available actions, σi :

Ii → A, satisfying σi(Ii) ∈ A(Ii). Let Σi denote the set of i’s interim strategies, and

denote an interim strategy profile by σN = (σi)i∈N . An ex ante strategy is a function

from types to interim strategies, Si : Θi → Σi. An ex ante strategy profile is SN = (Si)i∈N ,

which implies an interim strategy profile for each type profile, SN(θN) = (Si(θi))i∈N . We

use Si(Ii, θi) to denote the action played under ex ante strategy Si at information set Ii

by type θi.

12In the application that follows, we will assume that each bidder in an auction knows how much he
paid and whether he receives the object. In effect, this rules out the possibility that the auctioneer could
hire pickpockets to raise revenue, or sell the object to multiple bidders by producing counterfeit copies.
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By convention, many papers make statements about mechanisms that implicitly refer

to a particular equilibrium of the mechanism, such as the claim “second-price auctions

are efficient”. To reduce ambiguity, we will state our results explicitly for pairs (G,SN)

consisting of a mechanism and a strategy profile, which we refer to as a protocol.

Let xG(σN) denote the outcome inG, when agents play according to σN . Let uGi (σi, σ−i, θN) ≡
ui(x

G(σi, σ−i), θN).

Definition 2.1. (G,SN) is Bayes incentive-compatible (BIC) if, for all i ∈ N , for

all θi ∈ Θi:

Si(θi) ∈ argmax
σi

Eθ−i [uGi (σi, S−i(θ−i), (θi, θ−i))] (1)

2.2 Pruning

At first glance, when constructing extensive-form mechanisms, it may seem important

to keep track of off-path beliefs. However, if certain histories are off-path at every type

profile, then we can delete those histories without altering the mechanism’s incentive

properties. Similarly, if an agent is called to play, but reveals no outcome-relevant infor-

mation about his type, we can skip that step without undermining incentives. Thus, we

restrict attention to the class of pruned protocols.13 This technique allows us to remove

redundant parts of the game tree, and implies cleaner definitions for the theorems that

follow. In words, a pruned protocol has three properties.

1. For every history h, there exists some type profile such that h is on the path of play.

2. At every information set, there are at least two actions available (equivalently, every

non-terminal history has at least two immediate successors).

3. If agent i is called to play at history h, then there are two types of i compatible

with his actions so far, that could lead to different eventual outcomes.

Let z(σN) denote the terminal history that results from interim strategy profile σN .

Formally:

Definition 2.2. (G,SN) is pruned if, for any history h:

1. There exists θN such that h � z(SN(θN))

2. If h /∈ Z, then |succ(h)| ≥ 2.

3. If h /∈ Z, then for i = P (h), there exist θi, θ
′
i, θ−i such that

(a) h ≺ z(SN(θi, θ−i))

(b) h ≺ z(SN(θ′i, θ−i))

13This is stronger than the definition of pruning in Li (2017), which includes only the first requirement.
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(c) xG(SN(θi, θ−i)) 6= xG(SN(θ′i, θ−i))

By the next proposition, when our concern is to construct a BIC protocol, it is without

loss of generality to consider only pruned protocols.

Proposition 2.3. If (G,SN) is BIC, then there exists (G′, S ′N) such that (G′, S ′N) is

pruned and BIC and for all θN , xG
′
(S ′N(θN)) = xG(SN(θN)).

Hence, from this point onwards we restrict attention to pruned (G,SN). If the type

space ΘN is finite and the probability measure D has full support, then every information

set in a pruned protocol is reached with positive probability, which implies that any

Bayes-Nash equilibrium survives equilibrium refinements that restrict off-path beliefs.

2.3 A messaging game

We now explicitly model the auctioneer14 as a player (denoted 0) . The auctioneer has

utility u0 : X ×ΘN → R.

The auctioneer promises in advance to run some protocol (G,SN). We now describe

a messaging game G∗ that includes the auctioneer as a player. In G∗, the auctioneer

contacts players privately and sequentially. At each step, she contacts some agent i,

sending a message that corresponds to one of i’s information sets in the mechanism G.

Agent i replies with one of the actions available at that information set. At any step, the

auctioneer can choose an outcome x and end the game. Thus, the auctioneer can deviate

from G by altering the sequence of players or information sets, or by choosing different

outcomes.

Formally, the messaging game generated by protocol (G,SN) is defined as follows: Let

the auctioneer’s message space be M = ∪iIi.

1. The auctioneer chooses to:

(a) Either: Select outcome x ∈ X and end the game.

(b) Or: Go to step 2.

2. The auctioneer chooses some agent i ∈ N and sends a message m = Ii ∈ Ii.

3. Agent i privately observes message Ii and chooses reply r ∈ A(Ii).

4. The auctioneer privately observes r.

5. Go to step 1.

14We use the term ‘auctioneer’ to refer to the mediator, but this could be any mediator who runs a
mechanism, such as a school choice authority or the National Resident Matching Program.
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There exists an auctioneer strategy in the messaging game that ‘follows the rules’ of

the mechanism G. These rules prescribe which agents to contact, in what order, what

messages to send, when to end the game, and what outcome to choose.

We use SG0 to denote the rule-following auctioneer strategy. Formally, SG0 is defined by

the following algorithm: Initialize ĥ := h∅. At each step, if ĥ is a terminal history in G, end

the game and choose outcome g(ĥ). Else, contact agent P (ĥ) and send message m = IP (ĥ)

such that ĥ ∈ IP (ĥ). Upon receiving reply r, update ĥ := h′ ∈ succ(ĥ) | A(h′) = r, and

iterate.15

We make a crucial restriction: The auctioneer can only deviate in ways that no agent

can detect. Formally, in the messaging game, agent i observes the sequence of com-

munication between himself and the auctioneer (mk
i , r

k
i )
Ti
k=1, and directly observes some

details of the outcome, as specified by the partition Ωi. An observation for i is a tuple

((mk
i , r

k
i )
Ti
k=1, ωi), where ωi is the cell of Ωi that contains the outcome.16 Let oi(S0, SN , θN)

be i’s observation when the auctioneer plays S0, the agents play SN , and the type profile

is θN .

Definition 2.4. Given some promised strategy profile (S0, SN), auctioneer strategy Ŝ0

is safe if for all agents i ∈ N and all type profiles θN , there exists θ̂−i such that

oi(Ŝ0, SN , θN) = oi(S0, SN , (θi, θ̂−i)). S∗0 (S0, SN) denotes the set of safe strategies.

G∗ is the messaging game restricted to S∗0 (SG0 , SN); this constrains the auctioneer to

only play safe deviations from the rule-following strategy.

Definition 2.4 permits the auctioneer to deviate only if every agent’s observation has

an innocent explanation; there must exist θ̂−i such that i’s observation is consistent

the auctioneer playing SG0 , the agents playing SN , and the other agents’ types being θ̂−i.

Definition 2.5. (G,SN) is credible if

SG0 ∈ argmax
S0∈S∗0 (SG0 ,SN )

EθN [u0(S0, SN , θN)] (2)

where u0(S0, SN , θN) is the utility to the auctioneer from the outcome that results from

(S0, SN) when the type profile is θN .

This parallels the definition of agent incentive compatibility in Hurwicz (1972):

In effect, our concept of incentive compatibility merely requires that no one

should find it profitable to “cheat,” where cheating is defined as behavior that

15We have not defined SG0 at information sets in the messaging game that are ruled out by SG0 . Since
we are not considering trembles by the auctioneer, all such strategies are outcome-equivalent, and this
omission is harmless.

16Note the lack of calendar time: The agent observes the sequence of past communications between
himself and the auctioneer, not a sequence of periods in which he either sees some communication or
none.
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Figure 2: A mechanism and a deviation. If agent 1 cannot distinguish outcomes a and b,
then the deviation is safe.

can be made to look “legal” by a misrepresentation of a participant’s prefer-

ences or endowment, with the proviso that the fictitious preferences should be

within certain “plausible” limits.

In our definition, the auctioneer is allowed to behave in ways that can be made to

look “legal” by misrepresenting the preferences of the other agents, with the proviso that

the fictitious preferences should be within certain “plausible” limits”. These limits are

defined by the type space.

Instead of just choosing different outcomes, Definition 2.5 permits the auctioneer to

modify G by altering the sequence of information sets. This may materially expand the

auctioneer’s strategic opportunities, as the following example illustrates.

Example 2.6. Consider the mechanism on the left side of Figure 2. Each agent has

one information set, two moves (left and right), and two types (li and ri) that play the

corresponding moves. Agent 1 is assumed to observe whether the outcome is in the set

{a, b} or in {c}. Agents 2 and 3 perfectly observe the outcome.

The right side of Figure 2 illustrates a safe deviation: If agent 1 plays left, then the

auctioneer follows the rules. If agent 1 plays right, then instead of querying agent 2, the

auctioneer queries agent 3. If agent 3 then plays left, the auctioneer chooses outcome a.

If agent 3 plays right, only then does the auctioneer query agent 2, choosing c if 2 plays

left and b if 2 plays right.

For every type profile, each agent’s observation has an innocent explanation. The most

interesting case is when the type profile is (r1, l2, l3). In this case, following the rules results

in outcome b, but the deviation results in outcome a. Agent 1 cannot distinguish between

a and b, so (l2, l3) is an innocent explanation for 1. (l1, l3) is an innocent explanation for

2, and (l1, l2) is an innocent explanation for 3. Thus, if the auctioneer prefers outcome a

to any other outcome, then the mechanism is not credible.
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Notably, this deviation involves not just choosing different outcomes, but communi-

cating differently even before a terminal history is reached. Indeed, when the type profile

is (r1, l2, l3), the auctioneer can only get outcome a by deviating midway. If she waited

until the end and then deviated to choose a, then agent 2’s observation would not have an

innocent explanation. Once agent 2 is called to play, he knows that outcome a should not

occur.

Definition 2.5 takes the expectation of θN with respect to the ex ante distribution D.

However, when ΘN is finite and D has full support, Definition 2.5 implicitly requires the

auctioneer to best-respond to her updated beliefs in the course of running G. Recall that

a strategy for the auctioneer is a complete contingent plan. Suppose that in the course of

running G, the auctioneer discovers new information about agents’ types, such that she

can profitably change her continuation strategy. There exists a deviating strategy that

adopts this new course of action contingent on the auctioneer discovering this information,

and plays by the rules otherwise. Thus, if S0 is an ex ante best response, then its

corresponding continuation strategies are also best responses along the equilibrium path-

of-play.

When our concern is to construct a credible protocol, it is also without loss of generality

to consider only pruned protocols.

Proposition 2.7. If (G,SN) is credible and BIC, then there exists (G′, S ′N) such that

(G′, S ′N) is pruned, credible, and BIC, and for all for all θN , xG
′
(S ′N(θN)) = xG(SN(θN)).

Observation 2.8. (G,SN) is credible and BIC if and only if (SG0 , SN) is a Bayes-Nash

equilibrium of G∗.

Credibility restricts attention to ‘promise-keeping’ equilibria of the messaging game.

However, any equilibrium can be turned into a promise-keeping equilibrium by altering

the promise.

Observation 2.9. If S ′0 ∈ S∗0 (S0, SN), then S∗0 (S ′0, SN) ⊆ S∗0 (S0, SN). Thus, if (S ′0, SN)

is a Bayes-Nash equilibrium of the messaging game restricted to S∗0 (S0, SN), then it is

also a Bayes-Nash equilibrium of the messaging game restricted to S∗0 (S ′0, SN).

Definition 2.5 is stated for pure strategies, but can be generalized to allow the auc-

tioneer to mix. To do so, we simply extend the definition of extensive game forms so that

G includes chance moves. We then specify that Ŝ0 is safe if for all agents i ∈ N and all

type profiles θN , for any observation of agent i that occurs for some realization of the auc-

tioneer’s randomization under (Ŝ0, SN , θN), there exists θ̂−i so that the same observation

occurs for some realization of the auctioneer’s randomization under (SG0 , SN , θi, θ̂−i).

In some settings, auctioneer randomization is needed to deliver the right incentives for

the agents. However, randomization does not improve auctioneer incentives: We cannot

14



construct a credible protocol (G,SN) by randomizing over deterministic non-credible pro-

tocols. Given randomized (G,SN), let (G′, SN) be a deterministic protocol in which we fix

a particular realization of the auctioneer’s randomization. Suppose (G,SN) is credible,

so the auctioneer is indifferent between SG0 and SG
′

0 . Switching from G to G′ shrinks

the set of innocent explanations, and therefore the set of safe deviations. The auctioneer

preferred SG0 to any safe deviation in the larger set, and therefore prefers SG
′

0 to any safe

deviation in the smaller set, so (G′, SN) is credible.

In the settings we are about to consider, randomization is not helpful for agent incen-

tives.17 Thus, we will restrict attention to deterministic protocols.

3 Credible Optimal Auctions

We now study credible auctions in the independent private values (IPV) model (Myerson,

1981). We make this choice for two reasons: Firstly, this is a benchmark model in auction

theory, so using it shows that the results are driven by credibility, and not by some hidden

feature of an unusual model.18 Secondly, in the symmetric IPV model, revenue equivalence

implies that the standard auctions start on an equal footing – the value distribution does

not tip the scales in favor of a particular format, unlike the model with affiliated signals

(Milgrom and Weber, 1982) or the model with risk aversion (Maskin and Riley, 1984).

Assume there are at least two bidders. An outcome x = (y, tN) consists of a winner y ∈
N∪{0} and a profile of payments (one for each bidder) tN ∈ R|N |, so X = (N∪{0})×R|N |.

Agents have private values, that is:

ui((y, tN), θN) = 1i=y(θi)− ti (3)

Ωi is as follows: Each bidder observes whether he wins the object and observes his

own payment. That is, (y, tN), (y′, t′N) ∈ ωi if and only if:

1. Either: y 6= i, y′ 6= i, and ti = t′i

2. Or: y = y′ = i and ti = t′i.

The auctioneer desires revenue, and her value for the object is normalized to zero19:

u0((y, tN), θN) =
∑
i∈N

ti (4)

17In auctions with independent private values, there always exists a deterministic mechanism that
maximizes expected revenue. For instance, we can run a second-price auction that scores bids according
to their ironed virtual value, breaking ties deterministically (Myerson, 1981).

18As Brooks and Du (2018) observe, “The IPV model has been broadly accepted as a useful benchmark
when values are private, but there is no comparably canonical model when values are common.”

19The results that follow would require only small modifications if the auctioneer’s payoff was a weighted
average of revenue and social welfare.
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An allocation rule is a function ỹ : ΘN → N ∪ {0}, and a transfer rule is a function

t̃N : ΘN → R|N |. For any protocol (G,SN), we can consider its induced allocation rule

and transfer rule (ỹG,SN (·), t̃G,SNN (·)). Where it is clear, we suppress the dependence on

(G,SN) to ease notation.

Let π(G,SN) = EθN [
∑

i∈N t̃
G,SN
i (θN)] denote the expected revenue of (G,SN). We will

specify the relevant distribution shortly.

Definition 3.1. (G,SN) is optimal if it maximizes π(G,SN) subject to the constraints:

1. Incentive compatibility: (G,SN) is BIC.

2. Voluntary participation: For all i, there exists σ′i that ensures that i does not win

and has a zero net transfer, regardless of σ′−i.
20

3.1 Credible static optimal auctions

We now characterize credible static optimal auctions. Assume that Θi = [0, 1] and that θi

is independently distributed according to continuous full-support density fi : [0, 1]→ R.

We restrict attention to protocols such that:

1. For all θN , ỹ(·) and t̃i(·) are measurable functions (with respect to the Borel σ-

algebra on ΘN).21

2. For all θi, ỹ(θi, ·) and t̃i(θi, ·) are measurable functions (with respect to the Borel

σ-algebra on Θ−i).

3. For all θ−i, ỹ(·, θ−i) and t̃i(·, θ−i) are measurable functions (with respect to the Borel

σ-algebra on Θi).

These conditions ensure that expected transfers and allocations are well-defined, both

ex ante and interim. These are implicit in almost all papers with continuum type spaces

and transferable utility. We make these restrictions explicit because the proof of Theorem

3.3 runs into some measure-theoretic subtleties.22

Definition 3.2. (G,SN) is static if for each agent i, i has exactly one information set,

and for every terminal history z, there exists h ≺ z such that P (h) = i.

20There are several standard ways of defining participation constraints, not entirely equivalent for our
purposes. This definition appears in Maskin and Riley (1984). The existence of this non-participating
strategy is used in the proof of Proposition B.1.

21That is, for any J ⊆ N ∪ {0}, its preimage {θN | ỹ(θN ) ∈ J} is a Borel set, and for any Borel set
J ⊆ R, its preimage {θN | t̃i(θN ) ∈ J} is a Borel set.

22The restrictions rule out, for instance, that we can fix a Vitali set V , and specify that agent 1 has
transfer 1 if θ1 ∈ V and θ2 = .5, and transfer 0 otherwise, in which case 1’s expected transfer conditional
on θ2 = .5 is not defined since V is not measurable.
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Next, we prove that, in a credible static auction, the winner makes a payment that

essentially depends only on his own type. Thus, we can regard each agent as placing bids,

with the assurance that if he wins the object, he pays exactly his bid.

Theorem 3.3 (pay-as-bid). If (G,SN) is credible and static, then for each agent i, there

exists a function b̃i : Θi → R such that almost everywhere in ΘN , if ỹ(θi, θ−i) = i then

t̃i(θi, θ−i) = b̃i(θi).

Proof. If the pay-as-bid property does not hold, then we can construct a safe deviation

that raises payments on a positive-measure set. However, we cannot simply charge the

‘highest safe payment’ point-by-point, because there may be uncountably many opponent

type profiles consistent with i winning the object, and the pointwise supremum of an

uncountable family of measurable functions may not be measurable.

Lemma 3.4 (Haj lasz and Malý (2002)23). Let Φ be a family of measurable functions

defined on a set E ⊆ Rn. There exists a countable subfamily Φ̂ ⊆ Φ such that for all

φ ∈ Φ, sup Φ̂ ≥ φ almost everywhere.

Consequently, let (θk−i)
∞
k=1 be a countable subset of opponent type profiles, such that

for all θ−i, supk t̃i(·, θk−i) ≥ t̃i(·, θ−i) almost everywhere in Θi. supk t̃i(·, θk−i) is measurable.

We assert that b̃i(·) = supk t̃i(·, θk−i). Suppose the set

{θN | ỹ(θN) = i and t̃i(θi, θ−i) 6= sup
k
t̃i(θi, θ

k
−i)} (5)

has positive measure. Then the set

Q = {θN | ỹ(θN) = i and t̃i(θi, θ−i) < sup
k
t̃i(θi, θ

k
−i)} (6)

has positive measure. Since transfers and allocations can only change when the action

profile changes, Q is measurable with respect to the equilibrium action profiles.

We now construct a safe deviation: Fix some finite K. If the agents’ chosen ac-

tions are consistent with any type profile (θi, θ−i) ∈ Q, then instead charge agent i

maxk≤K t̃i(θi, θ
k
−i). Let k∗ denote the arg max. If ỹ(θi, θ

k∗
−i) = i, then allocate the ob-

ject to i; else keep the object. Otherwise, play according to SG0 . This deviation takes the

maximum of finitely many measurable functions, so the resulting transfer t̃Ki : ΘN → R
is measurable.

For K large enough, this deviation is profitable. In particular, for any (θi, θ−i) ∈ Q,

t̃Ki (θi, θ−i) is non-decreasing in K and converges as K → ∞ to supk t̃i(θi, θ
k
−i). Thus, by

23Lemma 2.6 in Haj lasz and Malý (2002), which is a special case of Lemma 2.6.1 in Meyer-Nieberg
(1991).
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the monotone convergence theorem,

lim
K→∞

EθN
[
t̃Ki (θN) | θN ∈ Q

]
= EθN

[
sup
k
t̃i(θi, θ

k
−i) | θN ∈ Q

]
> EθN

[
t̃i(θN) | θN ∈ Q

] (7)

which completes the proof.

Definition 3.5. (G,SN) is a first-price auction if (G,SN) is static, and each agent i

either chooses a bid bi from a set Bi ⊂ R+
0 or declines to bid, such that:

1. Each bidder i pays bi if he wins and 0 if he loses.

2. If any bidder places a bid, then some maximal bidder wins the object. Otherwise,

no bidder wins.

If clauses 1 and 2 hold almost everywhere in ΘN , then (G,SN) is a first-price auction

almost everywhere.

We represent a reserve price by restricting the set Bi.

For the next theorem, we assume that the distributions are symmetric, i.e. fi(·) = fj(·)
for all i, j, and regular, i.e. θi − 1−Fi(θi)

fi(θi)
is strictly increasing. We also restrict attention

to winner-paying protocols.

Definition 3.6. (G,SN) is winner-paying if, for all θN , if t̃i(θN) 6= 0 then ỹ(θN) = i.

Theorem 3.7. Assume the distributions are symmetric and regular. Assume (G,SN) is

winner-paying and optimal. If (G,SN) is a first-price auction, then (G,SN) is credible

and static. If (G,SN) is credible and static, then (G,SN) is a first-price auction almost

everywhere.

Proof. Suppose (G,SN) is a first-price auction. (G,SN) is static by definition. Every safe

deviation that sells the object involves charging some bidder his bid, so no safe deviation

yields more revenue than following the rules. Thus, (G,SN) is credible.

Suppose (G,SN) is credible and static. By Theorem 3.3, there exists a function b̃i :

Θi → R such that, almost everywhere in ΘN , if type θi wins, then i pays b̃i(θi). (G,SN)

is optimal, so the participation constraint of the lowest type binds, and we can pick a

non-negative function b̃i : Θi → R+
0 . We now partition i’s actions into bidding actions

Bi = {b̃i(θi) | θi ∈ Θi and ∃θ−i : ỹ(θi, θ−i) = i}, and actions that decline. (G,SN) is

winner-paying, so Clause 1 of Definition 3.5 holds almost everywhere.

(G,SN) is optimal, which determines the allocation rule and i’s interim expected trans-

fer almost everywhere (Myerson, 1981). By BIC, i’s interim expected transfer is increasing

in i’s type, and the distributions are symmetric and regular, so almost everywhere the

winner has a maximal type, and thus a maximal bid. Thus, Clause 2 of Definition 3.5

holds almost everywhere. Thus (G,SN) is a first-price auction almost everywhere.
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We now relax the assumption that the distributions are symmetric and regular, and

that the protocol is winner-paying and optimal. In particular, rather than requiring that

the protocol be optimal, we will require that, with probability 1, no bidder knows at the

interim stage that he will win for sure.

Definition 3.8. (G,SN) is contestable if, almost everywhere in ΘN , if ỹ(θi, θ−i) = i,

then there exists θ′−i such that ỹ(θi, θ
′
−i) 6= i.

Since Θi = Θj = [0, 1], optimal auctions are contestable.

The first-price auctions of Theorem 3.7 generalize to a larger class that permits the

auctioneer to extract transfers from losing bidders, though each losing bidder’s transfer

must depend only on his own bid.

Whether this class is of more than technical interest will vary from case to case. Most

economically important auctions, such as those for art, for mineral rights, for spectrum,

or for online advertising, do not extract payments from losing bidders. Some real-world

auctions may need to respect ex post individual rationality, since otherwise one party will

try to annul the contract afterwards. The resulting transaction costs may constrain the

auctioneer to use winner-paying protocols.

We now state the definition that generalizes first-price auctions.

Definition 3.9. (G,SN) is a twin-bid auction if (G,SN) is static, and each agent

chooses a two-dimensional bid (bWi , b
L
i ) from a set Bi ⊂ R2 such that:

1. Each bidder i pays bWi if he wins and bLi if he loses.

2. If any agent places a bid such that bWi − bLi > 0, then some agent wins the object.

3. If i wins the object, then bWi − bLi ≥ max{0,maxj 6=i b
W
j − bLj }.

If clauses 1, 2, and 3 hold almost everywhere in ΘN , then (G,SN) is a twin-bid auction

almost everywhere.

Twin-bid auctions include first-price auctions and all-pay auctions, though the cred-

ibility of all-pay auctions is sensitive to the assumption that the object is costless to

provide. (More generally, bWi − bLi must be no less than the auctioneer’s cost of pro-

vision, which rules out standard all-pay auctions.24) Twin-bid auctions also encompass

first-price auctions with entry fees (bLi is the entry free), and first-price auctions in which

losing bidders are paid fixed compensation (bLi < 0). Bidders who place higher bids may

also receive more compensation if they lose; under the assumptions of Maskin and Ri-

ley (1984), this is the form of the optimal auction for symmetric bidders with constant

absolute risk aversion.25

24The case when bWi −bLi is exactly equal to the cost of provision is studied in Dequiedt and Martimort
(2006), an early draft of Dequiedt and Martimort (2015).

25Theorem 14 (Maskin and Riley, 1984, p. 1506-1507). This claim follows from their Equations 75 and
77, since µ is non-decreasing.
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Theorem 3.10. Assume (G,SN) is contestable. If (G,SN) is a twin-bid auction, then

(G,SN) is credible and static. If (G,SN) is credible and static, then (G,SN) is a twin-bid

auction almost everywhere.

The proof of Theorem 3.10 does not rely on independence, so the characterization

holds even with correlated types. Twin-bid auctions are not strategy-proof, except in

degenerate cases.

Definition 3.11. (G,SN) is strategy-proof if, for all i ∈ N , for all S ′−i, for all θi ∈ Θi:

Si(θi) ∈ argmax
σi

Eθ−i [uGi (σi, S
′
−i(θ−i), (θi, θ−i))] (8)

The definition above requires that Si is a best response to all S ′−i, taking the expec-

tation with respect to θ−i. It is natural to consider a stronger definition that requires Si

to be a best response to all S ′−i and all θ′−i. Under private values these definitions are

equivalent.

Proposition 3.12. Let (G,SN) be such that there exist θi < θ′i < θ′′i < θ′′′i , θ−i, and

θ′−i such that ỹ(θi, θ−i) 6= i = ỹ(θ′i, θ−i) and ỹ(θ′′i , θ
′
−i) 6= i = ỹ(θ′′′i , θ

′
−i). If (G,SN) is a

twin-bid auction, then (G,SN) is not strategy-proof.

What happens to Theorem 3.10 if we remove the assumption that the protocol is

contestable? In that case, then some bidder i could have actions that win the object for

sure, even when the difference bWi − bLi is not high enough to satisfy Clause 3 of definition

3.9. Since there is only one object for sale, at most one bidder can have incontestable

actions. The characterization of credible static mechanisms is otherwise unchanged. We

omit the proof, since it is an easy modification of the proof of Theorem 3.10.

3.2 Credible and strategy-proof optimal auctions

We now characterize credible strategy-proof optimal auctions. In particular, we will show

that certain ascending auctions are credible and strategy-proof.

We must make a modeling choice, because ascending auctions with discrete steps are

not optimal for continuum type spaces. We could proceed by introducing a model for

continuous-time auctions, as in Milgrom and Weber (1982). However, we wish to argue

that credibility and strategy-proofness select ascending auctions out of a general class,

and there is not yet any theory of continuous-time games that rivals the generality of

extensive-form games.26

Consequently, our approach is to discretize the type space, so that clock auctions

(and many other dynamic protocols) can be optimal. Let Θi = {θ1
i , . . . , θ

Ki
i }. Each

26For an explanation of some difficulties involved in continuous-time game theory, see Simon and
Stinchcombe (1989).
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type is associated with a real number v(θki ). Assume v(θ1
i ) = 0, v(θKii ) = 1 and that

v(θk+1
i ) − v(θki ) > 0. We will abuse notation slightly, and use θki to refer both to i’s kth

type, and to the real number associated with that type.

Types are independently distributed, with probability mass function fi : Θi → (0, 1]

and corresponding Fi(θ
k
i ) =

∑k
l=1 fi(θ

l
i).

The virtual values machinery in Myerson (1981) applies mutatis mutandis to the dis-

crete setting.

Definition 3.13. For each k, we define the virtual value of θki to be:27

ηi(θ
k
i ) ≡ θki −

1− Fi(θki )
fi(θki )

(θk+1
i − θki ) (9)

FN = (Fi)i∈N is regular if, for all i, ηi(·) is strictly increasing.

Optimal auctions have a characterization in terms of virtual values when certain con-

straints bind. ǔG,SNi (k, k′) denotes the expected utility of agent i when his type is θki and

he plays as though his type is θk
′
i . ỹ(θN) denotes the allocation at type profile θN .

Proposition 3.14. (Elkind, 2007) Assume FN is regular and (G,SN) satisfies the con-

straints in Definition 3.1. (G,SN) is optimal if and only if:

1. Participation constraints bind for the lowest types. ∀i : ǔG,SNi (1, 1) = 0

2. Incentive constraints bind locally downward. ∀i : ∀k ≥ 2 : ǔG,SNi (k, k) = ǔG,SNi (k, k−
1)

3. The allocation maximizes virtual value. ∀θN :

(a) If maxi ηi(θi) > 0, then ỹ(θN) ∈ argmaxi ηi(θi).

(b) If ηi(θi) < 0, then i 6= ỹ(θN).

Ties occur with positive probability under discrete type spaces, although the proba-

bility goes to 0 as we make the discretization finer. For convenience, we will assume that

the protocol breaks ties deterministically according to a fixed priority order.

Definition 3.15. Consider a strict total order B on N . This generates a strict total

order on all agent types, as follows: θiB θj if and only if θi ≥ θj and either θi > θj or

iB j. We also include a reserve ρ in this total order: θiB ρ if and only if θi ≥ ρ. We use
B

min to denote the minimum of a set with respect to this B, and
B

max similarly.

(G,SN) is orderly if, for some strict total order B on N and some reserve price ρ, i

wins the object if and only if θiB
B

max
j 6=i

θj and θiB ρ.

27Since 1−Fi(θi) is equal to 0 at the upper bound, we can define θKi+1
i arbitrarily for the purposes of

Equation 9.
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We now characterize credible and strategy-proof optimal auctions.

Definition 3.16. (G,SN) is an ascending auction (with reserve price ρ) if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. The high bidder is the active bidder with the highest bid that is weakly above ρ

(breaking ties according to B).

3. At each non-terminal history, some active bidder i (other than the high bidder) is

called to play, and he chooses between actions that place a bid in Θi and actions

that quit. Bidder i knows whether an action quits, and knows the bid associated

with each non-quitting action.

(a) Each bid is no less than the last bid that i placed.

(b) Each bid is no more than is necessary for i to become the high bidder.

(c) If i quits, then he is no longer active.

(d) At each information set, there is a unique action that places a bid, with one

exception: If the reserve has not yet been met, and there is exactly one active

bidder left, there may be multiple actions that place bids.28

4. i’s strategy specifies:

(a) If i’s type is strictly below a bid, he does not place that bid.

(b) If i’s type is weakly above ρ and there is no high bidder, he places a bid.

(c) If i’s type is above the current high bid (breaking ties with B), he places a bid.29

5. The auction ends if one of three conditions obtains:

(a) If there are no active bidders. In that case, the object is not sold.

(b) If only the high bidder is active. In that case, the object is sold to the high

bidder at his last bid.

(c) If the high bidder has bid θKi , and no active bidder has higher tie-breaking

priority. In that case, the object is sold to the high bidder at his last bid.

In stating Definition 3.16, we have deliberately omitted what each bidder is told about

the other bidders. The protocol could require that each bidder is informed about the

28This exception is here because we will shortly state a characterization theorem. If there is exactly
one bidder left and the reserve has not been met, then it is as though that bidder simply faces a posted
price equal to the reserve. Provided that bidder knows that he wins for sure if he bids the reserve, distinct
types above the reserve can take distinct actions without allowing the auctioneer to profitably deviate.

29Notice that, since i’s strategy must be measurable with respect to i’s information sets, this implies
that if i’s type is above the least possible high bid associated with that information set, he places a bid.
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number of active bidders or the identities of the active bidders. The protocol could specify

that each bidder places an increasing sequence of bids, receiving no other information until

he quits or is the last bidder left. These all count as ascending auctions for the purposes of

the definition. We just require that each bidder’s strategy satisfies Clause 4 of Definition

3.16.

Observation 3.17. If the type distributions are regular and symmetric, then there exists

an optimal ascending auction. In any ascending auction, participation constraints bind

for the lowest types and incentive constraints bind locally downward. Given an optimal

reserve ρ∗ = mink θ
k
i | ηi(θki ) > 0, the ascending auction maximizes the virtual value of

the winning bidder. By Proposition 3.14, such an auction is optimal.

Notably, optimality and strategy-proofness together imply that the protocol is winner-

paying. Thus, we do not need to make that assumption separately in the results that

follow.

The definition of extensive-form mechanisms permits the auctioneer to communicate

with agents in any order, to convey information to the agent called to play, and to ask

that agent to report any partition of his type space. Thus, there are many optimal

auctions. However, the optimal auctions that are credible and strategy-proof are exactly

the ascending auctions. To be precise:

Theorem 3.18. Assume the type distributions are regular and symmetric and (G,SN) is

orderly and optimal. (G,SN) is credible and strategy-proof if and only if (G,SN) is an

ascending auction.

Proof overview. Suppose (G,SN) is credible and strategy-proof. To prove that (G,SN) is

an ascending auction, we must show that for any extensive form that is not an ascending

auction, there exists a profitable safe deviation for the auctioneer. Fix a protocol and a

history h where agent i is called to play. Consider the types θi consistent with h, such

that there exists θ−i consistent with h, such that i wins at (θi, θ−i). A key feature of

ascending auctions is that, at each history, these types pool on the same action, unless

every other agent has quit. This is stated precisely in Proposition B.8, and is closely

related to unconditional winner privacy as defined by Milgrom and Segal (2017). If at

some history these types do not pool, then the auctioneer can exploit one type by deviating

to charge him a higher price. In the case of a second-price auction, the auctioneer simply

exaggerates the value of the second-highest bid. In general, however, the deviation must

be more subtle in order to be safe - instead of just choosing a different outcome, the

auctioneer may systematically misrepresent agents’ actions midway through the extensive

form. We construct an algorithm that produces a profitable safe deviation for any such

extensive form.

Suppose (G,SN) is an ascending auction. By inspection, it is strategy-proof. What

remains is to show that it is credible. Suppose that the auctioneer has a profitable safe
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deviation. For every agent i, Si remains a best response to any safe deviation by the

auctioneer. Thus, since the auctioneer has a profitable safe deviation, she can openly

commit to that deviation without altering the agents’ incentives - we can define a new

protocol (G′, S ′N) that is BIC and yields strictly more expected revenue than (G,SN).

But (G,SN) is optimal, a contradiction. (The full proof is in the Appendix.)

By Theorem 3.7, restricting attention to revelation mechanisms forces a sharp choice

between incentives for the auctioneer and strategy-proofness for the agents. Theorem 3.18

shows that allowing other extensive forms relaxes this trade-off.

The characterization in Theorem 3.18 assumes optimality. This is not just a feature of

our proof technique: the ascending auction is credible because it is optimal. If the reserve

price is below-optimal, then the auctioneer could profitably deviate by chandelier bidding

up to the optimal reserve. If the type distributions are asymmetric, then the auctioneer

may profitably deviate by enforcing bidder-specific reserve prices.30 We characterize the

asymmetric case in Theorem 3.22.

While first-price auctions and ascending auctions seem to be disparate formats, they

share a common feature. In both formats, if an agent might win the auction without

being called to play again, then that agent knows exactly how much he will pay for the

object. Thus, we can regard each agent as placing bids in the course of the auction,

with the assurance that if he wins without further intervention, he will pay his bid. This

‘pay-as-bid’ feature is shared by all credible auctions:

Theorem 3.19 (extensive pay-as-bid). Assume (G,SN) is credible. Suppose that, with

positive probability, i is called to play at information set Ii, takes some action a, and wins

without being called to play again. Conditional on that event, there is a price ti(Ii, a) that

i will pay with probability 1.

Proof. Suppose that the event obtains, and there are two distinct prices ti < t′i, such

that i pays each with positive conditional probability. The auctioneer has a profitable

safe deviation: when i is meant to pay ti, she can deviate to charge t′i, so (G,SN) is not

credible.

Theorem 3.19 provides a consideration in favor of multi-stage auctions. Suppose we

wish to have bidder i’s payment depend on bidder j’s private information. In order for the

auction to be credible, bidder i must place a bid that incorporates that information, which

requires i to learn that information during the auction. The converse of Theorem 3.19 is

not true. For a counterexample, consider a ‘pay-as-bid’ static auction that allocates the

object to the bidder who placed the second-highest bid.

30Symmetric beliefs may seem like a knife-edge case. However, in some real-world auctions, strong
bidders can mask their identities and bid through proxies so as to avoid discriminatory pricing. When
faced with anonymous bidders, it is quite reasonable for auctioneers to hold symmetric beliefs.
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Theorem 3.18 assumed that the distribution was symmetric; we now state a version

that allows asymmetry. To proceed, we define a technical condition on the distribution.

Clause 1 and 2 of the following definition require that the distribution is generic, which

removes distractions from tie-breaking. Clause 3 states that for any ηi(θ
′
i) in the interior

of the convex hull of ηj(Θj), we can find θj with virtual value ‘just below’ ηi(θ
′
i). This

is implied by continuum type spaces and continuous densities, but must be assumed

separately for finite type spaces.

Definition 3.20. FN is interleaved if, ∀i 6= j :

1. ∀θi, θj : ηi(θi) 6= ηj(θj)

2. ∀θi : ηi(θi) 6= 0

3. ∀θi, θ′i : if ηi(θi) < ηi(θ
′
i) and ηj(θ

1
j ) < ηi(θ

′
i) < ηj(θ

Kj
j ), then ∃θj : ηi(θi) < ηj(θj) <

ηi(θ
′
i).

Under asymmetry, we can construct an optimal auction by modifying the ascending

auction to score bids according to their corresponding virtual values, and to sell only when

the high bidder’s virtual value is positive.

Definition 3.21. (G,SN) is a virtual ascending auction if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. If maxi ηi(bi) > 0, the high bidder is argmaxi ηi(bi). Otherwise there is no high

bidder.

3. At each non-terminal history, some active bidder i (other than the high bidder) is

called to play, and he chooses between actions that place a bid bi ∈ Θi and actions

that quit. Bidder i knows whether an action quits, and knows the bid associated with

each non-quitting action.

(a) Each bid is no less than the last bid that i placed.

(b) Each bid is no more than is necessary for i to become the high bidder.

(c) If i quits, then he is no longer active.

(d) At each information set, there is a unique action that places a bid, with one

exception: If maxi ηi(bi) < 0 and there is exactly one active bidder left, there

may be multiple actions that place bids.

4. i’s strategy specifies:

(a) If i’s type is strictly below a bid, he does not place that bid.

(b) If ηi(θi) > max{0,maxj 6=i ηj(bj)}, he places a bid.
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5. The auction ends if one of three conditions obtains:

(a) If there are no active bidders. In that case, the object is not sold.

(b) If only the high bidder is active. In that case, the object is sold to the high

bidder at his last bid.

(c) If no active bidder can beat the current high bid bi, that is, for every active

bidder j 6= i, ηj(θ
Kj
j ) < ηi(bi). In that case, the object is sold to the high bidder

at his last bid.

Theorem 3.22. Assume FN is regular and interleaved and (G,SN) is optimal. (G,SN)

is credible and strategy-proof if and only if (G,SN) is a virtual ascending auction.

Virtual ascending auctions score bids asymmetrically: Bidder i may be asked to bid

$100 in order to beat j’s bid of $50, and then to bid $101 to beat j’s bid of $51. Since

the auctioneer is communicating privately, she could safely deviate to equalize the prices

that bidders face (provided Θi and Θj overlap enough). Nonetheless, it is incentive-

compatible for the auctioneer to follow the rules. For each bidder, truthful bidding is a

best-response to any safe deviation. Thus, if the auctioneer has a profitable safe deviation,

then she could openly promise to deviate without undermining bidders’ incentives. In that

case, the original protocol was not optimal, a contradiction. It may seem intuitive that

the auctioneer cannot credibly reject higher bids in favor of lower bids, but multi-round

communication permits her to do so.

The virtual ascending auction can be modified to deal with irregular distributions: we

simply alter Definition 3.21 to use ironed virtual values instead of virtual values, following

the construction in Elkind (2007). In effect, if we iron virtual values in the interval θki to

θk
′
i , the auctioneer promises ahead of time to jump i’s price directly from θki to θk

′+1
i . The

proof that this is credible is the same as in the regular case.

Finally, the virtual ascending auction can be used to construct a static credible optimal

auction. Consider a modified all-pay auction; each type θi makes a bid equal to the

expected payment of θi in the virtual ascending auction, to be paid regardless of whether

he wins. The winner is the bidder with the highest virtual value. This twin-bid auction

is BIC and optimal, but neither strategy-proof nor ex post individually rational.31

3.3 A note on the Dutch auction

The Dutch (descending) auction is neither strategy-proof nor static, but it is credible. In

a Dutch auction, the price falls until one bidder claims the object. Thus, each bidder in

sees a sequence of descending prices (p1
i , p

2
i , p

3
i , . . .); once he claims the object, he wins

31This format is closely related to the ‘all-pay’ procurement auctions studied in Dequiedt and Martimort
(2015).
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at that price. Consequently, once one bidder makes a claim, it is not safe to deviate -

the auctioneer must sell to that bidder at his current price. Fixing SN , each bidder has

a claim-price pi(θi) at which he will agree. For a given θN , the rule-following auctioneer

strategy yields revenue maxi∈N pi(θi). No safe deviation results in bidder i paying more

than pi(θi), so the revenue from following the rules first-order stochastically dominates

the revenue from any safe deviation.

4 Extensions

Appendix C studies a number of extensions to the benchmark model.

Appendix C.1 relaxes the assumption that bidders’ types are independent, so that the

optimal auction extracts full surplus (Cremer and McLean, 1988). Static Cremer-Maclean

mechanisms are not credible, since two type profiles with the same winning bidder may

have different profiles of transfers. Even using extensive form mechanisms does not in

general allow credible full-surplus extraction.

Next, we assume symmetric and affiliated type spaces, and constrain the auctioneer

to use ex post incentive compatible and ex post individually rational mechanisms. In this

setting, a modified ascending auction is optimal (Roughgarden and Talgam-Cohen, 2013),

and is also credible.

Appendix C.2 assumes independent private values, and relaxes the assumption that

there is a single object for sale. Instead, the feasible sets of winning bidders are a matroid.

We prove that there exists a credible strategy-proof optimal auction.

5 Alternative definitions

5.1 Group-credible mechanisms

Our main purpose in this paper is to study auctioneer incentives under private communi-

cation. Nonetheless, it is natural to consider what happens under other communication

structures. Here we develop an extension that permits agents to share information in

groups, and show that increasing information-sharing makes it harder for the auctioneer

to deviate.

Essentially, we partition agents into groups in advance, and permit each group of agents

to share information after the auction, so that the auctioneer can only hide deviations

by misrepresenting the behavior of other groups. Let Λ be a partition on N , and let λ

denote a cell of Λ.

Definition 5.1. Given some promised strategy profile (S0, SN), auctioneer strategy Ŝ0 is

Λ-safe if for all groups λ ∈ Λ and all type profiles θN , there exists θ̂−λ such that for
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all i ∈ λ, oi(Ŝ0, SN , θN) = oi(S0, SN , (θλ, θ̂−λ)). SΛ
0 (S0, SN) denotes the set of Λ-safe

strategies.

Definition 5.1 permits the auctioneer to deviate only if every group’s observations have

an innocent explanation; there must exist θ̂−λ such that all observations by agents in

λ are consistent the auctioneer playing SG0 , the agents playing SN , and the other groups’

types being θ̂−λ. Notably, the order of quantifiers in Definition 5.1 requires a single

explanation to be offered to the entire group, which is more demanding than if we permit

each observation in the group to have a different explanation.

Coarser partitions imply more information sharing between agents.

Definition 5.2. (G,SN) is Λ-credible if

SG0 ∈ argmax
S0∈SΛ

0 (SG0 ,SN )

EθN [u0(S0, SN , θN)] (10)

Proposition 5.3. If Λ is coarser than Λ′ and (G,SN) is Λ′-credible, then (G,SN) is

Λ-credible.

Proof. We will prove that, if Λ is coarser than Λ′, then SΛ
0 (SG0 , SN) ⊆ SΛ′

0 (SG0 , SN). From

that, Proposition 5.3 follows immediately.

Take any Ŝ0 ∈ SΛ
0 (SG0 , SN), any group λ′ ∈ Λ′ and any θN . Since Λ is coarser than

Λ′, we can find a group λ ∈ Λ such that λ ⊇ λ′. Let θ̂−λ be such that for all i ∈ λ,

oi(Ŝ0, SN , θN) = oi(S
G
0 , SN , (θλ, θ̂−λ)). Observe that (θ̂−λ, θλ\λ′) is an innocent explanation

for group λ′ at type profile θN . Thus, Ŝ0 ∈ SΛ′
0 (SG0 , SN).

One interpretation of Proposition 5.3 is that starting with a Λ-credible mechanism and

increasing information-sharing does not undermine auctioneer incentives. Equivalently,

starting with a mechanism that is not Λ-credible and reducing information-sharing does

not restore auctioneer incentives. When Λ is the finest partition, then Definition 5.2 is

equivalent to Definition 2.5.

The second-price auction is not Λ-credible, unless Λ is the coarsest partition. If even

a single bidder is unwilling to share information about his bids, then the auctioneer can

profitably deviate by misrepresenting that bidder’s behavior.

5.2 A ‘Prior-free’ Definition

The definition of credibility depends on the joint distribution of agent types (Definition

2.5). It may be useful to have a definition that is ‘prior-free’, for settings such as matching

or maxmin mechanism design.

Definition 5.4. Given (G,SN), S0 ∈ S∗0 (SG0 , SN) is always-profitable if, for all θN :

u0(S0, SN , θN) ≥ u0(SG0 , SN , θN) (11)
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with strict inequality for some θN .

(G,SN) is prior-free credible if no safe deviation is always-profitable.

For comparison, (G,SN) is credible if no safe deviation is profitable in expectation.

Prior-free credibility allows one to dispense with strong assumptions about the auction-

eer’s beliefs.

With continuum type-spaces, credibility neither implies nor is implied by prior-free

credibility. This is because some always-profitable deviations are strictly profitable only

on a zero-measure set.

Replacing credibility with prior-free credibility does not essentially change any of our

characterizations. Indeed, for the continuum type-spaces, requiring prior-free credibility

sharpens the results, since it pins down the payment rule even on measure-zero sets:

Proposition 5.5. Suppose the continuum type-space model of Section 3.1. Assume the

distributions are symmetric and regular. Assume (G,SN) is winner-paying and optimal.

(G,SN) is a first-price auction if and only if (G,SN) is credible and static.

With finite type-spaces, every credible protocol is prior-free credible. Nonetheless,

prior-free credibility is enough to pin down the extensive form of the ascending auction:

Proposition 5.6. Suppose the finite type-space model of Section 3.2. Assume the type

distributions are regular and symmetric and (G,SN) is orderly and optimal. (G,SN) is

prior-free credible and strategy-proof if and only if (G,SN) is an ascending auction.

6 Discussion

It is worth considering why real-world auctioneers might lack full commitment power.

Vickrey (1961) suggests that the seller could delegate the task of running the auction

to a third-party who has no stake in the outcome. However, auction houses such as

Sotheby’s, Christie’s, and eBay charge commissions that are piecewise-linear functions

of the sale price.32 Running an auction takes effort, and many dimensions of effort are

not contractible. Robust contracts reward the auctioneer linearly with revenue (Carroll,

2015), so it is difficult to employ a third-party who is both neutral and well-motivated.33

When an auctioneer makes repeated sales, reputation could help enforce the full-

commitment outcome. However, the force of reputation depends on the discount rate

32http://www.sothebys.com/en/news-video/blogs/all-blogs/sotheby-s-at-large/2016/10/

important-update-regarding-sothebys-buyers-premium.html, http://www.christies.com/

buying-services/buying-guide/financial-information/, http://pages.ebay.com/help/sell/

fees.html, accessed 11/5/2017.
33As Myerson (2009) observes, “The problems of motivating hidden actions can explain why efficient

institutions give individuals property rights, as owners of property are better motivated to maintain it.
But property rights give people different vested interests, which can make it more difficult to motivate
them to share their private information with each other.”
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and the detection rate of deviations. Safe deviations are precisely those that a bidder

could not detect immediately. Online advertising auctions are repeated frequently, so

it is plausible that bidders could examine the statistics to detect foul play.34 However,

some economically important auctions are infrequent or not repeated at all - for instance,

auctions for wireless spectrum or for the privatization of state-owned industries. Even

established auction houses such as Christie’s and Sotheby’s have faced regulatory scrutiny,

based in part on concerns that certain deviations are difficult for individual bidders to

detect.

Modern auctioneers could use cryptography to prove that the rules of the auction

have been followed, without disclosing additional information to bidders. Cryptographic

verification relies on digital infrastructure: Participants typically need access to a pub-

lic bulletin board, a sound method of creating and sharing public keys, and a time-lapse

encryption service that provides public keys and commits to release the corresponding de-

cryption keys only at pre-defined times (Parkes et al., 2015).35 It can be costly to construct

this infrastructure, and to persuade bidders that it works as the auctioneer claims. By

using credible mechanisms, auctioneers may increase the resources and attention available

for substantive purposes.

Not all auctioneers have full commitment power, just as not all firms are Stackelberg

leaders. When the auctioneer lacks full commitment, it can be hazardous for bidders to

reveal all their information at once. In a first-price auction, a bidder ‘reveals’ his value

in return for a guarantee that his report completely determines the price he might pay.36

In an ascending auction, a bidder reports whether his value is above b only when the

auctioneer (correctly) asserts that bids below b are not enough to win. Credibility is a

shared foundation for these seemingly disparate designs. How this principle extends to

other environments is an open question.
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A Definition of Extensive Game Forms with Conse-

quences in X

An extensive game form with consequences in X is a tuple (H,≺, P, A,A, (Ii)i∈N , g),

where:

1. H is a set of histories, along with a binary relation ≺ on H that represents prece-

dence.

(a) ≺ is a partial order, and (H,≺) form an arborescence37.

(b) We use h � h′ if h = h′ or h ≺ h′.

(c) h∅ denotes h ∈ H : ¬∃h′ : h′ ≺ h.

(d) Z ≡ {h ∈ H : ¬∃h′ : h ≺ h′}

(e) succ(h) denotes the set of immediate successors of h.

2. P is a player function. P : H \ Z → N .

3. A is a set of actions.

4. A : H \h∅ → A labels each non-initial history with the last action taken to reach it.

(a) For all h, A is one-to-one on succ(h).

(b) A(h) denotes the actions available at h.

A(h) ≡
⋃

h′∈succ(h)

A(h′) (12)

5. Ii is a partition of {h : P (h) = i} such that:

(a) A(h) = A(h′) whenever h and h′ are in the same cell of the partition.

(b) For any Ii ∈ Ii, we denote: P (Ii) ≡ P (h) for any h ∈ Ii. A(Ii) ≡ A(h) for any

h ∈ Ii.

(c) Each action is available at only one information set: If a ∈ A(Ii), a
′ ∈ A(I ′j),

Ii 6= I ′j then a 6= a′.

6. g is an outcome function. It associates each terminal history with an outcome.

g : Z → X

37That is, a directed rooted tree such that every edge points away from the root.
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B Proofs omitted from the main text

B.1 Proposition 2.3

Suppose that (G,SN) does not satisfy Clause 1 of Definition 2.2. We can modify (G,SN)

so that it satisfies Clause 1, remains BIC, and results in the same outcomes for each type

profile.

In particular, suppose there exists h such that there is no θN such that h � z(SN(θN)).

Since the game tree has finite depth, we can locate an earliest possible h; that is, an h

such that no predecessor satisfies this property. Consider h′ that immediately precedes

h, and the information set I ′i such that h ∈ I ′i. There is some action a′ at I ′i that is not

played by any type of i that reaches I ′i. We can delete all histories that follow i playing

a′ at I ′i (and define (≺′,A′, P ′, (I ′i)i∈N , g′) and S ′N so that they are as in G, but restricted

to the new smaller set of histories H ′). Since these histories were off the path of play,

their deletion does not affect the incentives of agents in N \ i. Since each type θi preferred

Si(θi) to any interim strategy that played a′ at I ′i, his new interim strategy S ′i(θi) remains

incentive-compatible. Thus, the transformed (G′, S ′N) is BIC. We do this for all such

histories simultaneously, to produce a protocol that satisfies Clause 1.

Suppose that (G,SN) satisfies Clause 1 but not Clause 2. We now modify (G,SN) so

that it satisfies Clause 1 and Clause 2, remains BIC, and results in the same outcomes

for each type profile.

Suppose there exists h /∈ Z such that |succ(h)| = 1. We simply rewrite the transformed

game (G′, S ′N) that deletes h (and all the other histories in that same information set)

and ‘automates’ i’s singleton action at h. That is, for all h′ ∈ Ii for Ii such that h ∈ Ii,
we remove h′ from the set of histories, and define (≺′,A′, P ′, (I ′i)i∈N , g′) and S ′N so that

they are as in G, but restricted to H \ Ii. We do this for all singleton-action histories

simultaneously, to produce a protocol that satisfies Clause 1 and Clause 2.

We now take (G,SN) that satisfies Clauses 1 and 2, and transform it to satisfy Clause

3. Informally, our argument proceeds as follows: Suppose there is some h at which Clause

3 is not satisfied, where we denote i = P (h). Upon reaching h, i’s continuation strategy no

longer affects the outcome. Consider a modified protocol (G′, S ′N): Play proceeds exactly

as in (G,SN), except after history h is reached. Whenever, under (G,SN), i would be

called to play at h′ where h � h′, we instead skip i’s turn and continue play as though i

chose the action that would be selected by some type θi.

Formally, suppose Clause 1 and 2 hold for (G,SN), but there exists h /∈ Z, such that

for i = P (h), there does not exist θi, θ
′
i, θ−i such that

1. h ≺ z(SN(θi, θ−i))

2. h ≺ z(SN(θ′i, θ−i))
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3. xG(SN(θi, θ−i)) 6= xG(SN(θ′i, θ−i))

Since Clause 1 holds, there exists (θi, θ−i) such that h ≺ z(SN(θi, θ−i)). Upon reaching

h, we can henceforth ‘automate’ play as though i had type θi. First, we delete any history

h′ such that h � h′ and P (h′) = i; this ensures that i is no longer called to play after h.

Next, we delete any history h′ such that h � h′ and there does not exist θ′′−i such that

h′ � z(SN(θi, θ
′′
−i)); this has the effect of ‘automating’ play as though i has type θi. Given

the new smaller set of histories H ′, we again define (≺′,A′, P ′, (I ′i)i∈N , g′) and S ′N so that

they are as in G, but restricted to H ′. We perform this deletion simultaneously for all

histories that violate Clause 3.

By construction, for all θ′i, if i is playing as though his type is θ′i and we would

have reached some deleted history h under (G,SN), then the outcome is the same under

(G′, S ′N) as when i is playing as though his type is θi under (G,SN) (which by hypothesis

is the same as when i is playing as though his type is θ′i under (G,SN)). Plainly, if we

would not have reached history a deleted history under (G,SN), then the outcomes under

(G,SN) and (G′, S ′N) are identical. Thus, (G′, S ′N) is BIC, satisfies Clauses 1, 2, and 3,

and results in the same outcomes for each type profile.

This completes the proof of Proposition 2.3.

B.2 Proposition 2.7

To prove Proposition 2.7, we show that each of the three transformations we used in

the proof of Proposition 2.3 also preserve credibility. That is, for each (G′, S ′N) that

is produced from (G,SN) by one of the three transformations, if the auctioneer has a

profitable safe deviation from SG
′

0 , then she also has a profitable safe deviation from SG0 .

Consider the first transformation (deleting all histories that are not reached at any

type profile). Suppose the auctioneer had a profitable safe deviation S ′0 from SG
′

0 . The

auctioneer could make that same deviation in the messaging game generated by (G,SN)

(with her play specified arbitrarily after actions that correspond to deleted histories).

At every type profile, the agents never reply with actions corresponding to the deleted

histories, so the auctioneer’s deviation is in S∗0(SG0 , SN).

Consider the second transformation (deleting all histories with singleton action sets).

Suppose the auctioneer had a profitable safe deviation S ′0 from SG
′

0 . The auctioneer

could make that same deviation from SG0 , except that for any deleted information set,

the auctioneer delays sending the corresponding message until the last possible moment.

That is consider S0 that is the same as S ′0, except that:

1. If agent i last received message Ii, and S ′0 specifies that the auctioneer sends I ′i to

i, let (I1
i , I

2
i , . . . , I

K
i ) denote the sequence of deleted information sets that i would

have encountered between Ii and I ′i under G (this sequence is possibly empty, and is
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unique by perfect recall). S0 specifies that the auctioneer first sends (I1
i , I

2
i , . . . , I

K
i )

and then (immediately thereafter) sends I ′i.

2. If agent i last received message Ii, and S ′0 specifies that the auctioneer chooses out-

come x, let (I1
i , I

2
i , . . . , I

K
i ) denote the (possibly empty) sequence of deleted infor-

mation sets that i would have encountered (under G) between Ii and some terminal

history z � Ii such that ∃ωi ∈ Ωi : {g(z)}∪{x} ∈ ωi. At least one such history exists

because S ′0 is a safe deviation. S0 specifies that the auctioneer sends (I1
i , I

2
i , . . . , I

K
i )

before choosing x.

S0 is a profitable safe deviation from SG0 .

Consider the third transformation (deleting histories where i is called to play, following

any history h such that, for any two types of i that reach h, both types of i result in the

same outcome). Suppose S ′0 was a profitable safe deviation from SG
′

0 . The auctioneer

can make that same deviation from SG0 , except that she delays any ‘outcome-irrelevant’

queries to i until just before she selects the outcome.

Formally, take any θN , i, and θ̂−i such that oi(S
′
0, SN , θN) = oi(S

G′
0 , SN , (θi, θ̂−i)). If

oi(S
G′
0 , SN , (θi, θ̂−i) 6= oi(S

G
0 , SN , (θi, θ̂−i)), then this can only be because oi(S

G
0 , SN , (θi, θ̂−i))

contains additional communication at the end of the sequence that corresponds to deleted

histories at which i is called to play. Let h be the earliest such deleted history that would

be encountered under (G,SN) at type profile (θi, θ̂−i). We can ‘fill in’ the missing com-

munication for agent i, as follows. Initialize ĥ := h.

1. If ĥ ∈ Z, then terminate.

2. Else if P (ĥ) 6= i, then for IP (ĥ) such that ĥ ∈ IP (ĥ):

(a) ĥ := h′ | h′ ∈ succ(ĥ) and SP (ĥ)(IP (ĥ), θ̂P (ĥ)) = A(h′).

(b) Go to step 1.

3. Else:

(a) Send (to agent i) message Ii such that ĥ ∈ Ii.

(b) Upon receiving reply a, choose ĥ := h′ | A(h′) = a and h′ ∈ succ(ĥ).

(c) Go to step 1.

Since (under SN), i’s play in the deleted histories makes no difference to the outcome,

delaying communication with i until the outcome is about to be selected results in a safe

deviation. Thus, whenever S ′0 would select an outcome, we can run the above algorithm

for every agent whose resulting observation would not have an innocent explanation, and

then select the same outcome, thus producing a profitable safe deviation from SG0 . This

completes the proof of Proposition 2.7.

38



B.3 Theorem 3.10

Suppose (G,SN) is a twin-bid auction. (G,SN) is static by definition. Given any profile

of bids (bWi , b
L
i )i∈N , every safe deviation charges bWi if agent i wins and bLi if he loses, so

the auctioneer prefers SG0 to any safe deviation. Thus, (G,SN) is credible.

Suppose (G,SN) is credible and static. By Theorem 3.3, there exists a function b̃Wi :

Θi → R such that, almost everywhere in ΘN , if type θi wins, then i pays b̃Wi (θi).

By Lemma 3.4, let (θk−i)
∞
k=1 be a countable subset such that for all θ−i, infk t̃i(·, θk−i) ≤

t̃i(·, θ−i) almost everywhere in Θi.

Define:

t̃Li (θi, θ−i) =

t̃i(θi, θ−i) if ỹ(θi, θ−i) 6= i

infk t̃i(θi, θ
k
−i)− 1 otherwise

(13)

Intuitively, the function constructed above ‘penalizes’ the auctioneer’s revenue from i

unless the type profile is consistent with i losing.

Since ỹ(·, θ−i), t̃i(·, θ−i), and infk t̃i(·, θk−i) are measurable, it follows that t̃Li (·, θ−i) is

measurable. Again applying Lemma 3.4, let (θ
k

−i)
∞
k=1 be a countable subset of opponent

type profiles, such that for all θ−i, supk t̃
L
i (·, θk−i) ≥ t̃Li (·, θ−i) almost everywhere in Θi.

We now assert that, almost everywhere in ΘN , if type θi does not win, then that type

is charged b̃Li (θi) = supk t̃
L
i (·, θk−i). Suppose the set

{θN | ỹ(θN) 6= i and t̃i(θi, θ−i) 6= sup
k
t̃Li (θi, θ

k

−i)} (14)

has positive measure. Observe that for (θi, θ−i) in the above set, t̃i(θi, θ−i) = t̃Li (θi, θ−i).

Consequently, the set

Q = {θN | ỹ(θN) 6= i and inf
k
t̃i(θi, θ

k
−i) ≤ t̃i(θi, θ−i) < sup

k
t̃Li (θi, θ

k

−i)} (15)

has positive measure. Q is measurable with respect to the equilibrium action profiles.

We now construct a profitable safe deviation. Fix some finite K. If the agents’ chosen

actions are consistent with any type profile (θi, θ−i) ∈ Q, charge max{t̃i(θi, θ−i),maxk≤K t̃
L
i (θi, θ

k

−i)},
without changing the allocation or the other agents’ transfers. Otherwise, play according

to SG0 . The resulting transfer t̃Ki : ΘN → R is measurable. Notice that our construction

of Q and t̃Li (·) means that we charge more than t̃i(θi, θ−i) only if maxk≤K t̃
L
i (θi, θ

k

−i) is

consistent with i losing.

For K large enough, this deviation is profitable. In particular, for all (θi, θ−i) ∈ Q,

t̃Ki (θi, θ−i) is non-decreasing in K and converges as K →∞ to supk t̃
L
i (θi, θ

k

−i). Thus, by
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the monotone convergence theorem,

lim
K→∞

EθN
[
t̃Ki (θN) | θN ∈ Q

]
= EθN

[
sup
k
t̃Li (θi, θ

k
−i) | θN ∈ Q

]
> EθN

[
t̃i(θN) | θN ∈ Q

] (16)

which establishes that the deviation is profitable.

We have shown that there exist b̃Wi : Θi → R and b̃Li : Θi → R such that, almost

everywhere in θN , i pays b̃Wi (θi) if ỹ(θi, θ−i) = i and b̃Li (θi) if ỹ(θi, θ−i) 6= i. If for

all θ−i, ỹ(θi, θ−i) 6= i, then we set b̃Wi (θi) to be equal to b̃Li (θi) − 1. We then define

Bi = {(b̃Wi (θi), b̃
L
i (θi)) | θi ∈ Θi}, which implies that Clause 1 of Definition 3.9 holds

almost everywhere. Let Υ denote the subset of ΘN on which Clause 1 holds.

Suppose then that Clause 2 does not hold on a positive measure set. Then, for some

agent i, the set

{θN | ỹ(θN) = 0 and b̃Wi (θi)− b̃Li (θi) > 0} ∩Υ (17)

has positive measure. The auctioneer can raise expected revenue by deviating at all type

profiles in this set, allocating the object to i and charging b̃Wi (θi). Thus Clause 2 holds

almost everywhere.

Suppose then that Clause 3 does not hold on a positive measure set. (G,SN) is

contestable, so for some agent i, the set

Q′ = {θN | ỹ(θN) = i and b̃Wi (θi)− b̃Li (θi) < max{0,max
j 6=i

b̃Wj (θj)− b̃Lj (θj)}

and ∃θ′−i : ỹ(θi, θ
′
−i) 6= i} ∩Υ

(18)

has positive measure. The auctioneer can raise expected revenue by deviating at all type

profiles in this set. Take any type profile in θN ∈ Q′.

1. If b̃Wi (θi)− b̃Li (θi) < 0, then keep the object and changes i’s payment to bLi (θi).

2. Else, if b̃Wi (θi)− b̃Li (θi) < maxj 6=i b̃
W
j (θj)− b̃Lj (θj), then award the object to the agent

who maximizes the right-hand side, changes i’s payment to b̃Li (θi) and the other

agent’s payment to b̃Wj (θj).

Hence, Clause 3 holds almost everywhere, which completes the proof.

B.4 Proposition 3.12

Suppose (G,SN) is a twin-bid auction and strategy-proof. Strategy-proofness requires:

t̃i(θ
′
i, θ−i)− t̃i(θi, θ−i) ≤ θ′i (19)

θ′′i ≤ t̃i(θ
′′′
i , θ

′
−i)− t̃i(θ′′i , θ′−i) (20)
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ỹ(·) is non-decreasing in θi, so ỹ(θi, θ
′
−i) 6= i and ỹ(θ′′′i , θ−i) = i. It follows that:

t̃i(θi, θ−i) = t̃i(θi, θ
′
−i) = t̃i(θ

′′
i , θ
′
−i) (21)

t̃i(θ
′′′
i , θ

′
−i) = t̃i(θ

′′′
i , θ−i) = t̃i(θ

′
i, θ−i) (22)

where the first equality in each line follows from the definition of a twin-bid auction and

the second equality follows from strategy-proofness. Substituting into Equation 20 yields

θ′′i ≤ t̃i(θ
′
i, θ−i)− t̃i(θi, θ−i) (23)

which contradicts Equation 19.

B.5 Theorem 3.18

B.5.1 credible, strategy-proof → ascending

We start by deriving several properties of credible strategy-proof optimal (G,SN), without

assuming that FN is regular or symmetric. Since we are mostly holding fixed (G,SN), we

will drop the superscripts on ỹG,SN and t̃G,SNi to reduce clutter.

Proposition B.1. If (G,SN) is optimal and strategy-proof, then (G,SN) is winner-

paying.

Proof. For all (θi, θ−i), if ỹ(θi, θ−i) 6= i then t̃i(θi, θ−i) ≤ 0. Suppose not. (G,SN) satisfies

voluntary participation. When i’s opponent’s imitate θ−i,
38 type θi can profitably deviate

to non-participation if t̃i(θi, θ−i) > 0, contradicting strategy-proofness.

θ1
i ≤ 0, so ηi(θ

1
i ) < 0. (G,SN) is optimal, so θ1

i never wins (by Proposition 3.14). θ1
i ’s

participation constraint binds, so for all θ−i, t̃i(θ
1
i , θ−i) = 0.

Take any (θi, θ−i). If ỹ(θi, θ−i) 6= i and t̃i(θi, θ−i) > 0, then when i’s opponents

imitate θ−i, θ
1
i can profitably imitate θi, contradicting strategy-proofness. Thus, (G,SN)

is winner-paying.

Proposition B.2. If (G,SN) is strategy-proof, then the allocation rule is monotone. That

is, if θi < θ′i and ỹ(θi, θ−i) = i, then ỹ(θ′i, θ−i) = i.

Proof. Suppose not, so ỹ(θ′i, θ−i) 6= i. By strategy-proofness, −t̃i(θ′i, θ−i) ≥ θ′i− t̃i(θi, θ−i),
which implies −t̃i(θ′i, θ−i) > θi− t̃i(θi, θ−i), so θi can profitably imitate θ′i, a contradiction.

Definition B.3. (G,SN) has threshold pricing if:

t̃i(θN) =

minθ′i∈Θi θ
′
i | ỹ(θ′i, θ−i) = i if ỹ(θN) = i

0 otherwise
(24)

38Formally, define S′−i such that for all j 6= i, Ij , and θ′j , S
′
j(Ij , θ

′
j) = Sj(Ij , θj)
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Proposition B.4. If (G,SN) is optimal and strategy-proof, then (G,SN) has threshold

pricing.

Proof. Proposition B.1 pins down the payments whenever ỹ(θN) 6= i.

We prove the rest by induction. (G,SN) is optimal, so θ1
i ’s participation constraint

binds. Thus, Equation 24 holds when for θ1
i . Suppose that Equation 24 holds for all θk

′
i

such that k′ ≤ k. We prove it holds for θk+1
i .

Take any θ−i. There are three cases to consider.

If ỹ(θki , θ−i) = i, then strategy-proofness implies that ỹ(θk+1
i , θ−i) = i and t̃i(θ

k+1
i , θ−i) =

t̃i(θ
k
i , θ−i) = minθ′i∈Θi θ

′
i | ỹ(θ′i, θ−i) = i.

If ỹ(θk+1
i , θ−i) 6= i, then t̃i(θi, θ−i) = 0.

Notice that, in the previous two cases, θk+1
i is exactly indifferent between Si and

deviating to imitate type θki . Finally, suppose ỹ(θki , θ−i) 6= i and ỹ(θk+1
i , θ−i) = i.

t̃i(θ
k+1
i , θ−i) ≤ θk+1

i , since (G,SN) is strategy-proof. If t̃i(θ
k+1
i , θ−i) < θk+1

i , then (G,SN)

is not optimal, since the incentive constraints do not bind locally downward (Proposition

3.14). Thus, t̃i(θ
k+1
i , θ−i) = θk+1

i , and the inductive step is proved.

Given (G,SN), let Θh
i denote the types of i that are consistent with i’s actions up to

history h, that is:

Θh
i = {θi | ∀h′, h′′ � h : [h′ ∈ Ii, h′′ ∈ succ(h′)]→ [Si(Ii, θi) = A(h′′)]} (25)

For N̂ ⊆ N , let Θh
N̂

= ×i∈N̂Θh
i .

Proposition B.5. If h ≺ h′ then Θh
i ⊇ Θh′

i . If h ∈ Ii and h′ ∈ Ii, then Θh
i = Θh′

i .

The first is clear by inspection. The second follows because the definition of Θh
i

invokes only i’s past information sets and actions, and G has perfect recall. Thus, we

define ΘIi
i = Θh

i | h ∈ Ii. Define also:

θhi = min{θi ∈ Θh
i } (26)

θ
h

i = max{θi ∈ Θh
i } (27)

The next proposition states that strategy-proofness constrains what agents can learn

about each others’ play midway through the protocol. In essence, it says that if, at some

history h where i is called to play, i can affect whether or not θj wins, then i cannot (at

this information set) rule out the possibility that j’s type is instead some θ′j > θj.

Proposition B.6. Assume (G,SN) is optimal and strategy-proof. Take any information

set Ii and history h ∈ Ii. Take any θi, θ
′
i ∈ Θh

i , θj ∈ Θh
j , and θN\{i,j} ∈ Θh

N\{i,j}.

If ỹ(θi, θj, θN\{i,j}) = j and ỹ(θ′i, θj, θN\{i,j}) 6= j, then ∀θ′j > θj : ∃h′ ∈ Ii : θ′j ∈
Θh′
j and θN\{i,j} ∈ Θh′

N\{i,j}.
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Proof. Suppose not. We construct a strategy profile S ′−j such that θ′j has a profitable

deviation. For l ∈ N \ {i, j}, let l imitate θl; that is ∀Il : ∀θ′l : S ′l(Il, θ
′
l) = Sl(Il, θl). Let

i imitate θ′i unless he encounters Ii, and let him imitate type θi if he has encountered Ii.

Formally:

∀I ′i : ∀θ′′i : S ′i(I
′
i, θ
′′
i ) =

Si(I ′i, θi) if ∃h′′ ∈ I ′i : ∃h′′′ ∈ Ii : h′′′ � h′′

Si(I
′
i, θ
′
i) otherwise

(28)

By Proposition B.4, (G,SN) has threshold pricing. If type θ′j deviates to imitate θj,

then (when facing S ′j), the path of play passes through Ii, so j wins at price minθ′′j ∈Θj θ
′′
j |

ỹ(θi, θ
′′
j , θN\{i,j}) = j, for a positive surplus since θ′j > θj. On the other hand, if type θ′j

plays according to Sj, then the path of play does not pass through Ii, so j either wins

at a strictly higher price minθ′′j ∈Θj θ
′′
j | ỹ(θ′i, θ

′′
j , θN\{i,j}) = j, or does not win and has

zero surplus. Thus, j has a profitable deviation, and (G,SN) is not strategy-proof, a

contradiction.

Let W h
i denote the subset of i’s types that might reach h and then win. Similarly, let

Lhi denote the subset of i’s types that might reach h and then lose.

W h
i = {θi ∈ Θh

i | ∃θ−i ∈ Θh
−i : ỹ(θi, θ−i) = i} (29)

Lhi = {θi ∈ Θh
i | ∃θ−i ∈ Θh

−i : ỹ(θi, θ−i) 6= i} (30)

Definition B.7. (G,SN) is winner-pooling if for all Ii, h ∈ Ii:

1. Either: ∀θi, θ′i ∈ W h
i : Si(Ii, θi) = Si(Ii, θ

′
i)

2. Or: W h
i ∩ Lhi = ∅

Proposition B.8. Assume FN is symmetric and regular, and (G,SN) is optimal, orderly,

and strategy-proof. If (G,SN) is credible, then (G,SN) is winner-pooling.

Before starting the proof of Proposition B.8, we highlight that this is the reason that

we have assumed regularity and orderliness in the statement of Theorem 3.18. Together,

regularity and orderliness imply that, if there are two distinct types θi < θ′i in W h
i that

do not pool on the same action, then there exists θ−i such that θi loses when facing θ−i,

but θ′i wins. This enables us to construct profitable safe deviations for the auctioneer.39

Proof. Under the assumptions of Proposition B.8, we will show that if (G,SN) is not

winner-pooling, then the auctioneer has a profitable safe deviation, so (G,SN) is not

credible.

39If type spaces were continuous, regularity would by itself imply the desired property for every optimal
allocation rule. However, for discrete types, we need to pick a particular allocation rule - and the orderly
one will do.

43



Let h∗ be some history at which the winner-pooling property does not hold; we pick

h∗ such that, for all h ≺ h∗, h is not a counterexample to winner-pooling. Since (G,SN)

is orderly and the winner-pooling property held at all predecessors to h∗, it follows that

for all i, either W h∗
i = ∅ or W h∗

i = {θi | θiB
B

max
j 6=i

θh
∗

j and θiB ρ}.
Let i∗ denote P (h∗), and I∗i∗ the corresponding information set. Since the winner-

pooling property doesn’t hold at h∗, W h∗
i∗ ∩ Lh

∗
i∗ 6= ∅ and there exist two distinct actions

taken by types in W h∗
i∗ at I∗i∗ .

Since (G,SN) is orderly,
B

minW h∗
i∗ ∈ W h∗

i∗ ∩ Lh
∗
i∗ . Define

θ∗i∗ =
B

min θi∗ ∈ W h∗

i∗ | Si∗(I∗i∗ , θi∗) 6= Si∗(I
∗
i∗ ,

B
minW h∗

i∗ ) (31)

We are going to squeeze extra revenue out of agent i∗ when his type is θ∗i∗ : by his actions

at h∗, he hints that his type is more than high enough to win. Let h∗∗ be the immediate

successor of h∗ that would be reached by θ∗i∗ , that is

h∗∗ = h | h ∈ succ(h∗) and θ∗i∗ ∈ Θh
i∗ (32)

Since W h∗
i∗ ∩ Lh

∗
i∗ 6= ∅ and (G,SN) is orderly, {j ∈ N | W h∗

j 6= ∅} includes i∗ and at least

one other agent. For each i ∈ N , we assign a nemesis:

ψ(i) =
B

max{j ∈ N \ {i} | W h∗

j 6= ∅} (33)

By choosing i’s nemesis in this way, we ensure a useful property; given any θj, we can

find θψ(i) such that i has the same allocation and transfer when the highest opponent type

is θj and when it is θψ(i). Similarly, given any θi, we can find θψ(i) that forces i to pay

exactly θi if he wins (by threshold pricing). Formally, we say θψ(i) is i-equivalent to θj

if

{θi | θiD θj} = {θi | θiD θψ(i)} (34)

where D is the reflexive order implied by the strict order B.

Given SG0 , we now exhibit a (partial) behavioral strategy that deviates from SG0 upon

encountering h∗∗ and is strictly profitable. We describe this algorithmically. The descrip-

tion is lengthy, because it must produce a safe deviation for any extensive game form in

a large class. We start by defining several subroutines for the algorithm.

The algorithm calls the following subroutine: Given some variable ĥ that takes values

in the set of histories, we can start at the initial value of ĥ and communicate with i as

though the opponent types were θ−i, updating ĥ as we go along. When we do this, we

say that we simulate θ−i against i starting from ĥ, until certain specified conditions are

met. Formally,

1. If [conditions], STOP.
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2. Else if P (ĥ) 6= i, set ĥ := h ∈ succ(ĥ) | θ−i ∈ Θh
−i

3. Else if P (ĥ) = i:

(a) Send message Ii | ĥ ∈ Ii to i.

(b) Upon receiving r ∈ A(Ii), set ĥ := h | (h ∈ succ(ĥ) and A(h) = r).

(c) Go to step 1.

The algorithm also calls the following subroutine: Given some history h and some

θ−i, where i was called to play at h’s immediate predecessor, we may find the cousin

of h consistent with θ−i. This is the history that immediately follows from the same

information set, is consistent with the action i just took, but is also consistent with the

opponent types being θ−i. Formally, let cousin(h, θ−i) be equal to h′ such that ∃Ii :

∃h′′, h′′′ :

1. h′′, h′′′ ∈ Ii

2. h ∈ succ(h′′)

3. h′ ∈ succ(h′′′)

4. A(h) = A(h′)

5. θ−i ∈ Θh′
−i

Clearly, it is not always possible to find such a history. But we will be careful to prove

that cousin(h, θ−i) is well-defined when we call it.

Our algorithm keeps track of several variables:

1. A best offer, initialized β := θ∗i .

2. A set of ‘active’ agents, initialized N̂ := N .

3. The agent we are currently communicating with, î := i∗.

4. A simulated history, for each agent: ĥi∗ := h∗∗ and for i ∈ N \ {i∗}, ĥi := h∗.

The algorithm proceeds in three stages. At h∗∗, i∗’s type could be at least θ∗i∗ , but

it could also be too low to exploit (if some types not in W h∗
i∗ took the same action as

θ∗i∗ at h∗). In Stage 1, we check whether i∗’s type is at least θ∗i∗ . If it is, we set β to be

the least type consistent with i∗’s responses, and go to Stage 2. Otherwise, we lower β

appropriately, and proceed to Stage 2. In Stage 2, we cycle through the bidders, updating

β to be equal to the highest type we’ve confirmed so far, until we have found the bidder

with the highest type (breaking ties with B). Finally, in Stage 3, we sell to the bidder

with the highest type (if it’s above the reserve), at a price greater than or equal to the
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price in the original protocol. We use := for the assignment operator, and :∈ to assign an

arbitrary element in the set on the right-hand side.

Stage 1

1. Pick θψ(i∗) that is i∗-equivalent to β.

2. Simulate (θψ(i∗), θ
h∗

N\{i∗,ψ(i∗)}) against i∗ starting from ĥi∗ , until either θĥi∗i∗ D β or

ĥi∗ ∈ Z.

3. If θĥi∗i∗ D β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗}, β :=
B

min
i 6=i∗,θi

θi | θi ∈ W h∗
i and go to Stage 2.

Stage 2

1. If N̂ = 1, go to Stage 3.

2. Set î :∈ {i ∈ N̂ | θĥii C β}.

3. Pick θψ(̂i) that is î-equivalent to β.

4. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

5. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until either θ
ĥî
î
D β or ĥî ∈ Z.

6. If θ
ĥî
î
D β, set β := θ

ĥî
î

and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {̂i} and go to Step 1 of Stage 2.

Stage 3

1. Set î := i | i ∈ N̂ .

2. Pick θψ(̂i) that is î-equivalent to β.

3. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

4. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until ĥî ∈ Z.

5. Choose the outcome that corresponds to that terminal history, x = g(ĥî), and

terminate.

Since (G,SN) is orderly, the deviation does not change the allocation. In particular,

some agent î is removed from N̂ only when we know that θψ(̂i) B θî, since θψ(̂i) is î-

equivalent to β, the latter implies that βB θî.
40 Moreover, since (G,SN) is orderly and

40Since (G,SN ) is orderly, we must eventually learn either that θîB θψ(̂i) or vice versa, since this

information is necessary to determine whether î or ψ(̂i) should win when the other agents’ types are

θh
∗

N\{î,ψ(̂i)}. Thus, reaching Step 4 of Stage 1 or Step 7 of Stage 2 implies that βB θî.
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has threshold pricing (by Proposition B.4), the resulting algorithm results in transfers that

are always at least as high as the transfers under (G,SN). The transfers are strictly higher

for at least one type profile, namely (θ∗i∗ , θ
h∗

−i∗). Under (G,SN), t̃i∗(θ
∗
i∗ , θ

h∗

−i∗) =
B

minW h∗
i∗ ,

whereas under the deviation i∗’s transfer is θ∗i∗ . Thus, the deviation is profitable.

It remains to prove that the deviation is safe. When we first start communicating with

any agent î under the deviation, we are simulating opponent types that are consistent

with h∗, because the winner-pooling property holds at all histories prior to h∗, and we

have chosen the simulated nemesis type θψ(̂i) to be in W h∗

ψ(̂i)
. (Thus, Step 4 of Stage 2

and Step 3 of Stage 3 are not triggered if this is the first time the deviating algorithm is

communicating with that agent.)

Whenever the deviation communicates with some agent î for a second time, we have

to prove that we can find cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) in the

way the algorithm requires. Let θold
ψ(̂i)

and βold denote the simulated nemesis type and

the best offer from the last time the algorithm communicated with î. Let θnew
ψ(̂i)

and βnew

denote the current simulated nemesis type and best offer. Observe that we always revise

the nemesis type upwards; βold E βnew, so θold
ψ(̂i)
≤ θnew

ψ(̂i)
. If θold

ψ(̂i)
= θnew

ψ(̂i)
, we are done,

since (θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) ∈ Θ
ĥî
−î. Otherwise, consider h′, the immediate predecessor of ĥî.

At h′, î is called to play, and it is not yet clear whether ψ(̂i) wins. In particular, θold
ψ(̂i)

would win against θh
′

î
, but would lose against θ

ĥî
î

, i.e. ỹ(θh
′

î
, θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) = ψ(̂i) 6=

ỹ(θ
ĥî
î
, θold
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}). By Proposition B.6, there exists another history h′′ in the same

information set as h′, such that (θnew
ψ(̂i)

, θh
∗

N\{̂i,ψ(̂i)}) ∈ Θh′′

−î. Thus, we can find cousins in the

way that the algorithm requires.

Observe that, whenever î is removed from N̂ , he has seen a communication sequence

that is consistent with his reaching a terminal history with an opponent type profile such

that î does not win and has a zero transfer, and the Stage 3 outcome respects that. At

Stage 3, the final agent î’s observation is consistent with (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}). Thus, the

algorithm produces a profitable safe deviation.

We are now ready to show that, under the assumptions of Theorem 3.18, if (G,SN)

is credible and strategy-proof, then (G,SN) is an ascending auction. With Propositions

B.4 and B.8 in hand, what remains is mostly an exercise in labeling.

Bidder i is active at h if W h
i 6= ∅. There are three cases to consider:

1. An active bidder is called to play, and there is more than one active bidder.

2. An active bidder is called to play, and there are no other active bidders. (This can

only happen when every other bidder has a type below the reserve.)

3. An inactive bidder is called to play.
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Case 1: Take any Ii and h ∈ Ii such that an active bidder i is called to play.

Suppose there exists another active bidder, so W h
i ∩ Lhi 6= ∅. There is some action

Si(Ii, θ
K
i ) that is taken by the highest type of i. Proposition B.8 implies that for all

θi ∈ W h
i , Si(Ii, θi) = Si(Ii, θ

K
i ). Thus, any agent who does not play that action has

quit. The bid at Ii is the least type of i consistent with playing Si(Ii, θ
K
i ), that is

B
min{θi ∈ Θh

i | Si(Ii, θi) = Si(Ii, θ
K
i )}. By Proposition B.5, each bid is weakly more than

the last bid that i placed. This construction implies that the bid is the same at all histories

in Ii, since it is equal to the least type that plays the pooling action. Thus, bidder i knows

the bid associated with the pooling action.

By construction, all types strictly below the bid quit. Since (G,SN) is orderly, if there

is no high bidder, then all types weakly above the reserve ρ place a bid. Similarly, all

types above the current high bid place a bid.

Moreover, if i is the current high bidder at history h and there is another active bidder,

then by Proposition B.8, all i’s types who reach h take the same action, and (by (G,SN)

pruned) i is not called to play at h. This implies that, if an active bidder i is called to

play at h, he is not the current high bidder.

Case 2: Suppose an active bidder i is called to play at some h in some information

set Ii, and is the unique active bidder at h. Since (G,SN) is pruned, i is not the current

high bidder, which implies that there is no high bidder - all the other bidders have types

below the reserve.

If there exists h′ ∈ Ii such that i is not the unique active bidder at h′, then we define

bids and quitting actions at h as at h′. Otherwise, we define them as follows: We define

an action a as quitting if there is no type above the reserve that plays a, that is:

¬∃θi ∈ Θh
i | θiB ρ and Si(Ii, θi) = a (35)

For any non-quitting action a, the associated bid is:

B
min{θi | θiB ρ or [θi ∈ Θh

i and Si(Ii, θi) = a]} (36)

By construction, if i has a type strictly below the bid associated with a, then he does

not play a. If i has a type above the reserve, then he places a bid. However, W h
i ∩Lhi = ∅,

so there can be multiple actions that place bids. Again, by Proposition B.5, each bid is

weakly more than the last bid that i placed. Again, this construction implies that i knows

whether an action quits, and the bid associated with each non-quitting action.

Case 3: From Case 1 and 2, if bidder i quits, then he either has a type lower than the

reserve, or we have identified another bidder whose type is greater than i’s (according to

the order B). Thus, since (G,SN) is orderly, once i is inactive, further information about

his type no longer affects the outcome, so (since (G,SN) is pruned) only active bidders
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are called to play. This implies that no histories satisfy Case 3.

The three conditions that specify what happens when the auction ends are similarly

entailed by orderliness and threshold pricing (Proposition B.4). If there are no active

bidders at h, then for all i, ρB θ
h

i . Thus, the object is not sold, and since (G,SN) is

pruned, h is a terminal history. If the high bidder i is the unique active bidder at h, then

we know that no bidder in N \ i has a higher type than i, and that i’s current bid is equal

to
B

min{θi | θiB
B

max
j 6=i

θj and θiB ρ} =
B

min{θi | ỹ(θi, θ−i) = i}. Thus, i must win and pay

his bid, and since (G,SN) is pruned, h is a terminal history. Finally, if the high bidder

has bid θK and no active bidder has higher tie-breaking priority, then i must win and pay

θK , and since (G,SN) is pruned, h is a terminal history.

This completes the proof that, under the assumptions of Theorem 3.18, if (G,SN) is

credible and strategy-proof, then (G,SN) is an ascending auction.

B.5.2 ascending → credible, strategy-proof

Now we show that if (G,SN) is orderly, optimal, and an ascending auction, it is credible

and strategy-proof.

That (G,SN) is strategy-proof is straightforward. It remains to show that (G,SN) is

credible. As a preliminary, we prove that for any safe deviation S ′0 ∈ S∗0 (SG0 , SN) and for

any S ′−i, Si is a best response to (S ′0, S
′
−i) in the messaging game.

First, consider information sets at which there is a unique action that places a bid.

Take any i, Ii, and θi such that θi ∈ ΘIi
i . Recall that Si requires that i quit if θi is

strictly below the bid b(Ii) at Ii, and that i places the bid if θi is above the least high bid

consistent with reaching Ii. The least high bid consistent with reaching Ii is, formally,

B
min{ρ,

B
min

h∈Ii,j 6=i
θhj } (37)

And, since (G,SN) is optimal and has threshold pricing,

b(Ii)E
B

min{θ′i | θ′iB
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }} (38)

For any safe deviation S ′0 and for any S ′−i, it is optimal for i to quit (upon reaching

information set Ii) if θiC
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }. In particular, note that under (G,SN), if i

wins after reaching Ii, he pays at least
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }. Thus, for any safe deviation,

i’s best possible payoff upon placing a bid is no more than zero, so it is optimal to quit

(which yields zero payoff).

For any safe deviation S ′0 and for any S ′−i, it is optimal for i to place a bid if θi is

weakly above that bid. This is because i can quit if the required bid ever rises strictly

above θi. Under any safe deviation, i cannot be charged more than θi unless he (at some
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later point) bids more than θi. Thus, the worst possible payoff from placing a bid is zero,

and the best possible payoff from quitting is zero.

By the above arguments and Equation 38, there are three possibilities at each Ii and

θi ∈ ΘIi
i :

1.
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }C θi, in which case Si requires that i place a bid, and this is a best

response to (S ′0, S
′
−i).

2. θiC b(Ii), in which case Si requires i to quit, and this is a best response to (S ′0, S
′
−i).

3. b(Ii)E θiC
B

min{ρ,
B

min
h∈Ii,j 6=i

θhj }, in which case Si is underdetermined, and both quit-

ting now or placing the bid and quitting later are best responses to (S ′0, S
′
−i).

Finally, consider information sets at which there are multiple bid-placing actions. In

this case, under any safe deviation, i is sure to win if and only if he eventually bids the

reserve - this implies that Si remains a best response to any safe deviation.

Suppose now that (G,SN) is an orderly ascending auction but not credible, so the

auctioneer has a profitable safe deviation S ′0. Consider a corresponding G′ in which the

auctioneer ‘commits openly’ to that deviation, that is to say, G′ such that S ′0 runs G′.

For all i, Si is a best response to (S ′0, S−i), so (G′, SN) is also BIC. (We abuse notation

slightly to use SN as a strategy profile for G and G′. Every information set in G′ has a

corresponding information set in G, so it is clear what is meant.) By hypothesis, S ′0 is a

profitable deviation, so π(G′, SN) > π(G,SN), so (G,SN) is not optimal. Thus, if (G,SN)

is orderly, optimal, and an ascending auction, then (G,SN) is credible. This completes

the proof of Theorem 3.18.

B.6 Theorem 3.22

B.6.1 virtual ascending → credible, strategy-proof

Suppose (G,SN) is a virtual ascending auction. By inspection, (G,SN) is strategy-proof.

Moreover, Si is a best response to any (S ′0, S−i) for S ′0 ∈ S∗0 (SG0 , SN). (This requires only

small modifications to the proof of Theorem 3.18, which we omit to avoid repetition.)

Thus, if (G,SN) is not credible, then there exists (G′, SN) that yields strictly higher

expected revenue for the auctioneer, which implies that (G,SN) is not optimal. Thus, if

(G,SN) is optimal and a virtual ascending auction, then (G,SN) is credible.

B.6.2 credible, strategy-proof → virtual ascending

Propositions B.2, B.4, B.5, and B.6 pin down some details even when FN is not symmetric.

We start by proving an analogue to Proposition B.8.
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Proposition B.9. Assume FN is regular and interleaved, and (G,SN) is optimal and

strategy-proof. If (G,SN) is credible, then (G,SN) is winner-pooling.

Proof. As before, we will show that if (G,SN) is not winner-pooling, then the auctioneer

has a profitable safe deviation, so (G,SN) is not credible. Let h∗ be some history at which

the winner-pooling property does not hold; we pick h∗ such that, for all h ≺ h∗, h is not

a counterexample to winner-pooling. Since (G,SN) is regular and interleaved, and the

winner-pooling property held at all predecessors to h∗, Proposition 3.14 implies that for

all i, either W h∗
i = ∅ or W h∗

i = {θi | ηi(θi) > max(0,
B

max
j 6=i

ηj(θ
h∗

j ))}. Let us define i∗, θ∗i∗

and h∗∗ as before.

The proof of Proposition B.8 works here with the following modifications: First, we

define

ψ(i) = argmax
j∈N\{i}

{ηj(θ
Kj
j ) | W h∗

j 6= ∅} (39)

Second, we say θψ(i) i-separates at γ ∈ R if

{θi | ηi(θi) ≥ γ} = {θi | ηi(θi) ≥ ηj(θψ(i))} (40)

Thirdly, we initialize β := min{ηi∗(θ∗i∗), ηψ(i∗)(θ
Kψ(i∗)
ψ(i∗) )} and specify the algorithm as:

Stage 1

1. Pick θψ(i∗) that i∗-separates at β.

2. Simulate (θψ(i∗), θ
h∗

N\{i∗,ψ(i∗)}) against i∗ starting from ĥi∗ , until either ηi∗(θ
ĥi∗
i∗ ) ≥ β

or ĥi∗ ∈ Z.

3. If ηi∗(θ
ĥi∗
i∗ ) ≥ β, then set β := θĥi∗i∗ and go to Stage 2.

4. Else, set N̂ := N̂ \ {i∗},

β := min
i 6=i∗,θi

ηi(θi) | θi ∈ W h∗

i (41)

and go to Stage 2.

Stage 2

1. If N̂ = 1, go to Stage 3.

2. Set î :∈ {i ∈ N̂ | ηi(θĥii ) < β}.

3. Pick θψ(̂i) that î-separates at β.

4. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).
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5. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until either ηî(θ
ĥî
î

) ≥ β or

ĥî ∈ Z.

6. If ηî(θ
ĥî
î

) ≥ β, set β := ηî(θ
ĥî
î

) and go to Step 1 of Stage 2.

7. Else, set N̂ := N̂ \ {̂i} and go to Step 1 of Stage 2.

Stage 3

1. Set î := i | i ∈ N̂ .

2. Pick θψ(̂i) that î-separates at β.

3. If (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) /∈ Θ
ĥî
−î, set ĥî := cousin(ĥî, (θψ(̂i), θ

h∗

N\{̂i,ψ(̂i)})).

4. Simulate (θψ(̂i), θ
h∗

N\{̂i,ψ(̂i)}) against î starting from ĥî, until ĥî ∈ Z.

5. Choose the outcome that corresponds to that terminal history, x = g(ĥî), and

terminate.

This deviating algorithm does not change the allocation; the object is kept if maxi ηi(θi) ≤
0, and allocated to argmaxi ηi(θi) otherwise (where argmaxi ηi(θi) is singleton since FN

is interleaved). Revenue is at least as high as under SG0 , and strictly higher when

θN = (θ∗i∗ , θ
h∗

−i∗).

It remains to check that the various steps of the algorithm are well-defined. We

can pick separating types in Step 1 of Stage 1, because either β = ηψ(i∗)(θ
Kψ(i∗)
ψ(i∗) ) or

β = ηi∗(θ
∗
i∗) < ηψ(i∗)(θ

Kψ(i∗)
ψ(i∗) ). In the first case, θ

Kψ(i∗)
ψ(i∗) will i∗-separate at β. In the second

case, since ηi∗(θ
∗
i∗) > ηψ(i∗)(θ

1
ψ(i∗)), by FN interleaved there exists θψ(i∗) that will i∗-separate

at β.

When we pick separating types in Step 3 of Stage 2 and Step 2 of Stage 3, β is

equal to ηj(θj) for some agent j where θj ∈ W h∗
j . Consider θ′

î
= min{θî | ηî(θî) ≥ β}.

Since θj ∈ W h∗
j , it follows (by FN regular and interleaved) that ηî(θ

′
î
) > ηψ(̂i)(θ

1
ψ(̂i)

). If

ηî(θ
′
î
) < ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
), then, by FN interleaved, there exists θψ(̂i) that will î-separate at β.

If ηî(θ
′
î
) ≥ ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
) then since β never exceeds min{ηî(θî) | ηî(θî) ≥ ηψ(̂i)(θ

Kψ(̂i)

ψ(̂i)
)}, it

follows that θ
Kψ(̂i)

ψ(̂i)
will î-separate at β.

We can choose cousins (in Step 4 of Stage 2 and Step 3 of Stage 3) because FN is

regular and (G,SN) is strategy-proof and optimal, by the same argument as in the proof

of Theorem 3.18 that invokes Proposition B.6. Thus, the algorithm is well-defined, and

produces a profitable safe deviation, which completes the proof.

With Proposition B.9 in hand, we now complete the proof that, under the assump-

tions of Theorem 3.22, if (G,SN) is credible and strategy-proof, then (G,SN) is a virtual

ascending auction. Since FN is regular and interleaved, the allocation and payments are
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entirely pinned down by Proposition 3.14 and B.4. At type profile θN , agent i wins if and

only if ηi(θi) > max{0,maxj 6=i ηj(θj)}, and pays min θ′i | ηi(θ′i) > max{0,maxj 6=i ηj(θj)}.
Bidder i is active at h if W h

i 6= ∅. There are three cases to consider:

1. An active bidder is called to play, and there is more than one active bidder.

2. An inactive bidder is called to play.

3. An active bidder is called to play, and there are no other active bidders.

Take any Ii and h ∈ Ii such that an active bidder i is called to play, and there exists

another active bidder, so W h
i ∩ Lhi 6= ∅. Proposition B.9 implies that for all θi ∈ W h

i ,

Si(Ii, θi) = Si(Ii, θ
Ki
i ). Thus, if bidder i does not play that action, then he has quit. The

bid at Ii is the least type of i consistent with playing Si(Ii, θ
Ki
i ), that is min{θi ∈ Θh

i |
Si(Ii, θi) = Si(Ii, θ

Ki
i )}. By Proposition B.5, each bid is weakly more than the last bid

that i placed.

By construction, all types strictly below the bid quit. Since (G,SN) is optimal, i places

a bid if ηi(θi) > max{0,maxj 6=i ηj(bj)}.
If bidder i quits, then either his virtual value is negative, or we have identified another

bidder with a strictly higher virtual value. Thus, since (G,SN) is pruned, only active

bidders are called to play. Similarly, if i is the current high bidder at history h and there

is another active bidder, then by Proposition B.9, all i’s types who reach h take the same

action, and (by (G,SN) pruned) i is not called to play at h. Thus, if i is called to play at

h, he is an active bidder who is not the current high bidder.

Suppose an active bidder i is called to play at h and is the unique active bidder. Since

(G,SN) is pruned, i is not the current high bidder, which implies that there is no high

bidder. Let Ii be such that h ∈ Ii.
If there is another h′ ∈ Ii such that there is more than one active bidder at h′, then

we define bids and quitting at h as at h′. Otherwise, we define an action a as quitting if

no type with a positive virtual value plays a, that is:

¬∃θi ∈ Θh
i | ηi(θi) > 0 and Si(Ii, θi) = a (42)

For any non-quitting action a, the associated bid is:

min{θi | ηi(θi) > 0 or [θi ∈ Θh
i and Si(Ii, θi) = a]} (43)

In this case, W h
i ∩ Lhi = ∅, so there can be multiple actions that place bids. Again,

by Proposition B.5, each bid is weakly more than the last bid that i placed. The three

conditions that specify what happens when the auction ends are entailed by optimality

and threshold pricing (Proposition B.4). Thus, under the assumptions of Theorem 3.22,

if (G,SN) is credible and strategy-proof, then (G,SN) is a virtual ascending auction.
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B.7 Proposition 5.5

By inspection, first-price auctions are prior-free credible and static.

Suppose (G,SN) is prior-free credible and static. Suppose there exist θi, θ−i, θ
′
−i such

that i wins the object at (θi, θ−i) and at (θi, θ
′
−i), but ti(θi, θ−i) < ti(θi, θ

′
−i). We now

construct a deviation: If the action profile is consistent with (θi, θ−i), award the object to

i and instead charge ti(θi, θ
′
−i). This deviation is always-profitable.

Consequently, there exists a function b̃i : Θi → R such that if type θi wins, then i pays

b̃i(θi). Notably, this property holds everywhere, and not just almost everywhere.

We now partition i’s actions into bidding actions Bi = {b̃i(θi) | θi ∈ Θi and ∃θ−i :

ỹ(θi, θ−i) = i}, and actions that decline. The same steps as in the proof of Theorem 3.7

establish that (G,SN) is a first-price auction.

B.8 Proposition 5.6

With finite type-spaces, credible protocols are prior-free credible, so each “if” direction is

immediate. In the proof of Theorem 3.18, we show that if (G,SN) is strategy-proof but

not an ascending auction, then there exists a safe deviation that is always-profitable, so

(G,SN) is not prior-free credible. So too for Theorem 3.22.

C Extensions and other applications

C.1 Affiliated values

Here we use a discrete model of single-object auctions, as in Section 3.2. As is well-known,

relaxing the independence assumption even slightly results in auctions that extract all bid-

der surplus (Cremer and McLean, 1988). The standard (static) mechanisms for full surplus

extraction make each agent’s payment depend on the other agents’ types. The auctioneer

can increase revenue by misrepresenting the other agents’ types, so these mechanisms are

not credible. Even using extensive forms does not generally permit credible full surplus

extraction.

Definition C.1. (G,SN) extracts full surplus if it is BIC, has voluntary participation,

and π(G,SN) = EθN [max{0,maxi∈N θi}].

Proposition C.2. The Cremer and McLean (1988) conditions are not sufficient for the

existence of a credible protocol that extracts full surplus.

Proof. There are two bidders i and j, each with two possible values 0 < θi < θ′i < θj < θ′j.

The joint distribution of types is fN(θi, θj) = fN(θ′i, θ
′
j) = 1/3, fN(θi, θ

′
j) = fN(θ′i, θj) =

1/6, which satisfies the full rank condition of Cremer and McLean (1988) Theorem 2.
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For a given protocol (G,SN), consider the induced allocation rule ỹ and transfer rule

t̃N . Suppose (G,SN) is credible and extracts full surplus. By Propositions 2.3 and 2.7, it

is without loss of generality to restrict (G,SN) so that after j is called to play once, he is

never called to play again.

Take any information set Ij at which j is called to play. Since (G,SN) is credible, for

each action that j takes at Ij, there is a unique transfer from j if j wins (Proposition

3.19). Since (G,SN) extracts full surplus, j wins no matter whether he plays Sj(Ij, θj)

or Sj(Ij, θ
′
j). Since (G,SN) is BIC, j’s transfer after playing Sj(Ij, θj) is the same as j’s

transfer after playing Sj(Ij, θ
′
j).

This argument applies to every information set at which j is called to play, so j’s

transfer does not depend on his own type; t̃j(θi, θj) = t̃j(θi, θ
′
j) and t̃j(θ

′
i, θj) = t̃j(θ

′
i, θ
′
j).

Since j always wins the object, the auctioneer can safely deviate to communicate with

j as though i’s type is θi or as though i’s type is θ′i. Since (G,SN) is credible, j’s transfer

does not depend on i’s type; t̃j(θi, θj) = t̃j(θ
′
i, θj). Thus, j’s transfer is some constant tj

across all type profiles. θj − tj = 0, so θ′j − tj > 0, and (G,SN) does not extract full

surplus, a contradiction.

Optimal auctions with correlation are better-behaved if we additionally require ex post

incentive compatibility and ex post individual rationality.41 The virtual values machinery

generalizes, and a modified ascending auction is optimal under some standard assumptions

(Roughgarden and Talgam-Cohen, 2013). That modified ascending auction is credible.

We now make the claim precisely.

Consider some probability mass function fN : ΘN → [0, 1]. We assume symmetric

type spaces, Ki = Kj = K and θki = θkj for all i, j, k, as well as affiliated types (Milgrom

and Weber, 1982).

Definition C.3. fN is symmetric if its value is equal under any permutation of its

arguments. fN is affiliated if for all θN , θ
′
N :

fN(θN ∨ θ′N)fN(θN ∧ θ′N) ≥ fN(θN)fN(θ′N) (44)

where ∨ is the component-wise maximum and ∧ the component-wise minimum.

For a protocol (G,SN), let ỹG,SNi (θN) be an indicator variable equal to 1 if i wins

the object at θN and 0 otherwise. (We suppress the independence on (G,SN) to ease

notation.)

41Ex post incentive compatibility and ex post individual rationality are implied by strategy-proofness
and voluntary participation (Definition 3.1). For extensive forms, ex post incentive compatibility and
strategy-proofness are not equivalent. An opponent strategy profile S−i consists of complete contingent
plans of action. Ex post incentive compatibility in effect considers only plans ‘consistent with’ some
opponent type profile θ−i.
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Definition C.4. (G,SN) is optimal among ex post auctions if it maximizes expected

revenue subject to the constraints:

1. Ex post incentive compatibility. For all i, θi, θ
′
i, θ−i:

θiỹi(θi, θ−i)− t̃i(θi, θ−i) ≥ θiỹi(θ
′
i, θ−i)− t̃i(θ′i, θ−i) (45)

2. Ex post individual rationality. For all i, θi, θ−i:

θiỹi(θi, θ−i)− t̃i(θi, θ−i) ≥ 0 (46)

Definition C.5. The conditional virtual value of θki given θ−i is:

ηi(θ
k
i |θ−i) ≡ θki −

1− Fi(θki |θ−i)
fi(θki |θ−i)

(θk+1
i − θki ) (47)

where fi(·|θ−i) is the conditional distribution of θi given θ−i and Fi(·|θ−i) is the conditional

cumulative distribution. fN is regular if, for all i and θ−i, ηi(θi|θ−i) is strictly increasing

in θi.

We now define a modified ascending auction. When there is only one bidder left, the

auctioneer sets a reserve so that she only sells to types with a positive conditional virtual

value.42 That reserve depends on the final bids from the bidders who quit.

Definition C.6. (G,SN) is a quirky ascending auction if:

1. All bidders start as active, with initial bids (bi)i∈N := (θ1
i )i∈N .

2. Whenever there is more than one active bidder, some active bidder i is called to

play, where bi ≤ maxj 6=i bj.

(a) i chooses between two actions; he can either raise bi by one increment43 or quit.

(b) If i quits then he is no longer active.

3. When there is exactly one active bidder i, if ηi(bi|b−i) ≤ 0, i chooses to either raise

his bid to min b′i | ηi(b′i|b−i) > 0 or quit. Otherwise i wins and pays bi.

4. Inactive bidders do not win the object, and have zero transfers.

5. Si specifies that i bids bi if and only if θi ≥ bi.

Proposition C.7. Assume fN is symmetric, affiliated, and regular. If (G,SN) is a quirky

ascending auction, then it is optimal among ex post auctions and is credible.
42This definition is due to Roughgarden and Talgam-Cohen (2013), and differs only in that our con-

struction is for finite type spaces to allow the use of extensive game forms.
43i.e. from θki to θk+1

i , where we set θK+1
i > θKi .
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Proof. Define ν(θi, θ−i) = θiỹi(θi, θ−i)− t̃i(θi, θ−i).
We can use the same method as in Elkind (2007) to derive an upper bound on ν(θi, θ−i)

under ex post incentive compatibility and ex post individual rationality, namely:

ν(θki , θ−i) ≥
k∑
l=2

ỹi(θ
l−1
i , θ−i)(θ

l
i − θl−1

i ) (48)

This implies a bound on i’s expected utility conditional on θ−i, namely

Eθi [ν(θki , θ−i) | θ−i] ≥
K∑
k=2

fi(θ
k
i )

k∑
l=1

ỹi(θ
l−1
i , θ−i)(θ

l
i − θl−1

i )

=
K∑
k=1

fi(θ
k
i |θ−i)

1− Fi(θki |θ−i)
fi(θki |θ−i)

(θk+1
i − θki )ỹi(θki , θ−i) (49)

which gives an upper bound on expected revenue

π(G,SN) =
∑
i∈N

EθN [θiỹi(θN)− ν(θi, θ−i)]

=
∑
i∈N

Eθ−i [Eθi [θiỹi(θN)− ν(θi, θ−i) | θ−i]]

≤
∑
i∈N

Eθ−i [Eθi [ηi(θi|θ−i)ỹi(θN) | θ−i]] = EθN

[∑
i∈N

ηi(θi|θ−i)ỹi(θN)

]
(50)

Moreover, the above equation holds with equality if the local downward incentive con-

straints bind and the participation constraints bind for the lowest type, where these

constraints are conditional on θ−i.

We now apply the argument in Roughgarden and Talgam-Cohen (2013), which is

written for continuous densities but works also for the discrete case. For the reader’s

convenience, we repeat it here.

Lemma C.8. If fN is affiliated and θj < θ′j, then ηi(θi|θj, θN\{i,j}) ≥ ηi(θi|θ′j, θN\{i,j})

By affiliation, Fi(θi|θ′j, θN\{i,j}) dominates Fi(θi|θj, θN\{i,j}) in terms of hazard rate

(Krishna, 2010, Appendix D), i.e.

1− Fi(θi|θj, θN\{i,j})
fi(θi|θj, θN\{i,j})

≤
1− Fi(θi|θ′j, θN\{i,j})
fi(θi|θ′j, θN\{i,j})

(51)

which implies ηi(θi|θj, θN\{i,j}) ≥ ηi(θi|θ′j, θN\{i,j}). This proves Lemma C.8.

Lemma C.9. Assume fN is symmetric, regular, and affiliated. For all θN\{i,j}, if k ≥ k′,

then ηi(θ
k
i |θN\{i,j}, θk

′
j ) ≥ ηj(θ

k′
j |θN\{i,j}, θki ).
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ηi(θ
k
i |θN\{i,j}, θk

′

j ) ≥ θk
′

i −
1− Fi(θk

′
i |θN\{i,j}, θk

′
j )

fi(θk
′
i |θN\{i,j}, θk

′
j )

(θk
′+1
i − θk′i )

≥ θk
′

i −
1− Fi(θk

′
i |θN\{i,j}, θkj )

fi(θk
′
i |θN\{i,j}, θkj )

(θk
′+1
i − θk′i ) = ηj(θ

k′

j |θN\{i,j}, θki ) (52)

where the first inequality follows from regularity, the second inequality follows from

Lemma C.8, and the equality follows from symmetry. This proves Lemma C.9.

By Lemma C.9, the right-hand side of Equation 50 is maximized by, at each θN , selling

to some agent in argmaxi θi if maxi ηi(θi|θ−i) > 0, and keeping the object otherwise. The

quirky ascending auction does this, and additionally the local incentive constraints bind

downward and the participation constraint of the lowest type binds, so the left-hand side

of Equation 50 is equal to the right-hand side. Thus, any quirky ascending auction is

optimal among ex post mechanisms.

It remains to prove that the quirky ascending auction is credible. Once more, note that

Si is a best response to any safe deviation by the auctioneer. Under any safe deviation,

if bi ≤ θi, then bidder i’s utility is non-negative if he continues bidding according to Si,

and zero if he quits now. If bi > θi, then bidder i’s utility is non-positive if he continues

bidding, and zero if he quits now. Thus, Si is a best-response to any safe deviation by

the auctioneer, regardless of θ−i. For any safe deviation S ′0, the corresponding protocol

(G′, SN) is ex post incentive compatible and ex post individually rational. Suppose that

S ′0 is profitable, so (G′, SN) yields strictly more expected revenue than (G,SN). Since

(G,SN) is optimal among ex post mechanisms, we have the desired contradiction.

C.2 Auctions with matroid constraints

So far we have assumed that in each feasible allocation there is at most one winner.

Suppose instead that multiple bidders can be satisfied at once; that is, the feasible sets of

winners are a family F ⊆ 2N . Each bidder’s type is independently distributed according

to fi : Θi → (0, 1], where i’s utility at allocation Y ∈ F is θi1i∈Y − ti. Each bidder

observes whether or not he is in the allocation, and his own transfer.

Definition C.10. F is a matroid if:

1. ∅ ∈ F

2. If Y ′ ⊂ Y and Y ∈ F , then Y ′ ∈ F .

3. For any Y, Y ′ ∈ F , if |Y | > |Y ′|, then there exists i ∈ Y \Y ′ such that Y ′∪{i} ∈ F .

Here are some examples of matroids:
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1. The auctioneer can sell at most k items; that is, Y ∈ F if and only if |Y | ≤ k.

2. There are incumbent bidders and new entrants. The auctioneer sells k licenses, and

at most l licenses can be sold to incumbents.

3. The auctioneer is selling the edges of a graph. Each edge is demanded by exactly

one bidder, and the auctioneer can sell any set of edges that is acyclic.

4. There are bands of spectrum {1, . . . , K}, and each band k is acceptable to a subset

of bidders Nk. Each bidder is indifferent between bands that he finds acceptable.

At most one bidder can be assigned to each band.

Proposition C.11. If F is a matroid, then there exists a credible strategy-proof optimal

protocol.

We describe this protocol informally, since the fine details parallel Definition 3.21,

and our construction draws heavily on Bikhchandani et al. (2011) and Milgrom and Segal

(2017). Each bidder’s starting bid is equal to his lowest possible type. We score bids

according to their ironed virtual values, and keep track of a set of active bidders N̂ .

Bidder i is essential at N̂ if, for all Y ⊆ N̂ , if Y ∈ F , then Y ∪ {i} ∈ F . At each

step, we choose an active bidder i whose score is minimal in N̂ . If i’s score is positive

and i is essential at N̂ , then we guarantee that i is in the allocation and charge him his

current bid, removing him from N̂ . Otherwise, i chooses to either raise his bid until his

score is positive and no longer minimal, or quit (in which case he is also removed from

N̂). The auction ends when N̂ = ∅.
The above protocol outputs the same allocation as a greedy algorithm that starts with

the empty set and at each step adds a bidder with the highest ironed virtual value among

those that can be feasibly added, until no bidders with positive ironed virtual values

can be added (we prove this in the Appendix). By a standard result in combinatorial

optimization (Hartline, 2016, p.134), this greedy algorithm maximizes the ironed virtual

value when F is a matroid. Given that the relevant participation constraints and incentive

constraints bind, maximizing ironed virtual values implies that the protocol is optimal

(Elkind, 2007).

The auction we described is credible, for the same reasons as before: Since truthful

bidding is best response to any safe deviation, if the auctioneer could improve revenue by a

safe deviation, she could have committed from the beginning to an alternative mechanism

and increased revenue. Since the original protocol was optimal, we have a contradiction.

The formal proof of Proposition C.11 follows.

Proof. Suppose we construct ironed virtual values for discrete type spaces as in Elkind

(2007). Let the protocol break ties according to some fixed order on N , when two bids

have the same ironed virtual value.
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Fix some type profile θN . Let us label agents in decreasing order of ironed virtual

values, {1, 2, . . . , n}, breaking ties according to the fixed order. Let {i1, i2, . . . , iJ} be the

set picked by the greedy algorithm, in order of selection (where the algorithm breaks ties

using the same fixed order). We must show that the protocol described in Subsection C.2

results in the same allocation.

Take the greedy algorithm’s jth pick, ij = k. We will show that k is essential with

respect to the set of active bidders N̂ before k is asked to place a bid strictly above his

type. Consider any step of the algorithm at which k, if not essential, would be asked to

place a bid strictly above his type. At this step, N̂ ⊆ {1, 2, . . . , k}, since bidders with

lower ironed virtual values have either been put in the allocation or quit (and similarly

bidders with equal ironed virtual values but who lose ties to k).

Take any Y ⊆ {1, 2, . . . , k} such that Y ∈ F . We assert that Y ∪ {k} ∈ F . There are

two cases: either |Y | ≥ j or |Y | < j.

Suppose |Y | ≥ j > |{i1, . . . , ij−1}|. Since F is a matroid, there exists l ∈ Y \
{i1, . . . , ij−1}, such that {i1, . . . , ij−1} ∪ {l} ∈ F . If Y ∪ {k} /∈ F , then k /∈ Y , so

k 6= l. Thus, ij = k is not the greedy algorithm’s jth pick, a contradiction.

If |Y | < j = |{i1, . . . , ij}|, then since F is a matroid, there exists l ∈ {i1, . . . , ij} \ Y
such that Y ∪ {l} ∈ F and Y ∪ {l} ⊆ {1, . . . , k}. Thus, we can find Y ′ ⊃ Y such that

|Y ′| = j, Y ′ ⊆ {1, . . . , k}, and Y ′ ∈ F . From the argument in the previous paragraph,

Y ′ ∪ {k} ∈ F , and, since F is a matroid, Y ∪ {k} ∈ F .

We have now established that, since N̂ ⊆ {1, 2, . . . , k}, k is essential with respect to N̂ .

Thus the jth pick of the greedy algorithm is in the allocation produced by the protocol.

This argument holds for all j, so the protocol’s allocation is a superset of {i1, . . . , iJ}.
But the protocol only sells to bidders with positive ironed virtual values, so its allocation

is exactly {i1, . . . , iJ}, and the protocol is optimal.

Finally, note that for any safe deviation, each bidder’s ‘truth-telling’ strategy is a best

response. That is, each bidder should keep bidding so long as the price he faces is weakly

below his value, and quit otherwise. Thus, if the auctioneer has a profitable safe deviation,

then the original protocol is not optimal, a contradiction.

C.3 Public goods provision

A social planner chooses whether to provide a public good with integer cost c > 0. An

outcome consists of an allocation y ∈ {0, 1} and transfers from each agent (ti)i∈N . Agent

i’s utility is θiy − ti, where Θi = {0, 1, 2, . . . , K}. The efficient allocation is:

y∗(θN) =

1 if
∑

i θi − c ≥ 0

0 otherwise
(53)

The planner wants to choose the efficient allocation, but also receives a small benefit

60



from having higher transfers. Formally, for γ ∈ (0, 1
|N |K ):

u0(y, tN , θN) = 1y=y∗(θN ) + γ
∑
i

ti (54)

Each agent observes whether the public good is provided, as well as his own transfer.

Under mild conditions, if a protocol is static, strategy-proof and efficient, then it is not

prior-free credible. The conditions require that, when i’s type is low, slightly raising i’s

type might affect the efficient allocation, and also that when i’s type is high, slightly

raising i’s type might affect the efficient allocation. The key intuition is that when the

planner has a preference for transfers, prior-free credibility implies that i’s transfers are

measurable with respect to the allocation rule, which prevents the use of threshold prices.

Proposition C.12. Assume there exist θi < θ′i < θ′′i < θ′′′i , θN\i, and θ′N\i such that:

1. θi +
∑

j 6=i θj < c < θ′i +
∑

j 6=i θj

2. θ′′i +
∑

j 6=i θ
′
j < c < θ′′′i +

∑
j 6=i θ

′
j

There does not exist (G,SN) that is static, strategy-proof, efficient, and prior-free credible.

Proof. Suppose not. Since (G,SN) is prior-free credible and efficient, there exist unique

transfers t1i (θ
′
i), t

1
i (θ
′′
i ), t

1
i (θ
′′′
i ) that are paid if the public good is provided and i has the

corresponding type. Since (G,SN) is strategy-proof, these transfers are all equal t1i (θ
′
i) =

t1i (θ
′′
i ) = t1i (θ

′′′
i ) = t1i . Similarly, there exist unique transfers t0i (θi) = t0i (θ

′
i) = t0i (θ

′′
i ) = t0i

that are paid if the public good is not provided and i has the corresponding type.

(G,SN) is strategy-proof and efficient, so θ′i − t1i ≥ −t0i , which implies θ′′i − t1i > −t0i .
Thus, when i’s opponents play as though their types are θ′N\i, type θ′′i can profitably

imitate θ′′′i , a contradiction.

If we allow non-static mechanisms, then there exist prior-free credible efficient proto-

cols when |N | = 2. Our construction treats agents asymmetrically; i declares whether he

is willing to buy the public good at a given price, and at each step the price rises. The

public good is withheld if i quits. j declares whether he is willing to forgo the public good

in return for payment, and at each step the payment offered to j falls. The public good

is provided if j quits. We coordinate the price faced by i and the payment offered to j so

that the public good is provided if and only if their values exceed the cost of provision.

Formally, initialize bi := 0, bj := K.

1. If bi + bj < c, ask i to raise his bid to c− bj or quit.

(a) i raises his bid if and only if θi ≥ c− bj

(b) If i quits, then the public good is not provided, ti = 0 and tj = −bj.
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2. If bi + bj ≥ c, ask j to lower his bid to c− bi − 1 or quit.

(a) j lowers his bid if and only if θj ≤ c− bi − 1

(b) If j quits, then the public good is provided, ti = bi and tj = 0.

3. Go to step 1.

The above protocol for two agents is efficient, strategy-proof, and prior-free credible.

Holding fixed the parameters c and K, at any point in the messaging game, for each

agent there is at most one query that can be safely sent to him. Observe that, for any

safe deviation, at any point in the messaging game, the planner knows only a lower bound

for i’s type θi and an upper bound for j’s type θj. If θi + θj < c, and the planner queries

j, then j quits if his type is θj, causing the public good to be inefficiently provided when

the type profile is (θi, θj). If θi + θj ≥ c, and the planner queries i, then i quits if his

type is θi, causing the public good to be inefficiently withheld when the type profile is

(θi, θj). Any safe deviation can change revenue by no more than 2K so, since γ is small,

the protocol is prior-free credible.

Since this protocol treats agents asymmetrically, there is no easy extension to three or

more agents. For that case, it is an open question whether strategy-proofness, efficiency,

and prior-free credibility are compatible.
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