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We generalize the scope of random allocation mechanisms, in which the mechanism first identifies
a feasible “expected allocation” and then implements it by randomizing over nearby feasible integer
allocations. The previous literature has shown that the cases in which this is possible are sharply limited.
We show that if some of the feasibility constraints can be treated as goals rather than hard constraints,
then, subject to weak conditions that we identify, any expected allocation that satisfies all the constraints
and goals can be implemented by randomizing among nearby integer allocations that satisfy all the hard
constraints exactly and the goals approximately. By defining ex post utilities as goals, we are able to improve
the ex post properties of several classic assignment mechanisms, such as the random serial dictatorship. We
use the same approach to prove the existence of e-competitive equilibrium in large markets with indivisible
items and feasibility constraints.
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1. INTRODUCTION

When cash transfers are limited and goods are indivisible, it can sometimes be impossible to
allocate goods in an efficient and envy-free (“fair””) way. This challenge is faced, for example,
when assigning students to courses, resettling refugees, or setting a competitive sports schedule.
Early economic studies of this problem by Hylland and Zeckhauser (“HZ”) and Bogomolnaia
and Moulin (“BM”) assume that each agent must receive just a single good and show that it
is then possible to allocate the probabilities of receiving each good in an efficient, envy-free
manner (Hylland and Zeckhauser, 1979; Bogomolnaia and Moulin, 2001). Budish, Che, Kojima,
and Milgrom (“BCKM”) propose expanding this approach to a wider set of multi-item allocation
problems in which the constraints may be more complex than merely a set of one-item-per-person
constraints (Budish et al., 2013). For example, in course allocation, a student may wish to have
at least one class in science and one in humanities in a particular term. They apply the result from
combinatorial optimization that for any expected allocation that satisfies all the constraints, if the

The editor in charge of this paper was Christian Hellwig.
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2 REVIEW OF ECONOMIC STUDIES

constraints have a particular “bihierarchy” structure, then the expected allocation can always be
achieved by randomizing among pure allocations in which each fractional expected allocation
is rounded up or down to an adjacent integer and all the constraints are simultaneously satisfied
(Edmonds, 2003). When the conditions are satisfied, BCKM show that this sometimes makes it
possible to use mechanisms that select efficient, envy-free expected allocations and to implement
those through randomization.

However, as BCKM also state, the bihierarchy condition can be a necessary condition, and so
even their expansion of the previous works can rule out some potential applications. For instance,
the condition is violated in school choice if a school with limited capacity has at least two of the
walk-zone, gender, or racial diversity constraints.

The goal of this article is to generalize this approach to a much broader class of allocation
problems by reconceptualizing the role of constraints. Our analysis shows that many more
constraints can be managed if some of them are “soft,” in the sense that they can bear small
errors with relatively small costs. More precisely, we partition the full set of constraints into a
set of hard constraints that must always be satisfied exactly, and a set of soft constraints that
should be satisfied approximately. The main theorem of the article identifies a rich constraint
structure that is approximately implementable, meaning that if an expected allocation satisfies all
the constraints, then it can be implemented by randomizing among pure allocations that satisfy
all the hard constraints and satisfy the soft constraints with only small errors.

The importance of this result arises from the way it can expand potential applications
by breaking the theoretical barrier of implementing intersecting constraints, which we do by
designing a general framework that models them as “goals.” For example, in the school choice
setting, the requirement that each student must be assigned to exactly one school is (in our
conception) a hard constraint that must be satisfied, but the requirement that some fraction of
students in a school live in the walk zone may be a soft constraint. Allowing this flexibility is
particularly important when the constraints are inconsistent, and in other cases it provides greater
scope for accommodating individual student preferences.

1.1. Model and contributions

In this article, we analyse a general model of matching with indivisible objects. Section 2
introduces the building blocks of our model. In Section 2.1, we propose a new notion of
approximate implementation. A constraint is approximately satisfied if the probability of violating
that constraint is exponentially decreasing in the size of the constraint.! We partition the set of
constraints into a set of hard constraints that are inflexible and a set of soft constraints that are
flexible, and we call it a hard—soft partitioned constraint set. We say that a hard—soft partitioned
constraint set is approximately implementable if for any feasible fractional assignment that
satisfies both hard and soft constraints, there exists a lottery over pure assignments such that
the following three properties hold: (1) the expected value of the lottery is equal to the fractional
assignment, (2) the outcome of the lottery satisfies hard constraints, and (3) the outcome of
the lottery satisfies soft constraints approximately.> The question that we ask is: what kinds of
hard—soft partitioned constraint structures are approximately implementable?

The main theoretical contribution of the article is stated in Theorem 1. The theorem identifies a
rich structure for soft constraints under which the whole structure is approximately implementable,

1. For instance, if a school has a capacity for 1,000 students and half of them should come from the walk zone,
then the size of this capacity constraint is 1,000 and the size of the walk-zone constraint is 500.

2. Quantitatively, a soft constraint of size u is approximately satisfied if the probability of violating the constraint
by more than €% is less than e=¢*/3 for an upper quota constraint and less than e~/ for a lower quota constraint.
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given that the structure of hard constraints is the same maximal structure introduced in BCKM—
the “bihierarchical” structure. The structure we identify allows any set of (possibly intersecting)
soft constraints, as long as adding each individual soft constraint to the set of hard constraints
preserves its bihierarchical structure. We complement this theorem by showing that our bounds
on the approximation errors are tight.

We prove Theorem 1 by constructing a matching algorithm which approximately implements
any feasible fractional assignment. The proof is sketched in Section 3.2. At the core of our
proof is a matrix operation—Operation X—that takes a fractional assignment as its input and
(randomly) generates another assignment with fewer fractional elements as its output. By iterative
applications of Operation X, an integral assignment is generated.> The (random) assignment
matrix satisfies the martingale property, i.e., the expected value of the assignment matrix after the
next iteration remains the same as its current value. We apply probabilistic concentration bounds
to our randomized mechanism in order to prove that soft constraints are satisfied with small errors.
It is worth mentioning that the previous literature on the implementation of fractional assignments
relies on the Birkhoff—von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953) (in HZ and
BM) or its generalizations, such as (Edmonds, 2003) (e.g. the implementation method of BCKM
is based on a theorem of Edmonds on deterministic rounding of mathematical programs). Our
article, on the other hand, develops an implementation method by building on techniques from
the randomized rounding literature (Ageev and Sviridenko, 2004; Gandhi et al., 2006).

Our theoretical results reveal that there are trade-offs between the complexity of the set of
constraints and the quality of the error bounds. On the one hand, in Section 3.4, we show that
for sufficiently simple (“hierarchical”) set of hard constraints, our mechanism implements any
arbitrary set of soft constraints, with no compromise in the quality of the error bounds. On the other
hand, we show that if one insists on the bihierarchical structure of hard constraints, our mechanism
implements any arbitrary set of soft constraints at the expense of weaker error bounds.

In light of the tightness result for the general environment considered in Theorem 1, one might
ask: is it possible to prove stronger bounds by considering a simpler economic environment? Our
second theorem considers a setting with agent types. We say two agents have the same type if the
set of constraints imposed on them is the same. Theorem 2 shows that a modified version of our
allocation mechanism guarantees that none of the soft constraints would be violated with more
than an additive, deterministic error equal to the number of agent types.

We close the discussion of our bounds by stating a caveat: our theoretical bounds for the
violation of soft constraints are weak for “small” constraints. For instance, consider a school with
capacity for 250 students. Theorem 1 guarantees that the probability of admitting more than 275
students (a 10% violation) is less than 0.43, which is hardly a guarantee. That said, one should
note that these are worst-case bounds proved for all possible problem instances. In Section 3.6, we
investigate the empirical performance of our mechanism for a typical school choice environment
by running simulations in a setting similar to the NYC high schools. For the same constraint with
size 250, simulations show that the empirical probability of admitting more than 275 students is
less than 0.064. The bounds improve with the size of the constraint. For instance, for a school
with capacity 500, the theoretical and empirical bounds for a 10% violation reduce to 0.19 and
0.024, respectively.

In Section 4, we discuss the applications of our framework in implementing intersecting
constraints in the school choice setting. In particular, we introduce a new method to accommodate
walk-zone priorities in the school choice. Many school choice systems handle walk-zone
constraints by requiring schools to dedicate a specific fraction of their seats to students within

3. Itis worth mentioning that the matching algorithm stops in polynomial time, which is an important requirement
for practical matching algorithms in relatively large markets.
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their “walk zone.” This means that the lottery has a “discontinuity” issue, since it treats two
students who are a few blocks away, but on the two sides of a walk-zone border, very differently.
Our framework, however, allows for a design that treats students in a “continuous” manner with
respect to their distances from the schools.

The rest of the article explores the theoretical applications of our framework. In Section 5,
we address the issue that even if a constructed fractional assignment is fair, there could be very
large discrepancies in realized utilities, as discussed in Kojima (2009). We show that when a
fractional assignment is implemented via Theorem 1, an agent’s ex post utility is approximately
equal to her ex ante utility. We then provide two examples of how our utility guarantees can be
applied to two classic allocation mechanisms: the random serial dictatorship (RSD) mechanism
and the pseudo-market mechanism. We improve these mechanisms by incorporating intersecting
soft constraints, as well as providing approximate guarantees for the agents’ ex post utilities in
settings with such constraints.

In our next application in Section 6, we prove the existence of e-competitive equilibrium (e-
CE)* in a market with indivisible objects and distributional constraints. In our environment, each
agent is allowed to impose some (possibly intersecting) constraints on her allocation. This can
be applied to, for instance, an online advertisement setting where multiple advertisers are buying
impressions, who prefer to diversify the set of their audience. Moreover, the methods we develop
to prove the existence can also find an €-CE with high probability for arbitrary small €, provided
that it has access to a solver that finds §-CE in markets with divisible items, for sufficiently
small 4.

1.2. Related work

Randomization is commonplace in everyday life and has been studied in various settings such
as school choice, course allocation, and house allocation (Abdulkadiroglu and S6nmez, 1998;
Abdulkadiroglu et al., 2005; Budish, 2011; Pathak and Sethuraman, 2011). Perhaps, the most
practically popular random mechanism is to draw a fair random ordering of agents and then let the
agents select their most favourite object (among those remaining) according to the realized random
ordering without violating the constraints. This mechanism, which is known as RSD is a desirable
mechanism, as it is strategy-proof and ex post Pareto efficient (Abdulkadiroglu and Sonmez, 1998;
Chen and Sonmez, 2002). Nevertheless, RSD is ex ante inefficient, ex post (highly) unfair, and
cannot handle lower quotas (Bogomolnaia and Moulin, 2001; Hatfield, 2009; Kojima, 2009).
Several papers compare PS and RSD and analyse their connections in large markets (Manea,
2009; Kojima and Manea, 2010; Che and Kojima, 2010; Liu and Pycia, 2016).

The idea to construct a fractional assignment and then implement it by a lottery over
pure assignments was first introduced in Hylland and Zeckhauser (1979) for cardinal utilities.
Bogomolnaia and Moulin (2001) construct a mechanism, the Probabilistic Serial Mechanism
(PS), for ordinal utilities based on the same technique. Both papers model one-to-one matching
markets with no other constraints. Hashimoto (2018) shows that an infinite-market mechanism
can be asymptotically approximated by a finite-market mechanism that keeps feasibility, ex post
individual rationality, and ex post incentive compatibility. He uses the generalized random priority
mechanism as the approximating mechanism, and applies his method to approximate an extension
of the pseudo-market mechanism of HZ where there is a continuum of agents with multi-unit
demands. There, the primary focus is on feasibility with no intersecting constraints (no additional

4. An e-equilibrium in an indivisible objects setting is a vector of prices and a partition of objects in which all
agents’ utilities are at least (1 —e¢) of their utilities in the competitive equilibrium if objects were divisible, no agent’s
budget constraint is violated, and the market clears.
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seats to students) and strategy-proofness (ex post incentive compatibility). The approximated
competitive equilibrium from equal incomes (CEEI) mechanism is exactly feasible and exactly
strategy-proof, and efficiency and envy-freeness are achieved only in approximate senses.
Budish et al. (2013) build on those two papers by considering a richer constraint structure.’ Our
article generalizes this literature by designing a randomized mechanism which can accommodate
a much richer class of constraints.

The literature takes different approaches for accommodating constraints in assignment
problems. There is work that treats constraints as hard or flexible. They consider constraints such
as distributional constraints or constraints such as stability and strategy-proofness. We review
some of this work below.

Fragiadakis and Troyan (2017) consider hard distributional constraints in stable assignment
problems. They introduce a mechanism that exploits the submitted preferences and, in the case of
finding a solution, respects all distributional constraints. Nguyen and Vohra (2019) consider the
problem of finding stable matchings in the presence of proportionality constraints and design
an algorithm which finds stable matchings while treating the proportionality constraints as
“soft” constraints. Kamada and Kojima (2015, 2019) observe that under distributional constraints
existing matching mechanisms typically suffer from inefficiency and instability. In the former
work, they propose a mechanism that performs better in terms of efficiency, stability, and
incentives, while respecting the distributional constraints. In the latter work, they relax stability
and focus on feasible, individually rational, and fair assignments. They characterize the class of
constraints on individual schools under which a student-optimal fair matching exists.

The approximate satisfaction of constraints has been studied in a few recent papers. Budish
(2011) studies the problem of combinatorial assignment by introducing a notion of approximate
CEEI, which treats course capacities as flexible constraints. A “soft bound” approach is introduced
in Ehlers et al. (2014), where the authors introduce a deferred acceptance algorithm with soft
bounds in which they adjust group-specific lower and upper bounds to achieve a fair and non-
wasteful mechanism. Nguyen et al. (2016) and Nguyen and Vohra (2018) respectively study one-
and two-sided matching markets with complementarities. They accommodate complementarities
inthe agents’ preferences in exchange for bounded violations of the capacity constraints. In a work
subsequent to ours, Ashlagi et al. (2019) consider RSD under distributional constraints. They
adopt our model with agent types (Section 3.5) and design a variation of RSD with dynamic menus
which finds an assignment that approximately satisfies the distributional constraints. Recently,
Che et al. (2019) have shown that accommodating complementarities is possible when finding
stable assignments in many-to-one large matching markets, given that the firms’ choice functions
satisfies mild continuity and convexity assumptions.

Notions such as stability, incentive compatibility, or efficiency can also be seen as constraints
to be satisfied by an assignment mechanism. Che and Tercieux (2019) observe that when agents’
preferences are correlated over objects, standard mechanisms such as deferred acceptance and
top trading cycles are either inefficient or unstable, even asymptotically. Then, they propose a
new variant of deferred acceptance that is asymptotically efficient, asymptotically stable, and
asymptotically incentive compatible. In a related work, Liu and Pycia (2016) focus on ordinal
mechanisms in which no small group of agents can substantially change the allocations of

5. In a recent work, Pycia and Unver study a more general structure (the Totally Unimodular or TU structure)
and show that they can accommodate constraints such as strategy-proofness and envy-freeness as linear constraints as
long as they fit into the TU structure (Pycia and Unver, 2015). Our approach is conceptually different from theirs since
we consider flexible constraints (i.e. goals) which may not fit into the TU structure. Kesten ez al. (2017) also work with
fractional assignments and improves RSD.
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others, and show that all asymptotically efficient, symmetric, and asymptotically strategy-proof
mechanisms lead to the same allocations in large markets.

There are some key points that separate our article from these works. First, we propose
a framework which can handle “intersecting” constraints. For instance, in the school choice
setting, we can accommodate racial, gender, and walk-zone priority constraints simultaneously.
Second, we provide a rich language for the market maker to declare a partitioned constraint set,
which contains both flexible and inflexible constraints. Third, our mechanism runs in polynomial
time, whereas the approach introduced in Budish (2011), as discussed in Budish ef al. (2016) and
Rubinstein (2014), is computationally hard.®

Compared to BCKM, who build their implementation method based on a theorem of Edmonds
on deterministic rounding of mathematical programs, we build our implementation method based
on randomized rounding. Various rounding techniques have been developed in the computer
science literature; Ageev and Sviridenko (2004), Gandhi et al. (2006), and Chekuri et al. (2010)
are among the closest to our work. Ageev and Sviridenko (2004) introduce a deterministic
rounding method, called pipage rounding, and Gandhi et al. (2006) and Chekuri et al. (2010)
design rounding methods following the same idea, although in a randomized fashion and
for different applications. We remark that none of these methods could be used directly to
handle our application, i.e., a bihierarchical constraint structure with upper and lower quotas.
We design our implementation method by extending the approach of Gandhi ez al. (2006) to
bihierarchical structures. The techniques in Gandhi et al. (2006)—though they inspired our
design—are specifically designed for the job scheduling problem. As a result, their randomized
algorithms accommodate neither non-local soft constraints, nor (bi)hierarchical hard constraints.

Other rounding methods have been used in the literature for (approximately) implementing
fractional allocations. Nguyen ef al. (2016) and Nguyen and Vohra (2018) model matching
markets with complementarities. They use iterative rounding (Lau et al., 2011) to design
implementation schemes specific to their problem structure. The goal there is to handle
complementarities (in a setup with only capacity constraints), while our article is concerned
with implementing generalized constraint structures, and not with complementarities.’

The problem of reduced-form implementation in the auction literature is also related to our
work (Matthews, 1984; Border, 1991; Che et al., 2013). In this problem, an interim allocation,
which describes the marginal probabilities of each bidder obtaining the good as a function of
his type, is constructed. Then, as we do in our problem, they ask which interim allocations
can be implemented by a lottery over feasible pure allocations. The approximate satisfaction of
constraints, however, is not studied in that literature.

2. SETUP

Consider an environment in which a finite set of objects O has to be allocated to a finite set
of N. We denote the set of agent—object pairs, N x O, by E, where each (n,0) €E is an edge.®
Sometimes we use “e” to denote edges. A pure assignment is defined by a non-negative matrix
X =[X,0], where each X,,, € {0, 1} denotes the amount of object o which is assigned to agent n for
all (n,0) € E. We require the matrix to be binary valued to capture the indivisibility of the objects.

6. Bronfman (2018) also use an approximation approach and propose a polynomial time algorithm to solve the
problem of couples in the Israeli Medical Match problem.

7. The specific structure of Nguyen et al. (2016) allows them to provide small additive bounds on the violation
of capacity constraints by using techniques different than ours. We also show that under certain structures, our technique
can provide small additive error bounds (Section 3.5).

8. We use the term edge since, in the graph-theoretical representations of the problem, the share of an object
assigned to an agent is shown by a weighted edge in the graph.
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A block BCE is a subset of edges. A constraint S is a triple (B,QB,(}B), which is a block
B associated with a vector of integer quotas (q B,QB) as the lower and upper quotas on B. A
structure is a subset £ C 2E ; L.e., a collection of blocks. A constraint set is a set of constraints.
Let q=[(g4.9B)Bec]-

We say that X is feasible with respect to (€, q) (or simply, with respect to £ when q is clearly
known from the context) if

4= Xe<qp VBe&. 2.1

We call ablock B e £ agent n’s capacity block when B={X,;|j € O}. Similarly, we call a block
Be& an object m’s capacity block when B={X;,,|i € N}. We sometimes refer to the capacity
blocks of agents and objects as row blocks and column blocks, respectively. A capacity constraint
is a constraint (B,c_]B,EIB), where Be £ is a capacity block. We sometimes refer to the capacity
constraints of agents and objects as row constraints and column constraints, respectively.

A fractional assignment is defined by a matrix x = [x;, ], where each x;,, € [0, 1] is the quantity
of object o assigned to agent n. To distinguish between pure and fractional assignments, we usually
use X to denote a pure assignment and x for a fractional assignment. We sometimes use the term
expected assignment to address fractional assignments. For any (pure or fractional) assignment
X, We use x, to denote the vector (x,1,...,xu0|) GR|O|, i.e., x, denotes the allocation of agent n.

Given a structure £ and associated integer quotas q, a fractional assignment matrix x is
implementable under quotas q if there exist positive numbers Ap,...,Ag, which sum up to one,
and pure assignments X1,...,Xg, which are feasible under q, such that

K
x= Z)\.ixi.
i=1

We also say that a structure € is universally implementable if, for any quotas q=(q 5> AB)BEE >
every fractional assignment matrix satisfying q is implementable under q.

The existing theoretical result on the implementability of a structure, which is discussed
in BCKM’s paper (Budish et al., 2013), builds on a classic combinatorial optimization result
(Edmonds, 2003). It shows that the bihierarchy is a sufficient condition for the universal
implementability of a structure. More precisely, a structure H is a hierarchy if for every pair of
blocks B and B in ‘H, we have that B’ C B or BC B’ or BNB' ={. A simple hierarchy is depicted
in Figure 1. A structure H is a bihierarchy if there exists two hierarchies H and Hy such that
'H="H1UH>. The following theorem identifies a sufficient and almost necessary condition under
which a structure is universally implementable.

Xl 1 X[E X] 3 XI-L
XE 1 XEE XES X24
(X, X, Xy X,
i \Xu X42, XJ,;; X44- ]
FIGURE 1
A hierarchy.
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8 REVIEW OF ECONOMIC STUDIES

Theorem 0 (BCKM) If a structure 'H is a bihierarchy, then it is universally implementable. In
addition, if H contains all agents and objects capacity blocks, then it is universally implementable
if and only if it is a bihierarchy.

2.1. Approximate implementation

In many assignment problems, the involved constraints are intersecting and the bihierarchy
assumption fails. The following example clarifies the bihierarchy limitations in the school choice
setting.

Example 1 In the Boston School Program (as of January 2016), 50% of each school’s seats
were set aside for walk-zone priority students. Consider a school which also has a group-specific
quota on low socioeconomic status (SES) students. Together with the requirement that each
student should be assigned to one school, these blocks do not form a bihierarchy.

In this article, we show that by treating some constraints as goals, rather than inflexible
constraints, we can accommodate many more constraints. More precisely, we ask the market
maker to partition the full set of constraints into a set of hard constraints that must be satisfied
exactly and a set of soft constraints that must be satisfied approximately. Accordingly, the
constraint structure will be partitioned into two sets: a set of hard blocks, H, which are
blocks of inflexible constraints, and a set of soft blocks, S, which are blocks of flexible
constraint. We refer to E=HUS as a hard—soft partitioned structure, or simply a partitioned
structure.

Another way in which our framework generalizes BCKM is that in our model elements of
soft constraints can have arbitrary weights; that is, for a soft block B, we say X is feasible with
respect to B’ if

C_IB’ =< ZWeXeféB’a

eeB’

where w, can take any arbitrary value in [0, 1], and qp and gp can be any non-negative real
number. The weights associated with an edge need not be equal for all blocks. Recall that,
similar to BCKM, for a hard block B, we require w, =1 for all e € B and restrict dg and gp to be
integers. This generalization of weights expands the scope of practical applications of the model,
as discussed in Section 4.

Our goal in this article is to identify structural conditions imposed on H and S under which
E="HUS is “approximately implementable.” In the following, we rigorously define the notion
of approximate implementation.

Definition 1 Given a hard—soft partitioned structure £E=HUS, we say £ is Approximately
Implementable if for any vector of quotas q and any expected assignment x which is feasible with
respect to (£,q), there exists a lottery (probability distribution) over pure assignments X1, ...,Xg
such that, if we denote the outcome of the lottery by the random variable X, the following properties
hold:

Pl. Assignment preservation: E[X]=ux.
P2. Exact satisfaction of hard constraints: All constraints in 'H are satisfied.
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P3. Approximate satisfaction of soft constraints: For any soft block B € S, any set of weights
{we:eeB,we €[0,1]} with ZeeBW€x€ =, and for any € >0, we have

62
Pr(devt >ep)<e #7 (2.2)

2
Pr(dev™ >ep)<e M7 (2.3)
where dev™ and dev™ are defined as follows:

dev =max (0, ZweXe -1,

eeB

dev™ =max (0, — ZweXe).

eeB

Property 1 simply states that there exists a lottery which implements x. Property 2 states that
hard constraints are satisfied with no error. Property 3 defines our notion of approximation in a
fashion similar to Chernoff concentration bounds.’ By this property, the probability of violating
a soft constraint by a factor greater than ¢ decays exponentially with the right-hand side (or the
left-hand side) of the constraint. Property 3 also guarantees that the probability of violating soft
constraints by a multiplicative factor € exponentially decays with €. For example, in a school with
2,000 seats, the probability of admitting more than 2, 100 students is bounded above by 0.19,
while the probability of admitting more than 2,200 students is no more than 0.0012.

The probabilistic bounds of Definition 1 might not seem practical for small markets. We
address this concern in Section 3.6. One may also wonder why implementation in our setting is
a non-trivial problem, and why simple implementation approaches fail. We discuss this issue in
Supplementary Appendix E.

3. THE MAIN THEOREMS

Given a partitioned structure £ =HUS, we first identify structures for H and S under which £
is approximately implementable in the sense of Definition 1. We then state a generalized version
of our main theorem and show that given a bihierarchy of hard constraints, any soft constraint
can be approximately satisfied, but with a weaker notion of approximate satisfaction. Finally, in
Section 3.5, under more specific constraint structures, we provide more powerful bounds that are
additive.

First of all, note that Theorem 0 shows that even if S={ (i.e. there are no soft constraints),
in order for £ to be universally implementable, bihierarchy is a sufficient and almost necessary
condition. We use the term “almost” because, while bihierarchy is not a necessary condition for
universal implementability in general, it is necessary in the presence of all agents’ and objects’
capacity blocks, as noted by Budish et al. (2013).!° We maintain this maximal structure and
let hard blocks form a bihierarchy; i.e., we assume H ="H|UH,, where H and H> are two
hierarchies. Then, given a bihierarchical hard structure, we aim to identify a structural condition,
if any, for soft blocks S under which £=HUS is approximately implementable. It is worth
pointing out that when H is a bihierarchy, a fully general set of soft constraints is not approximately
implementable (as shown in Appendix B.4).

9. Chernoff bounds are explained in Supplementary Appendix D.
10. While there are more general sufficient conditions for universal implementability (e.g. Total Unimodularity of
the coefficient matrix of the linear constraints (Schrijver and Cook, 1997)), these conditions are more abstract and convey
little intuition about the structural properties of the constraints.
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FIGURE 2
The solid blocks form a hierarchy 7. The dashed blocks are in the deepest level of ;. A block that, for example,

contains X3, and X33 is not in the deepest level of H .

3.1.  The structure of soft blocks

Now we will show that if H forms a bihierarchy, there exists a rich structure for the soft blocks
S under which £ =HUS is approximately implementable. To do so, we need to define one new
concept. For a block B€ S, we say that B is in the deepest level of H if for any block C e H,
either BC C or BNC ={. (See Figure 2 for an illustration.) We also say that B € S is in the deepest
level of a bihierarchy H="H{UH, if it is in the deepest level of either of H| or H;.

Theorem I (The main theorem) Let E="HUS be a hard—soft partitioned structure such that
‘H is a bihierarchy and any block in S is in the deepest level of H. Then, £ is approximately
implementable.

3.2.  Proof overview for Theorem 1

We present an overview of the proof here. The full proof is in Appendix A. The proof is
constructive. We propose a randomized mechanism that, given a partitioned structure satisfying
the properties described in Theorem 1, approximately implements a given feasible fractional
assignment. To do so, let us define a constraint to be tight if it is binding, and to be floating
otherwise. This definition also applies to the implicit constraints 0 <x, <1 for all e€ E. We say
an edge e is a floating edge if 0 <x, < 1. A block associated with a tight constraint is a tight block.

The core of our randomized mechanism is a probabilistic operation that we design, called
Operation X. We iteratively apply Operation &’ to the initial fractional assignment until a pure
assignment is generated. At each iteration ¢, the fractional assignment x; is converted to x;1 in
a way such that the following properties are satisfied:

The number of floating constraints decreases,
. E(x411x)=x;, and
3. xs4+1 is feasible with respect to H.

N =

The first property guarantees that after a finite (and small) number of iterations,'! the obtained
assignment is pure. The second property ensures that the resulting pure assignment is equal to
the original fractional assignment in expectation. The third property guarantees that all hard
constraints are satisfied throughout the whole process of the mechanism. We will also be able to

11. Our randomized mechanism stops after at most |H|+ |E| iterations.
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AKBARPOUR AND NIKZAD APPROXIMATE RANDOM ALLOCATION MECHANISMS 11

FIGURE 3
Tlustration of a floating cycle on the left and a floating path on the right.

show that the soft constraints are approximately satisfied at the end of the iterative process. This
will follow from the properties of Operation X.

Operation X" has two steps: first it finds a subset of edges with a special structure, a floating
path or a floating cycle. In the second step, the floating path or cycle is changed in a way that the
assignment “gets closer” to a pure assignment.

First step If there is a floating edge that is not part of any tight block, then choose that edge as
a floating path and start the second step. Otherwise, there must exist a tight block that contains
at least one floating edge. Consider the smallest possible such block, namely B. Without loss of
generality, suppose that B € H1. Since B is tight and the quotas are integers, then there must exist
at least 2 floating edges inside B, namely e, e5.

If neither e| nor e; are part of a tight block in H5, then choose e, ey as a floating path and
start the next step. If both e; and e, are part of some tight block in H>, let B; be the smallest
possible tight block in H, that contains e;, for i=1,2. Since quotas are integers, and since B; is
tight, then it must contain another floating element, namely e;. The idea is to continue this search
from both directions until we return to one of the blocks that we have previously visited, which
gives us a floating cycle (Figure 3), or until we find floating edges on both sides of the search
that are part of no tight constraint, which gives us a floating path (Figure 3). In the remaining
case where exactly one of eq, e; is part of a tight block in 5, we can find a floating cycle or path
through a similar procedure.

Second step Once we identify a floating cycle or a floating path of a fractional assignment x,
Operation X stochastically changes the assignment x to a new assignment x’, in the way we define
next. If neither a floating cycle nor a floating path exists, then the assignment must be pure. (See
Lemma A.4 in the Appendix.)

To define Operation &X', we need some new notations. Suppose that we are given a fractional
assignment x. For any block B and any € >0, let x ?¢ B denote a new (fractional) assignment in
which x, is changed to x, + € for all e € B, and remains unchanged otherwise. Similarly, let x | ¢ B
denote the fractional assignment in which x, is changed to x, — ¢ if e € B, and remains unchanged
otherwise. Therefore, (x1¢B) B’ denotes the fractional assignment in which the value of any
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12 REVIEW OF ECONOMIC STUDIES

edge e B—B' is x, +¢, the value of any edge e € B’ — B is x, — €, and the value of any other edge
is the same as its value in x.

We now define Operation X for a given floating cycle. The definition for a floating path is
similar. Let F = (eq,...,e;) be a floating cycle in x. We first partition F into two subsets:

F,={e;:iis odd},

F,={e;:iis even}.

Given an assignment x, a floating cycle F, and two non-negative reals € and €’ (which we will

describe how to set), the output of Operation X is an assignment x’ € RV*9, where:
e X1 eFo)deFe with probability i;,
(xle'Fo)te Fe, withprobability
Here, € and ¢’ are chosen to be the largest possible numbers such that both of the assignments
(xteFp)lecFeand (x| ¢ Fy)?Te Feremain feasible with respect to all hard constraints. This finishes
the definition of Operation X'.

Operation X satisfies properties (1) and (3) by construction—it reduces the number of floating
constraints and it never violates any hard constraint. In addition, it satisfies the martingale property
(i.e. property (2)). This holds because for any edge x; j) that changes in one iteration of Operation
X, one of the following can happen:

1. If (i,j) € Fy, then Operation X increases x(; j) by € with probability &;, and decreases it
by €’ with probability ﬁ In this case, the expected amount by which x(; ;) changes is

equal to €- &;, —€' =o=0.
2. 1f (i,j) € F,, then Operation X" decreases x(; j by € with probability &;, and increases it

by €’ with probability —< = In this case, the expected amount by which x(; ;) changes is

€+
e ;€ _
equal to —€- —— +¢€ - 7 =0.

Therefore, E(x;+1|x;) =x;. Hence, by the end of the iterative process, the expected value of
the final pure allocation is equal to x.

The most challenging step is to prove that at the end of the process, the soft constraints that are
in the deepest level of H are approximately satisfied. We only discuss the intuition for this step
here. Operation X is designed in such a way that it never increases (or decreases) two or more
elements of a soft block at the same iteration. Consequently, elements of each soft block become
negatively correlated. The negative correlation property then allows us to employ probabilistic
concentration bounds (Chernoff bounds, as explained in Supplementary Appendix D) to prove
that the soft constraints are approximately satisfied.

Remarkably, Operation X never exploits the structure of the soft blocks and only takes as
input the structure of the hard blocks, H. The property that it never increases (or decreases) two
or more elements of a soft block in one iteration holds regardless of the structure of the soft blocks.
Consequently, the main theorem holds even if the set of soft constraints includes all constraints
that are in the deepest level of the bihierarchy.

3.3. Tightness

As we just discussed, Operation X exploits the negative correlation property of the elements of
a soft block. We derive our results by applying Chernoff concentration bounds for independent
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AKBARPOUR AND NIKZAD APPROXIMATE RANDOM ALLOCATION MECHANISMS 13

random variables, which are also applicable for negatively correlated variables. One may ask: is
it possible to exploit the negative correlation property and improve the error bounds of Theorem 1
for approximate satisfaction of the soft constraints? Next, we show that those bounds are tight,
up to multiplicative constants in the exponents.

Proposition 1 Consider a lottery that, given any hard—soft partitioned constraint structure,
guarantees to satisfy the hard constraints and gives the following guarantees for the satisfaction
of soft constraints: there exists a constant € € (0, 1) such that for any € € (0,€), and for any soft
constraint defined on a block S with ) ,.¢Xe = I, the lottery guarantees that

Pr |:ZX€ <u(l —6)} <f(u,e),

eesS

Pr [er zu(1+e):| <f(u.e).

eeS

u

c

Then, there exists a constant ¢ > 0 such that, for any € €(0,€), lim,_, » ]% =0.

Proposition 1 shows that there exists a constant ¢ > 0 such that any lottery that satisfies the

hard constraints can approximately satisfy soft constraints (in the sense of Definition 1) with a

&2
probabilistic guarantee no better than e . We prove this result in Appendix B.1. The proof

works by constructing a sequence of instances (indexed by the number of agents) such that
no lottery can perform better than the exponential bounds provided by the proposition in that
sequence. While the proof reveals that any constant ¢ <2 /3 suffices for the result to hold, it does
not optimize to attain the largest possible such c.

3.4. The trade-off between hard and soft structures

Theorem 1 requires the soft blocks to be in the deepest level of the hard structure. Under what
conditions it would be possible to implement an arbitrarily complex set of soft constraints? We
will show that this would be possible if either the structure of hard blocks is “sufficiently simple,”
or with weaker probabilistic bounds. These results expose a trade-off between the power of the
probabilistic bounds that we provide and the complexity of the structure of soft constraints with
respect to the structure of hard constraints.

3.4.1. Arbitrary soft structure with simpler hard structure. First and foremost, it
follows from Theorem 1 that if the hard structure is a single hierarchy, then the soft constraint
structure can be arbitrarily complex, without any loss in the power of the bounds. This is formalized
in the following proposition.

Proposition 2 Let E=HUS be a hard—soft partitioned constraint set, where H is a single
hierarchy; i.e., H1 =% or Ha=W. Then, for all S C2F, £ is approximately implementable.

We discuss the applications of this result in Section 4.

3.4.2. Arbitrary soft structure with weaker approximation bounds. It follows from
Theorem 1 that if the hard structure has its maximal form (i.e. bihierarchy), our implementation
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14 REVIEW OF ECONOMIC STUDIES

mechanism can still approximately satisfy any soft constraint, but with weaker approximation
guarantees. To formalize this idea, we need a new definition. We say that a block B € S is in depth
k of hierarchy H; if B can be partitioned into k subsets By, B>,...,Bj such that all are in the
deepest level of H| and, moreover, no partitioning of B into k— 1 subsets satisfies this property.
We also say that Be S is in depth k of bihierarchy H="H| UH; if it is in depth k of either of H
or Hj.

Proposition 3 Let E=HUS be a hard—soft partitioned structure such that H is a bihierarchy.
Then, & is approximately implementable in the sense of Definition 1, with one difference: for any
soft block B € S that is in the depth k of H, equations (2.2) and (2.3) will change to:

E2

Pr(devt >ep)<k-e #x (3.4)
62

Pr(dev™ >ep)<k-e M, (3.5)

Note that when k=1, the above bounds coincide with the bounds of Theorem 1. Therefore,
this proposition generalizes Theorem 1. We prove this result in Appendix B.2. The essential
component of the proof is applying a union bound on (2.2) and (2.3).

Thus, implementing an arbitrary soft constraint structure is feasible with a compromise over
either the generality of the hard structure, or the strength of the probabilistic bounds.

3.5. Additive bounds when agents have types

In this section, we show that it is possible to design Operation X'-based lotteries with additive error
guarantees when there is only a small number of fypes of agents in the economic environment.
For the sake of exposition, we use school choice as our motivating example.

Let N and O represent the set of students and schools, respectively. There is a partitioned
structure £ =HUS, where H="H|UH> is a bihierarchy. Suppose that the hierarchy H is the
set of all row blocks and that the hierarchy H> contains the set of all column blocks (note that
we allow H» to contain other blocks as well). The row blocks ensure that every student will be
assigned to a school, and the column blocks ensure that the schools’ capacity constraints will be
satisfied. Let S be the set of blocks that are in the deepest level of H,. Throughout this section,
we assume that the variables in soft constraints have coefficients that are either O or 1 (similar to
hard constraints).

We say a student n € N participates in a constraint if there exists some object o € O such that
the coefficient of x,, is positive in that constraint. We say two students have the same fype if
whenever one of them participates in a constraint in Hy US, the other one also does. We denote
the set of all types by 7.

For example, consider a school choice problem where each school has a hard capacity
constraint, as well as a soft constraint on the number of students from low socioeconomic status. In
this case, |7 | =2: the two types correspond to the students with low socioeconomic status and the
rest of the students. Our main result in this section states that any feasible fractional assignment
is approximately implementable with additive error at most |7 |. That is, with probability one,
soft constraints will not be violated by more than |7 .

To state the main theorem of this section, we first modify the definition of approximation
implementation to the case of deterministic additive bounds.

Definition 2 We say that a partitioned structure £ =HUS is approximately implementable with
additive error X, if all conditions of Definition I are satisfied with the difference that for Property 3
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(the approximate satisfaction of soft constraints), the new requirement is that for any soft block
BeS with ) ,cpXxe =, we have | ) ,.pXe— | <k.

Theorem 2 When there are T student types, any feasible fractional assignment x is
approximately implementable with additive error T.

The proofisin Appendix B.3. Applying the implementation method of Theorem 1 directly does
not provide the deterministic bounds of Theorem 2. We use a different method: we first expand
the set of hard constraints by adding constraints that bound the number of students assigned from
each type to each school from above and below, and then use Operation X for implementation.

This theorem shows that in designing random allocation mechanisms for specific economic
applications, one may be able to provide stronger and even deterministic bounds. In real-world
settings, are the soft constraints closer to the ones in Theorem 1 or Theorem 2? The answer
depends on the specific application in hand. Let us elaborate with an example.

Consider a school choice problem with two different walk zones, where each school has
minimum quotas for both low SES students and students with disabilities. Hence, | 7| =8. This is
likely an acceptable error bound in a school choice setting. However, if the number of walk zones
goes up to 10, we would have |7 | =40, which may or may not be an acceptable error bound. The
number of types can grow even further in some other applications. For instance, in Section 4.1
we discuss a new method, recently adopted by Boston Public Schools, in which the walk zone
of a school is a certain “radius” around its location. So, the number of walk zones would be as
large as the number of schools, which makes the error bounds of Theorem 2 undesirable in this
market. The error bounds of Theorem 1, on the other hand, are agnostic to the number of student
types and do not depreciate when more student types are added by introducing additional soft
constraints. The computational experiments in Supplementary Appendix A.5 demonstrate this
for the empirical error bounds; that is, they do not depreciate when more student types are added.

From a practitioner’s perspective, the choice between the methods provided by Theorem 1 and
Theorem 2 depends on the level of complexity of the soft constraints and the level of tolerance for
violating them. While Theorem 1 offers probabilistic guarantees for possibly complex structures,
Theorem 2 provides deterministic bounds which are appealing for simpler soft structures where
the number of types is small. We discuss the applications of these theorems in Section 4.

3.6. Computational experiments on probabilistic bounds

To assess the performance of our probabilistic guarantees in potential applications, we provide
computational experiments in school choice settings with several constraints such as diversity and
walk-zone constraints. We discuss the results in detail in Supplementary Appendix A. In sum, the
experiments show that our bounds perform (much) better than the theoretical worst-case bounds
of Theorem 1. In the most basic example, for a goal to admit 250 students from a specific walk
zone, our theoretical bounds guarantee that the probability of a 10% violation is no more than
e=250x0.2/3 . ) 434, Nevertheless, simulations show that the empirical probability of a 10%
error is less than 0.064. When the number of students goes up to 500, meanwhile, the theoretical
and empirical violation probabilities change to 0.188 and 0.024, respectively.

We extend our experiments in several ways by (1) using NYC public high school data (Nycdoe,
2019) for the number of schools and their capacity constraints, (2) including walk-zone and several
(intersecting) diversity constraints in the assignment problem, and (3) including correlation in
students’ preferences. In our experiments with the NYC high school data, for instance, in at most
2% of the schools there is a 10% or higher violation of the capacity constraint, and in at most
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6% of the schools there is a 10% or higher violation of the walk-zone constraint.'> The fraction
goes up to 6% because walk-zone constraints have a smaller right-hand side, which is half of
the right-hand side of the capacity constraint. That said, even for this smaller right-hand side,
violations become rare with slightly larger error tolerance; e.g., the probability of violation by
more than 15% is around 0.01. To compare this with typical violations that may happen in real
world, we note that, for instance in our data from Manhattan, nearly 17% of high schools have
violations of more than 10% in their capacity constraints.

Why do our probabilistic bounds perform better empirically? The proof of the main
theorem provides some intuition. We first prove that the random variables in each soft block
are negatively correlated. Then, since negative correlation is stronger than independence, we
apply standard concentration bounds for independent random variables to prove our bounds.
Therefore, we expect our algorithm to perform better in practice due to negative correlation.
In Appendix B.5, we show why negative correlation can lead to improved bounds using an
example.

4. INTERSECTING CONSTRAINTS IN PRACTICE

Intersecting constraints arise in a variety of settings. We consider two real-world settings that admit
intersecting constraints: school choice (discussed here) and refugee resettlement (discussed in
Supplementary Appendix B). We show how our framework can incorporate soft constraints in
these settings.

Consider a school choice setting, where a set N ={1,---,n} of students are to be assigned to a
set O={1,---,k} of schools. Several types of constraints arise in this market. A few examples are
capacity constraints of schools, reserved capacities for students in walk zones, affirmative action
policies,'® and grade-based quotas.'* The bihierarchy assumption often fails in this setting since
such constraints typically intersect. (See Example 1.) However, several of these constraints can
be considered as flexible constraints.'>

We model the school choice problem in our setting as follows. Let H be a single hierarchy
which includes the student-side inflexible constraints. Each student should be assigned to exactly
one school. Hence, one can define H to be the set of all student-side capacity blocks, where
c_]B=§B=1 for all BeH. Suppose all other constraints are soft. Then, by Proposition 2, any
general set of constraints can be approximately satisfied.

We can go further by considering a setting where H also includes school-side capacity blocks;
that is, school capacities cannot be violated. In this case, structures with arbitrary soft blocks
are not approximately implementable, but it follows from Theorem 1 that a reasonably general

12. These are substantially lower than what Theorem 1 guarantees. The median NYC school has capacity above
500. As we discussed before, the bound proved in Theorem 1 for a 10% violation of a constraint with size 500 is 0.19.
For walk-zone constraints, since the size is lower, the theoretical bounds are larger.

13. Affirmative action is defined as “positive steps taken to increase the representation of women and
minorities in areas of employment, education, and culture from which they have been historically excluded”
Stanford Encyclopedia of Philosophy (2013). One goal of such policies is to increase diversity and to balance out the
social effects that weaken specific groups. Another argument in favour of affirmative action policies is that they increase
structural integration, which “serves the ideal of equal opportunity” (Jacobs, 2004). Affirmative action policies are
usually implemented as minimum quotas on students within a minority group. See Abdulkadiroglu and S6nmez (2003),
Hafalir et al. (2013), and Kominers and Sonmez (2016) for theoretical analysis of affirmative action policies.

14. Schools may have grade-based diversity policies. For instance, New York City’s Educational Option program
has quotas based on test scores; see Abdulkadiroglu et al. (2005).

15. In fact, New York City public school system data show that the capacity constraints of schools are on average
violated by around 20%. We discuss these data in Supplementary Appendix A.
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structure is implementable. In particular, we say that a block is local if it involves one student
with possibly multiple schools or one school with possibly multiple students, but not multiple
schools and multiple students at the same time. In other words, a block is local if it includes a
subset of the elements of a single column or a single row.'%

Proposition4 Let E=HUS be a structure such that H is the set of all agents’ and
objects’ capacity blocks and S only contains local blocks. Then & is approximately
implementable.

Last but not least, the soft constraints in school choice are sometimes such that Theorem 2
can provide reasonable additive bounds for practical applications. For instance, in Boston
Public Schools (BPS) program and until a few years ago, for students in kindergarten through
Grade 8, two main considerations are walk zones (East, West, and North zones, as reported in
Abdulkadiroglu et al. (2005)) and the SES status (“free lunch” and “paid lunch” students). This
forms six different types of students. Therefore, Theorem 2 guarantees that all constraints can be
satisfied by an additive error of at most 6.

4.1. An alternative approach to walk-zone priorities

We can employ our framework to develop an alternative approach for handling walk-zone
priorities in school choice. A common way to implement walk-zone priorities is to partition
the city into artificial zones and impose quotas on students living in the same zone as the school.
By construction, this method treats students who live just inside and outside of a zone’s border
very differently. Recently, some public school systems have adopted a new method, in which the
walk zone of a student is a certain “radius” around where the student lives. For instance, BPS
recently revised its assignment policy; in particular, it now states:

BPS will offer a customized list of school choices for every family based on
their home address. It includes every school within a one-mile radius of their
home..."”

Even this method has some discontinuous behaviour: effectively, it draws a one-mile radius
circle around each school, and considers the students inside that circle as the walk-zone students
of that school. Thus, this method is essentially same as the traditional walk-zone method, with
the difference that each school has its own walk zone. Again, two students who live just inside
and outside of a school’s zone are treated differently.

Building on our framework, we propose a new method to handle walk-zone priorities. Let dj,
be the “priority function” of assigning a student s to a school c. The walk-zone constraint can be
stated as ) oy dscXse > q. where ¢ can be used to adjust the significance of walk-zone priority.
In the standard walk-zone priority formulation, dy. =1 if s and ¢ are in the same walk zone, and
dgc =0 otherwise. However, we can define dy. to be, e.g., 1 /25, Where z, is the distance of student
s from school ¢ (or the commute time). Our setting allows for any arbitrary priority function. This
way of accommodating walk-zone priorities can ensure that there is no “discontinuity” on the
borders of different zones.

16. This model of “local” structures, which is a special case of our model, has been studied in Khuller et al. (2006)
as well.
17. https://www.bostonpublicschools.org/assignment, accessed 10/07/2018.
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5. APPLICATION I: UTILITY GUARANTEES

We now turn into the question of ex post properties of our implementation mechanism. As
discussed before, a key motivation for randomization is to restore fairness. Nevertheless, even if
the constructed fractional assignment is fair, there could be very large discrepancies in realized
utilities, as discussed in Kojima (2009). The following example clarifies this point.

Example 2 Suppose there are two agents and we wish to allocate 2k objects between them.
Each agent is supposed to receive k objects. Both agents receive a utility v; from object i, where
V1>V >+ >V, and their utilities are additive. In a fair fractional allocation, each agent
receives half of each object. We can implement this allocation in two different ways: (1) randomly
choose one agent and let that agent choose her favourite k objects, or (2) choose k objects
randomly, assign them to agent 1, and assign the remaining objects to agent 2. It is clear that the
second way is more fair ex post since in the first way one agent always receives all of the most
popular objects.

Here, our goal is to show that when a fractional assignment x is implemented via Theorem 1, an
agent’s ex post utility is approximately equal to her ex ante utility, in a sense to be formalized
soon. In the case of Example 2, Operation X’ produces an (ex post) allocation closer to the second
implementation method. To show how our “utility guarantee” can be applied to different settings,
we provide examples from two classic allocation mechanisms: the random serial dictatorship
(RSD) mechanism and the pseudo-market mechanism. Our results extend these methods by
handling intersecting constraints and, in addition, by providing approximate guarantees for the
agents’ ex post utilities in settings with such constraints.

5.1.  Setup

We introduce some notation before presenting our utility guarantees.

Definition 3  For two non-negative random variables x,y, we write x <y if there exists a constant
w >0 such that for any € >0,

Pr(xzpu(l+e)) se ™3,
Pr(y=p(i—e)se /2,

We also say that x is approximately upper bounded by y or, equivalently, y is approximately lower
bounded by x when x Sy holds. When x =y and E[x] = u, then if the above inequalities hold, we
say that x is approximately equal to |1, and denote it by x X [L.

For example, if a random variable x is approximately lower bounded by a constant i, then
the probability of x being less than u(1 —e€) decreases exponentially in u, for any € > 0. Notably,
the two probabilistic bounds in the above definitions are essentially the same bounds as (2.2) and
(2.3). These are the typical multiplicative forms of Chernoff concentration bounds.

Consider agents with von Neumann—Morgenstern utility functions that are additive across
objects. That is, the utility of an agent i from any (fractional or pure) allocation x is defined by
uj(x)= Z}gl Xixuir .- Without loss of generality, it is supposed that u;; € [0, 1] for all i, k. Consider
a hard—soft partitioned structure £="HUS, with the restriction that all of the row blocks are in
the deepest level of H. We do not impose any restrictions on columns.
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The following result shows that when the assignment x is implemented using Operation X,
the ex post utility of an agent i is approximately equal to her ex ante utility, u;(x).

Proposition 5 (Utility guarantee) Let x be a feasible fractional assignment with respect to £
and let the assignment X be the outcome of the mechanism that implements x via Theorem 1 (i.e.
by the iterative application of Operation X ). Then, u;(X)~ u;j(x).

The restriction that all of the row blocks are in the deepest level of H is required since an
agent’s utility is a function of all of the elements of the row corresponding to her. As Theorem 1
requires the soft blocks to be in the deepest level of H, the row blocks corresponding to the
auxiliary constraints should be in the deepest level of H as well. It is also possible to provide
utility guarantees without assuming that all of the row blocks are in the deepest level of H;
however, the guarantees will be weaker, similar to those of Proposition 3.

We remark that similar approximate guarantees can be provided for the ex post social welfare.
Formally, define the social welfare and the average welfare under assignment x respectively by

W)= Zy;”] ui(x) and W(x) = W}\(/T ). A straightforward application of Proposition 3 then implies
that B
Pr(W(X) <a —E)W(x)) <IN|-e~ W2,

Similar to our utility bounds, the above bound for social welfare is interesting when agents’
utilities are relatively large, which is the case when several objects (in expectation) are allocated
to agents. In a school choice setting where students have unit demand, for instance, these bounds
cannot guarantee fairness. More generally, since each student is assigned to a single school, it
is typically impossible to guarantee ex post fairness—after all, some student has to go to a less
popular school. However, even in the school choice setting, our bounds provide ex post guarantees
for schools’ utilities, since a large number of students are being assigned to each school.

We emphasize that Budish (2011) and BCKM also provide ex post guarantees, but their
guarantees have different mathematical and economic interpretations. In particular, Budish (2011)
focuses on finding approximate competitive equilibrium from equal incomes. He defines a
“maximin share” in the following way: an agent is allowed to divide objects into N bundles, and
then receive the bundle with minimum utility. He then proves that in his mechanism, each agent’s
utility is at least equal to his maximin share, approximately. BCKM, who focus on implementing
arbitrary fractional assignments, can provide utility bounds that guarantee the ex post utility of
an agent is different from its ex ante utility by at most the utility difference between the most
valuable and the least valuable objects, and this guarantee is deterministic.

We provide our utility bounds for a generalized constraint structure which allows for
intersecting soft constraints. The generality of this structure makes the results in Budish (2011)
and BCKM inapplicable and, thus, we provide bounds by exploiting the negative correlation
property of Operation X'. We now provide two examples of classic assignment mechanisms in
which our implementation method based on Operation X, and thus our utility guarantees, may
be applied.

5.2.  Example 1: approximate random serial dictatorship

The contribution of this section is modifying RSD in a multi-unit demand setting with intersecting
constraints to guarantee its ex post “approximate fairness.”

The RSD mechanism is one of the most popular mechanisms for the allocation of indivisible
objects. In a simple single-unit demand setting, the RSD mechanism first draws an ordering of
agents uniformly at random and then lets the agents select their favourite object (among the
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remaining objects) one by one according to the realized random ordering. In a multi-unit demand
setting RSD is defined similarly, except that each agent can select her favourite bundle of objects
at her turn.

The RSD mechanism is strategy-proof, ex post Pareto efficien and ex ante fair®
(Abdulkadiroglu and S6nmez, 1998; Chen and Sonmez, 2002). On the downside, it can be ex
ante inefficient, ex post unfair, and it cannot accomodate lower quotas (Bogomolnaia and Moulin,
2001; Hatfield, 2009; Kojima, 2009). While Che and Kojima (2010) show that under some
conditions the ex ante inefficiency vanishes in large markets, the ex post unfairness (as illustrated in
Example 2) remains a concern. We address this concern by employing the utility bound developed
in Proposition 5.

We adopt the same model as in Section 5.1. Recall that there we considered a hard—soft
partitioned structure, £=HUS. Here, we suppose that all of the lower quotas are set to zero.
When this condition holds, RSD extends to our setting in a natural way in the following way:
The mechanism orders agents randomly. Then, one by one in that order, each agent is allowed
to choose any subset of the objects that does not cause a violation of any of the (upper quota)
constraints in £. We denote the resulting pure assignment by X;E, where 7 denotes the ordering
of agents that is chosen by the mechanism.

We are now ready to introduce the new mechanism, the Approximate Random Serial
Dictatorship (ARSD) mechanism, and prove that this mechanism preserves the ex ante fairness
properties of RSD while being ex post approximately fair.

The idea is simple: RSD induces an ex ante assignment. This assignment can be constructed
as follows. Let IT denote the set of all orderings over agents. Define x,,q = |1T| dox Eanf . Then,
implement x,,; via Theorem 1, so that the constraints in H are satisfied and the constraints in S
are approximately satisfied. We now summarize these steps.

t,18

The approximate random serial dictatorship mechanism (ARSD)

1. Agents report their cardinal values for objects (i.e. each agent a reports ugy1, ..., Ug|0))-
2. The mechanism computes X;..
3. The mechanism implements x5 via Theorem 1.

Note that the RSD and ARSD mechanisms implement the exact same ex ante assignment,
but their ex post properties are different. It is well-known that this ex ante assignment satisfies
desirable fairness properties (Abdulkadiroglu and Sonmez, 1998).2° We call x4 the ex ante ARSD
assignment, and the outcome of the ARSD mechanism the ex post ARSD assignment. Finally,
we say that a mechanism is strategy-proof (or dominant-strategy-incentive-compatible) if it is
a weakly dominant strategy for every player to report her (private) cardinal values for objects
truthfully to the mechanism.

Proposition 6 The ARSD mechanism is strategy-proof. Moreover, the utility of any agent in the
ex post ARSD assignment is approximately equal to her utility in the ex ante ARSD assignment.

18. Recall that a pure assignment of objects to agents is said to be ex post Pareto efficient if there exists no other
pure assignment in which any agent is weakly better off and at least one agent is strictly better.

19. RSD is ex ante fair, e.g., in the sense that it respects equal treatment of equals. An allocation mechanism is said
to respect equal treatment of equals if agents with the same utilities over bundles of objects have the same allocations.
RSD satisfies the “equal treatment of equals” and the “SD envy-freeness” criteria.

20. For example, it respects equal treatment of equals, in the sense that the allocations of agents who are identical
up to relabelling are the same.
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Some intuition for this result comes from the way Operation X randomly allocates the objects.
The negative correlation property of Operation X’ guarantees that when an agent receives a popular
object, she is (weakly) less likely to receive yet another popular one. Our method alleviates
the discussed ex post unfairness of RSD in settings where each agent receives a large number
of objects. For settings where agents receive a small number of objects, our bounds are not
practically relevant. In that case, however, the implementation strategy of Theorem 2 can lead to
better bounds.

5.3.  Example 2: the approximate pseudo-market mechanism

Hylland and Zeckhauser (1979) propose a remarkable design for assigning n objects to n agents
in an ex ante efficient way. They allocate all agents with an equal amount of an artificial currency,
ask them to report their von Neumann—Morgenstern preferences, and then solve for the CEEI
of this “pseudo-market.” The resulting fractional assignment is ex ante efficient and envy-free
by the properties of the competitive equilibrium allocation. BCKM generalized that framework
to a multi-unit demand setting, where objects may have capacity constraints. We propose a
generalization of HZ and BCKM’s mechanisms. Our contribution is to allow for a rich family
of soft constraints, including intersecting constraints. In addition to that, the outcome of our
mechanism is approximately ex post envy-free, a property that can be guaranteed only ex ante in
HZ and BCKM.

We adopt the basic setup defined in Section 5.1. Recall that there we considered a hard—soft
partitioned structure, £ =HUS. Here, we assume that H ="H; UH,, where H is the set of all
row blocks and H>, is the set of all column blocks, respectively.21 In addition, we allow the set of
soft constraints to contain any sub-row, i.e., any block in the deepest level of H . All of the lower
quotas are set to 0. The structure of £ ensures the existence of a feasible fractional solution, i.e.,
a CEEI if objects were divisible.

We define a few notions before presenting the mechanism. A vector x; =(x;1,...,Xj|0)) is a
feasible bundle for agent i if x; satisfies all (hard and soft) row and sub-row constraints from £ in
which agent i participates. Let F; be the set of all feasible bundles for agent i. Given a vector of
prices for objects, p=[pilrco, We say x; is a budget feasible bundle for agent i with respect to p

if Y prxix <B. Let B;(p) be the set of all budget feasible bundles for agent i with respect to p.
keO
Finally, denote the capacity of an object k by ¢gy. Recall that u;(x;) denotes the utility of an agent

i from a feasible bundle x;.
The approximate pseudo-market mechanism

1. Agents report their cardinal object values (i.e. each agent a reports uyq, ..., Ug|0))-
2. Assign to each agent an artificial budget B. Compute a vector of nonnegative prices p=
[Prlkeo and a fractional assignment x = [x;];cn such that:

(a) xj=argmax,c g, {uj(x)}, forallieN,
(b) > xix <gi,forall ke O, and Y xj < gy only if pp=0.
ieN ieN

3. Implement x via Theorem 1.

21. We can relax the structure of the hard constraints by allowing 7 to be a hierarchy that contains additional
sub-row constraints, in exchange for weaker guarantees for the agents’ ex post utilities (in the sense of Proposition 3).
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In Step 21, we construct the fractional allocation by solving for the competitive equilibrium
of the market, giving all agents an artificial budget of B. The existence of the price vector and
the fractional assignment of Step 21 follows directly from Theorem 6 of BCKM. We call this
assignment the ex ante assignment. In Step 21, the mechanism generates the ex post assignment
by implementing the ex ante assignment.

Since each agent is solving an individual utility maximization problem (stated in 2-a), the
assignment x is envy-free. Recall that an assignment x is envy-free if u;(x;) <u;(x;) foralli,jeN.
We now show that the implementation step (Step 21) maintains some of the nice features of the
ex ante assignment, including envy-freeness, approximately. We say that a random assignment X
is approximately envy-free if u;(X;) Su;(X;) for all i,jeN.

Proposition 7  The assignment generated by the approximate pseudo-market mechanism is
approximately envy-free. Furthermore, the utility of each agent in the assignment is approximately
lower bounded by her utility in the ex ante assignment. The ex post assignment is equal to the
ex ante assignment in expectation, satisfies the hard constraints, and approximately satisfies the
soft constraints.

Finally, we remark that the structure of hard constraints in the above proposition can be
relaxed. In particular, we can allow the hierarchy | to contain additional sub-row constraints,
in exchange for weaker guarantees for the agents’ ex post utilities (in the sense of Proposition 3).
The proof remains the same, mutatis mutandis.

6. APPLICATION II: COMPETITIVE EQUILIBRIUM

In this section, we apply our implementation method to prove the existence of an e-competitive
equilibrium (e-CE) in large markets in allocation problems with indivisible objects, where
agents have additive utilities and possibly intersecting constraints. It is known that the standard
existence results of competitive equilibrium (CE) fail in settings with indivisibilities (Henry,
1970). Following this result, a body of literature studies conditions under which the existence of
CE in the presence of indivisibilities is guaranteed.

Dierker (1971) shows that an equilibrium exists, provided that the number of agents is large
relative to the number of commodities, or if agents are insensitive to “small” price changes, and
therefore may slightly violate their budget constraint. Broome (1972) shows that if at least one
commodity is divisible, then there exists an “approximate” equilibrium, where the approximation
is in two dimensions: The allocation is only approximately feasible, and agents are only nearly
optimizing. Mas-Colell (1977) establishes the existence of competitive equilibrium when there
exist at least one divisible commodity and a continuum of agents. Budish (2011) shows that when
(1) the capacity constraints are relaxed and (2) agents are provided slightly different budgets
at random, an approximate competitive equilibrium exists in a combinatorial economy with
indivisible objects. The error rate in satisfying the capacity constraints grows with the total
number of commodities and the maximum number of commodities that each agent is interested
in. More recently, Babaioff ez al. (2017) study a model close to ours but without distributional
constraints. They consider an environment with two agents with equal budgets and show that
competitive equilibrium exists when vanishingly small perturbations are added to the budgets.

Relative to the previous literature, this section has one conceptual and one technical
contribution. On the conceptual side, we prove the existence of €-CE in an environment where
each agent imposes a set of (possibly intersecting) constraints as part of her preferences. Unlike
the mentioned prior work, our specification does not impose a limit on the total number of
commodities, or on the number of commodities that an agent is interested in. The specification
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of hard constraints by the agents is of practical interest in settings such as online advertisement,
where advertisers are typically allowed to target specific groups of users; for instance, an advertiser
can specify, in part, that “I want at most 40,000 ads to be shown to users who live in Northern
California, with at most 15,000 of them to those living outside of the Bay Area.” An application of
our result is using competitive equilibrium as a solution concept for pricing online ad impressions,
which has recently been considered by Facebook (Hou et al., 2016). Our solution readily extends
to the case where the agents can also specify soft constraints, where the probabilistic bounds of
Theorem 1 and Proposition 3 would be applicable.

On the technical aspect, the proof employs the implementation of fractional assignments
via Operation X, and then applies the “probabilistic method,” as described in Alon and Spencer
(2004), to establish the existence of €-CE. We remark that the utility guarantees of Section 5
alone do not suffice to establish the existence, since the analysis here should also accommodate
(hard) budget constraints. Nevertheless, we can use the probabilistic guarantees of Proposition 3
for soft constraints to accommodate the (hard) budget constraints.

For our first theorem, we will suppose that the set of constraints imposed by each agent is
a hierarchy, and prove the existence of an €-CE when the market is sufficiently large. We will
dismiss the hierarchy assumption in our second theorem in exchange for a slightly stronger large
market assumption. We present the theorems after defining the economy formally.

Consider an economy with a set of agents and a set of objects, respectively denoted by N, O.
Any agent a€ N is endowed with an initial budget of w, € R*. Objects are in unit supply.??
Each agent imposes a set of hard constraints, H,, on the assignment. We suppose that all of the
constraints in H, involve no other agent than a (i.e. the constraints in H, are local)®? and that all
of the corresponding lower quotas in H,, are equal to 0.4

A subset of objects S C O is feasible with respect to H, if all of the constraints in H, are
satisfied when the set of objects assigned to agent a is equal to S. Agents have additive utilities
across feasible subsets of objects: there exist values (u#40)oc0o such that an agent a’s utility from

owning a subset of objects X, which is feasible with respect to H, is Y Ugo.>> Without loss of
0eX,
generality, it is supposed that u,, € [0, 1] for all a, 0. The utility function of agent a is a function

uq:29 — R such that, for any S C 0, us(S) denotes the maximum utility that agent a can attain
from owning a subset of S which is feasible with respect to H,.

For any S C O, we use 1g to denote the binary vector (y1,...,y|0|), Where y,=1if 0 €S and
vo =0 otherwise. Define the set of feasible bundles for agent a by

F,= []lg :SCO0,S is feasible with respect to H, }

For a price vector p=(p1,...,p|o), the budget set of an agent a is defined by

Bu®)= {15:5€0.% po=wa.

0€S

The indirect utility function of agent a is defined by

ve=__max fu,).

YEFNBy(p)

22. This can easily be extended to a multi-unit supply by considering each “copy” of an object as an object.

23. The notion of local constraint was defined in Section 4.

24. This is the setting for the pseudo-market mechanism of BCKM.

25. Recall that for any (pure or fractional) assignment x, we use x; to denote the vector (x;1,...,%X;j0|) € RO e, x;
denotes the allocation of agent i.
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Definition 4 For a price vector p and a pure assignment X of objects to agents, (p,X) is called
an €-Competitive Equilibrium (e-CE) if:

1. For any object o we have )y ;o Xao <1, with )_ .y Xao <1 only if p, =0.
2. ForallaeN, X, € F,NB,(p).
3. ForallaeN, us,(Xy)=>vqa(p)-(1—e).

In our first theorem, we suppose that H,, is a hierarchy for all agents a€ N, and show that
for any arbitrary small € >0, an ¢-CE always exists when the market is sufficiently large, as
defined below. We remark that this does not hold when € =0: then, a CE does not always exist in
sufficiently large markets, even when ‘H, = & for all a € N, as shown in Supplementary Appendix
C.1. Later, in our second theorem, we will dismiss the hierarchy assumption in exchange for a
slightly stronger large market assumption.

Definition 5 (The large market assumption) Consider —a  sequence  of  markets,
Mi,...,My,..., where the set of agents, their budgets, and the number of the hard constraints
imposed by each agent remain the same in all of the markets in the sequence.’® Let Oy denote
the set of objects, ud:2% — Ry denote the utility function of agent a, and HE denote the set of
hard constraints imposed by agent a in the market M. We are in the large market regime if, as
q— 00, we have ug(Oq) — 00 for all agents a€N.

Proposition 8 Suppose that H, is a hierarchy for all agents a€ N. Then, for any fixed € >0,
there exists qo such that for all q > qq, there exists an €-CE in the market M.

Next, we dismiss the assumption of Proposition 8 that agents can impose only hierarchical
constraints on the assignment. This generalization comes in exchange for a slightly stronger large
market assumption which assumes that the right-hand sides of the agents’ constraints grow with
the market size.

Definition 6 (The large market assumption for intersecting constraints) Under the strength-
ened large market assumption all of the assumptions of Definition 5 hold. In addition, the
right-hand sides of all of the constraints imposed by agents approach infinity with q.

Proposition 9  Suppose that the strengthened large market assumption holds. Then, for any
fixed € >0, there exists qo such that for all q > qo, there exists an e-CE in the market M.

The proofs of Proposition 8 and Proposition 9 are technically involved and deferred to Online
Appendix C.2.

Our large market assumptions in Definition 5 and Definition 6 require the number of hard
constraints to be fixed as the market size grows. The practical plausibility of this assumption is
necessarily context dependent. For instance, in an online advertisement setting, constraints are
typically imposed on specific categories of agents (e.g. “male, under 40 years old”). For relatively
large markets, the number of agents in any category is substantially more than the number of such
categories.

26. We can allow these parameters to grow, but at a sufficiently slow rate.
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7. CONCLUSION

We study the mechanism design problem of allocating indivisible objects to agents in a setting
where cash transfers are precluded and the final allocation needs to satisfy some constraints.
One efficient and ex ante fair solution to this problem is the “expected assignment” method,
in which the mechanism first finds a feasible fractional assignment, and then implements that
fractional assignment by running a lottery over feasible pure assignment. The previous literature
have characterized a maximal “constraint structure” that can be accommodated into the expected
assignment method. Such a structure rules out many real-world applications. We show that by
reconceptualizing the role of constraints and treating some of them as goals rather than hard
constraints, one can accommodate many more constraints.

The key theorem of the article identifies a rich constraint structure that is approximately
implementable, meaning that any expected assignment that satisfies both hard constraints and
soft constraints (i.e. goals) can be implemented by a lottery over pure assignments in a way such
that hard constraints can be exactly satisfied and goals can be satisfied with only small errors.

Our framework allows designs that preserve some of the ex ante properties of the expected
assignment in the ex post assignment. For instance, an envy-free or efficient expected assignment
remains approximately envy-free and efficient ex post. We then apply this idea to modify the
random serial dictatorship mechanism and the pseudo-market mechanism by expanding the
structure of the constraints that they can accommodate. We also employ our framework to prove
the existence of e-equilibrium in an economy with indivisible objects, where agents can impose
intersecting constraints as part of their preferences.

We are hopeful that the proposed framework for partitioning constraints into hard and soft, and
the randomized mechanism we developed will pave the way for designing improved allocation
mechanisms in practice.
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APPENDICES
A. PROOF OF THEOREM 1

In this section, we present the complete proof of Theorem 1. As discussed in the proof overview of the theorem, the proof
is constructive. We will propose an implementation mechanism (or, equivalently, a lottery) that approximately implements
a partitioned structure that satisfies the properties described in Theorem 1.

To describe the main idea of our mechanism, we need to introduce the notion of fight and floating constraints: a
constraint is tight if it is binding. This notion is precisely defined in the following definition. First, for any block B, let
x(B) = ZEEBXe'

Definition. A constraint S =(B, 95-qB) is tight if, either x(B) =gy or x(B)=gqp; otherwise, § is floating. Similarly, we say
that a block B is tight when the constraint corresponding to it is tight.

Note that this definition naturally applies to the (implicit) constraints that for all e € E, we must have that 0 <x, <1.
In the core of our randomized mechanism is a stochastic operation that we call Operation X. We iteratively apply
Operation X to the initial fractional assignment. In each iteration ¢, the fractional assignment x; is converted to x;4 in a
way such that: (1) the number of floating constraints decreases, (2) E(x;1|x;) =x;, and (3) x;41 is feasible with respect to
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FIGURE A1

A floating cycle of length 6.

‘H. The first property guarantees that after a finite (and small) number of iterations,?’ the obtained assignment is pure. The
second property makes sure that the resulting pure assignment is equal to the original fractional assignment in expectation.
The third property guarantees that all hard constraints are satisfied throughout the whole process of the mechanism. As the
last step, we need to show that by iteratively applying of Operation X, soft constraints are approximately satisfied. This
is a more technical property of Operation X', which we discuss in Appendix A.4. Roughly speaking, we design Operation
X in such a way that it never increases (or decreases) two (or more) elements of a soft constraint in the same iteration.
Consequently, elements of each soft block become “negatively correlated.” We then can employ Chernoff concentration
bounds to prove that soft constraints are approximately satisfied.
In the rest of this section, we design Operation X’ and prove that it possesses the above-mentioned properties.

A.1. Definitions

In this section, we introduce the required notions for defining Operation X. Given a feasible fractional assignment x, we
define the following notions:
1. For any two links e, e, a block B is separating e, ¢’ if B contains exactly one of them.

2. Ablock is tight if Y, px. is equal to either the upper or the lower quota of the constraint corresponding to that
block.

3. Given a hierarchy H, a (hard) block B € H is supporting a pair of links (e, ¢’) if it is the smallest block among the
blocks in H that contain both e, ¢/, and moreover, no tight block in H separates e, ¢’.

4. We say that a hierarchy H is supporting the pair (e, ¢’) if there exists a block in H that supports (e, ¢'). In particular,
if the subset {e, ¢’} is in the deepest level of H, then (e, ¢’) is supported by H.

5. A floating cycle is a sequence ey, ...,e; of distinct edges such that:

27. Our randomized mechanism stops after at most |H|+ |E| iterations.

FIGURE A2
Example of a floating path: suppose that in the above fractional assignment 7; is the set of row blocks and H is the set
of column blocks. Also, suppose the lower quotas and upper quotas are set to 0 and 1, respectively. Then, e, ep,e3 is a

(minimal) floating path. However, e;, e4, e3 is not a floating path.
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® x,, is non-integral for all integers i,
e (ej,eiy1) is supported by H; for even integers i,
e (ej,eiy1) is supported by H> for odd integers i,

where the length of the cycle, /, is an even number and i+ 1=1 for i=I. Figure Al represents a floating cycle
of length 6. A floating cycle is said to be minimal if it does not contain a smaller floating cycle as a subset. We
often drop the minimal phrase and whenever we say a floating cycle, we refer to a minimal floating cycle, unless
otherwise specified.

Next, we define the notion of floating paths; loosely speaking, their structure is very similar to floating cycles, except
in their endpoints. Floating paths start from a hierarchy and end in the same hierarchy if their length is even, otherwise,
they end in the other hierarchy.

6. A floating path is a sequence ey, ey, ...,e; of distinct edges such that:

® X, is non-integral for all integers i.
e There exists a € {1,2} such that if we define a={1,2}\{a}, then:

e (ej,eiy1) is supported by H, for even integers i <.
e (ej,eiy1) is supported by Hz for odd integers i <.

e No tight block in ‘H,, contains e, and no tight block in H}, contains ¢; where b=a if / is even and b=a if / is odd.

Figure A2 contains a visual example of a floating path. A floating path is said to be minimal if it does not contain a smaller
floating path as a subset. Whenever we say a floating path, we refer to a minimal floating path, unless otherwise specified.

Finally, we introduce the following crucial concept.

Definition. Assume we are given a fractional assignment x. For any block B and any € >0, let x1¢B denote a new
(fractional) assignment in which the element of the matrix corresponding to edge e is increased by € if e€B (i.e. it
changes to x.+¢€), and it remains unchanged otherwise. Similarly, let x| B denote the fractional assignment in which
the element of the matrix corresponding to edge e is decreased by € if e€B (i.e. it changes to x,—¢€), and it remains
unchanged otherwise.

Example A.1 (x1¢B) | B’ denotes the fractional assignment in which the value of any edge e € B— B’ becomes x,+¢€,
the value of any edge e € B'— B becomes x, —¢€, and the value of the rest of the edges does not change.

A.2. Operation X

Operation X'can be applied on a given floating cycle or a floating path of a fractional assignment x (if none of them
exist, then the assignment must be pure by Lemma A.4). We first define this operation for a given floating cycle. Let
F={eyq,...,e;) be a floating cycle in x. Define

F,={e;:iis odd},
F,={e;:iiseven}.

We call the pair (F,, F,) the odd-even decomposition of F. Given two non-negative reals €, ¢’ (which we describe how to
set soon), Operation X’ generates an assignment x’ € RV*? in one of the following ways:

o x'=(x1cF,)leF, with probability <

o X' =(x|e Fo)te Fe with probability .

Both € and €’ are chosen to be the largest possible numbers such that both of the assignments (x1¢ F,) | ¢ F and (x| ¢
F,)*e F, remain feasible, in the sense that they satisfy all hard constraints.

The definition of Operation X" on a floating path is the same as its definition on a floating cycle. To summarize, we
give a formal definition of Operation X below.

Definition A.1 Consider a fractional assignment x and a floating path or a floating cycle, namely F, given as the inputs

to Operation X. Then Operation X generates a new assignment x', where x' =(x1¢ F,) | ¢ Fe with probability 65_,6, and
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X' =(x|e Fo)te F, with probability ﬁ where €,€’ are positive numbers chosen to be the largest possible numbers
such that both (xtcFy) | e Fe and (x| e Fp) e Fe are feasible assignments.
We also denote x' (which is a random variable) by x$ F.

A.3. The implementation mechanism

Our implementation mechanism which is based on Operation X is formally defined below.

The implementation mechanism based on Operation X .

1. A fractional assignment x is reported to the mechanism.
2. Setito 1 and let x; =x.
3. Repeat the following as long as x; contains a floating cycle or a floating path:

(a) If x; contains a floating cycle, let F' be an arbitrary floating cycle, otherwise, let F be an arbitrary floating path.
(b) Define x; tobe x; $ F.
(c) Increase i by one.

4. Report x; as the outcome of the mechanism.

In the rest of this section, we show that the above mechanism approximately implements x in the sense of Definition 1.

The first step of the proof is verifying that if the assignment has no floating cycles or paths, then it is necessarily pure.
We prove this claim in Claim 2. The next step of the proof is to show that Operation X is well-defined in the sense that
both €, €’ cannot be zero at the same time. We will state and prove this fact in Lemma A.4. Next, we prove the following
three important properties of Operation X’:

1. The outcome of Operation X satisfies the hard constraints.

2. Operatoin X satisfies the martingale property, i.e.
E [x $F ) x] =x
3. The outcome of Operation X" has more tight constraints (compared to x).

These properties are proved separately in three Lemmas below.
Lemma A.1 The outcome of Operation X satisfies the hard constraints.

Proof. By definition, Operation X’ chooses €,¢€” such that both of its two possible outcomes are feasible with respect to

H. |

Lemma A.2 Operation X satisfies the martingale property, i.e.
E [x $F ‘ x] =x.

Proof. We prove the lemma by verifying that this property holds for any entry (i,j) of the assignment matrix, i.e., if
(x$ F) j) denotes the (i,j)th element of x § F, then we have

E[(x TF) i) M =X(i.j)-

In simple words, we prove that operation A’ does not change the value of entry (i, j) of the assignment matrix in expectation.
Observe that by the definition of Operation X’

E[e$ Flx]= = (1P LeFo+ ——-(bo Pt Fo).

€+
The claim is trivial if (i,j) € F. So, assume (i,j) € F. Then, we either have (i,j) € F, or (i,j) € F,:
1. If (i,j) € F,, then Operation X increases x(; j) by € with probability ﬁ;/ and decreases it by €’ with probability
€

. . . e r_€
<o - In this case, the expected amount by which x(; ;) changes is equal to € - 7 —€¢’- 7 =0.

jf_;, , and increases it by €’ with probability

. . . /
. In this case, the expected amount by which x; ;) changes is equal to —e - eie, +e'- Eie, =0.

2. If (i,j) € F,, then Operation X" decreases x(; j) by € with probability

€
e+e’
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This proves the lemma. |

Lemma A.3  The outcome of operation X has more tight constraints (compared to x).

Proof. Suppose F is a floating cycle in x. The proof for the path case is almost identical. We show that x $ F has more
tight constraints than x. To do so, we first show that a tight constraint remains tight after Operations X’. Second, we show
that at least one of the floating constraints in x becomes tight in x § F.

To prove the first step, we show that for any tight constraint S, its corresponding block, B, contains an equal number
of elements (edges) from the sets F, and F,. This fact is formally proved below.

Claim 1 Suppose we are given a floating cycle F in the fractional assignment x, and let (F,, F)
be the odd-even decomposition of F. Then, any tight block (in x) contains an equal number of
elements from F, and F,.

Proof. LetS=(B, 9 gp) be atight constraint and w.l.0.g. assume B € H . Then, it must be that for any element e; € BN F,,
the element that comes right after e; in F, i.e., e;11, belongs to B. This holds because by the definition of floating cycles,
(e, eit1) is supported by H 1, which means no tight block in | separates e;, ¢;+1. Consequently, both e; and e;+ belong
to B, or else B itself would separate e;, ;1.

Therefore, for any element e; € BN F,, there exists a distinct element e; | € BNF, which corresponds to e;. Similarly,
any element in BNF,, corresponds to a distinct element in BN F,. This proves the claim. |

Now recall that whenever Operation X increases (decreases) the elements in F,, it decreases (increases) the elements
in F,. This fact and Claim 1 together imply that x(B) = (x $ F)(B) (regardless of the choice of €,¢”). This ensures that any
tight constraint remains tight after operation X'.

‘We now prove the second step, which is to show that at least one of the floating constraints in x becomes tight in
x 3 F. Observe that any floating constraint § = (B, ¢ 54B) provides a positive slack for setting the values of €, €’. In simple
words, since § is a floating constraint, we have that g , <x(B) < gp. By this fact, we can compute the positive upper bounds
that S imposes on ¢, ¢’. Finally, taking the minimum of these upper bounds (over all floating constraints S) determines
the values for €,¢’. We formalize this argument below. Let

5=qp—x(B),
s=x(B)—qp.
k=|F,UB|—|F,UB.

Then, in order to guarantee that x § F satisfies constraint S, the following inequalities (that can be translated into upper
bounds) are imposed on €, €’ by Operation X

k<5 ifk=0

eh=s mE= (A1)
e-lk|<s ifk<O

k<s ifk=0
€h=s mE=T (A2)
e -lk|<s ifk<0

Now, let u(S),u'(S) respectively denote the (positive) upper bounds imposed by Inequalities (A.1),(A.2) on €,€’. By
definition of €,€’, we have that e =mingu(S) and ¢’ =mingu’(S) where the minimum is over all the floating constraints
S. This argument implies that:

Claim 2 Operation X chooses €,€’ such that €,€' > 0.

Proof. 1t is enough to show that u(S),u’(S) > 0 for all S. This is implied by noting that, given a floating constraint S, we
have 5,5 > 0. | |

The above argument also implies the existence of a floating constraint Sy for which one of the corresponding
inequalities in (A.1) is tight. Similarly, there exists a floating constraint S, for which one of the corresponding inequalities
in (A.2) is tight. These two facts imply that after operation X, either S or S becomes a tight constraint.

To summarize, we first showed that if a constraint is tight, then it remains tight after operation X’. Moreover, we
showed that there always exists at least one floating constraint which becomes tight after operation X'. Therefore, the
number of tight constraints decreases, which proves the lemma. | |
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Next, we show that if a fractional assignment contains neither a floating cycle nor a floating path, then it must be a
pure assignment. This guarantees that the assignment generated by our implementation mechanism is always pure.

Lemma A.4 An assignment is pure if and only if it does not contain floating cycles and floating paths.

Proof. One direction is trivial: if the assignment is pure then it has no floating cycles or floating paths. We prove the other
direction by showing that any assignment x which is not pure contains a floating path or a floating cycle. Since x is not
pure, it must contain a floating edge e, i.e., an edge e with 0 <x, < 1. We say that a floating edge e is H1-loose (H2-loose)
if no tight block in H; (H>) contains e. We say that e is loose if it is either H;-loose or H>-loose.

We need another definition before presenting the proof. Suppose S=(B,q,.¢p) is a tight hard constraint and e is a
floating edge in B. Since § is tight, and since the quotas g 4B are integral, then B must also contain another floating edge
¢'. We denote this edge by p(e, B). If there is more than one such edge, then let p(e, B) denote one of them arbitrarily.

The proof has two cases, either there is a floating edge which is loose, or there is no such edge.

Case 1: There exists a loose edge.  As the first step of the proof, note that we are done if there exists a
floating edge which is both H-loose and H>-loose: the edge would form a floating path of length 1. So, w.l.0.g. suppose
there is a floating edge e which is not H;-loose. In this case, we iteratively construct a floating path that starts from edge
e, i.e.,apath F=(eq,...,e) such that e; =e. At the end, our iterative construction will either find such a path, or we will
find a floating cycle.

Since e; is not H-loose, then there must be a minimal tight block B! € H, that contains e. Since B! is tight, and
since the quotas are integral, then B' must also contain another floating edge p(e1, B'). We extend our (under construction)
floating path by setting e; =p(e; ,Bl). Now, if e, is H-loose, then (ej,ez) is a floating path and the proof is complete.
So, suppose e, is not H;-loose. Consequently, there must be a minimal tight block B> € H; that contains e,. Similar to
before, B2 must contain another floating edge ples, B%); we extend F by setting ez =p(ea, B?).

By repeating this argument, we can extend F iteratively until the new floating edge that is added to F, namely e,

either (i) is loose, or (ii) is contained in one of the previous tight blocks B!,...,B¥~!. If case (i) happens, then F is a
floating path and we are done. If case (ii) happens, then we have found a floating cycle: suppose e, € B; with j < k. Then,
it is straight-forward to verify that (ej+1,...,ex) is a floating cycle.

Case 2: There is no loose edge.  Similar to Case 1, we iteratively construct a floating cycle F = (ej,..., ;).
The cycle starts from a floating edge e; initially, we have e; =e. Since e is not loose, there must be minimal tight blocks
B¢ ‘H; and B! € H, such that e; B and e1 €B'. Then, let e, =ple; B! ). Similarly, since e is not loose, there must be
a tight block B> € H; such that e, € B2. Let e3 =p(ea, B%). By applying this argument repeatedly, we can extend F until
the new floating edge that is added to F, namely ey, satisfies e € B; for some j with 0 <j <k. Then, it is straight-forward
to verify that (ej11,...,e) is a floating cycle. |

A.4.  Approximate satisfaction of soft constraints

Here, we prove that soft constraints are approximately satisfied in the sense of Definition 1. Loosely speaking, Operation
X is designed in a way such that it never increases (or decreases) two (or more) elements of a soft constraint at the
same iteration. Consequently, elements of each soft constraint become “negatively correlated.” This allows us to employ
Chernoff concentration bounds to prove that soft constraints are approximately satisfied.

We show the approximate satisfaction of soft constraints by proving two lemmas below. In the first lemma, we
formally (define and) prove that elements of each soft constraint are “negatively correlated”; the proof uses a negative
correlation proof technique from Khuller ez al. (2006). Then, in the second lemma, we prove the approximate satisfaction
of soft constraints by applying Chernoff concentration bounds. Before stating the lemmas, we recall the definition of
negative correlation.

Definition A.2 For an index set B, a set of binary random variables {X,}.cp are negatively correlated if for any subset
T B we have

Pr []_[XF 1} < HPr[Xe= 1, (A3)

ecT eeT

Pr {]‘[(1 —X,)= 1} <[ [prix.=o01. (A4)

eeT eeT
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Lemma A.5 Let {X,.}c.cg denote the set of random variables which represent the outcome of the implementation
mechanism (i.e. the integral assignment); also, let B be a block corresponding to an arbitrary soft constraint. Then,
the set of random variables {X,}.cp are negatively correlated.

Proof. We need to show that (A.3) and (A.4) hold for any subset 7 C B. We fix an arbitrary subset 7 and prove (A.3)
for it; the proof for (A.4) is identical and follows by replacing the role of zeros and ones. Since the random variables are
binary, we can prove (A.3) by showing that

E[]‘[xg} <[[ExI=]]x. (A5)

ecT eeT eeT

To prove (A.5), we introduce a set of random variables {X, ;}, where X, ; denotes the value of entry e of the matrix
after the ith execution of operation X'. So we would have X, o =x, for all e. Inductively, we show that for all i:

E |:1_[Xe,,'+1} <E []‘[Xe,,-] . (A.6)

ecT eeT
The lemma is proved if (A.6) holds: assuming that operation X" is executed j times, using (A.6) we can write
E []‘[xe} =E []_[xe,j} <E []‘[xe,o} =] [~
ecT ecT ecT eeT

which shows (A.5) holds and proves the lemma.
To prove (A.6), we can alternatively show that

E |:1_[Xe,i+l

eeT

{Xe,i}eeTi| <[ [Xes: (A7)

eeT

We consider three cases to prove (A.7): since B is in the deepest level of a hierarchy, then operation X’ changes either 0,
1, or 2 elements of 7. We prove this fact in a separate claim below.

Claim 3 Suppose T is a block in the deepest level of a hierarchy, then, Operation X changes
either 0, 1, or 2 elements of T.

Proof. W.L.O.G. assume that T is in the deepest level of H ;. We prove a stronger claim. Let 7’ be the largest subset of
links that contains 7 and is in the deepest level of ;. We prove that Operation X’ changes at most 2 elements of 7”. To
this end, let F be the floating cycle or path used in Operation X'. We need to show that F' contains at most 2 elements of
T’; this proves the claim.

For contradiction, suppose F contains at least 3 elements of 7”. Let the elements of F be denoted by the sequence
ey,...,e;, and let ¢;, ¢j, e, be the first three elements of T’ which appear in F, where i <j <k.

First, note that by the definitions of floating cycle and floating path, we must have that j=i+ 1. We will prove that
(ej,ejt1...,ex—1,ex) makes a floating cycle, which contradicts with the minimality of F* (recall that by definition, operation
X always chooses minimal floating paths and cycles). To this end, first note that (e;, ¢j+1) is supported by Ho: this holds
because ¢j_1,e; € T’, which means (ej_1, ¢;) is supported by ;. Consequently, (e;,ej.+1) must be supported by H since
F is a floating path or cycle. Similarly, (¢j11,ej42) is supported by H, (ej+2,ej+3) is supported by H;, and so on and
so forth. Finally, note that (e, ¢;) is supported by H, since ex,ej € T”. This proves that (ej,eji1...,ex—1,ex) is a floating
cycle, which concludes the claim. | ]

‘We continue the proof of lemma by considering each of the three cases separately. The proof is trivial if Operation
X changes 0 elements of 7: (A.7) holds with equality. So, it remains to consider the two other cases.
First, assume that Operation X’ changes exactly one element of 7', namely ¢’ € T. Let T’ =T\{¢'}. Then we have

E |:I_1Xe.i+l

eeT

{Xe,i}eeT:|

€ €
= cre ‘(Xeite): l_[xe,i"" e Xei—€): er,i:nxe‘i

ecT’ ecT’ eeT
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which proves (A.7) with equality in this case. It remains to prove (A.7) for the case when Operation X’ changes exactly
2 elements of T, namely ¢’,¢” € T. Let T" =T\{¢',¢"}. Then, w.L.o.g. we can write:

E |:1_[Xe.i+l

ecT

{Xe,i}eeTj|

€ €
= Kt i—o)- [Xei+ o KoK i+e€)- [ 1%
eeT” eeT”

:er,i —ee’ l_[ Xe.i

eeT ecT”
=< l_[Xe,i

ecT

which proves (A.7) in the third case as well. This finishes the proof of lemma. |

Lemma A.6  The randomized mechanism based on Operation X satisfies the soft constraints approximately in the sense
of Definition 1.

Proof. Based on Definition 1, we need to prove that for any soft constraint defined on a block B of the links with
> ecpWeXe =, and for any € >0, we have

2
Pr (Zwexe—u < —6/,{,) <e M7,

eeB

52
Pr (ZWeXe—/L>€/,L> <e M7,

eeB

These probabilistic bounds, as we mentioned before, are known as Chernoff concentration bounds (see Supplementary
Appendix D for more details). These bounds hold on any set of binary random variables which are negatively correlated
(Popovici, 2014). Lemma A.5 just says that the set of random variables {X,}.cp are negatively correlated, which means
Chernoff concentration bounds hold for {X,}.cp- |

B. REMAINING PROOFS AND EXAMPLES FROM SECTION 3
B.1. Tightness of the probabilistic bounds

Proof. Proof of Proposition 1 Fix an interval I =[a,b] such that 3<a <b—1. For any ;> 1 and any constant € € (0, 1),
we construct an infinite family of problem instances. For the rest of the proof, we fix 1, €. The infinite family of instances,
F, is indexed by a variable n, which denotes the number of agents involved in each instance. For any integer n> /L3, F
contains one instance.?8 This instance contains a set of agents, N={1,...,n}, and one object. The capacity of the object
will be larger than 1 and is determined shortly when we specify the set of hard constraints. The variables xi, ..., x, denote
the assignment of agent i to the object. Note that, by definition, 0 <x; <1 must hold for all 7, in both pure and fractional
assignments.

Choose k €1 such that jk is an integer. Let A = k. Consider the fractional assignment that assigns 1/k to all variables,
i.e., x;j=1/k for all i e N. Define the hard—soft partitioned constraint structure as

H= { Ln/k) <y "xi <Tn/k] } :

ieN

S:[Zx,—zu:‘v’SgN,|S|:A}.

ieS

We denote this assignment by x.

28. The condition n> ;3 could be replaced with n > f(w) for any function f (i) that grows faster than 2.
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szu
Our goal is showing that any integer assignment that satisfies the hard constraints violates at least |S|-e” @ of the

2
soft constraints, where d > 0 is a constant independent of €, i, this would imply that f (1, €)> e*% . Hence, setting ¢ to
be any constant smaller than d would prove the proposition.

Let x* denote the outcome of the lottery that implements x with respect to £ =HUS. We should have x;' =1 for at
most [n/k] different elements i € N; let S* denote the set of all such elements. For notational simplicity, from now on we
suppress the ceiling notation and treat n/k as an integer. (This simplifies the algebraic expressions; the proof remains the
same.)

A set SCN with |S|=A is feasible if |SNS*| > u(1 —¢€) and infeasible otherwise. Observe that the infeasible sets
correspond to the soft constraints that are not approximately satisfied. Next, we will provide a lower bound on the number
of infeasible sets. More precisely, let p denote the ratio of the number of infeasible sets to |S|. Observe that

(1—1/k) Jk
(:(1—‘%))(%'(’1—5))

(R IR

To simplify the above bound, we use the following fact.

(B.8)

Fact I Das (2016) When s=0(/1) and s=w(1),>°

(’)— ! (’f)s<1+(1)>
s) 2ms \s oL

Applying this fact to the numerator and denominator of (B.8) implies:

A(l,lk;e)
n(1—1/k)e A(1—
1 1 . (1—e)/k
(N‘*'%)) Ao (nfelr) (I+o(1)

A1) 2rA(I—e)/k

p= Y (1Fo(1))

2mA

AT Ad-ak 1+o(1)
k) <§> V2rA(1+o(1)

e k—1+€
(l—m) 4ol
(1—e)'~¢ V2rA(1+0(1))

IV
A
=
N
o=
ES
LY

Alk

o\ k—=1+€
e (F5)
1+o(1)

PR V2mA(1+o(1))

v

(B.9)

2\ Ak
e € k=TTe 1+o(1)

= | VamA(1+o(l))

:eféz(l+ﬁ)f‘i/k 14+o(1)

—_— B.10
V2mA(1+o(1)), ( )

where (B.9) holds since 6’5’82 <1—8<e % holds for all § € [0,1/2]. Note that the lower order terms above, which are

suppressed by the o(1) notation, vanish as p approaches infinity, for any fixed € > 0.
2a/k
The proof is complete by observing that the right-hand side of (B.10) is larger than e™ ~¢  for any positive d <2/3

and sufficiently large A (i.e. sufficiently large u, since A = k). | |

29. Werecall that for two functions f, g : Ry — R, f =w(g) denotes lim,_, o f (x)/g(x) = 00. Also, we write g =o(f)
when f =w(g).
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B.2. Probabilistic guarantees for general soft constraints

Proof. Proof of Proposition 2 By assumption, at least one of the 7 or H> is empty. Without loss of generality, suppose
Hi=0. We add a “dummy” constraint to H;, which contains all the elements, i.e., the constraint 0<3 ecEXe <00.
Clearly, any soft constraint block is in the deepest level of ;. Hence, by Theorem 1, £ is approximately implementable.
|

Proof. Proof of Proposition 3 For simplicity we only give the proof for upper deviation, i.e., for the probabilistic bound
(3.4). The proof for (3.5) is similar. Since B has depth £, it can be partitioned into k blocks By, ..., Bi all of which are in
the deepest level of . In order to provide a guarantee on the satisfaction of the soft constraint corresponding to B, we
add k constraints, one for each of By,..., B, to our soft constraint set. The (soft) constraint corresponding to block B;,
denoted by C;, would be

er = Wi,

eeB;

where ;= ZeeB; X.. Since C; is in the deepest level of H, the following guarantee would hold on X, the outcome of our
mechanism: (by Theorem 1)

2
€
[y
Pr(dev; >ejuj) <e ¥,
where €; can be any positive number and

dev;r =max (0, ZXe —,u.;).

eeB;
The key is to define €;’s such that
€ 2
eTHTF =e MR, (B.11)
k
D €ini <ep. (B.12)
i=1
If these two properties hold, then a union bound on the constraints Ci,...,Cy would prove the claim: by (B.11), the
2

probability that (at least) one of the constraints C; is violated with (additive) error more than €;; is at most ke ™" %.0n
the other hand, if all constraints C; are satisfied with (additive) error not more than €;u;, then using (B.12) we get:

k k
devt <> devi <) eini<ep. (B.13)

i=1 i=1

This would prove the claim. So, to finish the proof, it only remains to define ¢;’s such that (B.11) and (B.12) would hold.
To this end, define o;; =k; /i and let €; =€/, /a;. It is straight-forward to verify that this definition satisfies (B.11). To
see that (B.12) also holds, we rewrite its left-hand side as follows:

k k k
L= € Ht _<n -
Zét Mi Z\/QT, A & ;ﬂfeua

i=1 i=1

where in the last inequality uses the fact that ZLI o; =k, which implies Zle /@i <k. The above inequality shows that
(B.12) holds; this completes the proof. |

B.3. Proof of Theorem 2

Denote the set of all types by 7 ={1,...,T}, and let N(¢) denote the set of students of type € T. Suppose we are given
a fractional assignment which is feasible with respect to the constraint set (£,q). We will show how to approximately
implement x with additive error k, in the sense of Definition 2. In other words, we will construct a lottery with a (random)
outcome X such that X satisfies the conditions in Definition 2.

To design this lottery, we first need to define a new hard structure, namely H’, as follows. For each type € T and
each school ¢ € 0, H' contains a hard block {xs ) :s € N(¢)}. For each block B={xs ) :5 € N(t)} belonging to ', define
its corresponding lower and upper quotas to be g, =3~y Xes,0) and gs =3y Xs.01-

Since H’ is a hierarchy, and since any block in ' is in the deepest level of H,, then H,UH' is a hierarchy as
well. Therefore, H; U(H,UH) is a bihierarchy. Hence, we can use Theorem 1 to implement x using a lottery such that
the outcome of the lottery satisfies all of the “old” hard constraints as well as all of the “new” ones, i.e., all of the hard
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constraints corresponding to UMz, and all of the hard constraints corresponding to 1, respectively. We let X to be
the outcome of this lottery. Theorem 1 implies that E[X]=x must hold. In the rest of the proof, we will show that X
satisfies any soft constraint in S with additive error at most k. This will complete the proof of the theorem. Consider a
soft constraint in S corresponding to a block B. We write such a constraint as

4,5 Y Y Xeo<dp (B.14)

1T (B)seN(1)
where ¢ € O is a school and
T (B)={t: there exists s € N such that (s,c) € B and t=T(s)},

i.e., 7 (B) denotes the set of types which are “involved” in the block B. Observe that

YD xwo— D, D Xeo

teT (B)seN(t) teT (B)seN(t)
=Y D xwo— Y Xeo|SIT®B),
teT (B)'seN(r) SEN(1)
where the last inequality follows from (B.14). The fact that |7 (B)| < T concludes the proof. | |

B.4. Impossibility result for fully general structures

The following example shows that without any structure on soft constraints, guaranteeing small errors is impossible. Let
N={1,...,n}and O={l,...,n}. Consider the following constraints: agent i wants to have exactly one of the objects i,i+ 1
(where for notational simplicity we have assumed i+ 1 =1 when i =n), and each object has capacity 1, i.e., there is only
one copy of each object. These constraint can be modelled by a set of hard bihierarchical constraints, H =" UH>, as
follows:

Hi={xa,i +x6,i01) < 1}i=1,...n
Ho = {x¢,iy +Xi-1,) < L}i=1,...n,

where again for notational simplicity we have assumed i — 1 =n when i = 1. Also, we define the following soft constraint:

ln/2) <Y “xai < [n/2].

i=1
Observe that the fractional assignment defined by

- - 1 .
X(i,i) =X(i,i+1) = = Vi=1,...,n
2
satisfies all of the hard and soft constraints. However, any lottery that implements x and satisfies the hard constraints must
severely violate the soft constraint by an additive factor of at least [n/2], as we show next.
First, observe that there exists a unique convex combination of pure assignments which is equal to X and it is defined

by x=0.5y+0.5z where y, z are defined as follows:
Ya.n=1,%Gi+1)=0, Vi=1,...,n
Z([,i)ZO,Z(i,Hl):], Vi:l,.,.,n.

So, the outcome of the unique lottery that implements X must be y with probability 0.5 and z otherwise. In both of these
cases, the soft constraint gets violated (ex post) by an additive factor of at least [n/2].

B.5. The effect of negative correlation on the error bounds

In this section, we construct an example to illustrate why our implementation method can provide better probabilistic
guarantees in the presence of negative correlation rather than independence.

LetN={1,...,2n} denote a set of agents and O ={cy, ¢z} denote a set of objects. We call each agent a student and each
object a school. Consider a fractional assignments x where x;, =1/2 for all ie N and o € O. We would like to implement
this fractional assignment by designing a lottery over pure assignments. The only hard constraint that should hold ex post
in the lottery outcome is that each student must be assigned to precisely one school.
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Each school has one soft constraint that needs to hold ex post, defined as follows. Precisely n of the students are blue,
and the rest are red. The soft constraint of each school is admitting at most n/2 blue students. Let the random variable
B denote the total number of blue students admitted to school o;. Therefore, the error in satistying the soft constraint of
school 01 is max{0,B —n}.

In what follows, we will compare three different methods for implementing x. By symmetry, we compare these
methods with respect to the approximate satisfaction of the soft constraint of 0;. We will use Var[B] as an intuitive notion
to rank these methods: the larger the variance, the larger probabilities of violation will be. To see why, note that the random
variable B is approximately a Normal random variable with mean n, for sufficiently large .30 (By definition, E[B]=n
must hold in any implementation method.) Therefore, the smaller the variance, the smaller the errors in satisfying the soft
constraint will be.

The first implementation method is based on the idea of independent rounding of random variables, and the second
and the third ones are based on the idea of dependent rounding.

Implementation with independence.  Assign each student i to a school that is chosen independently and
uniformly at random. In this case, observe that Var[B]=n/2.

Implementation with positive correlation.  Fiping asingle coin: if heads is observed, then all blue students
are assigned to school o1, and otherwise, they are assigned to school 0,. In this case, Var[B] =n?.

Implementation with negative correlation. Flip a coin for each pair of students (2i—1,2i), for i€
{1,...,n}: if heads is observed, student 2i—1 is assigned to school o1 and student 2i to school 02, otherwise, student
2i—1 is assigned to school 0, and student 2i to school 0;. Under this implementation method Var[B]=n/4+o(n). To
see why, let X denote the number of pairs (2i — 1, 2i) such that precisely one of the students involved in the pair is blue.
Observe that Var[B|X]=X/4. On the other hand, since the set of blue students is distributed uniformly at random, we
have that X <n/24o(n), with probability at least 1 — 1/n? for sufficiently large n. (This is implied by Chernoff bounds.)
Therefore, Var[B]=n/8+o0(n)

We remark that the implementation method that features negative correlation, in fact, coincides with the
implementation method of Theorem 1, if the capacity constraints of the schools are defined as hard constraints. We
see that, among all of the implementation methods above, the one with the negative correlation property leads to a smaller
Var[B], and therefore a better ex post guarantee for (approximately) satisfying the soft constraint.

The intuition is that, in the third implementation method, for some of the pairs (2i—1,2i), both of the involved
students have the same colour. In such pairs, for any blue student assigned to a school, a blue student will be assigned to
the other school. (Intuitively, this is the source of the negative correlation property.) If all of the pairs satisfy this property,
then an equal number of blue students would be assigned to each school and the soft constraints will be (strictly) satisfied.
Although this does not hold for all of the pairs, it does hold for a significantly large number of them (about half of them).
This reduces the variance compared to the implementation method with independent random variables and leads to better
probabilistic guarantees for satisfying the soft constraint.
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