Credible Mechanisms

Mohammad Akbarpour
Stanford GSB

Shengwu Li
Harvard

Oct 2019
Second-Price Auctions in Ad Exchanges

‘A proverbial black box’: Open-exchange auctions have a transparency problem

MAY 8, 2017 by Yuyu Chen
In a second-price auction, raising the price floors after the bids come in allows [online auctioneers] to make extra cash off unsuspecting buyers [. . .]

Ross Benes, reporting for Digiday, Sep 13 2017
Second-Price Auctions in Ad Exchanges

In a second-price auction, raising the price floors after the bids come in allows [online auctioneers] to make extra cash off unsuspecting buyers [...]. This practice persists because neither the publisher nor the ad buyer has complete access to all the data involved in the transaction, so unless they get together and compare their data, publishers and buyers won’t know for sure who their vendor is ripping off.

Ross Benes, reporting for Digiday, Sep 13 2017
“Chandelier Bidding”

Under New York City regulations auctioneers can fabricate bids up to an item's reserve price. Because a reserve price is secret and not listed in the catalog, bidders have no way of knowing which offers are real.

NYT, April 24, 2000
Under New York City regulations auctioneers can fabricate bids up to an item's reserve price. Because a reserve price is secret and not listed in the catalog, bidders have no way of knowing which offers are real.

NYT, April 24, 2000
Auctions by Telephone

Winning Bids By Source
Christie’s, New York, Spring 2013

American Paintings
Post-War & Contemporary Art
Old Masters

Reported by the Wall Street Journal
Auctions by Telephone
Incentive compatibility - for the auctioneer?

Hurwicz (1972):

In effect, our concept of incentive compatibility merely requires that no one should find it profitable to “cheat,” where cheating is defined as behavior that can be made to look “legal” by a misrepresentation of a participant’s preferences or endowment, with the proviso that the fictitious preferences should be within certain “plausible” limits.
In effect, our concept of incentive compatibility merely requires that no one should find it profitable to “cheat,” where cheating is defined as behavior that can be made to look “legal” by a misrepresentation of a participant’s preferences or endowment, with the proviso that the fictitious preferences should be within certain “plausible” limits.
Bending the Rules

In a second-price auction:

1. Receive sealed bids $b_1 > b_2 > \cdots$
2. Award object to bidder 1, charge $b_1 - \epsilon$.
Bending the Rules

In a second-price auction:

1. Receive sealed bids $b_1 > b_2 > \cdots$
2. Award object to bidder 1, charge $b_1 - \epsilon$.
3. Looks ‘legal’ to bidder 1. (maybe $v_2 = b_1 - \epsilon$?)
4. Strict profit.

Auctioneer would want to deviate. (Vickrey 1961)
Bending the Rules

In a second-price auction:
1. Receive sealed bids $b_1 > b_2 > \cdots$
2. Award object to bidder 1, charge $b_1 - \epsilon$.
3. Looks 'legal' to bidder 1. (maybe $v_2 = b_1 - \epsilon$?)
4. Strict profit.
Auctioneer would want to deviate. (Vickrey 1961)

In a first-price auction:
1. Receive bids $b_1 > b_2 > \cdots$
Bending the Rules

In a second-price auction:

1. Receive sealed bids \(b_1 > b_2 > \cdots \)
2. Award object to bidder 1, charge \(b_1 - \epsilon \).
3. Looks ‘legal’ to bidder 1. (maybe \(v_2 = b_1 - \epsilon \)?)
4. Strict profit.

Auctioneer would want to deviate. (Vickrey 1961)

In a first-price auction:

1. Receive bids \(b_1 > b_2 > \cdots \)
2. Invert bid function \(b_1^{-1}(b_1) = v_1 \).
3. Make TIOLI offer (to bidder 1) of \(v_1 - \epsilon \).
Bending the Rules

In a second-price auction:
1. Receive sealed bids $b_1 > b_2 > \cdots$
2. Award object to bidder 1, charge $b_1 - \epsilon$.
3. Looks ‘legal’ to bidder 1. (maybe $v_2 = b_1 - \epsilon$?)
4. Strict profit.

Auctioneer would want to deviate. (Vickrey 1961)

In a first-price auction:
1. Receive bids $b_1 > b_2 > \cdots$
2. Invert bid function $b_1^{-1}(b_1) = v_1$.
3. Make TIOLI offer (to bidder 1) of $v_1 - \epsilon$.
4. Bidder 1 brings a lawsuit and wins.

‘automatically self-policing’ (Vickrey 1961)
Taking the opposite benchmark

Standard approach: No room for misrepresentation.

This paper: Auctioneer can misrepresent any bidder’s actions to any other bidder.

Auctioneer as communication nexus
Private ‘telephone calls’ to bidders. No public announcements.
Taking the opposite benchmark

Standard approach: No room for misrepresentation.

This paper: Auctioneer can misrepresent any bidder’s actions to any other bidder.

Auctioneer as communication nexus
Private ‘telephone calls’ to bidders. No public announcements.

Informal definition
Auctioneer may deviate in ways that no single bidder can detect.
credible ≡ incentive-compatible for auctioneer to follow the rules.
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers

Result 1
G is credible & static
if and only if
G is a 1st price auction.
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers

Result 1
G is credible & static
if and only if
G is a 1st price auction.
Optimal auctions

regular i.i.d. values
auctioneer wants revenue
only winners make transfers

Result 1
G is credible & static
if and only if
G is a 1st price auction.

Result 2
G is credible & strategy-proof
if and only if
G is an ascending auction.
Benchmark model: Symmetric independent private values

Following Myerson (1981)

1. One object.
2. Set of (two or more) bidders N, representative element i.
3. Only winning bidders make payments.
4. Outcome specifies who gets the object, how much they pay.
5. Bidders have private values, quasilinear utility u_i.
6. θ_i i.i.d. with density $f : [0, 1] \to \mathbb{R}$.
7. f continuous, positive, regular.
Benchmark model: Symmetric independent private values

Following Myerson (1981)

1. One object.
2. Set of (two or more) bidders N, representative element i.
3. Only winning bidders make payments.
4. Outcome specifies who gets the object, how much they pay.
5. Bidders have private values, quasilinear utility u_i
6. θ_i i.i.d. with density $f : [0, 1] \rightarrow \mathbb{R}$
7. f continuous, positive, regular.
8. Auctioneer utility function. $u_0(\text{outcome}) = \text{revenue}$
9. i observes whether he gets the object, and how much he pays.
Benchmark model: Symmetric independent private values

Following Myerson (1981)

1. One object.
2. Set of (two or more) bidders N, representative element i.
3. Only winning bidders make payments.
4. Outcome specifies who gets the object, how much they pay.
5. Bidders have private values, quasilinear utility u_i.
6. θ_i i.i.d. with density $f : [0, 1] \rightarrow \mathbb{R}$
7. f continuous, positive, regular.
8. Auctioneer utility function. $u_0(\text{outcome}) =$ revenue
9. i observes whether he gets the object, and how much he pays.

Paper has more general theorems that relax winner-paying, symmetry, regularity. (omitted today)
Implementation via Extensive Forms

\(G \) denotes an extensive-form mechanism. (Each terminal history specifies an outcome.)

1. Finite depth.
2. No chance moves.
3. Perfect recall.
Implementation via Extensive Forms

\(G \) denotes an **extensive-form mechanism**. (Each terminal history specifies an outcome.)

1. Finite depth.
2. No chance moves.
3. Perfect recall.

\(S_i : \text{infosets} \times \Theta_i \rightarrow \text{actions} \)
Implementation via Extensive Forms

\(G \) denotes an **extensive-form mechanism**. (Each terminal history specifies an outcome.)

1. Finite depth.
2. No chance moves.
3. Perfect recall.

\[S_i : \text{infosets} \times \Theta_i \rightarrow \text{actions} \]

A **protocol** consists of mechanism \(G \) and strategy profile \(S_N \).
Implementation via Extensive Forms

\(G \) denotes an **extensive-form mechanism**. (Each terminal history specifies an outcome.)

1. Finite depth.
2. No chance moves.
3. Perfect recall.

4. For every history \(h \), there exists \(\theta_N \) such that \(h \) is on the path-of-play.
5. Every infoset has at least two actions.
6. If \(i \) is called to play at \(h \), then \(i \) can affect the outcome.

\(S_i : \text{infosets} \times \Theta_i \rightarrow \text{actions} \)

A **protocol** consists of mechanism \(G \) and strategy profile \(S_N \).
Implementation via Extensive Forms

\(G \) denotes an **extensive-form mechanism**. (Each terminal history specifies an outcome.)

1. Finite depth.
2. No chance moves.
3. Perfect recall.

\(S_i : \text{infosets} \times \Theta_i \rightarrow \text{actions} \)

A **protocol** consists of mechanism \(G \) and strategy profile \(S_N \).

4. For every history \(h \), there exists \(\theta_N \) such that \(h \) is on the path-of-play.
5. Every infoset has at least two actions.
6. If \(i \) is called to play at \(h \), then \(i \) can affect the outcome.

Restrict attention to **measurable** protocols.
Motivation
Summary
Model
Theorem 1
Theorem 2
Conclusion

1 observes: \[\begin{align*}
1 & \text{ wins at } \$5 \\
2 & \text{ wins at } \$5,
\end{align*} \]

2 observes: \[\begin{align*}
1 & \text{ wins at } \$5 \\
2 & \text{ wins at } \$5,
\end{align*} \]
1 observes: \{ 1 \text{ wins at } \$5 \}, \{ 2 \text{ wins at } \$5 \}, \{ 2 \text{ wins at } \$10 \}

2 observes: \{ 1 \text{ wins at } \$5 \}, \{ 2 \text{ wins at } \$5 \}, \{ 2 \text{ wins at } \$10 \}
Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

The value tree represents a game with two players, 1 and 2, where each player has two choices: $5 or $15. The payouts are as follows:

- If 1 wins at $5, the payout is $10.
- If 2 wins at $5, the payout is $5.
- If 1 wins at $5, the payout is $5.
- If 2 wins at $10, the payout is $15.

Player 1 observes:

- 1 wins at $5
- 2 wins at $5

Player 2 observes:

- 1 wins at $5
- 2 wins at $5
- 2 wins at $10
1 observes: \{ 1 wins at $5 \} \{ 2 wins at $5 \}, 2 wins at $10 \\
2 observes: \{ 1 wins at $5 \} \{ 2 wins at $5 \}, 2 wins at $10
1 observes: \[
\{
\text{1 wins at $5} \\
\text{2 wins at $5} \\
\text{1 wins at $5} \\
\text{2 wins at $10}
\}
\]

2 observes: \[
\{
\text{1 wins at $5} \\
\text{2 wins at $5} \\
\text{2 wins at $10}
\}\]
Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

The diagram illustrates a decision-making process with rewards and outcomes.

- **1 wins at $5**, 1 observes: \{ 1 wins at $5, 2 wins at $5, 2 wins at $10 \}

- **2 wins at $5**, 1 observes: \{ 2 wins at $5, 2 wins at $10 \}

- **1 wins at $5**, 2 observes: \{ 1 wins at $5, 2 wins at $5, 2 wins at $10 \}

- **2 wins at $10**, 2 observes: \{ 2 wins at $10 \}

The outcomes are determined by the choices and rewards at each node of the decision tree.
1 observes: \{ 1 wins at $5 \} \{ 2 wins at $5 , 2 wins at $10 \}

2 observes: \{ 1 wins at $5 \} \{ 2 wins at $5 \} \{ 2 wins at $10 \}
1 observes: \[
\begin{align*}
\text{1 wins} & \quad \text{at 5} \\
\text{2 wins} & \quad \text{at 5}, \\
\text{2 wins} & \quad \text{at 10}
\end{align*}
\]

2 observes: \[
\begin{align*}
\text{1 wins} & \quad \text{at 5} \\
\text{2 wins} & \quad \text{at 5} \\
\text{2 wins} & \quad \text{at 10}
\end{align*}
\]
Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

Theorem 1

Theorem 2

Conclusion

1 observes: \[
\begin{align*}
&\text{1 wins at } \$5 \\
&\text{2 wins at } \$5 \\
&\text{1 wins at } \$5
\end{align*}
\]

2 observes: \[
\begin{align*}
&\text{2 wins at } \$10 \\
&\text{1 wins at } \$5 \\
&\text{2 wins at } \$10
\end{align*}
\]
Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

The diagram shows a decision tree with the following outcomes:

Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

1. **1 wins at $5**
2. **2 wins at $5**
3. **1 wins at $5**
4. **2 wins at $10**

1 observes:

- 1 wins at $5
- 2 wins at $5, 2 wins at $10

2 observes:

- 1 wins at $5
- 2 wins at $5, 2 wins at $10
A Messaging Game

1. Auctioneer can:
 1.1 Either: Choose an outcome and end the game.
 1.2 Or: Go to Step 2.
2. Auctioneer chooses some agent i, sends message $m \in \{i$’s infosets in $G\}$
3. i privately observes m, chooses reply $r \in \{actions available at $m\}$.
4. Auctioneer privately observes r. Go to Step 1.
A Messaging Game

1. Auctioneer can:
 1.1 Either: Choose an outcome and end the game.
 1.2 Or: Go to Step 2.

2. Auctioneer chooses some agent i, sends message $m \in \{i$’s infosets in $G\}$

3. i privately observes m, chooses reply $r \in \{\text{actions available at } m\}$.

4. Auctioneer privately observes r. Go to Step 1.

Full commitment: To ‘run’ G, auctioneer commits to S_0^G.
A Messaging Game

1. Auctioneer can:
 1.1 Either: Choose an outcome and end the game.
 1.2 Or: Go to Step 2.

2. Auctioneer chooses some agent i, sends message $m \in \{i$’s infosets in $G\}$

3. i privately observes m, chooses reply $r \in \{\text{actions available at } m\}$.

4. Auctioneer privately observes r. Go to Step 1.

Full commitment: To ‘run’ G, auctioneer commits to S_0^G.

Partial commitment: Auctioneer can deviate to any S_0 that an individual agent cannot distinguish from S_0^G.
A Messaging Game

1. Auctioneer can:
 1.1 Either: Choose an outcome and end the game.
 1.2 Or: Go to Step 2.

2. Auctioneer chooses some agent i, sends message $m \in \{i$’s infosets in $G\}$

3. i privately observes m, chooses reply $r \in \{\text{actions available at } m\}$.

4. Auctioneer privately observes r. Go to Step 1.

Full commitment: To ‘run’ G, auctioneer commits to S_0^G.

Partial commitment: Auctioneer can deviate to any S_0 that an individual agent cannot distinguish from S_0^G.
How the Auctioneer Can Deviate

Consider protocol \((G, S_N)\), and \(S_0^G\) that ‘runs’ \(G\).
How the Auctioneer Can Deviate

Consider protocol \((G, S_N)\), and \(S_0^G\) that ‘runs’ \(G\).

\[o_i \text{ observation for } i = \]
communication sequence \((m_i^t, r_i^t)_{t=1}^T\)
& whether \(i\) wins, how much \(i\) pays
How the Auctioneer Can Deviate

Consider protocol \((G, S_N)\), and \(S_0^G \) that ‘runs’ \(G \).

\(o_i \) observation for \(i = \)
communication sequence \((m_i^t, r_i^t)_{t=1}^T \)
& whether \(i \) wins, how much \(i \) pays

resulting observation denoted \(o_i(S_0, S_N, \theta_N) \)
How the Auctioneer Can Deviate

Consider protocol \((G, S_N)\), and \(S_0^G\) that ‘runs’ \(G\).

\(o_i\) observation for \(i = \) communication sequence \((m^i_t, r^i_t)^T_{t=1}\) & whether \(i\) wins, how much \(i\) pays

resulting observation denoted \(o_i(S_0, S_N, \theta_N)\)

\(o_i(S_0, S_N, \theta_N)\) has an \textit{innocent explanation} if:

\[
\exists \theta'_i : o_i(S_0, S_N, \theta_N) = o_i(S_0^G, S_N, (\theta_i, \theta'_i))
\]
How the Auctioneer Can Deviate

Consider protocol \((G, S_N)\), and \(S_0^G\) that ‘runs’ \(G\).

\[o_i \text{ observation for } i = \]
communication sequence \((m_i^t, r_i^t)^T_{t=1} \)
\& whether \(i\) wins, how much \(i\) pays

resulting observation denoted \(o_i(S_0, S_N, \theta_N)\)

\(o_i(S_0, S_N, \theta_N)\) has an innocent explanation if:

\[\exists \theta'_{-i}: o_i(S_0, S_N, \theta_N) = o_i(S_0^G, S_N, (\theta_i, \theta'_{-i})) \]

\(S_0\) is safe if \(\forall i: \forall \theta_N: o_i(S_0, S_N, \theta_N)\) has an innocent explanation.

Definition

\((G, S_N)\) is credible if \(S_0^G\) is a best-response to \(S_N\).
(yields at least as much expected utility as any safe deviation)
Auctioneer's deviation

1 observes: \[
\begin{align*}
1 & \text{ wins at } \$5 \\
2 & \text{ wins at } \$5
\end{align*}
\]

2 observes: \[
\begin{align*}
1 & \text{ wins at } \$5 \\
2 & \text{ wins at } \$5 \\
& \text{ wins at } \$10
\end{align*}
\]
Innocent explanation for 1’s observation

1 observes: \[
\begin{align*}
1 & \text{ wins at } $5 \\
2 & \text{ wins at } $5
\end{align*}
\]

2 observes: \[
\begin{align*}
1 & \text{ wins at } $5 \\
2 & \text{ wins at } $5 \\
2 & \text{ wins at } $10
\end{align*}
\]
Innocent explanation for 2’s observation

1 observes: \[\begin{cases} 1 \text{ wins at $5} \\ 2 \text{ wins at $5} \end{cases} \begin{cases} 2 \text{ wins at $5} \end{cases}, \begin{cases} 2 \text{ wins at $10} \end{cases} \]

2 observes: \[\begin{cases} 1 \text{ wins at $5} \\ 2 \text{ wins at $5} \end{cases} \begin{cases} 2 \text{ wins at $5} \end{cases}, \begin{cases} 2 \text{ wins at $10} \end{cases} \]
Safe deviations can involve ‘midway’ deception.

The auctioneer can send different messages during the mechanism. She may adopt any communication strategy that is safe. (For every type profile and every agent i, i’s observation has an innocent explanation.)
Related literature

As above, but restricted to direct mechanisms

Dequiedt & Martimort 2015

This talk: Extensive forms.
Related literature

As above, but restricted to direct mechanisms
Dequiedt & Martimort 2015

This talk: Extensive forms.

Commit to today's auction, not tomorrow's auction

This talk: Not a repeated game.
Related literature

As above, but restricted to direct mechanisms
Dequiedt & Martimort 2015

This talk: Extensive forms.

Commit to today’s auction, not tomorrow’s auction

This talk: Not a repeated game.

Auctions as bargaining games
McAdams & Schwarz 2007, Vartiainen 2013, Lobel & Paes Leme 2017

This talk: No ‘red-handed’ rule-breaking.
Definition

\((G, S_N)\) is **optimal** if it maximizes revenue subject to BIC and participation constraints.

\((G, S_N)\) is **static** if every agent has exactly one infoset and is always called to play.

Definition

\((G, S_N)\) is a **first-price auction** if it is static, and each \(i\) either chooses a bid in some feasible set \(B_i \subset \mathbb{R}\) or declines. The player with the highest bid wins, and pays his bid. (break ties arbitrarily)
Definition

\((G, S_N)\) is **optimal** if it maximizes revenue subject to BIC and participation constraints.

\((G, S_N)\) is **static** if every agent has exactly one infoset and is always called to play.

Definition

\((G, S_N)\) is a **first-price auction** if it is static, and each \(i\) either chooses a bid in some feasible set \(B_i \subset \mathbb{R}\) or declines. The player with the highest bid wins, and pays his bid. (break ties arbitrarily)

We represent a reserve price by restricting \(B_i\).

Notice: Bids defined by consequences, not by labels.
credible static optimal auctions

Definition

(G, S_N) is **optimal** if it maximizes revenue subject to BIC and participation constraints.

(G, S_N) is **static** if every agent has exactly one infoset and is always called to play.

Definition

(G, S_N) is a **first-price auction** if it is static, and each i either chooses a bid in some feasible set B_i ⊂ R or declines. The player with the highest bid wins, and pays his bid. (break ties arbitrarily)

Theorem 1

Assume (G, S_N) is optimal. If (G, S_N) is a first-price auction, then it is credible and static. If (G, S_N) is credible and static, then it is almost-everywhere a first-price auction.
credible static optimal auctions

Definition

\((G, S_N)\) is **optimal** if it maximizes revenue subject to BIC and participation constraints.

\((G, S_N)\) is **static** if every agent has exactly one infoset and is always called to play.

Definition

\((G, S_N)\) is a **first-price auction** if it is static, and each \(i\) either chooses a bid in some feasible set \(B_i \subseteq \mathbb{R}\) or declines. The player with the highest bid wins, and pays his bid. (break ties arbitrarily)

Theorem 1

Assume \((G, S_N)\) is optimal. If \((G, S_N)\) is a first-price auction, then it is credible and static. If \((G, S_N)\) is credible and static, then it is almost-everywhere a first-price auction.
Proof Idea

first-price \rightarrow credible and static

By inspection.
Proof Idea

first-price \rightarrow credible and static

By inspection.

credible and static \rightarrow almost-everywhere first-price

Suppose after i plays a, there are two prices that i might pay. Deviate to charge the higher price.

(Real proof must ensure deviation is measurable.)
Proof Idea

First-price \rightarrow credible and static

By inspection.

Credible and static \rightarrow almost-everywhere first-price

Suppose after i plays a, there are two prices that i might pay. Deviate to charge the higher price.

(Real proof must ensure deviation is measurable.)

Lemma: Almost everywhere, for each action i takes, there is a unique price he pays if he wins.
Proof Idea

first-price \rightarrow \text{credible and static}

By inspection.

credible and static \rightarrow \text{almost-everywhere first-price}

Suppose after \(i \) plays \(a \), there are two prices that \(i \) might pay. Deviate to charge the higher price.

(Real proof must ensure deviation is measurable.)

Lemma: Almost everywhere, for each action \(i \) takes, there is a unique price he pays if he wins.

Optimal allocation + envelope theorem pins down payments, so (almost everywhere) the winning bidder has highest bid. QED.
Dominant-strategy or credible?

Big Changes Coming To Auctions, As Exchanges Roll The Dice On First-Price

by Sarah Sluis // Tuesday, September 5th, 2017 – 8:00 am

The second-price auction is crumbling.

Buyers, publishers, and ad tech companies who advocate a switch to first-price auctions say it’s because fair second-price auctions don’t exist any more. [Online auctioneers] have polluted them with hidden fees and manipulative auction dynamics.
Dominant-strategy or credible?

Big Changes Coming To Auctions, As Exchanges Roll The Dice On First-Price

by Sarah Sluis // Tuesday, September 5th, 2017 – 8:00 am

The second-price auction is crumbling.

Buyers, publishers, and ad tech companies who advocate a switch to first-price auctions say it’s because fair second-price auctions don’t exist any more. [Online auctioneers] have polluted them with hidden fees and manipulative auction dynamics.

March 2019: Google Ad Manager announces switch to first-price.
The story so far
Strategy-proof

Definition

\((G, S_N)\) is strategy-proof if \(\forall i : \forall S'_{N\setminus i} : S_i \text{ best responds to } S'_{N\setminus i}\).
Strategy-proof

Definition

\((G, S_N)\) is **strategy-proof** if \(\forall i : \forall S'_N \setminus i : S_i \text{ best responds to } S'_N \setminus i\).

Goal: Characterize the set of optimal extensive game forms credible \(\cap\) strategy-proof.
Strategy-proof

Definition

\((G, S_N)\) is **strategy-proof** if \(\forall i : \forall S'_{N \setminus i} : S_i\) best responds to \(S'_{N \setminus i}\).

Goal: Characterize the set of optimal extensive game forms credible \(\cap\) strategy-proof.

No revelation principle.

1. Auctioneer could make any queries in any order.
2. Agents may receive information when called to play.
Strategy-proof

Definition

\((G, S_N)\) is strategy-proof if \(\forall i : \forall S'_{N\setminus i} : S_i \text{ best responds to } S'_{N\setminus i}\).

Goal: Characterize the set of optimal extensive game forms credible \(\cap\) strategy-proof.

No revelation principle.

1. Auctioneer could make any queries in any order.
2. Agents may receive information when called to play.

Problem: Extensive-form ascending auctions move in discrete steps, can’t be exactly optimal.
Solution: Discretize the distribution.
Discretize the distribution

Type Space \(\theta^0 \rightarrow \theta^1 \rightarrow \cdots \rightarrow \theta^K \subset \mathbb{R}^+_0 \)

i.i.d. probability mass function \(p : \Theta_i \rightarrow (0, 1] \)
Discretize the distribution

Motivation

Summary

Model

Theorem 1

Theorem 2

Conclusion

Discretize the distribution

Type Space

\[\theta^0 \quad \theta^1 \quad \ldots \quad \theta^K \subset \mathbb{R}_0^+ \]

\[\epsilon \]

i.i.d. probability mass function \(p : \Theta_i \rightarrow (0, 1] \)
Discretize the distribution

i.i.d. probability mass function \(p : \Theta \rightarrow (0, 1) \)

pseudo-pdf \(f(\theta^k) \equiv \frac{p(\theta^k)}{\epsilon} \)

cdf \(F(\theta^k) \equiv \sum_{j=1}^{k} p(\theta^j) \)

Assumption. \(F \) is regular, i.e. \(\eta(\cdot) \) is strictly increasing.
Discretize the distribution

\[\Theta_i \mapsto (0, 1) \]

Assumption. \(F \) is regular, i.e. \(\eta(\cdot) \) is strictly increasing.
A credible strategy-proof auction
A credible strategy-proof auction

\[\Theta^h_1 \quad \Theta^h_2 \]
A credible strategy-proof auction

\[\Theta^h_1 \]

why not raise 1’s price by \(\varepsilon \)?

\[\Theta^h_2 \]

2 has quit.

optimal reserve
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?
A: 1’s virtual value is positive.
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?

A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

$$\underbrace{-\epsilon f(b_1)b_1}_{\text{expected loss from 1 quitting}} + \underbrace{(1 - F(b_1))\epsilon}_{\text{expected gain from raising price}}$$
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?

A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

\[
-\epsilon f(b_1) b_1 + (1 - F(b_1)) \epsilon
\]

- expected loss from 1 quitting
- expected gain from raising price
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?
A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

\[-\epsilon f(b_1)b_1 + (1 - F(b_1))\epsilon\]

expected loss from 1 quitting \hspace{1cm} expected gain from raising price
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?

A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

\[-\epsilon f(b_1) b_1 + (1 - F(b_1))\epsilon\]

expected loss from 1 quitting expected gain from raising price
Q: Why not raise 1’s price to $b_1 + \epsilon$, even after bidder 2 has quit?
A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

\[-\epsilon f(b_1)b_1 + (1 - F(b_1))\epsilon\]

\[\text{expected loss from 1 quitting} \quad \text{expected gain from raising price}\]

divide through by $\epsilon f(b_1)$

\[-\left(b_1 - \frac{1 - F(b_1)}{f(b_1)}\right) < 0\]

\[\text{virtual value}\]
Q: Why not raise 1's price to $b_1 + \epsilon$, even after bidder 2 has quit?
A: 1’s virtual value is positive.

‘The book’ requires that 1 pay b_1.

\[
\begin{align*}
-\epsilon f(b_1) b_1 & \quad + \quad (1 - F(b_1))\epsilon \\
\text{expected loss from 1 quitting} & \quad \text{expected gain from raising price}
\end{align*}
\]

divide through by $\epsilon f(b_1)$

\[
- \left[b_1 - \frac{1 - F(b_1)}{f(b_1)} \right] < 0
\]

virtual value

Ceci n’est pas une proof.
How to deal with ties?

For technical convenience:

Definition

(G, S_N) is **orderly** if, for some reserve $\rho \leq \theta^K$, and some strict order \triangleright on N, bidder i wins the object iff:

1. $\theta_i \geq \rho$, and
2. For all $j \neq i$, θ_i is more than θ_j, breaking ties with \triangleright.
How to deal with ‘long-winded’ auctioneers?

‘You’re the only bidder left, so you’ll win if you bid the reserve. But first, tell me is your type a prime number? Is it a Mersenne prime?’

For technical convenience:

Definition

i faces a posted price at history h if

1. *i is called to play at h.*

2. *∃ price* τ_h *such that* \forall *successors of* h, *if* *i wins then* *i pays* τ_h.

(G, S_N) is concise if, *at any history* h *at which* *i faces a posted price, then* h *is the last time* *i is called to play, and the infoset containing* h *is singleton.*
Definition

\((G, S_N) \) is an **ascending auction** if:

1. *The induced allocation rule is orderly.*
2. *The induced payment rule has threshold pricing.*
Definition

\((G, S_N)\) is an **ascending auction** if:

1. The induced allocation rule is orderly.
2. The induced payment rule has threshold pricing.
3. Each bidder has an initial bid equal to 0.
4. At each non-terminal history:
 4.1 Some bidder \(i\) is called to play, and offered some price \(\geq\) his current bid.
 4.2 The available actions either accept the price or quit.
 4.3 If \(i\) quits, then \(i\) is not called to play again, does not win, and pays 0.
 4.4 If \(i\) accepts price \(p\), then his bid is updated to \(p\).
Definition

\((G, S_N)\) is an ascending auction if:

1. The induced allocation rule is orderly.
2. The induced payment rule has threshold pricing.
3. Each bidder has an initial bid equal to 0.
4. At each non-terminal history:
 4.1 Some bidder \(i\) is called to play, and offered some price \(\geq\) his current bid.
 4.2 The available actions either accept the price or quit.
 4.3 If \(i\) quits, then \(i\) is not called to play again, does not win, and pays 0.
 4.4 If \(i\) accepts price \(p\), then his bid is updated to \(p\).
5. At each infoset, either there is a unique accepting action, or any accepting action guarantees that \(i\) wins at current price.
6. At each terminal history, the winner pays his latest bid.
credible, strategy-proof \leftrightarrow ascending

Theorem 2

Assume (G, S_N) is optimal. If (G, S_N) is an ascending auction then it is credible and strategy-proof.

Assume additionally that (G, S_N) is orderly and concise. If (G, S_N) is credible and strategy-proof, then (G, S_N) is an ascending auction.
credible, strategy-proof \iff ascending

Theorem 2

Assume (G, S_N) is optimal. If (G, S_N) is an ascending auction then it is credible and strategy-proof.

Assume additionally that (G, S_N) is orderly and concise. If (G, S_N) is credible and strategy-proof, then (G, S_N) is an ascending auction.

Green-Laffont-Holmström, Theorem 1, and Theorem 2 \rightarrow
Proof: ascending \rightarrow credible

$$\pi(G, S_N)$$

1. Ascending (G, S_N) is optimal.
Proof: ascending \rightarrow credible

\[\pi(G, S_N) = \pi(S_0^G, S_N) \]

1. Ascending $\langle G, S_N \rangle$ is optimal.
2. Consider S_0^G that runs G.

Contradiction, QED.
Proof: ascending \rightarrow credible

\[
\pi(G, S_N) = \pi(S_0^G, S_N) < \pi(S_0', S_N)
\]

1. Ascending (G, S_N) is optimal.
2. Consider S_0^G that runs G.
3. Suppose S_0' is a profitable safe deviation.
Proof: ascending \rightarrow credible

\[\pi(G, S_N) = \pi(S_0^G, S_N) < \pi(S'_0, S_N) \]

1. Ascending \((G, S_N)\) is optimal.
2. Consider \(S_0^G\) that runs \(G\).
3. Suppose \(S'_0\) is a profitable safe deviation.
4. For all \(i\), \(S_i\) remains a best response to \((S'_0, S_{N\setminus i})\).
Proof: ascending → credible

\[\pi(G, S_N) = \pi(S_0^G, S_N) < \pi(S'_0, S_N) = \pi(G', S_N) \]

1. Ascending \((G, S_N)\) is optimal.
2. Consider \(S_0^G\) that runs \(G\).
3. Suppose \(S'_0\) is a profitable safe deviation.
4. For all \(i\), \(S_i\) remains a best response to \((S'_0, S_{N \setminus i})\).
5. \((G', S_N)\) is also BIC, yields more revenue than \((G, S_N)\).

Contradiction, QED.
Proof sketch: credible, SP \rightarrow ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose (G, S_N) SP. not pooling \rightarrow not credible.
Proof sketch: credible, $SP \rightarrow$ ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose (G, S_N) SP. not pooling \rightarrow not credible.
Proof sketch: credible, $SP \rightarrow$ ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose (G, S_N) SP. not pooling \rightarrow not credible.
Proof sketch: credible, SP \rightarrow ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose (G, S_N) SP. not pooling \rightarrow not credible.
Proof sketch: credible, SP → ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose \((G, S_N)\) SP. not pooling → not credible.
Proof sketch: credible, $\text{SP} \rightarrow \text{ascending}$

A key feature of ascending auctions:
All the types who might still win **pool on the same action**.

Suppose (G, S_N) SP. not pooling \rightarrow not credible.
Proof sketch: credible, SP → ascending

A key feature of ascending auctions:
All the types who might still win pool on the same action.

Suppose \((G, S_N)\) SP. not pooling → not credible.

Hurdle #1: What if 1’s chosen action is not monotone?
Proof sketch: credible, \(\text{SP} \rightarrow \text{ascending} \)

A key feature of ascending auctions:
All the types who might still win **pool on the same action**.

Suppose \((G, S_N)\) \(\text{SP}\). not pooling \(\rightarrow\) not credible.

Hurdle #1: What if 1’s chosen action is not monotone?

Hurdle #2: What if 2’s type is too high to be worth exaggerating?

Exaggerate 2’s type
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 - If not, sell to bidder 2.
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 - If not, sell to bidder 2.

2. Check if 2’s type is low enough to be worth exaggerating.
 - If not, sell the object ‘by the book’.
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 • If not, sell to bidder 2.

2. Check if 2’s type is low enough to be worth exaggerating.
 • If not, sell the object ‘by the book’.

3. Exaggerate 2’s type, sell to bidder 1.
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 - If not, sell to bidder 2.
2. Check if 2’s type is low enough to be worth exaggerating.
 - If not, sell the object ‘by the book’.
3. Exaggerate 2’s type, sell to bidder 1.
4. Don’t get caught.
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 • If not, sell to bidder 2.
2. Check if 2’s type is low enough to be worth exaggerating.
 • If not, sell the object ‘by the book’.
3. Exaggerate 2’s type, sell to bidder 1.
4. Don’t get caught.

strategy-proof, not pooling \rightarrow profitable safe deviation
A deviating algorithm

(High-level description, omits fine details.)

Given an arbitrary extensive form, take some history where bidder 1’s winning types don’t pool:

1. Check if 1’s type is high enough to exploit.
 - If not, sell to bidder 2.
2. Check if 2’s type is low enough to be worth exaggerating.
 - If not, sell the object ‘by the book’.
3. Exaggerate 2’s type, sell to bidder 1.
4. Don’t get caught.

strategy-proof, not pooling \rightarrow profitable safe deviation
credible, strategy-proof \rightarrow pooling \rightarrow ascending auction
What if we relax optimality and winner-paying?

Definition

(G, S_N) is **contestable** if, almost everywhere, if i wins at (θ_i, θ_i), then there exists θ'_i such that i loses at (θ_i, θ'_i).

Definition

(G, S_N) is a **twin-bid auction** if each bidder i chooses bids in $B_i \subset \mathbb{R} \times \mathbb{R}$, such that:

1. i pays b^1_i if he wins and b^2_i if he loses.
2. If $\max_i b^1_i - b^2_i > 0$, then some bidder wins.
3. If bidder i wins, then $b^1_i - b^2_i \geq 0$ and $\forall j : b^1_i - b^2_i \geq b^1_j - b^2_j$.
What if we relax optimality and winner-paying?

Definition

\((G, S_N)\) is **contestable** if, almost everywhere, if \(i\) wins at \((\theta_i, \theta'_i)\), then there exists \(\theta'_{-i}\) such that \(i\) loses at \((\theta_i, \theta'_{-i})\).

Definition

\((G, S_N)\) is a **twin-bid auction** if each bidder \(i\) chooses bids in \(B_i \subset \mathbb{R} \times \mathbb{R}\), such that:

1. \(i\) pays \(b^1_i\) if he wins and \(b^2_i\) if he loses.
2. If \(\max_i b^1_i - b^2_i > 0\), then some bidder wins.
3. If bidder \(i\) wins, then \(b^1_i - b^2_i \geq 0\) and \(\forall j : b^1_i - b^2_i \geq b^1_j - b^2_j\).

Theorem

Assume \((G, S_N)\) is contestable. \((G, S_N)\) is credible and static if and only if it is a twin-bid auction almost everywhere.
Modeling auctioneer IC yields a simple explanation of real-world auction formats.

Of course, these are not the only desiderata.
Calendar time isn’t ‘built into’ extensive forms
Calendar time isn’t ‘built into’ extensive forms
Calendar time isn’t ‘built into’ extensive forms
What about asymmetric distributions?

First-price auction (static, credible)

‘Robustly’ credible. May not be optimal. Sometimes impossible to restore optimality.
What about asymmetric distributions?

<table>
<thead>
<tr>
<th>First-price auction (static, credible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘Robustly’ credible. May not be optimal. Sometimes impossible to restore optimality.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exist asymmetric distributions such that no credible static (G, S_N) is ϵ-optimal.</td>
</tr>
</tbody>
</table>
What about asymmetric distributions?

First-price auction (static, credible)

‘Robustly’ credible. May not be optimal.
Sometimes impossible to restore optimality.

Proposition

There exist asymmetric distributions such that no credible static
\((G, S_N)\) is \(\epsilon\)-optimal.

Ascending auction (strategy-proof, credible)

May not be credible or optimal.
Easy to restore both.
The **virtual values** ascending auction.
Bidders seldom display types on placards.

In the English system bids are . . . usually transmitted by signal. Such signals may be in the form of a wink, a nod, scratching an ear, lifting a pencil, tugging at the coat of the auctioneer or even staring into the auctioneer’s eyes – all of them perfectly legal.

Cassady 1967

Public communication affects aftermarkets and thus incentives. Ausubel & Cramton 2004, Carroll & Segal 2016, Dworczak 2017. (Outside the model today.)
A Menagerie

Table: \(\epsilon \)-optimal auctions

<table>
<thead>
<tr>
<th>strategy</th>
<th>1P</th>
<th>2P</th>
<th>Asc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy-proof</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Static</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Credible</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ex Post IR</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-winner 0 transfer</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
A Menagerie

Table: ϵ-optimal auctions

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>Asc</th>
<th>Dutch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy-proof</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credible</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ex Post IR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-winner 0 transfer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
A Menagerie

Table: ϵ-optimal auctions

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>Asc</th>
<th>Dutch</th>
<th>All-Pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy-proof</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Static</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Credible</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ex Post IR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Non-winner 0 transfer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
A Menagerie

Table: ϵ-optimal auctions

<table>
<thead>
<tr>
<th></th>
<th>1P</th>
<th>2P</th>
<th>Asc</th>
<th>Dutch</th>
<th>All-Pay</th>
<th>Consol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy-proof</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Static</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Credible</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ex Post IR</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Non-winner 0 transfer</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
optimal ∩ first-price = ∅

\(N = \{1, 2\} \)
\(\Theta_i = \{4, 5, 6\} \)
Tie-breaking order: 1 \(\triangleleft\) 2

Optimal reserve = 4.

Optimality requires:
\(b_1(5) = 5 \)
\(b_2(5) = 4.5 \)

When type profile is \((5, 5)\), tie-breaking rule requires to sell to bidder 2, even though he bid less. Not first-price auction!