Redistribution through Markets *

Piotr Dworczak ® Scott Duke Kominers ® Mohammad Akbarpour †

First Version: February 7, 2018
This Version: November 11, 2018

Abstract

When macroeconomic tools fail to respond to wealth inequality optimally, regulators can still seek to mitigate inequality within individual markets. A social planner with distributional preferences might distort allocative efficiency to achieve a more desirable split of surplus, for example, by setting higher prices when sellers are poor—effectively, using the market as a redistributive tool.

In this paper, we seek to understand how to design goods markets optimally in the presence of inequality. Using a mechanism design approach, we uncover the constrained Pareto frontier by identifying the optimal trade-off between allocative efficiency and redistribution in a setting where the second welfare theorem fails because of private information and participation constraints. We find that competitive equilibrium allocation is not always optimal. Instead, when there is substantial inequality across sides of the market, the optimal design uses a tax-like mechanism, introducing a wedge between the buyer and seller prices, and redistributing the resulting surplus to the poorer side of the market via lump-sum payments. When there is significant within-side inequality, meanwhile, it may be optimal to impose price controls even though doing so induces rationing.

Keywords: optimal mechanism design, redistribution, inequality, welfare theorems

JEL codes: D47, D61, D63, D82, H21

*An abstract of this paper appeared in the Proceedings of the 19th ACM Conference on Economics and Computation (EC’18). The “®” symbol indicates that the authors’ names are in certified random order, as described by Ray ® Robson (2018). The authors thank Georgy Artemov, Ehsan Azarmsa, Ivan Balbuzanov, Benjamin Brooks, Eric Budish, Estelle Cantillon, Raj Chetty, Catherine De Fontenay, Pawel Doligalski, Steven Durlauf, Federico Echenique, Mehmet Ekmekci, Abigail Fradkin, Alex Frankel, Jonathan Gould, Michael Grubb, Ravi Jagadeesan, Emir Kamenica, Paul Kominers, Moritz Lenel, Shengwu Li, Elliot Lipnowski, Giorgio Martini, Paul Milgrom, Jeff Miron, Ellen Muir, Roger Myerson, Eric Nelson, Alexandru Nichifor, Michael Ostrovsky, Siqi Pan, Alessandro Pavan, Eduardo Perez, Canice Prendergast, Doron Ravid, Phil Reny, Marzena Rostek, Alvin Roth, Emma Rothschild, Larry Samuelson, Amartya Sen, Ali Shourideh, Andy Skrzypacz, Tayfun Simne, Stefanie Stantcheva, Philipp Strack, Cameron Taylor, Alex Teytelboym, Utku Unver, John Weymark, Marek Weretka, Tom Wilkening, Steven Williams, Bob Wilson, Eric Zwick, numerous seminar audiences, and the anonymous referees of EC for helpful comments. All three authors thank the Becker Friedman Institute both for sparking ideas that led to this work, and for hosting the authors’ collaboration. Additionally, Kominers gratefully acknowledges the support of National Science Foundation grant SES-1459912, the Ng Fund and the Mathematics in Economics Research Fund of the Harvard Center of Mathematical Sciences and Applications, and the Human Capital and Economic Opportunity Working Group sponsored by the Institute for New Economic Thinking.

†Dworczak: Department of Economics, Northwestern University; piotr.dworczak@northwestern.edu. Kominers: Entrepreneurial Management Unit, Harvard Business School; Department of Economics, Center of Mathematical Sciences and Applications, and Center for Research on Computation and Society, Harvard University; and National Bureau of Economic Research; kominers@fas.harvard.edu. Akbarpour: Graduate School of Business, Stanford University; mohamwad@stanford.edu.
1 Introduction

In many markets, there is systematic wealth inequality among participants. When global income redistribution is not feasible, market designers can still seek to mitigate inequality within individual markets. For example, property market regulators frequently use tools like rent control in response to the wealth disparities between renters and owners. In the only legal marketplace for kidneys—the one in Iran—the government sets a price floor partly because it is concerned about the welfare of organ donors, who tend to come from low-income households. Many other marketplaces, such as ridesharing platforms, feature inequality both among and between buyers and sellers; in all such marketplaces, it is in principle possible to reduce inequality through careful design.

In this paper, we seek to understand how to optimally design marketplaces in the presence of wealth inequality. We assume the designer takes inequality as given; that is, she controls only a single market and does not have the power to implement macro-level wealth redistribution. We show that when the designer has distributional preferences, competitive equilibrium pricing is not necessarily optimal. For example, if sellers in the market are poorer than buyers, they tend to value money more relative to the good being traded, and hence will be willing to sell at lower prices, all else equal. However, precisely because sellers have relatively high marginal utility for money, a designer who cares about inequality might prefer to set the price higher—effectively, using the market as a redistributive tool. Our main result shows that optimal redistribution through markets can be obtained through a simple combination of lump-sum transfers and rationing.

Our framework is as follows. There is a market for a single indivisible good, with a large number of prospective buyers and sellers. Each agent is characterized by how much she values the good relative to a monetary transfer—a ratio which we refer to as the rate of substitution. A market designer chooses a mechanism to maximize a social welfare function which is a weighted sum of agents’ utilities. The designer knows the distribution of agents’ characteristics but does not observe individual agents’ rates of substitution. The mechanism must clear the market, maintain budget balance, and respect both incentive-compatibility and individual participation constraints.

Two key consequences of wealth distribution for market design are that (i) individuals’ preferences may vary with their wealth levels, and (ii) there may be dispersion among agents’ marginal utilities of money, or, more precisely, in how society values giving a unit of money to different individuals. In this work, we incorporate wealth inequality into the analysis by considering only that second effect. Formally, we study a model in which individual agents have quasi-linear preferences but arbitrary Pareto weights in the social objective function.
For example, a poor person in desperate need of a certain good (but also in desperate need of money) might have the same rate of substitution as a rich person who barely needs the good (but also does not need more money); we could naturally allow society to place different Pareto weights on giving money to the poor and rich individuals. We show that this approach is equivalent to assuming that each agent is characterized by a two-dimensional type in which the components respectively measure the values that society puts on providing the agent with the good and money\(^1\); that is, in the alternate but equivalent framework, the designer maximizes the unweighted sum of agent’s total “values” for the good and money. Intuitively, the “value” for money in the second interpretation is the Pareto weight from the first interpretation, and the ratio of “values” is the rate of substitution. Whenever we use the word “value”, we refer to the above meaning of values describing both individual and social preferences.\(^2\)

Our main methodological insight is that the setting just described allows us to consider the effects of wealth inequality while maintaining the powerful tractability of the standard mechanism design framework. The canonical model for auction and mechanism design theory—and thus for market design with transfers more generally—assumes quasi-linear preferences with perfectly transferable utility. Thus, the canonical model implicitly ignores the wealth distribution by making two assumptions that exactly rule out wealth’s two consequences for (i) individual and (ii) social preferences. Our work exploits the observation that while quasi-linearity of individual preferences (ruling out the first consequence) is key for tractability, the assumption of perfectly-transferable utility (ruling out the second consequence) can be relaxed. Effectively, we are accounting for macro-level wealth differences, which generate differences in agents’ values for money while using a local first-order approximation (quasi-linearity) to preserve tractability.\(^3\)

Since monetary transfers between agents have no impact on the social objective function in the canonical framework, the question of optimal design is trivial there: It suffices to implement the efficient allocation—or equivalently (by the first welfare theorem), the competitive equilibrium mechanism (which is feasible in our large-market setting). This is,

\(^1\)This approach has been successfully applied in the public finance literature, see Saez and Stantcheva (2016), as well as the references we review briefly in Section 1.1.

\(^2\)We stress that the idea of a “value for money” does not make sense when only considering individual preferences—individual preferences are fully described by the rate of substitution between the good and the monetary transfer.

\(^3\)Our setup implicitly assumes that the market under consideration is a small enough part of the economy that the gains from trade do not substantially change agents’ wealth levels. In fact, utility can be viewed as approximately quasi-linear from a perspective of a single market when it is one of many markets—the so-called “Marshallian conjecture” demonstrated formally by Vives (1987). More recently, Weretka (2018) showed that quasi-linearity of per-period utility is also justified in infinite-horizon economies when agents are sufficiently patient.
however, a consequence of the strong assumption about social preferences: The standard framework “forces” the designer to pick a particular point on the Pareto frontier, the same that would be selected by the so-called “Kaldor-Hicks” criterion. In our setting, by contrast, the designer can express preferences over the entire (constrained) Pareto frontier.

We thus seek to characterize the Pareto frontier in the presence of incentive-compatibility (IC) and individual-rationality (IR) constraints. As discussed above, the first welfare theorem gives us one point on the Pareto frontier, namely the one achieved by the competitive equilibrium mechanism. If the IC and IR constraints were to be ignored, we would have from the second welfare theorem that any split of the maximized surplus between agents can be achieved by redistribution of agents’ endowments before trading—so that (i) there is no trade-off between maximizing total willingness to pay (allocative efficiency) and achieving the desired distributional outcome (under any Pareto weights), and (ii) the only optimal mechanism is the competitive equilibrium mechanism. However, the second welfare theorem fails in our framework because redistribution of endowments prior to trading would typically violate both the IC and IR constraints. As a consequence, (i) there is a trade-off between allocative efficiency and the distribution of surplus, and (ii) the competitive equilibrium mechanism is sometimes suboptimal.

To illustrate the preceding discussion, in Figure 1.1 we depict the hypothetical Pareto frontier that would arise in a marketplace with an equal mass of buyers and sellers and a uniform distribution of rates of substitution if we relaxed the IC constraints (blue curve). As we expect from the second welfare theorem, the unconstrained Pareto frontier is linear because agents’ preferences are quasi-linear. However, the constrained Pareto curve that the designer can achieve (red curve) is strictly concave. The two frontiers coincide only at the competitive equilibrium mechanism. If the social objective function puts a sufficiently high Pareto weight on one side of the market (for example sellers), the optimal mechanism will differ from the competitive equilibrium mechanism. Intuitively, the frontier becomes strictly concave because giving more surplus to one side of the market requires distorting allocative efficiency to preserve the IC and IR constraints: For example, giving more money to sellers requires raising more revenue from the buyer side which, in the presence of the IC and IR constraints, can only be achieved by limiting supply. Studying this trade-off is the focus of this paper.

Our first result gives a general characterization of a class of mechanisms that generate the (constrained) Pareto frontier. In principle, mechanisms in our setting can be quite complex, offering a menu of prices and quantities (i.e., transaction probabilities) for each rate of substitution on each side. Nonetheless, we find that, for an arbitrary set of Pareto weights, an optimal mechanism uses at most three prices for each side of the market (with
associated transaction probabilities), and at most four prices in total. More precisely, if
at the optimum some monetary surplus is generated, then our optimal mechanism takes a
particularly simple form: One side of the market can choose to trade at some price with
probability 1, or trade at some better price (that is, higher for sellers and lower for buyers)
with probability less than 1, with some risk of being rationed. The other side is offered a
single posted price. The monetary surplus is redistributed as a lump-sum payment to the
side of the market that has a higher average Pareto weight in the social objective function.
On the other hand, if no monetary surplus is generated, rationing may take a slightly more
complicated form, with either a single rationing option on each side of the market, or no
rationing on one side and two distinct rationing options (hence three prices) on the other
side.

The simple form of the optimal mechanism in we identify stems from the large-market
assumption. We notice that any incentive-compatible mechanism can be represented as a
lottery over quantities, and hence the market-clearing constraint reduces to an equal-means
constraint—the average quantity sold to sellers must equal the average quantity sold to
buyers. Thus, the optimal value is obtained by concavifying the objective function at the
equilibrium trade volume. Concavification implies that the optimal scheme is a lottery over
at most three points for each side, yielding the characterization just described.\footnote{An optimal lottery concavifying a one-dimensional function can be assumed to have a binary support; a third point in the support may be needed in our setting because the optimal lottery must additionally satisfy a single linear constraint—budget balance.}
Given our general characterization of optimal mechanisms, we attempt to understand which exact combination of lump-sum transfers and rationing is optimal depending on the characteristics of market participants. To this end, we use the equivalent interpretation of our model in which agents are described by two-dimensional types—a value for the good and a marginal value for money—and the designer maximizes the total value obtained through allocating both the good and money. This interpretation allows us to identify two key forms of inequality that can be present in the market. *Cross-side inequality* measures the average disparity in values for money between buyers and sellers, while *same-side inequality* measures the dispersion within each side of the market. We show that cross-side inequality determines the direction of the lump-sum payments—the surplus is redistributed to the side of the market with a higher average value for money—while same-side inequality determines the use of rationing.

Concretely, under certain regularity conditions, we prove the following three results: First, when same-side inequality is not too large, the optimal mechanism is a price mechanism and there is no rationing. The designer may impose a wedge between the buyer and seller prices. The degree of cross-side inequality determines the magnitude of the wedge, and hence the size of the lump-sum transfer to the “poorer” side of the market. Second, when same-side inequality is substantial on the seller side, the optimal mechanism may ration the sellers. Rationing, relative to lump-sum redistribution, allows the designer to reach the “poorest” sellers by raising the price that they receive above the market-clearing level. In such cases, the designer uses the redistributive power of the market: willingness to sell at a given price can be used to select sellers with relatively higher values for money. Third, rationing is never optimal on the buyer side, even in the presence of very strong same-side buyer inequality. This is because the decision to trade identifies buyers with relatively low values for money. Poorer buyers are precisely those that do not participate, and hence the only available tool to increase their wealth is a lump-sum transfer. In this sense, our analysis uncovers a fundamental (albeit ex-post intuitive) asymmetry between buyers and sellers with respect to the redistributive role of markets.

The optimal mechanism we find mitigates cross-side inequality with lump-sum transfers; such transfers are natural in contexts in which we can clearly identify potential buyers and sellers according to fixed, exogenous characteristics (e.g., when they are landowners in a given area, or military veterans in a labor market). Lump-sum transfers are also feasible when the marketplace designer can impose rules that prevent people from joining the market just to claim the transfer, or when the transfer can be made to an outside authority that benefits the target population.

Nevertheless, we can easily imagine contexts in which lump-sum redistribution is not
possible. For example, if we pay a constant amount to sellers regardless of whether they trade, then all sellers get strictly positive utility from participating in the marketplace; this creates an incentive for excess entry, which in turn could undermine overall budget balance. We thus consider a restriction of our setting in which lump-sum redistribution is ruled out. We find there that rationing can sometimes emerge as an optimal response to cross-side inequality (even if there is no same-side inequality), and in particular can be used on the buyer side (as it is then essentially the only tool available to the designer).

Our analysis indicates that there might be substantial scope for market design to improve outcomes in contexts with underlying inequality. We may think of markets as serving two purposes simultaneously: they both allocate objects and transfer money among participants. We highlight that from a social welfare perspective, it is sometimes worth distorting the allocative role to make better use of the transfer role. We discuss specific policy implications—for rideshare and housing markets—in Section 7.

We emphasize that it is not the point of this paper to say that markets are a superior tool for redistribution compared to standard approaches such as redistributive income taxation. Rather, we argue that markets may provide alternative methods for redistribution when conventional macro-economic tools fail for various reasons—for example, due to political constraints, practical infeasibility of the optimal taxation scheme, or even divergence of preferences between the central government and local market regulators. Additionally, our results may help explain the widespread use of price controls and other market-distorting regulations in settings with inequality. Philosophers (Satz (2010); Sandel (2012)) and policymakers (see, e.g., Roth (2007)) often speak of markets as having the power to “exploit” participants through prices. The possibility that prices could somehow take advantage of individuals who act according to revealed preference seems fundamentally unnatural to an economist. Yet our framework illustrates at least one sense in which the idea has a precise economic meaning: as inequality increases, the competitive equilibrium price shifts in response to some market participants’ relatively stronger desire for money, leaving more of the surplus with the other agents. At the same time, however, our work shows that the proper social response is not banning or eliminating markets—as Sandel (2012) and others suggest—but rather designing the market-clearing mechanism in a way that directly attends to inequality. A welfare-maximizing social planner might prefer to “redistribute through the market” by choosing a market design that gives up some allocative efficiency in exchange for creating more surplus for poorer market participants.

The remainder of this paper is organized as follows. Section 1.1 reviews the related literature in mechanism design, public finance, and other areas. Then, Section 2 presents a simple example illustrating how inequality may lead a welfare-maximizing social planner to
distort away from competitive equilibrium allocation. Section 3 lays out our full model of mechanism design under social preferences. In Section 4, we characterize optimal mechanisms in the general case; then, in Section 5, we use our characterization result to understand optimal design in the presence of inequality. Section 6 contains the analysis under the additional constraint that lump-sum transfers are not feasible. Section 7 discusses policy implications; Section 8 concludes.

1.1 Related work

For frictionless markets, competitive equilibrium allocation (colloquially, “market pricing”) is focal in economics because of its efficiency properties (Arrow and Debreu (1954); McKenzie (1959); see also Fleiner et al. (2017)). Even so, economists have long recognized that alternative mechanisms may be superior—even in markets without transaction frictions. Weitzman (1977), for example, showed that rationing can perform better than the price system when agents’ needs are not well expressed by willingness to pay.

Our principal divergence from classical market models—the introduction of heterogeneity in marginal values for money—has antecedents, as well. Condorelli (2013) asks a question similar to ours, in a setting in which a designer wishes to allocate \(k \) objects to \(n > k \) agents, and in which agents’ willingness to pay is not necessarily the characteristic that appears in the designer’s objective. Huesmann (2017) studies the problem of allocating an indivisible item to a mass of agents, in which agents have different wealth levels, and non-quasi-linear preferences. Esteban and Ray (2006) study a model of lobbying under inequality in which, similarly to our setting, it is effectively more expensive for less wealthy agents to spend resources in lobbying. More broadly, the idea that it is more costly for low-income individuals to spend money derives from capital market imperfections that impose borrowing constraints on low-wealth individuals; such constraints are ubiquitous throughout economics (see, e.g., Loury (1981); Aghion and Bolton (1997); McKinnon (2010)).

Our modeling technique, and in particular the inclusion of two-dimensional types, bears some resemblance to the design problem of two-sided matching markets considered by Gomes and Pavan (2016, 2018). In the Gomes and Pavan setting, agents differ in two dimensions that have distinct influence on match utilities; Gomes and Pavan study conditions on the primitives under which the welfare- and profit-maximizing mechanisms induce a certain simple matching structure. Our analysis differs both in terms of the research question (we focus on wealth inequality) and the details of the model (we include a budget constraint, do not consider matching between agents, and allow for general Pareto weights).

Meanwhile, our attention to a planner with distributional preferences is closely similar to
the view taken in the public finance literature, which seeks the socially optimal tax schedule (Diamond and Mirrlees (1971); Atkinson and Stiglitz (1976); Piketty and Saez (2013); Saez and Stantcheva (2016, 2017); Hosseini and Shourideh (2018)). The idea of using public provision of goods as a form of redistribution (which is inefficient from an optimal taxation perspective) has also been examined (see, e.g., Besley and Coate (1991); Blackorby and Donaldson (1988); Gahvari and Mattos (2007)). Hendren (2017) estimated efficient welfare weights (accounting for the distortionary effects of taxation), and concluded that surplus to the poor should be weighted up to twice as much as surplus to the rich.

Unlike our work—which considers a two-sided market in which buyers and sellers trade—both optimal allocation and public finance settings typically consider efficiency, fairness, and other design goals in single-sided market contexts. Additionally, our work specifically complements the broad literature on optimal taxation by considering mechanisms for settings in which global redistribution of wealth is infeasible, and the designer must respect a participation constraint. For comparison, see for example the work of Stantcheva (2014), which solves for the optimal tax scheme in the model of Miyazaki (1977), or recent papers on tax incidence such as those of Rothschild and Scheuer (2013) or Sachs et al. (2017).

Our paper is also related to studies of price control as a redistributive tool. Viscusi et al. (2005) discuss “allocative costs” of price regulations and Bulow and Klemperer (2012) show when price control can be harmful to all market participants. And as a mechanism design setting with a nonstandard agent utility model, our work connects to other such models—for example those with budget constraints (see, e.g., Laffont and Robert (1996); Che and Gale (1998); Fernandez and Gali (1999); Che and Gale (2000); Che et al. (2012); Dobzinski et al. (2012); Pai and Vohra (2014); Kotowski (2017)), non-linear preferences (see, e.g., Maskin and Riley (1984); Baisa (2017)), or ordinal preferences/non-transferable utility (see, e.g., Gale and Shapley (1962); Roth (1984); Hatfield and Milgrom (2005)).

We find that suitably designed market mechanisms (if we may stretch the term slightly beyond its standard usage) can themselves be used as redistributive tools. In this light, our work also has kinship with the broad and growing literature within market design that shows how variants of market mechanisms can achieve fairness and other distributional goals in settings that (unlike ours) do not allow transfers (see, e.g., Hylland and Zeckhauser (1979); Bogomolnaia and Moulin (2001); Budish (2011); Prendergast (2017)). Finally, our work is related to that of Akbarpour and van Dijk (2017), who model wealth inequality as producing asymmetric access to private schools, and show that this changes some welfare conclusions of the canonical school choice matching models.
2 Simple Example

In this section, we introduce a simple example that illustrates how a welfare-maximizing utilitarian social planner would set prices in the presence of inequality in the marginal utility for money. Without inequality, a competitive equilibrium price is optimal. However, when inequality is substantial, the welfare-maximizing prices are far from the competitive equilibrium level.

To fix ideas, consider a market with a unit mass of buyers and a unit mass of sellers. Each seller owns one unit of an indivisible good, and each buyer demands one unit. The value of the object for any agent in the market is drawn (almost) independently and uniformly at random from $[0, 1]$. We assume preferences are quasi-linear in money, but we relax the assumption that all agents value money equally. Specifically, we assume that a buyer with value v who purchases an object at price p receives utility $v - p$, while a seller with value v who sells an object at price p receives utility $mp - v$, where $m > 1$. As discussed in the introduction, v and m describe both individual and social preferences: Individual preferences are pinned down by the ratio of the values (the rate of substitution), with society placing more value on giving a unit of money to sellers rather than buyers (perhaps because sellers are poorer). Consequently, all else equal, a utilitarian social planner would prefer to transfer money from buyers to sellers.

2.1 Setting the socially-optimal price

Suppose that the social planner chooses a price to maximize the sum of agents’ utilities. Since no seller would sell at price 0 and all sellers would sell at price $1/m$, for now we limit the choice of price to $p \in [0, 1/m]$. With price p, the social welfare function is:

$$W(p) = \min \left\{ 1, \frac{mp}{1-p} \right\} \int_p^1 (v-p)dv + \min \left\{ 1, \frac{1-p}{mp} \right\} \int_0^{mp} (mp - v)dv,$$

(2.1)

where the coefficients in front of the integrals arise because of the necessity to ration if the price deviates from the level that clears the market ($mp = 1-p$). We note here (and establish a general result later on) that we can equivalently think of sellers as having value for money normalized to 1, and m being instead the Pareto weight attached to seller surplus in the social objective functions: Indeed, (2.1) is equivalent to

$$W(p) = \min \left\{ 1, \frac{mp}{1-p} \right\} \int_p^1 (v-p)dv + m \min \left\{ 1, \frac{1-p}{mp} \right\} \int_0^{mp} \left(p - \frac{v}{m} \right) dv,$$

where v/m is the marginal rate of substitution for a seller with value v.
By a straightforward calculation based on a first-order condition, we can characterize the optimal price p^* (see Figure 2.1). When $m \leq 3$, it is optimal to use a competitive equilibrium price. When $m > 3$, it is optimal to ration the sellers. More precisely:

$$p^* = \begin{cases}
p^\text{CE} & m \leq 3, \\
\frac{m-2}{2m-2} & 3 < m < 2 + \sqrt{2}, \\
\frac{1}{m} & m \geq 2 + \sqrt{2}.
\end{cases} \quad (2.2)$$

When $m \geq 2 + \sqrt{2}$, all sellers want to sell, and there is a uniform lottery in which the probability that each seller trades is $1 - 1/m$.

To understand the involved trade-off, note that when the price is above the competitive level, rationing the sellers becomes necessary. As a consequence, it is no longer true that sellers with the lowest rates of substitution are always the ones that trade; this reduces allocative efficiency. On the other hand, social welfare is increased because, conditional on selling, sellers receive a larger transfer. When inequality between buyers and sellers is high enough ($m \geq 3$), the second effect dominates.

One way to interpret the result is to notice that as the value for money increases for an individual seller, that seller’s benefit from participating in the marketplace also increases.
However, when the value for money gets higher for many sellers, there is a certain “poverty externality:” because sellers desperately want to sell, there is downward pressure on the price, and this reduces sellers’ benefits from participating. The example illustrates that a proper regulatory response might be to impose a price floor.

2.2 Improving welfare with the socially optimal price wedge

In the preceding analysis, we restricted attention to single-price mechanisms. Now, we expand the set of feasible mechanisms by letting the planner insert a “wedge” between buyer and seller prices, choosing a price $p_B \geq 0$ for buyers and a (potentially) different price $p_S \geq 0$ for sellers. The gap between p_B and p_S generates some “revenue” (i.e., monetary surplus), which the planner then redistributes to the sellers.

By a simple calculation, the optimal buyer and seller prices are given by $p_B = 1/2$ and $p_S = 1/(2m)$, respectively, as depicted in Figure 2.2. Intuitively, as sellers are uniformly poorer than buyers, the social planner wishes to transfer as much surplus as possible from buyers to sellers. This is achieved at the “monopoly” price, $p_B = 1/2$, at which half of the buyers buy. At price $p_S = 1/(2m)$, half of the sellers sell, and the market clears. Note that once we allowed for price wedges, rationing is no longer optimal (see Section 5 for a general result and discussion). Hence, a total transfer $U_S = (1/2)(p_B - p_S) = (m-1)/(4m)$ is redistributed to the seller side in the form of lump-sum payments. Our analysis implies that the competitive equilibrium mechanism ceases to be optimal as soon as there is any inequality, i.e., for any $m > 1$—although the lump-sum transfer is small when inequality is modest.

2.3 Considering fully general mechanisms

Of course, the space of possible mechanisms is much richer than the one-price or two-price mechanisms just described. Nevertheless, in Section 5 we prove a result implying that the two-price mechanism depicted in Figure 2.2 is optimal for our example setting. In Section 6 we prove that if lump-sum redistribution is not feasible, then the single-price mechanism depicted in Figure 2.1 is optimal.

Figure 2.2 shows the effective price received by sellers who decide to sell (green line), but we emphasize that the transfer U_S is also received by remaining sellers who do not sell; lump-sum transfers constitute a lower bound on the utility achieved by the side of the market that receives them, hence the notation “U_S.”
3 General Model

In Section 2, we focused on the case in which the planner is constrained to choose a one- or two-price mechanism. Here, we allow the planner to choose a general market-clearing mechanism to maximize a weighted sum of agents’ utilities.

There is a unit mass of owners, and a mass μ of non-owners in the market for two goods, K and M. All agents can hold at most one unit of K but can hold an arbitrary amount of good M (which can be thought of as money). Owners possess one unit of good K; non-owners have no units of K. Because of the unit-supply/demand assumption, we refer to owners as sellers (S), and to non-owners as buyers (B).

In a market where goods K can be exchanged for good M, a parameter that fully describes the behavior of an agent (apart from her ownership type) is the rate of substitution between the goods K and M. In general, the rates of substitution may depend on agents’ holdings of the two goods. It is typical in mechanism design to assume quasi-linear and fully transferable utility, which has two implications: (i) the rate of substitution is constant for any agent, i.e., it does not depend on the endowment of good M, and (ii) all agents value good M equally, i.e. the distribution of money is irrelevant for total welfare. Components (i) and (ii) are very different in nature: The former restricts the behavior of each individual agent, while the latter imposes a strong restriction on social preferences. In our analysis, we maintain
assumption (i) but relax assumption (ii) (see Section 3.2).

Under (i), each agent in the economy is characterized by a two-dimensional type \((j, r)\), where \(j \in \{B, S\}\), and \(r \in \mathbb{R}_+\). If \((x_K, x_M)\) denotes the holdings of goods \(K\) and \(M\), then type \(r\)'s preferences over \((x_K, x_M)\) are induced by a utility function

\[
r \cdot x_K + x_M;
\]

moreover, agents are expected-utility maximizers. We emphasize that the utility function (3.1) only captures the preferences of an individual, and hence it is without loss of generality to normalize the coefficient on \(x_M\) to 1. However, relaxing assumption (ii) means that we cannot compute social welfare by summing (3.1) across all agents.

We denote by \(G_j(r)\) the cumulative distribution function of the rate of substitution on side \(j\) of the market.\(^6\) We assume that \(G_j\) has full support and admits a density \(g_j\) on \([\tilde{r}_j, \bar{r}_j]\), where \(0 \leq \tilde{r}_j < \bar{r}_j\), \(j \in \{B, S\}\). Moreover, the supports intersect non-trivially so that the equation \(\mu(1 - G_B(r)) = G_S(r)\) has a unique solution, implying existence and uniqueness of a competitive equilibrium with strictly positive volume of trade. We denote by \(J_S(r) = r + G_S(r)/g_S(r)\) and \(J_B(r) = r - (1 - G_B(r))/g_B(r)\) the virtual surplus functions for sellers and buyers, respectively.

3.1 Mechanisms

A designer organizes a marketplace/exchange subject to three constraints:

1. **Anonymity/ Incentive Compatibility** — The designer knows the ownership type of every agent and the distribution of types but does not observe any individual’s rate of substitution.

2. **Voluntary Participation/Individual Rationality** — Each agent must weakly prefer the outcome of the mechanism to her status quo.

3. **Market-Clearing** — The designer does not have any goods at the beginning of trade, can only obtain goods from the participants, and must distribute all goods acquired through the mechanism.

By the Revelation Principle, we can restrict attention to direct revelation mechanisms. We can represent mechanisms as a tuple \((X_B, X_S, T_B, T_S)\), where \(X_j(r)\) is the probability that an agent with type \(r\) trades object \(K\) (that is, buys good \(K\) if \(j = B\), and sells good \(K\) if

\(^6\)We adopt the convention that the measures \(G_j\) are probability measures, so that to obtain the actual mass of buyers with given characteristics we must multiply by the total mass \(\mu\) of buyers.
\[j = S, \text{ and } T_j(r) \text{ is the net change in the holdings of good } M \text{ (which we will refer to as a transfer rule). Formally, we have the following definition of a feasible mechanism.} \]

Definition 1. A feasible mechanism \((X_B, X_S, T_B, T_S)\) consists of \(X_j : [\underline{r}_j; \bar{r}_j] \to [0, 1], T_j : [\underline{r}_j; \bar{r}_j] \to \mathbb{R}, j \in \{B, S\}\), that satisfy the following conditions:

\[
X_B(r) - T_B(r) \geq X_B(\hat{r}) - T_B(\hat{r}), \quad \forall r, \hat{r} \in [\underline{r}_B; \bar{r}_B], \quad \text{(IC-B)}
\]
\[
-X_S(r) + T_S(r) \geq -X_S(\hat{r}) + T_S(\hat{r}), \quad \forall r, \hat{r} \in [\underline{r}_S; \bar{r}_S], \quad \text{(IC-S)}
\]
\[
X_B(r) - T_B(r) \geq 0, \quad \forall r \in [\underline{r}_B; \bar{r}_B], \quad \text{(IR-B)}
\]
\[
-X_S(r) + T_S(r) \geq 0, \quad \forall r \in [\underline{r}_S; \bar{r}_S], \quad \text{(IR-S)}
\]
\[
\mu \int_{\underline{r}_B}^{\bar{r}_B} X_B(r) dG_B(r) = \int_{\underline{r}_S}^{\bar{r}_S} X_S(r) dG_S(r), \quad \text{(MC)}
\]
\[
\mu \int_{\underline{r}_B}^{\bar{r}_B} T_B(r) dG_B(r) \geq \int_{\underline{r}_S}^{\bar{r}_S} T_S(r) dG_S(r). \quad \text{(BB)}
\]

Conditions (IC-B) and (IC-S) are the incentive compatibility constraints; (IR-B) and (IR-S) ensure voluntary participation; (MC) is the market-clearing condition; and (BB) is the budget balance constraint.

3.2 Social preferences

Any individual buyer or seller evaluates outcomes of mechanism \((X_B, X_S, T_B, T_S)\) according to her induced utility level:

\[
U_B(r) := X_B(r) - T_B(r),
\]
\[
U_S(r) := -X_S(r) + T_S(r).
\]

We assume that the mechanism designer is utilitarian, and hence chooses an outcome that is (constrained) Pareto efficient. This, however, does not uniquely pin down social preferences when we relax the assumption \((ii)\) that money can be used for interpersonal utility comparisons. Normally, the social objective is to maximize the total surplus (or willingness-to-pay), as under the “Kaldor-Hicks” criterion. Here, we maximize a weighted sum of agents’ utilities but the weights can be arbitrary. This leads to the following definition of an optimal mechanism.

Definition 2. A mechanism \((X_B, X_S, T_B, T_S)\) is optimal with respect to weights

\[
\Lambda := \{\lambda_j(r) \geq 0 : r \in [\underline{r}_j; \bar{r}_j], j \in \{B, S\}\}
\]
if it is feasible and maximizes

\[
TS(\Lambda) := \mu \int_{\lambda_B}^{\hat{\lambda}_B} \lambda_B(r)U_B(r)dG_B(r) + \int_{\lambda_S}^{\hat{\lambda}_S} \lambda_S(r)U_S(r)dG_S(r)
\]

among all feasible mechanisms. (Throughout, we restrict attention to weights \(\lambda \) such that the integrals \(\int_{\lambda_j}^{\hat{\lambda}_j} \lambda_j(r)dG_j(r) \) are well-defined and finite for \(j \in \{B, S\} \).)

Our formulation implicitly entails two restrictions on the social objective function. First, the designer cannot assign different weights to two individuals who cannot be separated based on their behavior (e.g., two sellers with the same rate of substitution). Second, any measure-zero set of agents has negligible contribution to the social welfare.\(^7\)

4 Optimal Mechanisms – The General Case

In this section, we present and prove our main technical result. While a mechanism in our setting can involve offering a menu of prices and quantities (i.e., transaction probabilities) for each rate of substitution \(r \), we nevertheless identify a simple class of mechanisms that always contains the optimal mechanism.

We define a class of indirect mechanisms. Specifically, let

\[
\mathcal{M} = \{(p^k_{j}, \delta^k_{j})\}_{k=0, \ldots, n_j},\ U_{j}, \quad j \in \{B, S\},
\]

where (1) \(\delta^0_{j} = p^0_{j} = 0 \); (2) \(\delta^k_{j} < \delta^{k+1}_{j} \) for all \(k < n_j \); (3) \(\delta^{n_j}_{j} = 1 \); (4) \(p^k_{B} < p^{k+1}_{B} \) for all \(k < n_B \); (5) \(p^k_{S} > p^{k+1}_{S} \) for all \(k < n_S \). The interpretation is that in the indirect mechanism \(\mathcal{M} \), each buyer receives a lump-sum payment \(U_{B} \geq 0 \), and chooses one of the options \(\{(p^k_{B}, \delta^k_{B})\}_{k=1, \ldots, n_B} \), where \((p^k_{B}, \delta^k_{B}) \) represents trade at price \(p^k_{B} \) with probability \(\delta^k_{B} \); analogously each seller receives a lump-sum payment \(U_{S} \geq 0 \), and chooses one of the options \(\{(p^k_{S}, \delta^k_{S})\}_{k=1, \ldots, n_S} \), where \((p^k_{S}, \delta^k_{S}) \) represents trade at price \(p^k_{S} \) with probability \(\delta^k_{S} \).

In any indirect mechanism of the form described above, there exists a unique optimal choice for almost all types. Moreover, each agent’s choice of an optimal bundle is unrelated to the behavior of other agents in our large market. Thus, with slight abuse of notation, we can think of an indirect mechanism \(\mathcal{M} \) as fully describing the payoff-relevant outcomes in the market, fixing the underlying distribution of types. For any fixed \(G_{S} \) and \(G_{B} \), we identify any two mechanisms \(\mathcal{M} \) and \(\mathcal{M}' \) if \(\mathcal{M} \) and \(\mathcal{M}' \) differ by an option \((p^k_{j}, \delta^k_{j}) \) that only a measure-0 set of types chooses in equilibrium. In our discussion, we thus assume that all

\(^7\)This last assumption simplifies our exposition, but our conclusions can be extended to the case of discrete weights by an appropriate approximation argument.
our mechanisms are in “reduced” form, comprising only the \((p^k_j, \delta^k_j)\) that a non-measure-0 set of agents choose.

We say that an indirect mechanism \(\mathcal{M} = \{(p^k_j, \delta^k_j)\}_{k=0, \ldots, n_j} \cup \{U_j\}_{j \in \{B, S\}}\) is a \((n_B + n_S)\)-price mechanism; that is, the mechanism quotes at most \(n_B\) distinct prices to buyers and at most \(n_S\) distinct prices to sellers.\(^8\) An \((n_B + n_S)\)-price mechanism rations side \(j\) when \(n_j > 1\); that is, a non-measure-0 set of agents choose an option with a strictly interior probability of trading. We call a \((1+1)\)-price mechanism simply a price mechanism; in a price mechanism, each side of the market faces a single price and there is no rationing. More generally, we call a \((1 + n_S)\)-mechanism (resp., a \((n_B + 1)\)-mechanism) a price mechanism for the buyer side (resp., a price mechanism for the seller side). A mechanism \(\mathcal{M}\) subsidizes side \(j\) if \(U_j > 0\).

Theorem 1. Either:

- there exists an optimal mechanism that can be implemented as a 4-price mechanism that does not subsidize either side, or
- there exists an optimal mechanism that can be implemented as a 3-price mechanism that subsidizes the side of the market that has a higher average Pareto weight \(\Lambda_j\).

Theorem 1 narrows down the set of candidate solutions to a class of indirect mechanisms indexed by eight parameters: four prices, two rationing coefficients, and a pair of lump-sum payments.\(^9\) Thus, the theorem implies that optimal redistribution can always be achieved by the use of two simple tools: lump-sum transfers and rationing. Moreover, if lump-sum redistribution is used, rationing takes a particularly simple form: It is only used on one side of the market, and consists of offering a single rationing option. When lump-sum redistribution is not used, rationing could take a more complicated form, with either a single rationing option on each side of the market (in a \((2 + 2)\)-price mechanism), or a price mechanism on one side, and two rationing options on the other side (in a \((1+3)\)- or \((3+1)\)-price mechanism); we explore conditions on primitives under which these tools are indeed used in the optimal mechanism in Section 5.

4.1 Derivation of the optimal mechanism – Proof of Theorem 1

In this section, we sketch the proof of Theorem 1. (A number of details are relegated to the appendix.) A reader not interested in our techniques may skip to Section 5.

\(^8\)When doing so will not introduce confusion, we abuse notation by referring to \((n_B + n_S)\)-price mechanism by a single number, equal to \(n_B + n_S\).

\(^9\)The mechanism is effectively characterized by five parameters, since lump-sum payments are pinned down by a binding budget balance condition and the property that one of them is zero. Also, the market-clearing condition for good \(K\) reduces the degrees of freedom on prices by 1.
4.1.1 Outline of the proof

The key ideas behind the proof of Theorem 1 are as follows. Any incentive-compatible individually-rational mechanism may be represented as a pair of lotteries over quantities (one for each side of the market). A lottery specifies the probability that a given type trades the good. Because of our large-market assumption, the lottery generates stochastic outcomes for individuals but deterministic outcomes in the aggregate. With the lottery representation of the mechanism, the market-clearing condition (MC) states the expected quantity must be the same under the buyer and the seller lotteries. The objective function can be represented as expectation of a certain function of the realized quantity with respect to the pair of lotteries. If we further incorporate the budget balance constraint (BB) into the objective function by assigning a Lagrange multiplier, it follows that the value of the optimal lottery must be equal to the concave closure of the Lagrangian at the optimal trade volume; this is established by showing that, for any fixed volume of trade, our problem becomes formally equivalent to a pair of “Bayesian persuasion” problems (one for each side of the market) with a binary state in which the market-clearing condition corresponds to the Bayes-plausibility constraint. Concavification then follows from the results of Aumann et al. (1995) and Kamenica and Gentzkow (2011). Looking separately at each side of the market, the optimal lottery over quantities concavifies a one-dimensional function (the Lagrangian) while satisfying a single linear constraint (the budget balance condition). Hence, the optimal lottery for each side can be supported as a mixture over at most three points. To arrive at the conclusion of Theorem 1 that at most four prices are used in total, we exploit the fact that the two constraints (market clearing and budget balance) are common across the two sides of the market—looking at both sides of the market simultaneously allows us to further reduce the dimensionality of the solution by avoiding the double-counting of constraints implicit in solving for the buyers’ and sellers’ optimal lotteries separately.

4.1.2 Main argument

First, we simplify the problem by applying the canonical method developed by Myerson (1981) that allows us to express feasibility of the mechanism solely through the properties of the allocation rule and the transfer received by the worst type (the proof is skipped).
Claim 1. A mechanism \((X_B, X_S, T_B, T_S)\) is feasible if and only if

\[X_B(r) \text{ is non-decreasing in } r, \quad \text{(B-Mon)} \]
\[X_S(r) \text{ is non-increasing in } r, \quad \text{(S-Mon)} \]
\[\mu \int_{r_B}^{r_S} X_B(r) dG_B(r) = \int_{r_S}^{r_B} X_S(r) dG_S(r), \quad \text{(MC)} \]
\[\mu \int_{r_B}^{r_S} J_B(r) X_B(r) dG_B(r) - \mu U_B \geq \int_{r_S}^{r_B} J_S(r) X_S(r) dG_S(r) + U_S, \quad \text{(BB)} \]

where \(J_B\) and \(J_S\) denote the virtual surplus functions, and \(U_B, U_S \geq 0\).

We can recover the transfers associated with a feasible mechanism via the envelope formula:

\[T_B(r) = U_B + \int_{r_B}^{r} X_B(\tau) d\tau - X_B(r) r, \]
\[T_S(r) = U_S + \int_{r}^{r_S} X_S(\tau) d\tau + X_S(r) r. \]

Second, using the preceding formulas and integrating by parts, we can show that the objective function \((OBJ)\) also only depends on the allocation rule:

\[TS(\Lambda) = \mu \Lambda_B U_B + \mu \int \Pi^A_B(r) X_B(r) dG_B(r) + \Lambda_S U_S + \int \Pi^A_S(r) X_S(r) dG_S(r), \quad \text{(OBJ')} \]

where \(\Lambda_j = \int \lambda_j(r) dG_j(r)\) is the average weight assigned to side \(j\) and

\[\Pi^A_B(r) := \frac{\int_{r_B}^{r} \lambda_B(r) dG_B(r)}{g_B(r)}, \quad \text{(4.1)} \]
\[\Pi^A_S(r) := \frac{\int_{r_S}^{r} \lambda_S(r) dG_S(r)}{g_S(r)}. \quad \text{(4.2)} \]

We refer to \(\Pi^A_j\) as the preference-weighted information rents of side \(j\). Note that in the special case of fully transferable utility, i.e., when \(\lambda_j(r) = 1\) for all \(r\), \(\Pi^A_j\) boils down to the usual information rent term, that is, \(G_S(r)/g_S(r)\) for sellers, and \((1 - G_B(r))/g_B(r)\) for buyers.

Third, finding the optimal mechanism is hindered by the fact that the monotonicity constraints (B-Mon) and (S-Mon) may bind (“ironing”, see Myerson, 1981); in such cases, it is difficult to employ optimal control techniques. We get around the problem by representing allocation rules as mixtures over quantities; this allows us to optimize in the space of distri-
butions and make use of the concavification approach. Because G_S has full support (it is strictly increasing), we can represent any non-increasing, right-continuous function $X_S(r)$ as

$$X_S(r) = \int_0^1 1_{\{r \leq G_S^{-1}(q)\}} dH_S(q),$$

where H_S is a distribution on $[0, 1]$. Similarly, we can represent any non-decreasing, right-continuous function $X_B(r)$ as

$$X_B(r) = \int_0^1 1_{\{r \geq G_B^{-1}(1-q)\}} dH_B(q).$$

Economically, our representation means that we can express a feasible mechanism in the quantile (quantity) space. To buy quantity q from the sellers, the designer has to offer a price of $G_S^{-1}(q)$, because then exactly sellers with $r \leq G_S^{-1}(q)$ sell. An appropriate randomization over quantity (equivalently, prices) will replicate an arbitrary feasible quantity schedule X_S.

Similarly, to sell quantity q to buyers, the designer has to offer a price $G_B^{-1}(1-q)$, and exactly buyers with $r \geq G_B^{-1}(1-q)$ buy. We have thus shown that it is without loss of generality to optimize over H_S and H_B rather than X_S and X_B in (OBJ’).

Fourth, we arrive at the following equivalent formulation of the designer’s problem:

$$\max \left\{ \mu \int_0^1 \left(\int_{G_B^{-1}(1-q)}^{r_B} \Pi_B^S(r) g_B(r) dr \right) dH_B(q) + \int_0^1 \left(\int_{r_S}^{G_S^{-1}(q)} \Pi_S^B(r) g_S(r) dr \right) dH_S(q) + \mu \Lambda_B U_B + \Lambda_S U_S \right\}$$

over $H_S, H_B \in \Delta([0, 1])$, $U_B, U_S \geq 0$, subject to

$$\mu \int_0^1 q dH_B(q) = \int_0^1 q dH_S(q),$$

$$\mu \int_0^1 \left(\int_{G_B^{-1}(1-q)}^{r_B} J_B(r) g_B(r) dr \right) dH_B(q) - \mu U_B \geq \int_0^1 \left(\int_{r_S}^{G_S^{-1}(q)} J_S(r) g_S(r) dr \right) dH_S(q) + U_S.$$

10 We thank Benjamin Brooks and Doron Ravid for teaching us this strategy.

11 Formally, considering all distributions H_B and H_S is equivalent to considering all feasible right-continuous X_B and X_S. The optimal schedules can be assumed right-continuous because a monotone function can be made continuous from one side via a modification of a measure-0 set of points (which thus does not change the value of the objective function (OBJ’)).
Fifth, we can incorporate the constraint (4.5) into the objective function using a Lagrange multiplier. Let \(\alpha \geq 0 \) denote the Lagrange multiplier. We define
\[
\phi_B^\alpha(q) := \int_{G_B^{-1}(1-q)}^{G_B^{-1}(q)} \left(\Pi_B^\alpha(r) + \alpha J_B(r) \right) g_B(r) dr + (\Lambda_B - \alpha) U_B,
\]
\[
\phi_S^\alpha(q) := \int_{G_S^{-1}(q)}^{G_S^{-1}(1-q)} \left(\Pi_S^\alpha(r) - \alpha J_S(r) \right) g_S(r) dr + (\Lambda_S - \alpha) U_S.
\]
Then, our problem becomes one of maximizing the expectation of an additive function over two distributions, subject to an inequality ordering the means of those distributions. We can thus employ the concavification approach to simplify the problem.

Lemma 1. Suppose that there exists \(\alpha^* \geq 0 \) and distributions \(H_S^* \) and \(H_B^* \) such that
\[
\int_0^1 \phi_S^{\alpha^*}(q) dH_S^*(q) + \mu \int_0^1 \phi_B^{\alpha^*}(q) dH_B^*(q) = \max_{Q \in [0, \mu \wedge 1], U_B, U_S \geq 0} \left\{ \text{co}\left(\phi_S^{\alpha^*} \right)(Q) + \mu \text{co}\left(\phi_B^{\alpha^*} \right)(Q/\mu) \right\},
\]
with constraints (4.4) and (4.5) holding with equality, where \(\text{co}(\phi) \) denotes the concave closure of \(\phi \), that is, the point-wise smallest concave function that lies above \(\phi \). Then, \(H_S^* \) and \(H_B^* \) correspond to an optimal mechanism.

Conversely, if \(H_B^* \) and \(H_S^* \) are optimal, we can find \(\alpha^* \) such that (4.4)–(4.6) hold.

Finally, because the optimal \(H_j^* \) concavifies a one-dimensional function \(\phi_j^\alpha \) while satisfying a linear constraint (4.5), Carathéodory’s Theorem implies that it is without loss of generality to assume that the lottery induced by \(H_j^* \) has at most three realizations; this yields a \((3+3)\)-price characterization. We can further reduce the dimensionality of the optimal solution by noticing that if two three-point lotteries \(H_S \) and \(H_B \) satisfy two constraints jointly—(4.4) and (4.5)—we can find an alternative pair of lotteries that also satisfy the constraints but put no mass on two out of the six points in their joint supports. This yields the 4-price characterization we state in the first part of Theorem 1. If additionally a strictly positive lump-sum payment is used for side \(j \), then the Lagrange multiplier \(\alpha^* \) must be equal to \(\Lambda_j \); hence, the Lagrangian (4.6) must be constant in \(U_j \). Starting from a 4-price mechanism, we can then find a 3-price mechanism such that (4.4) holds, and the budget constraint (4.5) is satisfied as an inequality. Then, we can increase \(U_j \) to satisfy (4.5) as an equality—the alternative solution still maximizes the Lagrangian, and is thus optimal. The proof of Lemma 1, as well as the formal proof of the preceding claims, can be found in Appendixes B.1 and B.2, respectively.

Remark 1. If instead of facing a budget balance constraint (BB), the mechanism designer were to maximize a weighted sum of total surplus (OBJ’) and revenue, with weight \(\alpha \) on
the revenue objective, then the optimal mechanism would concavify the objective function with no further constraints. Because the objective function for both sides of the market is one-dimensional, we could conclude in that case (again, by Carathéodory’s Theorem) that a \((2 + 2)\)-price mechanism would always be optimal.

5 Optimal Mechanism under Inequality-Based Social Preferences

In this section, we characterize the optimal mechanism for the case in which social preferences come from the following model of inequality. For each agent, there exists a pair of values, \(v^K\) and \(v^M\), for units of goods \(K\) and \(M\), respectively; these values represent the social surplus created by assigning the goods to that agent, but they are not observed by the designer. The values \(v^K\) and \(v^M\) also describe the individual’s preferences by defining the rate of substitution \(v^K/v^M\) between the good and money (given the rate \(r \equiv v^K/v^M\), the agent’s preferences are defined as in Section 3). The pair \((v^K, v^M)\) is distributed according to a joint distribution \(F_S(v^K, v^M)\) for sellers, and \(F_B(v^K, v^M)\) for buyers. The distribution \(F_j\) is continuous and fully supported on \([\bar{v}_j^K, \bar{v}_j^K] \times [\bar{v}_j^M, \bar{v}_j^M]\), with \(\bar{v}_j^K \geq 0, \bar{v}_j^M \geq 0\), and \(j \in \{B, S\}\). The designer knows the distribution of \((v^K, v^M)\) on both sides of the market and chooses a mechanism to maximize total value. We will refer to the above framework as the two-dimensional value model.

In the two-dimensional value model, in general, direct mechanisms should allow agents to report their two-dimensional types. However, as we show in Appendix A.1, it is without loss of generality to assume that agents only report their rates of substitution. Intuitively, reporting rates of substitution suffices because those rates fully describe individual agents’ preferences. (The mechanism could elicit information about both values by making agents indifferent between reports—but we show that this cannot raise the surplus achieved by the optimal mechanism.) This implies that we can write the objective function of the designer as

\[
TV = \mu \int_{\bar{v}_B^K}^{v^K_B} \int_{\bar{v}_B^M}^{v^M_B} \left[X_B(v^K/v^M) v^K - T_B(v^K/v^M) v^M \right] dF_B(v^K, v^M) \\
+ \int_{\bar{v}_S^K}^{v^K_S} \int_{\bar{v}_S^M}^{v^M_S} \left[-X_S(v^K/v^M) v^K + T_S(v^K/v^M) v^M \right] dF_S(v^K, v^M), \quad (VAL)
\]

with the set of feasible mechanisms being the same as in Section 3.

\[12\] For the problem to admit a solution, we must assume that \(\alpha \geq \max\{\Lambda_B, \Lambda_S\}\).
Given objective (VAL), it is straightforward to see that the preceding problem is in fact equivalent to solving the problem of maximizing (OBJ) over feasible mechanisms, with \(G_j(r) \) derived from the joint distribution \(F_j(v^K, v^M) \) given that \(r \equiv \frac{v^K}{v^M} \), and the Pareto weights chosen to be

\[
\lambda_j(r) = \mathbb{E}^j \left[v^M \mid \frac{v^K}{v^M} = r \right].
\] (5.1)

That is, the Pareto weight on an agent with rate \(r \) is her expected value for money conditional on \(r \). This observation allows us to apply the results of Section 4 by studying the properties of the optimal mechanism under Pareto weights (5.1). In Appendix A.1, we show additionally that any set of Pareto weights can be obtained by choosing appropriate joint distributions \(F_j \). Therefore, the Pareto weight model of Section 3 and the two-dimensional value model are equivalent under the mapping defined by (5.1).

5.1 Measures of inequality

Before we describe the optimal mechanism, we formalize the idea of inequality in our model. Define

\[
m_j = \mathbb{E}^j [v_M],
\] (5.2)

for \(j \in \{B, S\} \), as buyers’ and sellers’ average values for money, and let

\[
D_j(r) = \frac{\mathbb{E}^j \left[v_M \mid \frac{v^K}{v^M} = r \right]}{m_j}
\] (5.3)

be the (normalized) conditional expectation of the value for money when the marginal rate of substitution is \(r \). The normalization means that \(D_j(r) \) is equal to 1 on average, by the law of iterated expectations. For clarity of exposition, we assume that \(D_j(r) \) is non-increasing in \(r \) for \(j \in \{B, S\} \).\(^\text{13}\)

Definition 3. We have **cross-side inequality** if \(m_S \neq m_B \). We have **same-side inequality** (for side \(j \)) if \(D_j \) is not identically equal to 1.

We say that same-side inequality is **low** for sellers if \(D_S(r_S) \leq 2 \); we say that same-side inequality is **high** for sellers if \(D_S(r_S) > 2 \).

Under the assumption that \(D_j(r) \) is decreasing, a seller with the lowest rate of substitution \(r_S \) is the “poorest” seller that can be identified based on behavior in the marketplace (she

\(^{13}\)This assumption is not used in any of the proofs but is used in the discussions. Moreover, we later introduce a regularity condition that implicitly makes a weaker version of the above assumption (and which is used in the proofs). We make a stronger assumption here to emphasize the economic intuition—see the discussion in the next subsection.
has the highest conditional expected value for money). Same-side inequality is low if this “poorest” seller has a conditional expected value for money that does not exceed the average value for money by more than a factor of 2. The opposite case of high same-side inequality implies that the “poorest” seller has a conditional expected value for money that exceeds the average by more than a factor of 2. It turns out that the threshold of 2 delineates qualitatively different solutions to the optimal design problem. A similar concept can be defined for buyers.

5.2 Regularity conditions

We impose additional regularity conditions to simplify the characterization of optimal mechanisms. First, we assume that the densities g_j of the distributions G_j of the rates of substitution are strictly positive and continuously differentiable (in particular continuous) on $[\underline{r}_j, \bar{r}_j]$, and that virtual surplus functions $J_B(r)$ and $J_S(r)$ are non-decreasing. We make the latter assumption to highlight the role that inequality plays in determining whether the optimal mechanism makes use of rationing: With non-monotone virtual surplus functions, rationing (known in this context as “ironing”) could arise as a consequence of revenue-maximization motives implicitly present in our model due to the budget balance constraint. We need an even stronger condition to rule out ironing due to irregular local behavior of the densities g_j. Let

$$
\Delta_S(p) := \frac{\int_{\underline{r}_S}^{p} [D_S(\tau) - 1] g_S(\tau)d\tau}{g_S(p)},
$$

$$
\Delta_B(p) := \frac{\int_{p}^{\bar{r}_B} [1 - D_B(\tau)] g_B(\tau)d\tau}{g_B(p)}.
$$

Assumption 1. The functions $\Delta_S(p) - p$ and $p + \Delta_B(p)$ are strictly quasi-concave in p.

A sufficient condition for Assumption 1 to hold is that the functions $\Delta_j(p)$ are (strictly) concave. Intuitively, concavity of $\Delta_j(p)$ is closely related to non-increasingness of $D_j(r)$ (these two properties become equivalent when g_j is uniform). A non-increasing $D_j(r)$ reflects the belief of the market designer that agents with lower willingness to pay (lower r) are “poorer” on average, that is, have a higher conditional expected value for money. This assumption is economically intuitive but is restrictive in that it disciplines social preferences—the designer attaches a higher Pareto weight to agents with lower rates of substitution.

14 When the support of (v^K, v^M) is a product set which does not contain the origin $(0, 0)$, the lowest rate of substitution identifies a seller with the highest realized value for money.

15 We comment on the interpretation of this threshold in Appendix A.2.

16 The strict quasi-concavity in Assumption 1 simplifies the proof but is not essential.
Specifically, \(\lambda_j(r) = m_j D_j(r) \). When \(D_j(r) \) is assumed to be decreasing, concavity of \(\Delta_j \) rules out irregular local behavior of \(g_j \). Each function \(\Delta_j(p) \) is 0 at the endpoints \(r_j \) and \(\bar{r}_j \), and non-negative in the interior. There is no same-side inequality if and only if \(\Delta_j(p) = 0 \) for all \(p \). We show in Appendix A.2 that, more generally, the functions \(\Delta_j \) measure same-side inequality by quantifying the change in surplus associated with running a one-sided price mechanism with price \(p \) (which redistributes money from richer to poorer agents on the same side of the market). There, we also give examples of primitive distributions \(F_j \) that satisfy the regularity conditions.

5.3 Solution with inequality

In this section, we show that lump-sum transfers are an optimal response of the market designer when cross-side inequality is significant, and that rationing can be optimal only when same-side inequality is sufficiently large.

Theorem 2. Suppose that Assumption 1 holds, and same-side inequality for sellers is low. Then, the optimal mechanism is a price mechanism (with prices \(p_B \) and \(p_S \)).

When \(m_S \geq m_B \), a competitive equilibrium mechanism is optimal if and only if

\[
m_S \Delta_S(p^{CE}) - m_B \Delta_B(p^{CE}) \geq (m_S - m_B) \frac{1 - G_B(p^{CE})}{g_B(p^{CE})}. \tag{5.6}
\]

When condition (5.6) fails, we have \(p_B > p_S \), and prices are determined by market-clearing \(\mu(1 - G_B(p_B)) = G_S(p_S) \), and, in the case of an interior solution,

\[
p_B - p_S = -\frac{1}{m_S} \left[m_S \Delta_S(p_S) - m_B \Delta_B(p_B) - (m_S - m_B) \frac{1 - G_B(p_B)}{g_B(p_B)} \right]. \tag{5.7}
\]

The mechanism subsidizes the sellers. (The case \(m_B > m_S \) is described in Appendix B.3).

The intuition behind Theorem 2 is that a price mechanism performs relatively well both in terms of allocative efficiency and in terms of redistribution. Why? A price mechanism induces the planner’s desired selection of traders: the poorest sellers sell (and hence receive a transfer), and the poorest buyers do not buy (hence are not deprived of any money). There is, however, a trade-off between allocative efficiency and redistribution, as the marginal rate of substitution is not a perfect signal for the pair of values \((v^K, v^M) \); that trade-off determines whether there is a gap between the buyer and seller prices (in which case there

\[17\]When no such interior solution exists, one of the prices is equal to the bound of the support: either \(p_B = r_B \) or \(p_S = \bar{r}_S \).
are also lump-sum transfers) or not (in which case the competitive equilibrium mechanism is optimal).

In the special case of no same-side inequality, Assumption 1 is automatically satisfied; (5.6) cannot hold unless \(m_B = m_S \); and (5.7) boils down to

\[
p_B - p_S = \left(\frac{m_S - m_B}{m_S} \right) \frac{1 - G_B(p_B)}{g_B(p_B)}.
\]

Thus, when there is no same-side inequality, there is a gap between the prices proportional to the size of the cross-side inequality, and the “poorer” side receives a strictly positive subsidy if and only if \(m_S \neq m_B \). Obviously, when there is neither same-side nor cross-side inequality, condition (5.6) holds trivially and a competitive equilibrium is optimal.

Theorem 2 allows us to derive the optimal mechanism for the setting of Section 2—that is, where there is no same-side inequality, buyers have value 1 for each unit of money, and sellers have value for money \(m \geq 1 \). By Theorem 2, there is no rationing in the optimal mechanism, and the optimal buyer and seller prices are given by \(p_B = 1/2 \) and \(p_S = 1/(2m) \), respectively. The total lump-sum transfer to the seller side is \((m - 1)/(4m)\). This is exactly the mechanism described in Section 2.2. It can be shown (see the generalized statement of Theorem 2 in Appendix B.3) that in the opposite case when buyers are poorer \((m < 1)\), the optimal mechanism is given by \(p_S = 1/2, p_B = 1 - m/2 \), and it is the buyers who receive the lump-sum transfer.

A disadvantage of the price mechanism is that it is limited in how much wealth can be redistributed to the poorest agents. Indeed, in the case \(m_S \geq m_B \) the price received by the sellers is capped by the market-clearing condition, and the revenue is shared by all sellers equally. When same-side inequality is low, a lump-sum transfer to all sellers is a fairly effective redistribution channel. However, when same-side inequality is high, the conclusion of Theorem 2 may fail, as the planner may prefer to use market-clearing to target transfers to poorer sellers.

Theorem 3. Suppose that Assumption 1 holds, \(m_S \geq m_B \), and same-side inequality for sellers is high. Then, if \(\mu \) is low enough (there are few buyers relative to sellers), the optimal mechanism rations the sellers (and is a price mechanism for the buyer side).

The intuition behind Theorem 3 is straightforward. With high same-side inequality, the designer would like to transfer wealth to the poorest sellers. When there are only few buyers, the revenue of the mechanism is small relative to the number of sellers—and because lump-sum payments must be allocated equally across sellers, the lump-sum transfer to the poorest sellers becomes tiny. By abandoning a price mechanism, however, the designer has
an additional channel to redistribute wealth: she can set a price for sellers above the market-clearing level, making sure that more wealth goes to the sellers who agree to trade. To clear the market, the designer must then ration the sellers.

Remark 2. We can derive an explicit upper bound for \(\mu \) in Theorem 3 if \(m_S \) is sufficiently higher than \(m_B \) (so that competitive equilibrium cannot be optimal) and the density \(g_S(r) \) is non-increasing. In this case, let \(r^* = D^{-1}_S(2) \), so that \(G_S(r^*) \) is the mass of sellers whose conditional value for money exceeds the average more than twice. Then, if \(\mu \leq G_S(r^*) \), the conclusion of Theorem 3 applies.

We note that Theorem 3 does not have a counterpart for the case in which buyers are poor.

Theorem 4. Under Assumption 1, no optimal mechanism ever rations the buyers.

Theorem 4 explains why we have only defined high same-side inequality for the seller side. This difference between buyers and sellers is not an artifact of our modeling approach; rather, it is a consequence of the inherent asymmetry between buyers and sellers in the context of inequality. A market mechanism selects the poorest sellers and the richest buyers to trade, all else equal. Thus, the desire to trade can be used as a tool to subsidize the poorest sellers—but no such tool can be used to subsidize the poorest buyers, as the poorest buyers are those who do not trade. Thus, the only way to transfer money to poorest buyers is through lump-sum transfers.

We present parametric examples illustrating Theorems 2 and 3 in Appendix A.3. In particular, we show that an example of a tractable family of distributions satisfying our regularity conditions can be derived from a Pareto distribution of wealth under CRRA utility.

6 What if lump-sum redistribution is not feasible?

The optimal mechanism we identify (both in full generality à la Theorem 1 and in the cases just discussed) often redistributes wealth through direct lump-sum transfers.

Lump-sum transfers are natural in contexts in which the buyer and seller populations can be clearly defined according to characteristics that are either costly to acquire or completely exogenous—for example, if the only potential sellers are those who own land in a given area, or if the only eligible sellers are military veterans (as in some labor markets). Likewise, lump-sum transfers make sense when there is a licensing requirement or other rule that prevents agents from entering the market just to claim the transfer, or when the transfer can be made to an outside authority (e.g., a charity) that benefits the target population.
Nevertheless, lump-sum transfers may be difficult to implement in cases where buyer/seller participation is fully flexible. Indeed, imagine a mechanism that pays a constant amount to sellers regardless of whether they trade. In such mechanisms, the sellers with the highest marginal rates of substitution might get strictly positive utility from participating in the marketplace even though they never trade; this creates an incentive for additional agents to enter the marketplace to reap the free benefit. Excess entry could then undermine the budget balance condition. Consequently, we consider one additional constraint on the set of mechanisms.\footnote{One might think that a cleaner way to rule out the problem just described is to assume that a trader can only receive a transfer conditional on trading. Making transfers conditional on trading, however, would not work in our risk-neutral setting because an arbitrary expected transfer T can be paid to an agent by paying her T/ϵ in the ϵ-probability event of trading; because ϵ is arbitrarily small, this causes no distortion in the actual allocation.}

Assumption 2 ("No Free Lunch"). The participation constraints of the lowest-utility type of buyers ℓ_B, and of the lowest-utility type sellers \bar{r}_S both bind, that is, types ℓ_B and \bar{r}_S are indifferent between participating or not.

Under Assumption 2, the methods of the previous sections apply immediately, with the only modification that we set $U_S = U_B = 0$ in Lemma 1 (and hence U_S and U_B no longer appear as optimization parameters in the Lagrangian (4.6)). Theorem 1 then implies that a 4-price mechanism is optimal. The sufficient condition for optimality of competitive equilibrium from Theorem 2 is still valid, since a competitive equilibrium mechanism does not use lump-sum transfers. However, the optimal mechanism from the second part of Theorem 2 is ruled out. Another novel aspect of the analysis is that we can no longer assume that the budget balance condition binds at the optimal solution—Lemma 1 needs to be appropriately modified)—because it is not feasible to distribute budget surplus using lump-sum transfers.

6.1 Rationing when lump-sum transfers are ruled out

We have seen in Section 5 that rationing can only be optimal when there is significant same-side seller inequality. Yet the discussion in Section 5 relied to a large extent on the fact that cross-side inequality can be addressed by using lump-sum transfers. In this section, we show that when lump-sum transfers are ruled out, rationing may be used to address cross-side inequality. To make this point in a sharp way, for now we shut down same-side inequality completely (see Appendix A.5 for a numerical example with same-side inequality).

We assume that $D_B(r) = D_S(r) = 1$ for all r. Moreover, sellers are poorer on average: $m_S \geq m_B$. We can without loss normalize $m_B = 1$. We impose a stronger regularity assumption on the behavior of virtual surplus functions. Because we now have $G_B(r) = F_K^B(r)$, and

\begin{align*}
\frac{G_B(r)}{F_K^B(r)} = \frac{F_K^B(r)}{F_K^B(r)} = 1.
\end{align*}
\(G_S(r) = F^K_S(m_S r)\), we phrase the conditions in terms of the marginal distributions of values for good \(K\).

Assumption 3. The information rent terms for buyers and sellers are monotone: \(F^K_S(r)/f^K_S(r)\) is non-decreasing while \((1 - F^K_B(r))/f^K_B(r)\) is non-increasing.

To simplify notation, we let \(I_S(r) := F^K_S(r)/f^K_S(r)\).

Proposition 1. Suppose that Assumptions 2 and 3 both hold. A price mechanism is optimal for the buyer side. If

\[
m_S \leq 1 + \frac{1}{\sup_r \{I'_S(r)\}},
\]

then the competitive equilibrium mechanism is optimal. On the other hand, if \(p^{CE}\) denotes the competitive equilibrium price, \(c := f^K_S(m_S p^{CE})/f^K_B(p^{CE}), d := I'_S(m_S p^{CE})\), and

\[
m_S > 1 + \frac{1}{d} + \frac{\mu}{cd},
\]

then it is optimal to ration the sellers.

Proposition 1 implies that if \(f^K_B\) is bounded away from 0 and the information rents \(I_S(r)\) for the sellers have a derivative that is finite and bounded away from 0, then a competitive equilibrium mechanism is optimal under small \(m_S\) (i.e., when cross-side inequality is relatively small) and rationing on the seller side is optimal under large \(m_S\) (i.e., when cross-side inequality is relatively large).

For example, consider the case in which \(F^K_S(x) = x^{\alpha_S}\) and \(F^K_B(x) = x^{\alpha_B}\) with \(\alpha_S \leq \alpha_B\) (buyers have stochastically higher values). In this case we have \(\sup_r \{I'_S(r)\} = d = 1/\alpha_S\) and \(c \geq \alpha_S m_S^{\alpha_S - 1}/\alpha_B\). Therefore, competitive equilibrium is optimal for

\[
m_S \leq 1 + \alpha_S,
\]

and rationing on the seller side is optimal for

\[
m_S > 1 + \alpha_S + \mu \alpha_B m_S^{1-\alpha_S}.
\]

In the simple setting of Section 2 (uniform distributions), we can obtain a stronger result which implies that the single-price mechanism described in Section 2.1 is actually optimal under Assumption 2.
Claim 2. In the setting of Section 2 with $m \geq 1$, under Assumption 2, the optimal mechanism is to set a single price p^*, where

$$p^* = \begin{cases}
 p_{CE} & m \leq 3 \\
 \frac{m-2}{2m-2} & 3 < m < 2 + \sqrt{2} \\
 \frac{1}{m} & m \geq 2 + \sqrt{2}
\end{cases}$$

is as in (2.2). In particular, there is rationing (on the seller side) if and only if $m > 3$.

Finally, we show, by means of an example, that rationing can be optimal on the buyer side when lump-sum redistribution is ruled out. We adopt the setting of Section 2 with $m < 1$. The following claim is established in a fashion analogous to Proposition 1 and Claim 2, so we omit the proof.

Claim 3. In the setting of Section 2 but with $m < 1$, under Assumption 2, the optimal mechanism is to set a single price p^*, where

$$p^* = \begin{cases}
 p_{CE} & m \geq 1/3, \\
 \frac{1}{2-2m} & m < 1/3.
\end{cases}$$

In particular, there is rationing on the buyer side if and only if $m < 1/3$.

The intuition behind Claim 3 is straightforward: When buyers cannot be subsidized via lump-sum transfers, the designer can only raise buyer surplus by pushing the price below the market-clearing level (i.e., through a price ceiling/cap); when buyers are sufficiently poor relative to sellers, such a policy becomes optimal.

7 Implications for Policy

Our work suggests that there might be real opportunities for market design to improve outcomes in markets with inequality. Moreover, our results provide guidance as to the types of mechanisms that market designers seeking to mitigate inequality might use.

In most ridesharing markets, for example, we might expect that sellers (that is, drivers) are systematically poorer than buyers (riders) (see, e.g., Hall and Krueger (2018); Kooti et al. (2017)); to mitigate such cross-side inequality, a social planner could impose a price wedge, to finance a lump sum transfer to the drivers (see Theorem 1). Rideshare companies already impose a price wedge to raise revenue; the wedge could perhaps be increased to finance a direct transfer, such as health insurance for the drivers. The planner might also be
concerned about same-side inequality among drivers—some relatively wealthy people might register as drivers to make car ownership tax-deductible as a business expense.\footnote{Some also drive to promote their businesses (Youshiae (2015)), or even to inform their economics papers (Angrist et al. (2017)).} In that case, the planner would want to use a driver price floor, along with rationing, and make sure that the sellers benefiting from the intervention are those who have the highest willingness to sell—and who are also likely the poorest—that is, those who drive the most hours (see Theorem 3).

In rental housing markets, meanwhile, there is cross-side inequality, with sellers (landlords) typically being wealthier than buyers (renters); moreover, there is substantial same-side inequality among renters. If lump-sum redistribution is feasible, our results would imply that—contrary to many existing “rent control” policies—price ceilings with rationing are a suboptimal solution. Indeed, even among renters, the wealthier are more likely to be able to afford any given housing unit; consequently, a price cap has higher value, on average, for the relatively wealthier renters (see Theorem 4). Instead, a social planner concerned about inequality in housing markets should provide direct transfers to everyone seeking housing, perhaps in the form of tax credits.\footnote{For some empirical evidence supporting this view, see the recent work of Diamond et al. (2018).} (Although if tax credits are not feasible, rent control could still be a second-best solution.)

8 Conclusion

Wealth inequality is a central and growing problem in modern society. Our work here highlights one way that markets may play a role in the solution: Markets themselves can be used to effect redistribution—particularly when more global redistributive instruments are not available. When there is substantial inequality between buyers and sellers, the optimal mechanism for a planner who cares about inequality imposes a wedge between buyer and seller prices, passing on the resulting surplus to the poorer side of the market. When there is significant within-side inequality, meanwhile, the optimal mechanism imposes price controls even though doing so induces rationing.

Of course, it is a classical result in economics that for any distortionary allocative rule the social planner might choose, there is some system of taxes and redistribution that implements an outcome in which everyone is (weakly) better off. In practice, however, systemic inequality is hard to completely address through tax system alone, for both methodological and political reasons. Meanwhile, it seems unlikely that the current tax system corresponds to the optimal nonlinear tax schedule that would be set by a fully informed, inequality-aware
social planner. Thus, there might be real scope for market-level redistributive designs of the types we describe here. And indeed, our findings might partially justify the widespread use of price controls and other market-distorting regulations in settings with substantial inequality.

Additionally, our findings suggest that marketplaces that enable lower-income agents to participate in new types of exchanges with higher-income ones—such as ridesharing platforms and online labor marketplaces—may have significant social value beyond their purely allocative impacts. However, our results also imply that to mitigate inequality, such marketplaces may need either active redistribution through a combination of a price wedge and a lump-sum transfer (e.g., in the form of employer-provided health insurance for active employees) or minimum wage-like price controls, or possibly both.

Of course, our framework abstracts from several practical considerations that could be important in real-world settings. For instance, if there is an aftermarket—i.e., agents can engage in post- or outside-of-mechanism trades—then the mechanisms we consider might no longer be incentive-compatible (or budget-balanced). In addition, the generic form of our optimal solution is a randomized mechanism, which can lead to wasted pre-market investments, and negatively affects the utilities of risk-averse agents; both of these concerns are particularly salient in contexts with inequality, since the poor often have both less ability to undertake upfront investments, and less tolerance for day-to-day income variance. Optimal redistribution through markets accounting for these sorts of additional design constraints is an interesting question for future research.

More broadly, there may be value in further reflecting on how underlying macroeconomic issues like inequality should inform market design. And we hope that the modeling approach applied here—allowing agents to have different marginal values of money—may prove useful for studying inequality in microeconomic contexts.

References

Weitzman, M. L. (1977): “Is the price system or rationing more effective in getting a commodity to those who need it most?” Bell Journal of Economics, 8, 517–524.

A Additional Discussions and Results

A.1 Equivalence between the Pareto weight model and the two-dimensional value model

In this appendix we formally establish the equivalence between the Pareto weight model of Section 3 and the two-dimensional value model of Section 5. Proofs are collected at the end of the section.

Consider the two-dimensional value model. By the Revelation Principle, it is without loss of generality to assume that agents report their two-dimensional types to the designer; we denote a direct mechanism in this setting by \((\hat{X}_B, \hat{X}_S, \hat{T}_B, \hat{T}_S)\). The allocation and transfer rules are defined as in Section 3 but are now functions of the two-dimensional types \((v^K, v^M)\). For example, \(\hat{X}_B(v^K, v^M)\) is the probability that a buyer gets the object when she reports \((v^K, v^M)\) to the direct mechanism. The definition of a feasible mechanism is analogous to the one introduced in Section 4 (see Definition 1), except that all constrains are written in terms of the two-dimensional types, and expectations are taken with respect to the multi-variate distribution \(F_j\) (we omit the formal statement of these definitions). The total-value objective function is defined by

\[
TV = \mu \int_{\overline{v}_K^B}^{\overline{v}_M^B} \int_{\overline{v}_K^B}^{\overline{v}_M^B} \left[\hat{X}_B(v^K, v^M)v^K - T_B(v^K, v^M)v^M \right] dF_B(v^K, v^M) \\
+ \int_{\overline{v}_K^S}^{\overline{v}_M^S} \int_{\overline{v}_K^S}^{\overline{v}_M^S} \left[-\hat{X}_S(v^K, v^M)v^K + \hat{T}_S(v^K, v^M)v^M \right] dF_S(v^K, v^M). \tag{A.1}
\]

We establish the equivalence to the setting considered in Section 3 in three steps:

1. We show that, without loss of generality, an incentive-compatible mechanism in the two-dimensional value model only elicits information about the rate of substitution, \(v^K/v^M\); thus, the space of feasible mechanisms is the same in both frameworks.

2. We argue that the total value function (VAL) corresponds exactly to the objective function (OBJ) with Pareto weights \(\lambda_j(r)\) defined to be the expected value of \(v^M\) conditional on observing a rate of substitution \(r = v^K/v^M\).

3. As a consequence, if \(G_j\) is the distribution of \(v^K/v^M\) under \(F_j\), and Pareto weights are defined as in Step 2, the same mechanism is optimal in both settings.

Step 1. We first formalize the idea that although agents have two-dimensional types, it is without loss of generality to consider mechanisms that only elicit information about the rate
Lemma 2. If \((\bar{X}_B, \bar{X}_S, \bar{T}_B, \bar{T}_S)\) is an incentive-compatible mechanism, then there exists a mechanism \((X_B, X_S, T_B, T_S)\) such that \(\bar{X}_j(v^K, v^M) = X_j(v^K/v^M)\) and \(\bar{T}_j(v^K, v^M) = T_j(v^K/v^M)\) for almost all \((v^K, v^M)\) and \(j \in \{B, S\}\).

Thanks to Lemma 2, and the assumption that there are no mass points in the distribution of values, we can assume that the space of feasible direct mechanisms in the two-dimensional value setting is the same as the one considered in Section 3. From now on, with slight abuse of notation, we use \((X_B, X_S, T_B, T_S)\) to denote a generic mechanism that elicits one-dimensional reports in both settings (with the convention that in the two-dimensional framework, agents report their rates of substitution \(v^K/v^M\)).

Step 2. To define the mapping between the distribution \(F_j\) and the Pareto weights \(\lambda_j(r)\), define (as in Section 5.1)

\[m_j = \mathbb{E}^j [v_M], \]

for \(j \in \{B, S\}\), as the average value for money, and

\[D_j(r) = \frac{\mathbb{E}^j [v_M | \frac{v^K}{v^M} = r]}{m_j} \]

as the (normalized) conditional expected value for money when the marginal rate of substitution is \(r\). Moreover, let \(G_j\) be the distribution of the random variable \(v^K/v^M\) when \((v^K, v^M)\) is distributed according to \(F_j\). Then, using Step 1, if we define \(\lambda_j(r) = m_j D_j(r)\), the objective functions (OBJ) and (VAL) become identical:

\[
TV = \mu \mathbb{E}^B \left[X_B \left(\frac{v^K}{v^M} \right) v^K - T_B \left(\frac{v^K}{v^M} \right) v^M \right] + \mathbb{E}^S \left[-X_S \left(\frac{v^K}{v^M} \right) v^K + T_S \left(\frac{v^K}{v^M} \right) v^M \right] = TS(\Lambda).\
\]

Step 3. We can now establish the following result.

\(^{21}\)While it is clear that the rate of substitution fully describes agents’ behavior, it could be hypothetically possible that the designer elicits more information by offering different combinations of trade probabilities and transfers among which the agent is indifferent; we show, however, that this is only possible for a measure-zero set of agents’ types, and thus cannot strictly improve the designer’s objective.
Theorem 5. If a mechanism \((X_B, X_S, T_B, T_S)\) is feasible (optimal) in the setting of Section 5, then it is also feasible (optimal) in the setting of Section 3 with \(G_j\) being the distribution of \(v^K/v^M\) under \(F_j\), and \(\lambda_j(r) = m_jD_j(r)\).

Conversely, if a mechanism \((X_B, X_S, T_B, T_S)\) is feasible (optimal) in the setting of Section 3, then there exists a joint distribution \(F_j\) such that it is also feasible (optimal) in the setting of Section 5, \(v^K/v^M\) has distribution \(G_j\), and \(m_jD_j(r) = \lambda_j(r)\).

Theorem 5 establishes an equivalence between the two versions of our model. A further implication is that studying the two-dimensional model, for all possible distributions \(F_j\), captures all possible social preferences over the Pareto frontier.

A.1.1 Proof of Lemma 2

We start with the following result that will be a key step in the proof.

Lemma 3. Let \(X(\theta_1, \theta_2)\) be a function defined on \([\bar{\theta}_1, \bar{\theta}_1] \times [\bar{\theta}_2, \bar{\theta}_2]\), with \(\theta_1, \theta_2 \geq 0\), and assume that \(X(\theta_1, \theta_2)\) is non-decreasing in \(\theta_1/\theta_2\), that is

\[
\frac{\theta_1}{\theta_2} > \frac{\theta_1'}{\theta_2'} \implies X(\theta_1, \theta_2) \geq X(\theta_1', \theta_2').
\]

Then, there exists a non-decreasing function \(x : [\bar{\theta}_1/\bar{\theta}_2, \bar{\theta}_1/\bar{\theta}_2] \to \mathbb{R}\) such that \(X(\theta_1, \theta_2) = x(\theta_1/\theta_2)\) almost everywhere.

Proof of Lemma 3. Consider \(Y(r, \theta_2) = X(r\theta_2, \theta_2)\). For small enough \(\epsilon > 0\) and almost all \(r \in [\bar{\theta}_1/\bar{\theta}_2, \bar{\theta}_1/\bar{\theta}_2]\),

\[
Y(r + \epsilon, \theta_2) \geq Y(r, \theta_2'), \forall \theta_2, \theta_2',
\]

by assumption. Because \(Y(r, \theta_2)\) is non-decreasing in \(r\) for every \(\theta_2\), it is continuous in \(r\) almost everywhere. Thus, for almost all \(r\) we obtain

\[
Y(r, \theta_2) \geq Y(r, \theta_2'), \forall \theta_2, \theta_2'.
\]

This, however, means that \(Y(r, \theta_2) = x(r)\) for almost all \(r\) (does not depend on \(\theta_2\)), for some function \(x\), that is moreover non-decreasing. Thus, \(X(r\theta_1, \theta_2) = x(r)\) for almost all \(r\). Therefore,

\[
X(\theta_1, \theta_2) = X \left(\frac{\theta_1}{\theta_2}, \theta_2 \right) = x \left(\frac{\theta_1}{\theta_2} \right)
\]

almost everywhere which finishes the proof. \(\square\)
We show that incentive compatibility for buyers implies that \(X_B(v^K, v^M) = X_B(v^K/v^M) \) for some non-decreasing \(X_B \). The argument for sellers is identical, and the statement for transfer rules follows immediately from the payoff equivalence theorem.

Incentive compatibility means that for all \((v^K, v^M)\) and \((\hat{v}^K, \hat{v}^M)\) in the support of \(F_B \) we have
\[
\bar{X}_B(v^K, v^M) \frac{v^K}{v^M} - \bar{T}_B(v^K, v^M) \geq \bar{X}_B(\hat{v}^K, \hat{v}^M) \frac{\hat{v}^K}{\hat{v}^M} - \bar{T}_B(\hat{v}^K, \hat{v}^M),
\]
as well as
\[
\bar{X}_B(\hat{v}^K, \hat{v}^M) \frac{\hat{v}^K}{\hat{v}^M} - \bar{T}_B(\hat{v}^K, \hat{v}^M) \geq \bar{X}_B(v^K, v^M) \frac{\hat{v}^K}{\hat{v}^M} - \bar{T}_B(v^K, v^M).
\]
Putting these two inequalities together,
\[
(\bar{X}_B(v^K, v^M) - \bar{X}_B(\hat{v}^K, \hat{v}^M)) \left(\frac{v^K}{v^M} - \frac{\hat{v}^K}{\hat{v}^M} \right) \geq 0.
\]
It follows that
\[
\frac{v^K}{v^M} > \frac{\hat{v}^K}{\hat{v}^M} \implies \bar{X}_B(v^K, v^M) \geq \bar{X}_B(\hat{v}^K, \hat{v}^M).
\]
By Lemma 3, it follows that there exists a non-decreasing \(X_B(\cdot) \) such that
\[
\bar{X}_B(v^K, v^M) = X_B(v^K/v^M)
\]
which finishes the proof.

A.1.2 Proof of Theorem 5

Given Lemma 3, the proof of Theorem 5 is a matter of simple accounting. If \((X_B, X_S, T_B, T_S)\) is feasible in the setting of Section 3, then, under the convention that agents report the one-dimensional rate of substitution, the same mechanism is feasible in the two-dimensional framework. Because we have shown in Section 5 that the objective functions \((OBJ)\) and \((VAL)\) are identical under the assumptions of the theorem, optimality in one framework establishes optimality in the other.

For the converse part, we only have to show that given arbitrary \(G_j \) and \(\lambda_j(r) \), we can find a joint distribution \(F_j \) of \((v^K, v^M)\) that induces them under the mapping described by the theorem. Fixing the random variable \(r \) (on some probability space) with distribution \(G_j(r) \), define random variables \(v^K = r\lambda_j(r) \) and \(v^M = \lambda_j(r) \). It is clear that the distribution of \(v^K/v^M \) is the same as that of \(r \) because these random variables are equal. Moreover, again
by definition,
\[m_j D_j(r) = \mathbb{E}^j \left[v^M \mid \frac{v^K}{v^M} = r \right] = \lambda_j(r). \]
This finishes the proof.

A.2 Interpreting our key regularity condition

We have imposed a relatively strong regularity condition (Assumption 1); in this section, we give an interpretation.

Observe that a price mechanism (in which we ignore market-clearing and only look at one side of the market) can be used to measure same-side inequality. Consider the seller side for concreteness, and suppose that we raise the price from \(p \) to \(p + \epsilon \). The following two terms capture the associated gain in seller surplus:

\[\epsilon \int_p^p m_S D_S(\tau) g_S(\tau) d\tau + \int_p^{p+\epsilon} m_S D_S(\tau)(p + \epsilon - \tau) d\tau. \]

That is, (1) sellers who were already selling at price \(p \) still sell at price \(p + \epsilon \), and hence receive an additional transfer of \(\epsilon \), which has expected value \(m_S D_S(\tau) \) for a seller with rate \(\tau \); and (2) sellers with \(\tau \in (p, p + \epsilon] \) decide to sell receiving the corresponding surplus. The social cost of increasing the price to \(p + \epsilon \) is that more revenue must be generated by the mechanism to cover the additional expenditure. If the shadow cost of revenue is \(\alpha \), then that cost is

\[-\alpha \left[\epsilon G(p) + (p + \epsilon)(G(p + \epsilon) - G(p)) \right], \]

where the expression in brackets is equal to the additional monetary transfer to sellers associated with the price increase. Because we are interested in measuring same-side inequality, the relevant shadow cost of revenue comes from charging sellers a lump-sum fee to cover the expenditures—thus, the shadow cost \(\alpha \) is equal to the average value for money \(m_S \) for sellers. Dividing by \(\epsilon \), and taking \(\epsilon \rightarrow 0 \), yields the local (first-order) net gain in seller surplus at price \(p \):

\[m_S \left[\int_p^p \frac{D_S(\tau)g_S(\tau)d\tau}{g_S(p)} \right] g_S(p). \quad (A.2) \]

The first bracketed term in (A.2) is typically increasing, especially for small \(p \) when \(D_S(p) \) is relatively high, while the second bracketed term—minus the virtual surplus—is decreasing. Assumption 1 states that the bracketed expression in (A.2) can change from increasing to
decreasing at most once. Indeed, note that

\[
\int_0^p D_S(\tau) g_S(\tau) d\tau \quad \text{and} \quad \left(p + \frac{G_S(p)}{g_S(p)} \right) = \Delta_S(p) - p.
\]

The function \(\Delta_S \) measures same-side inequality by quantifying the reduction in inequality associated with a price mechanism with price \(p \). The function \(\Delta_S \) is 0 at the extremes \(p \in \{\underline{r}_S, \bar{r}_S\} \) (by definition of \(D_S \)), and \(\Delta_S \) is non-negative because \(D_S \) is decreasing. This is because a price mechanism with both the maximal (at which all sellers sell) and the minimal price (at which no sellers sell) fails to reduce inequality but any interior price mechanism induces a monetary transfer to relatively poorer sellers. The area below the graph of \(\Delta_S \) (and above 0) can thus be seen as a compact measure of same-side inequality. In particular, \(\Delta_S \equiv 0 \) if and only if there is no same-side inequality. Our regularity assumption means that as the price moves between its two extreme values at which inequality is unchanged, the reduction in inequality changes in a monotone fashion.

The distinction between high and low same-side inequality comes from studying the behavior of \(\Delta_S \) near \(\underline{r}_S \), that is, for the poorest sellers. For \(p \) close to \(\underline{r}_S \) we have

\[
\Delta_S(p) - p \approx \Delta_S'(\underline{r}_S)p - p = (D_S(\underline{r}_S) - 2)p.
\]

Thus, when same-side inequality is high \((D_S(\underline{r}_S) > 2) \), even a one-sided price mechanism leads to an improvement in the social objective function when the price is set so that only the poorest sellers trade. When same-side inequality is low \((D_S(\underline{r}_S) \leq 2) \), this is no longer the case, and, intuitively, the transfer received by poorest sellers must come from an exogenous source (the buyer side).

Figure A.1 depicts the function \(\Delta_S(p) \) derived under the assumption that \(v_k \) is uniform on \([0, 1]\) and \(v_M \) follows a Pareto distribution with tail parameter \(\alpha > 2 \), for different values of \(\alpha \). The functions are concave which is a sufficient condition for Assumption 1. The area below the curve is larger when \(\alpha \) is smaller—the fatter the tail of agents with high value for money, the larger the inequality. It can be shown more generally that \(\Delta_S(p) \) is concave when \(v_k \) follows a distribution with CDF \(F_S^K(v) = v^\beta \) for \(\beta > 0 \) and \(\alpha > \beta \). Another sufficient condition for concavity of \(\Delta_j(r) \), for \(j \in \{B, S\} \), is that \(g_B(p) \) is non-increasing, same-side inequality is low for sellers, and \(g_S(p) \) is non-decreasing.

\[22\] The reason why the density \(g_S(p) \) was pulled out from the expression in brackets is that in the full analysis we have to account for market-clearing, and thus the bracketed expression is weighted by the mass of sellers at a given price \(p \).
A.3 Numerical example

In this section, we consider a simple parametric example that illustrates our main theoretical results. First, we note that the conclusions from preceding sections continue to hold when we relax some of the regularity conditions on the distributions.

Remark 3. Theorem 2 continues to hold if we relax the assumption that densities \(g_j \) are strictly positive on \([r_j, \bar{r}_j]\). More generally, as long as virtual surplus functions are non-decreasing and Assumption 1 holds, a sufficient condition for Theorem 2 is that \(\Delta'_S(r_S) \leq 1 \). Theorem 3 continues to hold if we relax the assumption that the density \(g_S \) is continuous at \(r_S \) by allowing \(g_S(r_S) = \infty \).

The preceding remark follows from direct inspection of the proofs of Theorems 2 and 3. Intuitively, positive density at \(r_S \) is only needed for Theorem 3: It says that there exists a non-negligible mass of sellers with a rate of substitution close to the lowest one. On the other hand, the assumption that the density does not explode at \(r_S \) is only needed for Theorem 2: It makes sure that there are relatively few sellers with low rates of substitution.

In our numerical example, we keep fixed the distribution of values for the buyer side. We assume that \(v^K_B \sim \text{Uniform}[0, 1] \), and \(v^M_B \equiv 1 \). For the seller side, we consider the following two-dimensional family of distributions: \(v^K_S \sim F^K_S \) with \(F^K_S(v) = v^\beta \), for some \(\beta > 0 \), and \(v^M_S \sim \text{Pareto}(1, \alpha) \), where 1 is the location parameter and \(\alpha \) is the tail parameter. We assume that \(\alpha > 1 \) so that \(m_S = \alpha / (\alpha - 1) \) is finite. Lower \(\alpha \) means that the distribution has a thicker tail—this corresponds to the case in which there are relatively many poor sellers. Note that sellers are always poorer than buyers—that is, they always have higher values for money than buyers (the values are equal in the limit as \(\alpha \to \infty \)). The parameter \(\beta \) allows us to shift the distribution of values for the good—high \(\beta \) corresponds to values concentrated...
around high levels. When $\beta \leq 1$, sellers have stochastically smaller values for the good than buyers.

We can provide the following foundation for our assumption that the marginal value for money has a Pareto distribution: If an agent has CRRA utility for wealth
\[u(w) = \frac{w^{1-\eta} - 1}{1-\eta}, \]
and wealth w has a Pareto distribution with tail parameter γ, then $u'(w)$ (the marginal value) also has a Pareto distribution (with tail parameter γ/η).

It can be checked that our parametric family satisfies the following regularity conditions: the function $D_S(r)$ is decreasing ($D_B(r) \equiv 1$); virtual surplus functions $J_B(r)$ and $J_S(r)$ are non-decreasing; and Assumption 1 holds (trivially for the buyer side). It is not true in general that the density g_S is strictly positive and bounded on $[r_S, \bar{r}_S] = [0, 1]$—in fact, this is only true if $\beta = 1$. When $\beta > 1$, we have $g_S(0) = 0$, and when $\beta < 1$, $g_S(0) = \infty$ (that is why we extended our main results to cover these cases in Remark 3).

A.4 When lump-sum redistribution is allowed

The parametric family allows us to explicitly calculate some key variables that determine the optimal mechanism in the setting of Section 5. For example, we have (when $\alpha / \in \{\beta, \beta + 1\}$)
\[D_S(r) = \frac{(\alpha - \beta)(\alpha - 1)}{\alpha(\alpha - \beta - 1)} \frac{r^{\beta+1} - r^\alpha}{r(r^\beta - r^\alpha)}, \]
in particular, high same-side inequality is equivalent to the condition
\[\beta > \frac{\alpha^2 - \alpha}{\alpha + 1}, \]
which requires α to be low compared to β. Intuitively, a low α and high β mean that there are relatively many sellers with high values for money, and relatively few sellers with low values for the good; in such cases, low rates of substitution identify sellers with high values for money. When β is low, so that most sellers have low values for the good, low rates of substitution do not necessarily indicate high values for money. Indeed, in the extreme case in which all sellers have value 0 for the good (which is true in the limit as $\beta \to 0$), the rate of substitution is equal to 0, and hence is uninformative about sellers’ values for money.

We can also directly calculate the derivative of $\Delta_S(r)$ at $r = 0$, which allows us to apply

\[u(w) = \log(w). \]

\[\text{In the case $\eta = 1$, $u(w) = \log(w)$.} \]
Remark 3:

\[\Delta'_{S}(0) = \begin{cases} \frac{1}{\alpha(\alpha-\beta-1)} & \text{when } \alpha > \beta + 1 \\ \infty & \text{when } \alpha \leq \beta + 1. \end{cases} \]

It follows that a price mechanism (with a lump-sum transfer to sellers) is optimal whenever \(\beta < \alpha - 1 - 1/\alpha \). In the case \(\beta > \alpha - 1 - 1/\alpha \), rationing is optimal when \(\mu \) is small enough. These regions are depicted in Figure A.2 (labeled “Theory”).

Figure A.2 additionally shows the numerical solution for three fixed levels of \(\mu \), starting from a balanced market (\(\mu = 1 \)) and ending at a market in which there is one buyer per 100 sellers (\(\mu = 0.01 \)). As can be seen, the degree of same-side inequality required for rationing to emerge in balanced markets is quite extreme. In particular, the tail of the distribution of values for money must be so thick that the variance of the distribution is infinite. Even when \(\mu = 0.01 \), rationing still requires a thick tail.

Note that the effect of \(\beta \) on the optimality of rationing is not monotone. On one hand, a relatively large \(\beta \) is needed so that low rates of substitution \(r \) reveal a high value for money (see discussion above). On the other hand, when \(\beta \) is too large, the distribution of \(r \) shifts to the right, and thus there are relatively few sellers with low \(r \). Therefore, rationing is most likely to occur for intermediate values of \(\beta \).

The above numerical exercise reveals that same-side inequality must be quite extreme for rationing to be optimal. This is because in most cases inequality concerns can be efficiently addressed through lump-sum transfers. In the next section, we study what happens when such direct transfers are not feasible.
A.5 When lump-sum redistribution is ruled out

We now consider the same numerical example but under our “No Free Lunch” assumption (Assumption 2).

![Figure A.3](image)

Figure A.3: Optimal mechanism as a function of parameters \((\alpha, \beta)\) when lump-sum redistribution is not feasible.

Figure A.3 depicts the optimal mechanism (computed numerically) for different values of \(\mu\). Outside of the regions where rationing is optimal, the optimal mechanism is a competitive equilibrium. As can be seen, rationing emerges as optimal for a much larger set of parameters, compared to the case in which lump-sum transfers are allowed (pictured in Figure A.2). Roughly speaking, rationing is optimal whenever there are sufficiently many (identifiable) poor sellers, a property that holds as long as \(\alpha\) and \(\beta\) are not too large (a high \(\alpha\) implies that sellers have relatively low values for money; a high \(\beta\) implies that there are relatively few sellers with low rates of substitution).

B Proofs Omitted from the Main Text

B.1 Proof of Lemma 1

The constraint (4.5) satisfies the generalized Slater condition (see, e.g., Proposition 2.106 and Theorem 3.4 of Bonnans and Shapiro (2000)), so an approach based on putting a Lagrange multiplier \(\alpha \geq 0\) on the constraint (4.5) is valid (strong duality holds). Moreover, we can assume without loss of generality that constraint (4.5) binds at the optimal solution (because \(G_j\) admits a density, it follows that there exists a positive measure of buyers and sellers with strictly positive value for good \(M\)). This means that the problem (4.3)–(4.5) is equivalent
to the following statement: There exists $\alpha^* \geq 0$ such that the solution to the problem

$$\max \left\{ \int_0^1 \phi_B^\alpha(q)d(\mu H_B(q)) + \int_0^1 \phi_S^\alpha(q)dH_S(q) \right\}$$

(B.1)

over $H_S, H_B \in \Delta([0, 1]), U_B, U_S \geq 0$, subject to

$$\int_0^1 qd(\mu H_B(q)) = \int_0^1 qdH_S(q)$$

(B.2)

satisfies constraint (4.5) with equality.

The value of the problem (B.1)–(B.2) can be computed by parameterizing $Q = \int_0^1 qd(\mu H_B(q))$, and noticing that for a fixed Q, the choice of the optimal H_S is formally equivalent to choosing a distribution of posterior beliefs in a Bayesian persuasion problem with two states, where equation (B.2) is the Bayes plausibility constraint. Hence, by Kamenica and Gentzkow (2011), the optimal distribution H_S^* yields the value of the concave closure of ϕ_S^α at Q. Similarly, the optimal distribution H_B^* yields the value of the concave closure of $\mu \phi_B^\alpha$ at Q/μ.

Optimizing the value of the unconstrained problem

$$\co(\phi_S^\alpha)(Q) + \mu \co(\phi_B^\alpha)(Q/\mu)$$

over $Q, U_B, U_S \geq 0$ yields the optimal solution to the original problem if constraint (4.5) holds with equality at that solution. This gives the first part of the lemma.

Conversely, if H_B^* and H_S^* are optimal, then constraints (4.4)–(4.5) must bind. Optimality of H_j^* implies that the value of ϕ_j^α at the optimum must be equal to its concave closure. We can define $Q = \int_0^1 qdH_S(q)$, and it must be that there exists $\alpha^* \geq 0$ such that Q maximizes (B.1); this yields the second part of the lemma.

B.2 Completion of the proof of Theorem 1

From Lemma 1, we know that each optimal lottery H_j^* concavifies a one-dimensional function ϕ_j^α while satisfying a single linear constraint (4.5). Therefore, by Carathéodory’s Theorem, we can assume without loss of generality that H_j^* is supported on at most three points. We argue next that the dimension of the optimal pair of lotteries (H_B^*, H_S^*) can be further reduced.

We denote $\psi_B(q) := \int_{G_B(1-q)}^{G_B(1-q)} J_B(r)g_B(r)dr$ and $\psi_S(q) := \int_{G_S(q)}^{G_S(q)} J_S(r)g_S(r)dr$. We then let supp($H_j^*$) = \{q_1, q_2, q_3\} with $q_1 \leq q_2 \leq q_3$. Observe that because the distribution H_j^* concavifies $\phi_j^\alpha(q)$, it must be that $\co(\phi_j^\alpha)(q)$ is affine on the convex hull of the support of H_j^*. Moreover, because the volume of trade $Q \equiv \int_0^1 qdH^*(q)$ maximizes the concavified
Lagrangian \(\phi^* \) \((q) + \mu \text{co}(\phi^*_B) (q/\mu) \) over \(q \), it follows that the Lagrangian is constant in \(q \) on \(\text{supp}(H^*_B) \cap \text{supp}(H^*_S) \), that is, on \([q, \bar{q}] \equiv [\max\{q^*_S, q^*_B\}, \min\{\bar{q}^*_S, \bar{q}^*_B\}]\).

The above reasoning implies that the following linear system admits a solution (here, the solution \(\nu^*_i \) represents the realization probabilities of each \(q^*_i \), and we treat \(U_S \) and \(U_B \) as fixed constants for now):

\[
\mu \sum_{i=1}^{3} \nu^*_i q^*_B = \sum_{i=1}^{3} \nu^*_i q^*_S, \tag{B.3}
\]
\[
\mu \sum_{i=1}^{3} \nu^*_i \psi_B(q^*_B) = \sum_{i=1}^{3} \nu^*_i \psi_S(q^*_S) + U_S + \mu U_B, \tag{B.4}
\]
\[
\sum_{i=1}^{3} \nu^*_i = 1, \tag{B.5}
\]
\[
\sum_{i=1}^{3} \nu^*_i = 1, \tag{B.6}
\]
\[
\nu^*_1, \nu^*_2, \nu^*_3, \nu^*_1, \nu^*_2, \nu^*_3 \geq 0, \tag{B.7}
\]
\[
 q \leq \sum_{i=1}^{3} \nu^*_i q^*_S \leq \bar{q}, \tag{B.8}
\]

where (B.3) and (B.4) correspond to binding constraints (4.4) and (4.5), (B.5)–(B.7) state that we have well-defined probability measures, and (B.8) makes sure that the Lagrangian is maximized. From Lemma 1, any solution \(\nu \) to the linear system (B.3)–(B.8) constitutes a solution to our original problem (by defining \(H^*_j \) as putting a probability weight \(\nu^*_i \) on \(q^*_j \)).

Claim 4. There exists a solution \((H^*_B, H^*_S)\) with

\[
|\text{supp}(H^*_B)| + |\text{supp}(H^*_S)| \leq 4. \tag{B.9}
\]

Proof. The linear system (B.3)–(B.8) has four equality constraints and six free variables, and admits a solution. By the Fundamental Theorem of Linear Algebra, there exists a solution in which six constraints in the problem (B.3)–(B.8) hold as equalities. It follows that there exists a solution \((H^*_B, H^*_S)\) satisfying (B.9). Indeed, (B.9) is clear if the two additional binding constraints are constraints (B.7). In the alternative case when (B.8) binds, we conclude from \([q, \bar{q}] \equiv [\max\{q^*_S, q^*_B\}, \min\{\bar{q}^*_S, \bar{q}^*_B\}]\) that one of \(H^*_j \) must be degenerate (supported on a singleton), so the claim follows as well.

\[\square\]
Next, we determine the optimal lump-sum transfers. Lemma 1 requires that the problem
\[
\max_{Q \in [0,1], U_B, U_S \geq 0} \left\{ \text{co} \left(\phi_S^* (Q) \right) + \mu \text{co} \left(\phi_B^* (Q/\mu) \right) \right\}
\]
has a solution, and this restricts the Lagrange multiplier to satisfy \(\alpha^* \geq \max\{\Lambda_S, \Lambda_B\} \). Indeed, in the opposite case, it would be optimal to set \(U_j = \infty \) for some \(j \) and this would clearly violate constraint (4.5). When \(\Lambda_B = \Lambda_S \), it is either optimal to set \(\alpha^* > \Lambda_S = \Lambda_B \) and satisfy (4.5) with equality and \(U_S = U_B = 0 \) (in which case there is no revenue and no redistribution), or to set \(\alpha^* = \Lambda_S = \Lambda_B \) and choose \(U_B \geq 0 \) to satisfy (4.5) with equality (in which case the revenue is redistributed to buyers as an equal lump-sum payment). When \(\Lambda_B > \Lambda_S \), by similar reasoning, \(U_S \) must be 0, and \(U_B \geq 0 \) is chosen to satisfy (4.5). When \(\Lambda_S > \Lambda_B \), it is the seller side that obtains the lump-sum payment that balances the budget (4.5).

Claim 5. If \(U_j > 0 \), then we can refine (B.9) further, to
\[
|\text{supp}(H_B^*)| + |\text{supp}(H_S^*)| \leq 3. \tag{B.10}
\]

Proof. Derive.

Finally, we translate our results on the cardinality of the support of \((H_B^*, H_S^*)\) into our mechanism characterization.

Claim 6. If \(|\text{supp}(H_B^*)| + |\text{supp}(H_S^*)| \leq m \), then we can find an indirect \(m \)-price mechanism that implements the optimal solution.

Proof. Derive.
and the transfer rule is
\[
T_S(r) = \begin{cases}
U_S & r > r^n_S \\
U_S + \nu^n_S r^n_S & r^n_S \geq r > r^{n-1}_S \\
\ldots & \\
U_S + \sum_{k=1}^n \nu^k_S r^k_S & r^1_S \geq r.
\end{cases}
\]

The representation by an indirect mechanism \[\{(p^k_S, \delta^k_S)\}_{k=0,\ldots,n}, U_S\] follows immediately. Every option in the menu corresponds to the allocation received by an interval of types \((r^{k-1}_j, r^k_j)\). The rationing coefficient \(\delta^k_S\) in the \(k\)-th interval is obtained as \(X_S(r^k_j)\), and the price \(p^k_S\) is \((T_S(r^k_j) - U_S)/X_S(r^k_j)\) (and 0 when \(X_S(r^k_j) = 0\)). The number of positive prices offered in this indirect representation is equal to \(n\).

Theorem 1 follows from Claim 6 and the restrictions on \(|\text{supp}(H^*_B) \cup \text{supp}(H^*_S)|\) derived in Claims 4 and 5.

B.3 Proof of Theorem 2

Theorem 2 (generalized statement). A competitive equilibrium mechanism is optimal if and only if

\[
m_S \Delta_S(p^{CE}) - m_B \Delta_B(p^{CE}) \geq \begin{cases}
(m_S - m_B) \frac{1 - G_B(p^{CE})}{g_B(p^{CE})} & \text{if } m_S \geq m_B \\
(m_B - m_S) \frac{G_S(p^{CE})}{g_S(p^{CE})} & \text{if } m_B \geq m_S.
\end{cases} \tag{B.11}
\]

When condition (B.11) fails, we have \(p_B > p_S\), and prices are determined by market-clearing \(\mu(1 - G_B(p_B)) = G_S(p_S)\), and, in the case of an interior solution,\(^{25}\)

\[
p_B - p_S = \begin{cases}
-\frac{1}{m_S} \left[m_S \Delta_S(p_S) - m_B \Delta_B(p_B) - (m_S - m_B) \frac{1 - G_B(p_B)}{g_B(p_B)} \right] & \text{if } m_S \geq m_B \\
-\frac{1}{m_B} \left[m_S \Delta_S(p_S) - m_B \Delta_B(p_B) - (m_B - m_S) \frac{G_S(p_S)}{g_S(p_S)} \right] & \text{if } m_B \geq m_S.
\end{cases} \tag{B.12}
\]

The mechanism subsidizes the sellers when \(m_S > m_B\), and the buyers when \(m_B > m_S\).

Proof. We show that under the assumptions of the theorem, the functions \(\phi^*_j\) are strictly concave with the optimal Lagrange multiplier \(\alpha^*\). This is sufficient to prove optimality of a price mechanism because of Lemma 1—when the objective function is strictly concave, it

\(^{25}\)When no such interior solution exists, one of the prices is equal to the bound of the support: either \(p_B = \underline{r}_B\) or \(p_S = \bar{r}_S\).
coincides with its concave closure, and thus the unique optimal distribution of quantities is degenerate, corresponding to a price mechanism.

As argued in the proof of Theorem 1, we must have \(\alpha^* \geq \max\{m_S, m_B\} \) (recall that \(\Lambda_j = m_j \) in the two-dimensional value model). Then, the derivative of the function \(\phi_S^{\alpha^*}(q) \) takes the form

\[
(\phi_S^{\alpha^*})'(q) = \Pi_S^A(G^{-1}_S(q)) - \alpha^* J_S(G^{-1}_S(q)),
\]

so it is enough to prove that \(\Pi_S^A(r) - \alpha^* J_S(r) \) is strictly decreasing in \(r \). Rewriting,

\[
\Pi_S^A(r) - \alpha^* J_S(r) = m_S \left[\int_{r_S}^r [D_S(\tau) - 1]g_S(\tau)d\tau \frac{g_S(r)}{\Delta_S(r)} - r \right] - (\alpha^* - m_S) J_S(r)
\]

Virtual surplus \(J_S(r) \) is non-decreasing, and \(\alpha^* \geq m_S \), so it is enough to prove that the first term is strictly increasing. The function \(\Delta_S(r) - r \) is strictly quasi-concave by Assumption 1, so to prove strict monotonicity on the entire domain, it is enough to show that the derivative at \(r = r_S \) is negative. We have

\[
\frac{d}{dr}[\Delta_S(r) - r]_{r=r_S} = D_S(r_S) - 2 \leq 0,
\]

where the last inequality follows from the assumption that same-side inequality is low.

We now show that \(\phi_B^{\alpha^*}(q) \) is also strictly concave:

\[
(\phi_B^{\alpha^*})'(q) = \Pi_B^A(G^{-1}_B(1 - q)) + \alpha^* J_B(G^{-1}_B(1 - q)),
\]

so it is enough to show that \(\Pi_B^A(r) + \alpha^* J_B(r) \) is increasing. Rewriting,

\[
\Pi_B^A(r) + \alpha^* J_B(r) = m_B [\Delta_B(r) + r] + (\alpha^* - m_B) J_B(r).
\]

Because the virtual surplus function \(J_B(r) \) is non-decreasing, and \(\alpha^* \geq m_B \), by assumption, it is enough to prove that \(\Delta_B(r) + r \) is increasing. Because this function is strictly quasi-concave by Assumption 1, it is enough to prove that the derivative is non-negative at the end point \(r = \bar{r}_B \):

\[
\frac{d}{dr}[\Delta_B(r) + r]_{r=\bar{r}_B} = D_B(\bar{r}_B) \geq 0,
\]

which is trivially satisfied. Thus, we have proven that both functions \(\phi_j^{\alpha^*} \) are strictly concave.

It follows that a price mechanism with no rationing is optimal for both sides of the market, and the revenue (if strictly positive) is redistributed to the sellers if \(m_S \geq m_B \), and to the
buyers otherwise (see Theorem 1). Concavity of φ^*_j implies that the first-order condition in problem (4.6) has to hold and is sufficient for optimality. This means that the optimal volume of trade $Q^* \in [0, \mu \wedge 1]$ (the maximizer of the right hand side of (4.6)) satisfies

$$\Pi^A_S(G^{-1}_S(Q^*)) - \alpha^*J_S(G^{-1}_S(Q^*)) + \Pi^A_B\left(G^{-1}_B\left(1 - \frac{Q^*}{\mu}\right)\right) \geq 0$$

(= 0 when $Q^* = \mu \wedge 1$). (B.13)

Rewriting, and noting that $p_S = G^{-1}_S(Q^*)$ and $p_B = G^{-1}_B(1 - \frac{Q^*}{\mu})$,

$$m_S[\Delta_S(p_S) - p_S] - (\alpha^* - m_S)J_S(p_S) + m_B[p_B - \Delta_B(p_B)] + (\alpha^* - m_B)J_B(p_B) \geq 0$$

(= 0 when $Q^* = \mu \wedge 1$). (B.14)

Moreover, prices p_B, p_S have to satisfy $p_B \geq p_S$ and clear the market:

$$\mu(1 - G_B(p_B)) = G_S(p_S).$$

(B.15)

First, assume that (B.11) holds at the competitive equilibrium price p^{CE}. We show that in this case, competitive equilibrium is optimal. At p^{CE}, market-clearing and budget balance (with $U_S = U_B = 0$) hold, by construction. Therefore, we only have to prove existence of $\alpha^* \geq \max\{m_S, m_B\}$ such that the first-order condition holds:

$$m_S[\Delta_S(p^{CE}) - p^{CE}] - (\alpha^* - m_S)J_S(p^{CE}) + m_B[p^{CE} - \Delta_B(p^{CE})] + (\alpha^* - m_B)J_B(p^{CE}) \geq 0$$

with equality when the solution is interior: $p^{CE} \in (r_S, \bar{r}_B)$. Simplifying the above expression:

$$m_S \left[\frac{\Delta_S(p^{CE}) + G_S(p^{CE})}{g_S(p^{CE})}\right] - m_B \left[\frac{\Delta_B(p^{CE}) - 1 - G_B(p^{CE})}{g_B(p^{CE})}\right] \geq \alpha^* \left[\frac{G_S(p^{CE})}{g_S(p^{CE})} + \frac{1 - G_B(p^{CE})}{g_B(p^{CE})}\right]$$

with equality when $p^{CE} \in (r_S, \bar{r}_B)$. Since the left hand side is non-negative, such a solution $\alpha^* \geq \max\{m_S, m_B\}$ exists if and only if we have an inequality at the minimal possible α^*, that is, $\alpha^* = \max\{m_S, m_B\}$:

$$m_S \left[\frac{\Delta_S(p^{CE}) + G_S(p^{CE})}{g_S(p^{CE})}\right] - m_B \left[\frac{\Delta_B(p^{CE}) - 1 - G_B(p^{CE})}{g_B(p^{CE})}\right] \geq \max\{m_S, m_B\} \left[\frac{G_S(p^{CE})}{g_S(p^{CE})} + \frac{1 - G_B(p^{CE})}{g_B(p^{CE})}\right].$$
Simplifying the above expression shows that it is equivalent to condition (B.11).

It remains to show how the solution looks like when condition (B.11) fails. A competitive equilibrium cannot be optimal in this case because there does not exist an \(\alpha^\star \) under which the corresponding quantity maximizes the Lagrangian (4.6) in Lemma 1. This means that \(p_B > p_S \), and, in light of Theorem 1, there will be a strictly positive lump-sum payment for the “poorer” side of the market: \(U^*_S > 0 \) when \(m_S \geq m_B \) and \(U^*_B > 0 \) when \(m_B > m_S \). This implies that we must have \(\alpha^\star = \max \{ m_S, m_B \} \). Subsequently, the optimal prices \(p_B \) and \(p_S \) are pinned down by market-clearing (B.15) and the first-order condition (B.14) which becomes, assuming that an interior solution exists,

\[
m_S(p_B - p_S) = -m_S \Delta S(p_S) + m_B \Delta_B(p_B) + (m_S - m_B) \frac{1 - G_B(p_B)}{g_B(p_B)}
\]

when \(m_S \geq m_B \), and

\[
m_B(p_B - p_S) = -m_S \Delta S(p_S) + m_B \Delta_B(p_B) + (m_B - m_S) \frac{G_S(p_S)}{g_S(p_S)}
\]

otherwise. When there is no interior solution, one of the prices is equal to the bound of the support of rates of substitution, and the other price is determined by the market-clearing condition. This finishes the proof of the theorem.

\[\square \]

B.4 Proof of Theorem 3

We start by proving a lemma.

Lemma 4. There exist \(\hat{q} > 0 \) and \(\bar{\alpha} > m_S \) such that if \(\alpha < \bar{\alpha} \), then \(\phi^\alpha_S(q) \) is strictly convex on \([0, \hat{q}] \).

Proof. The derivative of \(\phi^\alpha_S(q) \) is \(\Pi^\alpha_S(G^{-1}_S(q)) - \alpha J_S(G^{-1}_S(q)) \). Because the function \(G^{-1}_S \) is strictly increasing, it is enough to prove that \(\Pi^\alpha_S(r) - \alpha J_S(r) \) is strictly increasing for some \(r \in [r_S, \hat{r}] \) (we then set \(\hat{q} = G_S(\hat{r}) \)). Taking a derivative again, and rearranging, yields the following sufficient condition: for \(r \in [r_S, \hat{r}] \),

\[
D_S(r) > 2 + \frac{g'_S(r)}{g_S(r)} \Delta S(r) + \frac{\alpha - m_S}{m_S} \left[2 - \frac{g'_S(r)G_S(r)}{g_S^2(r)} \right].
\]

Because \(g_S \) was assumed continuously differentiable and strictly positive, including at \(r = r_S \), we can put a uniform (across \(r \)) bound \(M < \infty \) on \(\frac{g'_S(r)}{g_S(r)} \) and \(2 - \frac{g'_S(r)G_S(r)}{g_S^2(r)} \). This means that it is enough that

\[
D_S(r) > 2 + M \Delta S(r) + \frac{\alpha - m_S}{m_S} M.
\]
Continuity of $D_S(r)$ and the assumption that same-side inequality for sellers is high imply that $D_S(r) > 2 + \epsilon$ for $r \in [r_S, r_S + \delta]$ for some $\delta > 0$. Continuity of $\Delta_S(r)$ and the fact that $\Delta_S(r_S) = 0$ imply that $\Delta_S(r) < \epsilon/(3M)$ for all $r \in [r_S, r_S + \nu]$ for some $\nu > 0$. Finally, there exists a $\bar{\alpha} > m_S$ such that for all $\alpha < \bar{\alpha}$, we have $(\alpha - m_S)/m_S < \epsilon/(3M)$. Then, for all $r \in [r_S, r_S + \min\{\delta, \nu\}]$, $\alpha < \bar{\alpha}$,

$$D_S(r) > 2 + \epsilon > 2 + M \Delta_S(r) \geq \epsilon/(3M)$$

$$\frac{\alpha - m_S}{m_S} M.$$

The proof is finished by setting $\hat{r} = r_S + \min\{\delta, \nu\}$. \qed

We now prove Theorem 3. The optimal mechanism for the buyer side is a price mechanism—this follows from the proof of Theorem 2. Suppose, towards a contradiction, that the optimal mechanism for sellers is also a price mechanism. Then, there are two possibilities. Either, (1) a competitive equilibrium mechanism is optimal, or (2) $\alpha^* = m_S$.

Consider case (2) first. We can invoke Lemma 4. Because $\alpha^* = m_S$, there exists $\hat{q} > 0$ such that $\phi^*_S(q)$ is strictly convex on $[0, \hat{q}]$. Suppose that $\mu < \hat{q}$. In this case, at the optimal quantity $0 < Q^* < \mu$, $\phi^*_S(q)$ cannot be equal to its concave closure. Thus, the optimal value is obtained by randomizing over two distinct quantities q_1 and q_2 under H_5^*. This means that the optimal mechanism for sellers necessarily involves a non-zero-measure region $[r_1, r_2]$ in which $X^S(r) \in (0, 1)$ is interior, i.e., the optimal mechanism rations the sellers.

Consider case (1). We know that the first-order condition of the problem (4.6) must hold at the optimal Q^* and α^*. Because the functions ϕ^*_j are differentiable, and coincide with their concave closure at the optimum (only then a price mechanism can be optimal), the derivative of ϕ^*_j must be equal to the derivative of its concave closure. Therefore, the first-order condition implies that

$$(\phi^*_S)'(Q^*) + (\phi^*_B)'(Q^*/\mu) \geq 0$$

with equality for $Q^* < \mu$. As in the proof of Theorem 2, we can write this condition as

$$m_S \left[\Delta_S(p^CE) + \frac{G_S(p^CE)}{g_S(p^CE)} \right] - m_B \left[\Delta_B(p^CE) - \frac{1 - G_B(p^CE)}{g_B(p^CE)} \right] \geq \alpha^* \left[\frac{G_S(p^CE)}{g_S(p^CE)} + \frac{1 - G_B(p^CE)}{g_B(p^CE)} \right]$$

with equality for $Q^* < \mu$. Since the left hand side is non-negative, a solution $\alpha^* \geq m_S$ can

\footnote{Indeed, when a price mechanism (p_B, p_S) is not a competitive equilibrium, we have $p_B > p_S$, and thus $U_j > 0$ for some j to ensure budget balance. But then, in light of Lemma 1, we need $\alpha^* = m_S$.}
only exist if we have an inequality at \(\alpha^* = m_S \), that is, condition (5.6) must hold

\[
m_S \Delta_S(p^{CE}) - m_B \Delta_B(p^{CE}) \geq (m_S - m_B) \frac{1 - G_B(p^{CE})}{g_B(p^{CE})}.
\]

(B.17)

To get a contradiction, it is enough to prove that this condition fails when \(\mu \) is low enough.

Note that the competitive equilibrium price, which we will now index by \(\mu \), satisfies

\[
G_S(p^{CE}_\mu) = \mu (1 - G_B(p^{CE}_\mu)).
\]

Thus, \(p^{CE}_\mu \to \bar{r}_S \) as \(\mu \to 0 \). When \(p^{CE}_\mu \to 0 \), the left hand side of (B.17) converges to a non-positive number (because \(\Delta_S(\bar{r}_S) = 0 \)). The right hand side converges to \((m_S - m_B)(1 - G_B(\bar{r}_S))/g_B(\bar{r}_S) \) which is strictly positive (possibly \(\infty \)) as long as \(m_S > m_B \). Thus, for the case \(m_S > m_B \), by continuity, for small enough \(\mu \), condition (B.17) is violated, contradicting the optimality of a price mechanism.

In the case when \(m_S = m_B \), a different argument is needed. The first-order condition (B.16) can only hold for \(\mu \to 0 \) if \(\alpha^*_\mu \to m_S \). However, fixing \(\hat{q} \) and \(\bar{\alpha} \) from Lemma 4, we get that for sufficiently small \(\mu \), \(\alpha^*_\mu < \bar{\alpha} \) and thus \(\phi^*_S(\mu)(q) \) is strictly convex on \([0, \hat{q}]\). This, however, leads to a contradiction because once \(\mu < \hat{q} \), the optimal mechanism cannot be a price mechanism, since \(\phi^*_S(\mu)(q) \) cannot be equal to its concave closure at any \(q \leq \mu \).

Finally, we prove Remark 2 stated after Theorem 3. When \(m_S \) is sufficiently higher than \(m_B \) so that competitive equilibrium is not optimal, we only have to consider the case \(\alpha^* = m_S \). When \(g_S(p) \) is decreasing, it is easy to notice that \(\Pi_S(r) - \alpha J_S(r) \) is increasing for all \(r \leq r^* \), and hence \(\phi_{\alpha^*}(q) \) is convex for all \(q \leq G_S(r^*) \). It follows that if the equilibrium volume of trade is bounded by \(\mu \leq G_S(r^*) \), the concave closure of \(\phi_{\alpha^*}(q) \) at \(Q^* \) is obtained by mixing between the quantity of 0, and some quantity \(\bar{q} \geq Q^* \). The conclusion follows.

B.5 Proof of Theorem 4

The proof follows directly from the arguments used in the proof of Theorem 2. Under Assumption 1, the function \(\phi_B^\alpha \) is strictly concave, and thus the optimal mechanism for the buyer side is always a price mechanism.

B.6 Proof of Proposition 1

The function \(\phi_S^\alpha(q) \) is concave if and only if

\[
(m_S - \alpha) \frac{G_S(r)}{g_S(r)} - \alpha r
\]

(B.18)
is decreasing. Similarly, the function $\phi_B^\alpha(q)$ is concave if and only if

$-(1-\alpha)\frac{1-G_B(r)}{g_B(r)}-\alpha r \tag{B.19}$

is decreasing. We will prove that the optimal Lagrange multiplier α must lie between 1 and m_S.

Lemma 5. At the optimal solution, $\alpha \in [1, m_S]$.

Proof. Let us consider all possible cases given that $\alpha \geq 0$ and $m_S \geq 1 = (m_B)$.

1. $\alpha > m_S$: Both functions (B.18) and (B.19) are decreasing, by Assumption 3. Therefore, both ϕ_j^α are concave, and the optimal mechanism is a price mechanism. Given that lump-sum transfers are now ruled out by Assumption 2, the only solution in this case can be a competitive equilibrium.

2. $m_S \geq \alpha \geq 1$: The function (B.19) is decreasing, so a price mechanism is optimal for the buyer side.

3. $1 > \alpha$: There could potentially be rationing on both sides of the market.

 We will show that cases 1 and 3 cannot take place. Consider case 1. Then, we know that the first-order condition (B.14) must hold at the optimal quantity Q^*. Simplifying using the assumptions of the current setting, we obtain

 $$\frac{m_S-\alpha}{g_S(p^{CE})} = \frac{\alpha - 1}{g_B(p^{CE})}. \tag{B.20}$$

 This condition can only hold when $\alpha \in [1, m_S]$ (and can be strengthened to $\alpha \in (1, m_S]$ when $m_S > 1$).

 Now consider case 3. We will rely on the following observation. We know that the optimal schedules X_S and X_B can be supported as randomization over at most three quantities for each side: H_S^* is supported on $q^L_S \leq q^M_S \leq q^H_S$, and H_B^* is supported on $q^L_B \leq q^M_S \leq q^H_B$. The derivative of the concave closure of ϕ_j^α at the optimal quantity Q^* must be equal to the derivative of ϕ_j^α at both q^H_j and q^L_j as long as there are interior points. If $q^L_j = 0$, then the derivative of the concave closure at Q^* is weakly larger than the derivative of ϕ_j^α at q^L_j, and if $q^H_j = 1$, then the derivative of the concave closure at Q^* is weakly smaller than the derivative of ϕ_j^α at q^H_j. Formally, we obtain

 $$(m_S-\alpha)\frac{q^L_S}{g_S(G_S^{-1}(q^L_S))} - \alpha G_S^{-1}(q^L_S) \leq (m_S-\alpha)\frac{q^H_S}{g_S(G_S^{-1}(q^H_S))} - \alpha G_S^{-1}(q^H_S)$$
(with equality if both points \(q^L_S \) and \(q^H_S \) are interior), and

\[
(1 - \alpha) \frac{q^L_B}{g_B(G_B^{-1}(1 - q^L_B/\mu))} + \alpha G_B^{-1}(1 - q^L_B/\mu) \leq (1 - \alpha) \frac{q^H_B}{g_B(G_B^{-1}(1 - q^H_B/\mu))} + \alpha G_B^{-1}(1 - q^H_B/\mu)
\]

(with equality if both points \(q^L_B \) and \(q^H_B \) are interior). Because the first-order condition must hold at the optimal expected quantity \(Q^\star \) which lies between \(q^L_j \) and \(q^H_j \), we obtain

\[
0 \geq (m_S - \alpha) \frac{q^L_S}{g_S(G_S^{-1}(q^L_S))} - \alpha G_S^{-1}(q^L_S) + (1 - \alpha) \frac{q^L_B}{g_B(G_B^{-1}(1 - q^L_B/\mu))} + \alpha G_B^{-1}(1 - q^L_B/\mu)
\]

\[
= (m_S - \alpha) \frac{q^L_S}{g_S(G_S^{-1}(q^L_S))} + (1 - \alpha) \frac{q^L_B}{g_B(G_B^{-1}(1 - q^L_B/\mu))} - \alpha (G_S^{-1}(q^L_S) - G_B^{-1}(1 - q^L_B/\mu)).
\]

(B.21)

We will argue that \(G_S^{-1}(q^L_S) \leq G_B^{-1}(1 - q^L_B/\mu) \) which will finish the proof of the lemma. Suppose to the contrary that \(G_S^{-1}(q^L_S) > G_B^{-1}(1 - q^L_B/\mu) \). Then we have

\[
G_S^{-1}(q^H_S) \geq G_S^{-1}(q^L_S) > G_B^{-1}(1 - q^L_B/\mu) \geq G_B^{-1}(1 - q^H_B/\mu).
\]

This however, clearly contradicts the budget balance condition because all prices offered to sellers are strictly higher than the prices offered to buyers. Thus, the lemma is proven.

\(\square\)

We now prove the proposition. First, the lemma implies that a price mechanism is optimal for the buyer side. Second, we rewrite the probability distributions in terms of marginal distributions for good \(K \): \(G_B(p) = F^K_B(p) \), \(G_S(p) = F^K_S(m_sp) \), \(g_S(p) = m_s f^K_S(m_sp) \). Third, a sufficient condition for optimality of competitive equilibrium is that \(\phi^K_S(q) \) is concave, that is,

\[
\frac{m_S - \alpha}{m_S} \frac{d}{dr} \left(\frac{F^K_S(r)}{f^K_S(r)} \right) \leq \alpha.
\]

Using the lemma, we know that \(\alpha \geq 1 \), so it is enough that, for all \(r \),

\[
\frac{d}{dr} \left(\frac{F^K_S(r)}{f^K_S(r)} \right) \leq \frac{1}{m_S - 1} \leq \frac{\alpha}{m_S - \alpha}.
\]

Finally, a necessary condition for optimality of competitive equilibrium is that the first-order condition (B.20) holds. Rewriting in terms of the distribution of values for good \(K \),
we obtain:
\[
\frac{m_S - \alpha}{\alpha - 1} = \frac{1}{\mu} \frac{m_S f^K_S(m_S p^{CE})}{f^K_B(p^{CE})}
\]

Take \(c\) defined in the statement of the proposition. Then,
\[
\alpha = \frac{m_S(\mu + c)}{\mu + m_S c}.
\]

We will show that this implies (under the assumptions of the proposition) that \(\phi^a_S(q)\) is strictly convex in the neighborhood of the corresponding optimal quantity, leading to a contradiction. By continuity of the derivatives, it is enough to show that
\[
(m_S - \alpha) d > \alpha,
\]
where \(d\) has been defined in the statement of the proposition. Equivalently,
\[
m_S > \frac{m_S(\mu + c)}{\mu + m_S c} \left(1 + \frac{1}{d} \right).
\]

Rewriting,
\[
m_S > 1 + \frac{1}{d} + \frac{\mu}{cd}.
\]

B.7 Proof of Claim 2

We will apply a modified version of Lemma 1. The modification, described in Section 6, is that under Assumption 2 we have \(U_B = U_S = 0\), and thus these variables do not appear in the maximization problem \((4.6)\). Under the assumptions of Section 2,
\[
\phi^a_S(q) = \frac{m - 2\alpha}{2m} q^2,
\]
and
\[
\phi^a_B(q) = q \left[\alpha - \frac{2\alpha - 1}{2} q \right].
\]

We also know from the proof of Proposition 1 that \(\alpha \in [1, m]\). Thus, \(\phi^a_B(q)\) is concave.

First, we consider the case \(m \leq 3\). We conjecture that \(\alpha \geq m/2\), so that \(\phi^a_S(q)\) is concave. Then, to show optimality of competitive equilibrium, it is enough to find \(\alpha \geq m/2\) such that the first-order condition corresponding to \((4.6)\) holds at the competitive-equilibrium volume.
of trade $Q^* = m/(m+1)$. The first-order condition is

$$\left[(2\alpha - 1) - \frac{m - 2\alpha}{m} \right] Q^* = \alpha$$

which yields $\alpha = (2m)/(m+1)$. For $m \leq 3$, we have $\alpha \geq 1/m$.

Second, we consider the case $3 < m < 2 + \sqrt{2}$. We conjecture that $\alpha = m/2$. This means that $\phi_S^\alpha(q) = 0$ for all q. The first-order condition yields

$$Q^* = \frac{\alpha}{2\alpha - 1} = \frac{m}{2(m-1)}$$

which corresponds to a price $(m - 2)/(2m - 2)$ for buyers. Because the function $\phi_S^\alpha(q)$ is linear, any mechanism that yields the market-clearing volume is optimal for the seller side. In particular, we can specify that the price for sellers is $(m - 2)/(2m - 2)$ with a rationing coefficient δ_S that leads to market-clearing:

$$\delta_S G_S(p^*) = Q^* \implies \delta_S = \frac{1}{m - 2}.$$

We only have to verify that $p^* \leq 1/m$, so that the mechanism is feasible (does not violate Assumption 2). Solving $(m - 2)/(2m - 2) \leq 1/m$ yields the restriction $m \leq 2 + \sqrt{2}$.

Third, we consider the case $m \geq 2 + \sqrt{2}$. We conjecture that $\alpha \leq m/2$, so that the function $\phi_S^\alpha(q)$ is convex. Convexity of $\phi_S^\alpha(q)$ implies that the optimal mechanism on the seller side is to offer the maximal price $1/m$ that induces all sellers to sell, and ration to achieve market-clearing. It also follows that

$$\text{co}(\phi_S^\alpha)(q) = \frac{m - 2\alpha}{2m} q.$$

Thus, the first-order condition for the problem (4.6) is

$$\frac{m - 2\alpha}{2m} + \alpha = (2\alpha - 1)Q.$$

We want to show that $Q^* = (m - 1)/m$ is optimal (this is the volume corresponding to the mechanism described in the proposition). This requires

$$\alpha = \frac{3m - 2}{2(m-1)}.$$

We only have to check that $\alpha \leq m/2$. This is indeed true when $m \geq 2 + \sqrt{2}$.