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Abstract. For Erdős-Rényi random graphs with average degree γ, and uniformly random γ-regular graph
on n vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection
are n( γ

4
+ P∗

√
γ
4

+ o(
√
γ)) + o(n) while the size of the minimum bisection is n( γ

4
− P∗

√
γ
4

+ o(
√
γ)) + o(n).

Our derivation relates the free energy of the anti-ferromagnetic Ising model on such graphs to that of
the Sherrington-Kirkpatrick model, with P∗ ≈ 0.7632 standing for the ground state energy of the latter,
expressed analytically via Parisi’s formula.

1. Introduction

Given a graph G = (V,E), a bisection of G is a partition of its vertex set V = V1 ∪ V2 such that the
two parts have the same cardinality (if |V | is even) or differ by one vertex (if |V | is odd). The cut size of
any partition is defined as the number of edges (i, j) ∈ E such that i ∈ V1, and j ∈ V2. The minimum
(maximum) bisection of G is defined as the bisection with the smallest (largest) size and we will denote this
size by mcut(G) (respectively MCUT(G)). The related Max-Cut problem seeks to partition the vertices into
two parts such that the cut size is maximized. We will denote the size of the Max-Cut by MaxCut(G). The
study of these features is fundamental in combinatorics and theoretical computer science. These properties
are also critical for a number of practical applications. For example, minimum bisection is relevant for
a number of graph layout and embedding problems [DPS02]. For practical applications of Max-Cut, see
[PT95]. On the other hand, it is hard to even approximate these quantities in polynomial time (see, for
instance [Has97, HZ02, FK00, Kho04]).

The average case analysis of these features is also of considerable interest. For example, the study of
random graph bisections is motivated by the desire to justify and understand various graph partitioning
heuristics. Problem instances are usually chosen from the Erdős-Rényi and uniformly random regular
graph ensembles. We recall that an Erdős-Rényi random graph G(n,m) on n vertices with m edges is a
graph formed by choosing m edges uniformly at random among all the possible edges. A γ-regular random
graph on n-vertices GReg(n, γ) is a graph drawn uniformly from the set of all graphs on n-vertices where
every vertex has degree γ (provided γn is even). See [Bol01, JLR00, Hof] for detailed analyses of these
graph ensembles.

Both min bisection and Max-Cut undergo phase transitions on the Erdős-Rényi graph G(n, [γn]). For
γ < log 2, the largest component has less than n/2 vertices and minimum bisection is O(1) asymptotically
as n→∞ while above this threshold, the largest component has size greater than n/2 and min bisection
is Ω(n) [LM00]. Similarly, Max-Cut exhibits a phase transition at γ = 1/2. The difference between the
number of edges and Max-Cut size is Ω(1) for γ < 1/2, while it is Ω(n) when γ > 1/2 [CGHS04]. The
distribution of the Max-Cut size in the critical scaling window was determined in [DMRR12]. In this paper,
we work in the γ →∞ regime, so that both min-bisection and Max-Cut are Ω(n) asymptotically.
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Diverse techniques have been employed in the analysis of minimum and maximum bisection for random

graph ensembles. For example, [Bol84] used the Azuma-Hoeffding inequality to establish that γ
4−
√

γ log 2
4 ≤

mcut(GReg(n, γ))/n ≤ γ
4 +

√
γ log 2

4 .

Spectral relaxation based approaches can also be used to bound these quantities. These approaches
observe that the minimum and maximum bisection problem can be written as optimization problems over
variables σi ∈ {−1,+1} associated to the vertices of the graph. By relaxing the integrality constraint to an
L2 constraint the resulting problem can be solved through spectral methods. For instance, the minimum
bisection is bounded as follows (here Ωn ⊆ {−1,+1}n is the set of (±1)-vectors with

∑n
i=1 σi = 0, assuming

for simplicity n even)

mcut(G) = min
σ∈Ωn

{1

4

∑
(i,j)∈E

(σi − σj)2
}

=
1

2
min
σ∈Ωn

{σ · (LGσ)} ≥ 1

2
λ2(LG) . (1.1)

Here LG is the Laplacian of G, with eigenvalues 0 = λ1(LG) ≤ λ2(LG) ≤ · · ·λn(LG). For regular graphs,
using the result of [Fri03], this implies mcut(GReg(n, γ))/n ≥ γ

4 −
√
γ − 1. However for Erdős-Rényi graphs

λ2(LG) = o(1) vanishes with n [KKM06] and hence this approach fails. A similar spectral relaxation yields,
for regular graphs, , MCUT(GReg(n, γ))/n ≤ γ

4 +
√
γ − 1, but fails for Erdős-Rényi graphs. Non-trivial

spectral bounds on Erdős-Rényi graphs can be derived, for instance, from [FO05, CO07].
An alternative approach consists in analyzing algorithms to minimize (maximize) the cut size. This

provides upper bounds on mcut(G) (respectively, lower bounds on MCUT(G)). For instance, [Alo97]

proved that all regular graphs have mcut(G)/n ≤ γ
4 −

√
9γ

2048 for all n large enough (this method was

further developed in [DSW07]).
Similar results have been established for the max-cut problem on Erdős-Rényi random graphs. In a recent

breakthrough paper, [BGT13] establish that there exists M(γ) such that MaxCut(G(n, [γn]))/n
p→M(γ)

and following upon it [GL14] prove that M(γ) ∈ [γ/2 + 0.47523
√
γ, γ/2 + 0.55909

√
γ].

To summarize, the general flavor of these results is that if G is an Erdős-Rényi or a random regular graph
on n vertices with [γn/2] edges, then mcut(G)/n = γ/4 − Θ(

√
γ) while MCUT(G)/n and MaxCut(G)/n

behave asymptotically like γ/4 + Θ(
√
γ). In other words, the relative spread of cut widths around its

average is of order 1/
√
γ. Despite 30 years of research in combinatorics and random graph theory, even

the leading behavior of such a spread is undetermined.
On the other hand, there are detailed and intriguing predictions in statistical physics— based mainly

on the non-rigorous cavity method [MM09], which relate the behavior of these features to that of mean
field spin glasses. From a statistical physics perspective, determining the minimum (maximum) bisection
is equivalent to finding the ground state energy of the ferromagnetic (anti-ferromagnetic) Ising model
constrained to have zero magnetization (see [PIG+08] and the references therein). Similarly, the Max-
Cut is naturally associated with the ground state energy of an anti-ferromagnetic Ising model on the
graph. The cavity method then suggests a surprising conjecture [ZB10] that, with high probability,
MCUT(GReg(n, γ)) = MaxCut(GReg(n, γ)) + o(n) = nγ/2−mcut(GReg(n, γ)) + o(n).

The present paper bridges this gap, by partially confirming some of the physics predictions and provides
estimates of these features which are sharp up to corrections of order no(

√
γ). Our estimates are expressed

in terms of the celebrated Parisi formula for the free-energy of the Sherrington Kirkpatrick spin glass,
and build on its recent proof by Talagrand. In a sense, these results explain the difficulty encountered by
classical combinatorics techniques in attacking this problem. In doing so, we develop a new approach based
on an interpolation technique from the theory of mean field spin glasses [GT02, GT04, Tal03]. So far this
technique has been used in combinatorics only to prove bounds [FL03]. We combine and extend these ideas,
crucially utilizing properties of both the Poisson and Gaussian distributions to derive an asymptotically
sharp estimate.
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1.1. Our Contribution. To state our results precisely, we proceed with a short review of the Sherrington-
Kirkpatrick (SK) model of spin glasses. This canonical example of a mean field spin glass has been studied
extensively by physicists [MPV86], and seen an explosion of activity in mathematics following Talagrand’s
proof of the Parisi formula, leading to better understanding of the SK model and its generalizations (c.f.
the text [Pan13] for an introduction to the subject).

The SK model is a (random) probability distribution on the hyper-cube {−1,+1}n which assigns mass
proportional to exp(βHSK(σ)) to each ‘spin configuration’ σ ∈ {−1,+1}n. The parameter β > 0 is
interpreted as the inverse temperature, with HSK(·) called the Hamiltonian of the model. The collection
{HSK(σ) : σ ∈ {−1,+1}n} is a Gaussian process on {−1,+1}n with mean E[HSK(σ)] = 0 and covariance
E{HSK(σ)HSK(σ′)} = 1

2n (σ · σ′)2. This process is usually constructed by

HSK(σ) = − 1√
2n

n∑
i,j=1

Jijσiσj , (1.2)

with {Jij} being n2 independent standard Gaussian variables, and we are mostly interested in the ground
state energy of the SK model. That is, the expected (over {Jij}) minimum (over σ), of the Gaussian
process HSK(σ) introduced above.

Definition 1.1. Let Dβ be the space of non-decreasing, right-continuous non-negative functions x : [0, 1]→
[0, β]. The Parisi functional at inverse temperature β is the function Pβ : Dβ → R defined by

Pβ[x] = f(0, 0;x)− 1

2

ˆ 1

0
q x(q) dq , (1.3)

where f : [0, 1]×R×Dβ → R, (q, y, x) 7→ f(q, y;x) is the unique (weak) solution of the partial differential
equation

∂f

∂q
+

1

2

∂2f

∂y2
+

1

2
x(q)

(
∂f

∂y

)2

= 0 , (1.4)

with boundary condition f(1, y;x) = (1/β) log(2 cosh(βy)).
The Parisi replica-symmetry-breaking prediction for the SK model is

P∗,β ≡ inf{Pβ[x] : x ∈ Dβ} . (1.5)

We refer to the recent paper [AC14] for technical aspects of the above definition (e.g. well-definiteness
of Pβ[x]). We are interested here in the zero-temperature limit

P∗ ≡ lim
β→∞

P∗,β , (1.6)

which exists because the free energy density (and hence P∗,β, by [Tal06]), is uniformly continuous in 1/β.
It follows from the Parisi Formula [Tal06], that

lim
n→∞

n−1E[max
σ
{HSK(σ)}] = P∗ . (1.7)

The partial differential equation (1.4) can be solved numerically to high precision, resulting with the
numerical evaluation of P∗ = 0.76321 ± 0.00003 [CR02], whereas using the replica symmetric bound of

[Gue03], it is possible to prove that P∗ ≤
√

2/π ≈ 0.797885.
We next introduce some additional notation necessary for stating our results. Throughout the paper,

O(·), o(·), and Θ(·) stands for the usual n → ∞ asymptotic, while Oγ(·), oγ(·) and Θγ(·) are used to
describe the γ →∞ asymptotic regime. We say that a sequence of events An occurs with high probability
(w.h.p.) if P(An) → 1 as n → ∞. Finally, for random {Xn} and non-random f : R+ → R+, we say
that Xn = oγ(f(γ)) w.h.p. as n → ∞ if there exists non-random g(γ) = oγ(f(γ)) such that the sequence
An = {|Xn| ≤ g(γ)} occurs w.h.p. (as n→∞).

Our first result provides estimates of the minimum and maximum bisection of Erdős-Rényi random
graphs in terms of the SK quantity P∗ of (1.6).
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Theorem 1.2. We have, w.h.p. as n→∞, that

mcut(G(n, [γn]))

n
=
γ

2
− P∗

√
γ

2
+ oγ(

√
γ) , (1.8)

MCUT(G(n, [γn]))

n
=
γ

2
+ P∗

√
γ

2
+ oγ(

√
γ). (1.9)

Remark 1.3. Recall the Erdős-Rényi random graph GI(n, pn), where each edge is independently included

with probability pn. Since the number of edges in GI(n,
2γ
n ) is concentrated around γn, with fluctuations of

O(n1/2+ε) w.h.p. for any ε > 0, for the purpose of Theorem 1.2 the random graph GI(n,
2γ
n ) has the same

asymptotic behavior as G(n, [γn]).

Remark 1.4. The physics interpretation of Theorem 1.2 is that a zero-magnetization constraint forces a
ferromagnet on a random graph to be in a spin glass phase. This phenomenon is expected to be generic for
models on non-amenable graphs (whose surface-to-volume ratio is bounded away from zero), in staggering
contrast with what happens on amenable graphs (e.g. regular lattices), where such zero magnetization
constraint leads to a phase separation.

We next outline the strategy for proving Theorem 1.2 (with the detailed proof provided in Section 2). For
graphs G = (V,E), with vertex set V = [n] and n even, we write σ ∈ Ωn if the assignment of binary variables
σ = (σ1, . . . , σn), σi ∈ {−1,+1} to V is such that

∑
i∈V σi = 0. We further define the Ising energy function

HG(σ) = −
∑

(i,j)∈E σiσj , and let U−(G) ≡ min{HG(σ) : σ ∈ Ωn}, U+(G) ≡ max{HG(σ) : σ ∈ Ωn}. It is

then clear that

mcut(G) =
1

2
|E|+ 1

2
U−(G) , MCUT(G) =

1

2
|E|+ 1

2
U+(G) . (1.10)

In statistical mechanics σ is referred to as a ‘spin configuration’ and U−(G) (respectively U+(G)), its
‘ferromagnetic (anti-ferromagnetic) ground state energy.’

The expected cut size of a random partition is taken care of by the term 1
2 |E|, whereas standard

concentration inequalities imply that U+(G) and U−(G) are tightly concentrated around their expectation
when G is a sparse Erdős-Rényi random graph. Therefore, it suffices to prove that as n → ∞ all limit
points of n−1E[U±(G)] are within oγ(

√
γ) of ±P∗

√
2γ. Doing so is the heart of the whole argument, and

it is achieved through the interpolation technique of [GT02, GT04]. Intuitively, we replace the graph
G by a complete graph with random edge weights Jij/

√
n for Jij independent standard normal random

variables, and prove that the error induced on U±(G) by this replacement is bounded (in expectation) by
n oγ(

√
γ). Finally, we show that the maximum and minimum cut-width of such weighted complete graph,

do not change much when optimizing over all partitions σ ∈ {−1,+1}n instead of only over the balanced
partitions σ ∈ Ωn. Now that the equi-partition constraint has been relaxed, the problem has become
equivalent to determining the ground state energy of the SK spin glass model, which is solved by taking
the ‘zero temperature’ limit of the Parisi formula (from [Tal06]).

The next result extends Theorem 1.2 to γ-regular random graphs.

Theorem 1.5. We have, w.h.p. as n→∞, that

mcut(GReg(n, γ))

n
=
γ

4
− P∗

√
γ

4
+ oγ(

√
γ) , (1.11)

MCUT(GReg(n, γ))

n
=
γ

4
+ P∗

√
γ

4
+ oγ(

√
γ). (1.12)

The average degree in an Erdős-Rényi graph G(n, [γn]) is 2γ so Theorems 1.2 and 1.5 take the same
form in terms of average degree. However, moving from Erdős-Rényi graphs to regular random graphs
having the same number of edges is non-trivial, since the fluctuation of the degree of a typical vertex in an
Erdős-Rényi graph is Θγ(

√
γ). Hence, any coupling of these two graph model yields about n

√
γ different

edges, and merely bounding the difference in cut-size by the number of different edges, results in the too
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large
√
γ spread. Instead, as detailed in Section 3, our proof of Theorem 1.5 relies on a delicate construction

which “embeds” an Erdős-Rényi graph of average degree slightly smaller than γ, into a γ-regular random
graph while establishing that the fluctuations in the contribution of the additional edges is only noγ(

√
γ).

Our next result, whose proof is provided in Section 4, shows that upto the first order, the asymptotic of
the Max-Cut matches that of the Max bisection for both Erdős-Rényi and random regular graphs.

Theorem 1.6.
(a) W.h.p. as n→∞, we have,

MaxCut(G(n, [γn]))

n
=
γ

2
+ P∗

√
γ

2
+ oγ(

√
γ).

(b) W.h.p. as n→∞, we have,

MaxCut(GReg(n, γ))

n
=
γ

4
+ P∗

√
γ

4
+ oγ(

√
γ).

1.2. Application to community detection. As a simple illustration of the potential applications of our
results, we consider the problem of detecting communities within the so called ‘planted partition model’,
or stochastic block model. Given parameters a > b > 0 and even n, we denote by GI(n, a/n, b/n) the
random graph over vertex set [n], such that given a uniformly random balanced partition [n] = V1 ∪ V2,
edges (i, j) are independently present with probability a/n when either both i, j ∈ V1 or both i, j ∈ V2,
or alternatively present with probability b/n if either i ∈ V1 and j ∈ V2, or vice versa. Given a random
graph G, the community detection problem requires us to determine whether the null hypothesis H0 : G ∼
GI(n, (a+ b)/(2n)) holds, or the alternative hypothesis H1 : G ∼ GI(n, a/n, b/n) holds.

Under the alternative hypothesis the cut size of the balanced partition (V1, V2) concentrates tightly
around nb/4. This suggests the optimization-based hypothesis testing

Tcut(G; θ) =

{
0 if mcut(G) ≤ θ,
1 otherwise

(1.13)

and we have the following immediate consequence of Theorem 1.2.

Corollary 1.7. Let θn = (b/4)+εn with εn
√
n→∞. Then, the test Tcut( · ; θn) succeeds w.h.p. as n→∞,

provided (a− b)2 ≥ 8P2
∗(a+ b) + o(a+ b).

Let us stress that we did not provide an efficient algorithm for computing Tcut. By contrast, there exist
polynomially computable tests that succeed w.h.p. whenever (a− b)2 > 2(a+ b) and no test can succeed
below this threshold (see [DKMZ11, MNS13, Mas14]). Nevertheless, the test Tcut is so natural that its
analysis is of independent interest, and Corollary 1.7 implies that Tcut is sub-optimal by a factor of at most
4P2
∗ ≈ 2.33.

2. Interpolation: Proof of Theorem 1.2

The Erdős-Rényi random graph G(n,m) considers a uniformly chosen element from among all simple
(i.e. having no loops or double edges), graphs of n vertices and m edges. For m = [γn] and γ bounded,
such simple graph differs in only O(1) edges from the corresponding multigraph which makes a uniform
choice while allowing for loops and multiple edges. Hence the two models are equivalent for our purpose,
and letting G(n, [γn]) denote hereafter the latter multigraph, we note that it can be constructed also by
sequentially introducing the [γn] edges and independently sampling their end-points from the uniform
distribution on {1, · · · , n}. We further let GPoiss

n,γ denote the Poissonized random multigraph G(n,Nn)
having the random number of edges Nn ∼ Pois(γn), independently of the choice of edges. Alternatively,
one constructs GPoiss

n,γ by generating for 1 ≤ i, j ≤ n the i.i.d zij ∼ Pois( γn) and forms the multi-graph
on n vertices by taking (zij + zji) as the multiplicity of each edge (i, j), i 6= j (ending with multiplicity

z(i,j) ∼ Pois(2γ
n ) for edge (i, j), i 6= j and the multiplicity z(i,i) ∼ Pois( γn) for each loop (i, i), where
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{z(i,j), i < j, z(i,i)} are mutually independent). By the tight concentration of the Pois(γn) law, it suffices to

prove Theorem 1.2 for GPoiss
n,γ , and in this section we always take for Gn a random multi-graph distributed

as GPoiss
n,γ .

2.1. Spin models and free energy. A spin model is defined by the (possibly random) Hamiltonian
H : {−1,+1}n → R and in this paper we often consider spin models constrained to have zero empirical
magnetization, namely from the set Ωn = {σ ∈ {−1,+1}n :

∑n
i=1 σi = 0}. The constrained partition

function is then Zn(β) =
∑

σ∈Ωn
e−βH(σ) with the corresponding constrained free energy density

φn(β) ≡ 1

n
E[logZn(β)] =

1

n
E
[

log
{ ∑
σ∈Ωn

e−βH(σ)
}]
. (2.1)

The expectation in (2.1) is over the distribution of the function H( · ) (i.e. over the collection of random
variables {H(σ)}). Depending on the model under consideration, the Hamiltonian (or the free energy)
might depend on additional parameters which we will indicate, with a slight abuse of notation, as additional
arguments of φn( · ).

For such spin models we also consider the expected ground state energy density

en =
1

n
E[ min

σ∈Ωn
H(σ) ] , (2.2)

which determines the large-β behavior of the free energy density. That is, φn(β) = −β en + o(β). We
analogously define the maximum energy

ên =
1

n
E[ max

σ∈Ωn
H(σ) ] , (2.3)

which governs the behavior of the free energy density as β → −∞. That is, φn(β) = −β ên + o(β) (in
statistical mechanics it is more customary to change the sign of the Hamiltonian in such a way that β is
kept positive). The corresponding Boltzmann measure on Ωn is

µβ,n(σ) =
1

Zn(β)
exp{−βH(σ)} . (2.4)

A very important example of a spin model, that is crucial for our analysis is the SK model having the
Hamiltonian HSK(·) of (1.2) on {−1,+1}n and we also consider that model constrained to Ωn (i.e. subject
to zero magnetization constraint).

The second model we consider is the ‘dilute’ ferromagnetic Ising model on GPoiss
n,γ = (V,E), corresponding

to the Hamiltonian

HD
γ (σ) = −

∑
(i,j)∈E

σiσj , (2.5)

again restricted to σ ∈ Ωn. We use superscripts to indicate the model to which various quantities refer.
For instance φSK

n (β) denotes the constrained free energy of the SK model, φD
n (β; γ) is the constrained free

energy of the Ising model on GPoiss
n,γ , with analogous notations used for the ground state energies eSKn and

eDn (γ).

The first step in proving Theorem 1.2 is to show that mcut(Gn) and MCUT(Gn) are concentrated around
their expectations.

Lemma 2.1. Fixing ε > 0, we have that

P
[∣∣∣mcut(Gn)− E[mcut(Gn)]

∣∣∣ > nε
]

= O(1/n)

P
[∣∣∣MCUT(Gn)− E[MCUT(Gn)]

∣∣∣ > nε
]

= O(1/n) .
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Proof. Recall (1.1) that mcut(Gn) = 1
2 |En|+

1
2U−(Gn), with |En| = Nn ∼ Pois([γn]). Therefore,

P [|mcut(Gn)− E[mcut(Gn)]| > nε] ≤ P[|U−(Gn)− E[U−(Gn)]| > nε] + P[|Nn − ENn| > nε]

≤ Var(U−(Gn))

n2ε2
+

Var(Nn)

n2ε2
=

Var(U−(Gn))

n2ε2
+O(1/n).

We complete the proof for mcut(Gn) by showing that Var(U−(Gn)) ≤ nγ. Indeed, writing U−(Gn) = f(z)

for z = {zij , 1 ≤ i, j ≤ n} and i.i.d. zij ∼ Pois(γ/n), we let z(i,j) denote the vector formed when replacing

zij in z by an i.i.d copy z′ij . Clearly |f(z) − f(z(i,j))| ≤ |zij − z′ij |. Hence, by the Efron-Stein inequality

[BLM13, Theorem 3.1],

Var(U−(Gn)) ≤ 1

2

∑
i,j

E[(f(z)− f(z(i,j)))2] ≤ 1

2

∑
i,j

E[(zij − z′ij)2] ,

yielding the required bound (and the proof for MCUT(Gn) = 1
2Nn + 1

2U+(Gn) proceeds along the same
line of reasoning). 2

Next, recall that |En| ∼ Pois(γn) has expectation γn, while eDn = n−1E[U−(Gn)] and êDn = n−1E[U+(Gn)]
(see (2.2) and (2.3), respectively). Hence, from the representation (1.1) of mcut(Gn) and MCUT(Gn), we
further conclude that

1

n
E[mcut(Gn)] =

γ

2
+

1

2
eDn (γ) ,

1

n
E[MCUT(Gn)] =

γ

2
+

1

2
êDn (γ) . (2.6)

Combining (2.6) with Lemma 2.1, we establish Theorem 1.2, once we show that as n→∞,

eDn (γ) = −
√

2γP∗ + oγ(
√
γ) + o(1), (2.7)

êDn (γ) = +
√

2γP∗ + oγ(
√
γ) + o(1). (2.8)

Establishing (2.7) and (2.8) is the main step in proving Theorem 1.2, and the key to it is the following
proposition of independent interest.

Proposition 2.2. There exist constants A1, A2 <∞ independent of n, β and γ such that∣∣∣∣φD
n

(
β√
2γ
, γ

)
− φSK

n (β)

∣∣∣∣ ≤ A1
|β|3
√
γ

+A2
β4

γ
. (2.9)

We defer the proof of Proposition 2.2 to Subsection 2.2, where we also apply it to deduce the next
lemma, comparing the ground state energy of a dilute Ising ferromagnet to that of the SK model, after
both spin models have been constrained to have zero magnetization.

Lemma 2.3. There exist A = A(γ0) finite, such that for all γ ≥ γ0 and any n,∣∣∣eDn (γ)√
2γ
− eSKn

∣∣∣ ≤ Aγ−1/6 ,
∣∣∣ êDn (γ)√

2γ
+ eSKn

∣∣∣ ≤ Aγ−1/6 . (2.10)

In view of Lemma 2.3, we get both (2.7) and (2.8) once we control the difference between the ground state
energies of the unconstrained and constrained to have zero magnetization SK models. This is essentially
established by our following lemma (whose proof is provided in Subsection 2.3).

Lemma 2.4. For any δ > 0, w.h.p. 0 ≤ USK
n − U

SK

n ≤ n
1
2

+δ, where

U
SK

n = min
σ∈{−1,+1}n

{HSK(σ)} , USK
n = min

σ∈Ωn
{HSK(σ)} . (2.11)

Indeed, applying Borel’s concentration inequality for the maxima of Gaussian processes (see [BLM13,
Theorem 5.8]), we have that for some c > 0, all n and δ > 0,

P
[∣∣∣USK

n − E[U
SK

n ]
∣∣∣ > nδ

]
≤ 2e−cnδ

2
, (2.12)

P
[∣∣USK

n − E[USK
n ]
∣∣ > nδ

]
≤ 2e−cnδ

2
. (2.13)
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Recall that eSKn = n−1E[USK
n ], whereas n−1E[U

SK

n ] → −P∗ by (1.7). Consequently, the bounds of (2.12),
(2.13) coupled with Lemma 2.4 imply that eSKn → −P∗ as n → ∞. This, combined with Lemma 2.3 and
(2.6), completes the proof of Theorem 1.2.

2.2. The interpolation argument. We first deduce Lemma 2.3 out of Proposition 2.2. To this end,
we use the inequalities of Lemma 2.5 relating the free energy of a spin model to its ground state energy
(these are special cases of general bounds for models with at most cn configurations, but for the sake of
completeness we include their proof).

Lemma 2.5. The following inequalities hold for any n, β, γ > 0:∣∣∣eDn (γ) +
1

β
φD
n (β, γ)

∣∣∣ ≤ log 2

β
,

∣∣∣eSKn +
1

β
φSK
n (β)

∣∣∣ ≤ log 2

β
. (2.14)

Further, for any n, β < 0, γ > 0,∣∣∣êDn (γ) +
1

β
φD
n (β, γ)

∣∣∣ ≤ log 2

|β|
,

∣∣∣eSKn − 1

β
φSK
n (β)

∣∣∣ ≤ log 2

|β|
. (2.15)

Proof. Let Hn(σ) be a generic Hamiltonian for σ ∈ Ωn. One then easily verifies that

∂

∂β

(
φn(β)

β

)
= − 1

nβ2
E[S(µβ,n)] ∈

[
− log 2

β2
, 0
]
,

for the Boltzman measure (2.4) and the non-negative entropy functional S(µ) = −
∑

σ∈Ωn
µ(σ) logµ(σ)

which is at most log |Ωn|. Further, comparing (2.1) and (2.2) we see that β−1φn(β)→ −en when β →∞
(while n is fixed). Consequently, for any β > 0,∣∣∣en +

φn(β)

β

∣∣∣ =
∣∣∣ ˆ ∞

β

∂

∂u

(
φn(u)

u

)
du
∣∣∣ ≤ log 2

β
.

We apply this inequality separately to the SK model and the diluted Ising model to get the bounds of
(2.14). We similarly deduce the bounds of (2.15) upon observing that β−1φn(β) → −ên when β → −∞
and recalling that with {HSK

n (σ)} a zero mean Gaussian process, necessarily êSKn = −eSKn . 2

Proof of Lemma 2.3. Clearly, for any n, β > 0 and γ > 0,∣∣∣eDn (γ)√
2γ
− eSKn

∣∣∣ ≤ ∣∣∣∣ 1√
2γ
eDn (γ) +

1

β
φD
n (

β√
2γ
, γ)

∣∣∣∣+

∣∣∣∣ 1βφSK
n (β)− 1

β
φD
n (

β√
2γ
, γ)

∣∣∣∣+

∣∣∣∣eSKn +
1

β
φSK
n (β)

∣∣∣∣ .
In view of (2.14), the first and last terms on the RHS are bounded by (log 2)/β. Setting β = γ1/6, we deduce

from Proposition 2.2 that the middle term on the RHS is bounded by A1γ
−1/6 +A2γ

−1/2, yielding the first

(left) bound in (2.10) (for A = log 2 +A1 +A2γ
−1/3
0 ). In case β < 0, starting from∣∣∣ êDn (γ)√

2γ
+ eSKn

∣∣∣ ≤ ∣∣∣∣ 1√
2γ
êDn (γ) +

1

β
φD
n (

β√
2γ
, γ)

∣∣∣∣+

∣∣∣∣ 1βφSK
n (β)− 1

β
φD
n (

β√
2γ
, γ)

∣∣∣∣+

∣∣∣∣eSKn − 1

β
φSK
n (β)

∣∣∣∣ ,
and using (2.15), yields the other (right) bound in (2.10). 2

Proof of Proposition 2.2. For t ∈ [0, 1] we consider the interpolating Hamiltonian on Ωn

Hn(γ, t, σ) :=
1√
2γ
HD
γ(1−t)(σ) +

√
tHSK(σ) , (2.16)

denoting by Zn(β, γ, t), φn(β, γ, t) and µβ,n(·; γ, t), the partition function, free energy density, and Boltz-

mann measure, respectively, for this interpolating Hamiltonian. Clearly, φn(β, γ, 0) = φD
n ( β√

2γ
, γ) and
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φn(β, γ, 1) = φSK
n (β). Hence, ∣∣∣∣φD

n (
β√
2γ
, γ)− φSK

n (β)

∣∣∣∣ ≤ ˆ 1

0

∣∣∣∣∂φn∂t (β, γ, t)

∣∣∣∣dt
and it suffices to show that |∂φn∂t | is bounded, uniformly over t ∈ [0, 1] and n, by the RHS of (2.9). To this

end, associate with i.i.d. configurations {σj , j ≥ 1} from µβ,n(·; γ, t) and ` ≥ 1, the multi-replica overlaps

Q` ≡
1

n

n∑
i=1

( ∏̀
j=1

σji

)
.

Then, denoting by 〈 · 〉t the expectation over such i.i.d. configurations {σj , j ≥ 1}, it is a simple exercise
in spin glass theory (see for example [FL03]), to explicitly express the relevant derivatives as

∂φn
∂t

(β, γ, t) =

(
∂φn
∂t

)
SK

+

(
∂φn
∂t

)
D

,(
∂φn
∂t

)
SK

=
β2

4
(1− E[〈Q2

2〉t]) , (2.17)(
∂φn
∂t

)
D

= −γ log cosh

(
β√
2γ

)
+ γ

∞∑
`=1

(−1)`

`

(
tanh

β√
2γ

)`
E[〈Q2

` 〉t] . (2.18)

For the reader’s convenience, we detail the derivation of (2.17) and (2.18) in Subsection 2.4, and note in
passing that the expressions on their RHS resemble the derivatives of the interpolating free energies obtained
in the Gaussian and dilute spin glass models, respectively (see [GT02], [GT04]).

Now observe that |Q`| ≤ 1 for all ` ≥ 2 and Q1 = 0 on Ωn, hence∣∣∣∣∂φn∂t (β, γ, t)

∣∣∣∣ ≤ γ ∣∣∣∣log cosh

(
β√
2γ

)
− β2

4γ

∣∣∣∣+
γ

2

∣∣∣∣∣
(

tanh
β√
2γ

)2

− β2

2γ

∣∣∣∣∣+ γ
∞∑
`=3

1

`

∣∣∣∣tanh
β√
2γ

∣∣∣∣` .
The required uniform bound on |∂φn∂t | is thus a direct consequence of the elementary inequalities

| log coshx− 1

2
x2| ≤ C1x

4 , |y2 − x2| ≤ C2x
4 , | − log(1− y)− y − 1

2
y2| ≤ C3|x|3 ,

which hold for some finite C1, C2, C3 and any y = | tanhx|. 2

2.3. Proof of Lemma 2.4. Recall that HSK(σ) = − 1
2
√
n
σT J̃σ where J̃ = {J̃ij = (Jij + Jji)/

√
2 : 1 ≤

i, j ≤ n} is a GOE matrix. Since {J̃ii} do not affect USK
n −U

SK

n , we further set all diagonal entries of J̃ to zero.
By symmetry of the Hamiltonian HSK( · ), the configuration σ? that achieves the unconstrained ground

state energy HSK(σ?) = U
SK

n is uniformly random in {−1,+1}n. Therefore, S?n := 1
2

∑n
i=1 σ

?
i is a centered

Bin(n, 1/2) random variable, and by the LIL the events Bn = {|S?n| ≤ bn} hold w.h.p. for bn :=
√
n log n.

By definition U
SK

n ≥ −n
2λmax(J̃/

√
n), hence the events Cn = {USK

n ≥ −2n} also hold w.h.p. by the
a.s. convergence of the largest eigenvalue λmax( · ) for Wigner matrices (see [AGZ09, Theorem 2.1.22]).
Consequently, hereafter our analysis is carried out on the event {Bn ∩ Cn} and without loss of generality
we can and shall further assume that S?n > 0 is integer (since n is even).

Since σ? is a global minimizer of the quadratic form HSK(σ) over the hyper-cube {−1, 1}n, necessarily
σ?i = sign(f?i ) for

f?i :=
1

2
√
n

n∑
j=1

J̃ijσ
?
j .
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Consequently, under the event Cn,

−2n ≤ USK

n = HSK(σ?) = −
n∑
i=1

σ?i f
?
i = −

n∑
i=1

|f?i | ,

hence R? := {i ∈ [n] : |f?i | ≤ 6} is of size at least (2/3)n. Thus, for n ≥ 6bn, under the event Bn ∩ Cn we
can find a collection W ? ⊆ {i ∈ R? : σ?i = +1} of size S?n and let σ̃ ∈ Ωn be the configuration obtained by
setting σ̃i = −σ?i = −1 whenever i ∈W ? while otherwise σ̃i = σ?i . We obviously have then that

U
SK

n = HSK(σ?) ≤ USK
n ≤ HSK(σ̃) . (2.19)

Further, by our choices of σ̃ and W ? ⊆ R?, also

HSK(σ̃)−HSK(σ?) =
2√
n

∑
i∈W ?

∑
j∈[n]\W ?

J̃ijσ
?
j

≤ 4
∑
i∈W ?

|f?i |+
4√
n

∆(W ?) ≤ 24S?n +
4√
n

∆(W ?) , (2.20)

where we define, for W ⊆ [n] the corresponding partial sum

∆(W ) :=
∑

i,j∈W,i<j
|J̃ij | ,

of
(|W |

2

)
i.i.d. variables J̃ij . Under the event Bn we have that S?n ≤ bn ≤ yn := 1

32n
1/2+δ, so by (2.19) and

(2.20) it suffices to show that w.h.p. {∆(W ?) ≤ xn} for xn =
√
nyn. To this end, note that by Markov’s

inequality, for some c > 0, all n and any fixed W of size |W | ≤ bn,

P(∆(W ) ≥ xn) ≤ e−xnE[e|J̃ |]b
2
n ≤ e−cxn .

With at most 2n such W ⊆ [n], we conclude that

P(sup{∆(W ) : W ⊂ [n], |W | ≤ bn} ≤ xn)→ 1 ,

and in particular w.h.p. {∆(W ?) ≤ xn} (under Bn = {S?n ≤ bn}).

2.4. The interpolation derivatives. Recall the Hamiltonian Hn(γ, t, σ) of (2.16), the corresponding
partition function Zn(β, γ, t) and free energy density φn(β, γ, t). We view n−1 logZn(β, γ, t) := ψn(t, z,J),
as a (complicated) function of the Gaussian couplings J = {Jij : 1 ≤ i, j ≤ n} and the Poisson multiplicities
z = {zij : 1 ≤ i, j ≤ n}. Denoting by p(t, ·) the Pois(γ(1 − t)/n) probability mass function (PMF) of zij
yields the joint PMF p(t, z) =

∏
1≤i,j≤n p(t, zij), and the expression

φn(β, γ, t) = E[ψn(t, z,J)] =

ˆ
ψn(t, z,J)p(t, z)dµ(z,J) (2.21)

where µ = (νN)n
2 ⊗ (νR)n

2
for the counting measure νN on N and the standard Gaussian measure νR on

R. Thus,

∂φn
∂t

(β, γ, t) =

ˆ
∂ψn
∂t

(t, z,J)p(t, z)dµ(z,J) +

ˆ
ψn(t, z,J)

∂p

∂t
(t, z)dµ(z,J)

:=

(
∂φn
∂t

)
SK

+

(
∂φn
∂t

)
D

. (2.22)

Proceeding to verify the expression (2.17), here ∂Hn
∂t = 1

2
√
t
HSK (since HD

γ(1−t)(·) depends on t only through

the PMF of z). Hence,

∂

∂t

[
logZn(β, γ, t)

]
= −β

〈∂Hn

∂t
(γ, t, σ)

〉
t

= − β

2
√
t

〈
HSK(σ)

〉
t
,
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resulting with (
∂φn
∂t

)
SK

= − 1

n

β

2
√
t
Ez

(
EJ[〈HSK(σ)〉t]

)
.

The expression on the RHS of (2.17) then follows by an application of Gaussian integration by parts to
EJ[〈HSK(σ)〉t], as illustrated for example in [Pan13, Lemma 1.1].

Next, to establish (2.18) let hij(zij) := E[ψn(t, z,J)|zij ], and note that the product form of p(t, z) and
µ(z,J), results with (

∂φn
∂t

)
D

=

n∑
i=1

n∑
j=1

ˆ
hij(z)

∂p

∂t
(t, z)dνN(z) . (2.23)

The ij-th integral on the RHS of (2.23) is merely the value of (−γ/n)g′(λ), where g(λ) = E[f(z)] for
f = hij and z ∼ Pois(λ) at λ = γ(1 − t)/n. Differentiating the Pois(λ) PMF one has the identity g′(λ) =
E[f(z+ 1)− f(z)] (under mild regularity conditions on f). This crucial observation transforms (2.23) into(

∂φn
∂t

)
D

= −γ
n

n∑
i=1

n∑
j=1

E[hij(zij + 1)− hij(zij)] . (2.24)

Here ψn(t, ·, ·) = n−1 logZn(β, γ, t) and adding one to zij corresponds to an extra copy of the edge (i, j) in

the dilute Ising model of Hamiltonian 1√
2γ
HD
γ(1−t)(σ). Consequently, setting b := β√

2γ
,

hij(zij + 1)− hij(zij) =
1

n
log
〈
ebσiσj

〉
t

=
1

n
log
{

cosh(b)
[
1 + tanh(b)〈σiσj〉t

]}
, (2.25)

since eby = cosh(b)[1+tanh(b)y] for the {−1,+1}-valued y = σiσj . Combining (2.24) and (2.25), we obtain
by the Taylor series for − log(1 + x) (when −1 < x < 1), that(

∂φn
∂t

)
D

= − γ

n2

n∑
i=1

n∑
j=1

E [log {cosh(b) [1 + tanh(b)〈σiσj〉t]}]

= −γ log cosh(b) + γ
∞∑
`=1

(−1)`

`

(
tanh(b)

)`
E
[ 1

n2

n∑
i,j=1

(〈σiσj〉t)`
]

= −γ log cosh(b) + γ
∞∑
`=1

(−1)`

`

(
tanh(b)

)`
E[〈Q2

` 〉t] ,

as stated in (2.18).

3. Graph Comparison: Proof of Theorem 1.5

The notion of uniform random γ-regular graph refers to drawing such graph uniformly from among all
γ-regular simple graphs on n-vertices, provided, as we assume throughout, that nγ is even. We instead
denote by GReg(n, γ) the more tractable configuration model, where each vertex is equipped with γ half-
edges and a multigraph (of possible self-loops and multiple edges) is formed by a uniform random matching
of the collection of all γn half-edges. Indeed, as mentioned in the context of Erdős-Rényi graphs (see start
of Section 2), for γ bounded the matching in GReg(n, γ) produces a simple graph with probability bounded
away from zero, and conditional on being simple this graph is uniformly random. Consequently, any
property that holds w.h.p. for the configuration model multigraph GReg(n, γ) must also hold w.h.p. for
the simple uniform random γ-regular graph.

Our strategy for proving Theorem 1.5 is to start from the random regular multigraph G1 ∼ GReg(n, γ),
deleting some edges and “rewiring” some of the existing ones to obtain a new graph G2 which is approx-
imately an Erdős-Rényi random graph of nγ−/2 edges, where γ− := γ − √γ log γ. Then, with Theorem
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1.2 providing us with the typical behavior of extreme bisections of G2, the main challenge is to control the
effect of our edge transformations well enough to handle the minimum and maximum bisections of G1.

Specifically, drawing i.i.d. Xi ∼ Pois(γ−), we let Zi := (γ−Xi)+ and color Zi of the γ half-edges of each
vertex i ∈ [n] by BLUE (B). All other half-edges are colored RED (R). Matching the half-edges uniformly,
without regard to their colors, we obtain a graph G1 ∼ GReg(n, γ). Our coloring decomposes G1 to the
sub-graph GRR consisting of all the RR edges and GRB ∪ GBB having all other edges, which we in turn
decompose to the sub-graph GBB consisting of the BB edges and GRB having all the multi-color edges (i.e.
RB and BR). To transform G1 to G2, we first delete all edges of GBB, disconnect all the multi-colored RB
edges and delete all the B half-edges that as a result became unmatched. We then form a new sub-graph

G̃RR by uniformly re-matching all the free R half-edges (in case there is an odd number of such half-edges we

leave one of them free as a self-loop). The graph G2 has the vertex set [n] and E(G2) = E(GRR)∪E(G̃RR).

We represent by Ωn the collection of all bisections for a graph G having n vertices, denoting by cutG(σ)
the cut size for the partition between {i ∈ [n] : σi = −1} and its complement. Then, for any σ ∈ Ωn we
have

cutG1(σ) = cutG2(σ)− cut
G̃RR

(σ) + cutGRB∪GBB
(σ) . (3.1)

We control the LHS of (3.1) by three key lemmas, starting with the following consequence of Theorem 1.2,
proved in Subsection 3.1 that gives sharp estimates on the dominant part, namely cutG2(σ).

Lemma 3.1. We have, w.h.p. as n→∞,

mcut(G2)

n
=
γ−
4
− P∗

√
γ

4
+ oγ(

√
γ) , (3.2)

MCUT(G2)

n
=
γ−
4

+ P∗

√
γ

4
+ oγ(

√
γ). (3.3)

Our next lemma, proved in Subsection 3.2, shows that while both the B half-edge deletions and the R

half-edge re-matching that follows, may affect the cut size, on the average (with respect to our random
matching), at the scale of interest to us they cancel out each other.

Lemma 3.2. Uniformly over all σ ∈ Ωn,

E[cutGRB
(σ)] = n

(√
γ log γ

2
+Oγ(1)

)
+ o(n) , (3.4)

E[cut
G̃RR

(σ)] = n

(√
γ log γ

4
+Oγ(1)

)
+ o(n) , (3.5)

E[cutGBB
(σ)] = n

(
(log γ)2

4
+ oγ(1)

)
+ o(n). (3.6)

The last result we need, is the following uniform bound on the fluctuations, proved in Subsection 3.3,
that allows us to control the effect of the edge rewiring on the extremal bisections.

Lemma 3.3. There exists C sufficiently large, independent of n and γ, such that

P

[
sup
σ∈Ωn

|cutA(σ)− E[cutA(σ)]| > Cnγ1/4
√

log γ

]
= o(1) (3.7)

where A may be distributed as GRB ∪GBB or G̃RR.

Turning to prove Theorem 1.5, we have from (3.1) and Lemma 3.3 that w.h.p. as n→∞,

sup
σ∈Ωn

∣∣∣cutG1(σ)− cutG2(σ) + E[cut
G̃RR

(σ)]− E[cutGRB∪GBB
(σ)]

∣∣∣ = noγ(
√
γ) . (3.8)
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In view of Lemma 3.2, we deduce from (3.8) that w.h.p. as n→∞,

sup
σ∈Ωn

∣∣∣cutG1(σ)− cutG2(σ)− n
√
γ log γ

4

∣∣∣ = noγ(
√
γ) + o(n) .

This in turn implies that w.h.p.

mcut(G1) = mcut(G2) + n

√
γ log γ

4
+ noγ(

√
γ) + o(n) ,

MCUT(G1) = MCUT(G2) + n

√
γ log γ

4
+ noγ(

√
γ) + o(n) ,

and Theorem 1.5 thus follows from Lemma 3.1 (recall that γ = γ− +
√
γ log γ).

3.1. Proof of Lemma 3.1. Let Gint
n be the random graph generated from the configuration model with

i.i.d. Xi ∼ Pois(γ−) degrees. We denote by Gclon(n, γ−) the sub-graph obtained by independently deleting
each half-edge of Gint

n with probability 1/n, before matching them. By the thinning property of the Pois law,
Gclon(n, γ−) has the law of the Poisson-Cloning model, where one first generates i.i.d. ζi ∼ Pois(n−1

n γ−),
then draws a random graph from the configuration model with ζi half-edges at vertex i. Recall [Kim06] that
the GI(n,

γ−
n ) and Gclon(n, γ−) models are mutually contiguous. Further, γ−/γ → 1, and so by Theorem

1.2, w.h.p.

mcut(Gclon(n, γ−))

n
=
γ−
4
− P∗

√
γ

4
+ oγ(

√
γ) , (3.9)

MCUT(Gclon(n, γ−))

n
=
γ−
4

+ P∗

√
γ

4
+ oγ(

√
γ) . (3.10)

Next note that for any two graphs G1,G2 on n vertices, |MCUT(G1) − MCUT(G2| ≤ |E(G1)∆E(G2)| and
|mcut(G1)−mcut(G2| ≤ |E(G1)∆E(G2)|. W.h.p. our coupling has

∑
i(Xi− ζi) = O(1) half-edges from Gint

n

not also in Gclon(n, γ−). Hence |E(Gint
n )∆E(Gclon(n, γ−))| = O(1) and (3.9)-(3.10) extend to mcut(Gint

n )
and MCUT(Gint

n ), respectively.
We proceed to couple Gint

n and G2 such that |E(Gint
n )∆E(G2)| ≤ noγ(

√
γ) w.h.p. thereby yielding

the desired conclusion. To this end, G2 could have alternatively been generated by one uniform random
matching of only the X ′i := min{Xi, γ} RED half-edges that each vertex i has in G1 (for completeness,
we prove this statement in Lemma 3.4). We can thus couple G2 and Gint

n by first forming Gint
n , then

independently for i = 1, . . . , n color in RED uniformly at random X ′i of the Xi half-edges of vertex i, with
all remaining half-edges colored BROWN. Now, to get G2 we delete all BB edges, disconnect all RB edges
and delete the resulting B half-edges, then uniformly re-match all the free R half edges (for Lemma 3.4
applies again in this setting). The claimed bound on |E(Gint

n )∆E(G2)| follows since the total number of B
half-edges in Gint

n is w.h.p. at most

2nE(X1 −X ′1) = 2nE[(X1 − γ)+] = nOγ(1) , (3.11)

where the RHS follows by Normal approximation to Pois(γ−) and our choice of γ− = γ −√γ log γ.

3.2. Proof of Lemma 3.2. We first prove (3.4), utilizing the fact that the distribution of cutGRB
(σ) is

the same for all σ ∈ Ωn. Hence,

E[cutGRB
(σ)] = E

[
Eσ? [cutGRB

(σ?)]
]

(3.12)

for σ? chosen uniformly from Ωn. Given the graph G1, we have

Eσ? [cutGRB
(σ?)] =

|ERB|
2(1− 1/n)

, (3.13)
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where ERB denotes the set of RB edges in G1 excluding self-loops. Next, noting that the expected number

of edges in G1 excluding self-loops is n(n−1)γ2

2(nγ−1) and the probability that an edge connecting two distinct

vertices is coloured RB is 2 E[Z1]
γ (1− E[Z1]

γ ), we have,

E
[
|ERB|

]
=
n(n− 1)γ2

nγ − 1

E[Z1]

γ

(
1− E[Z1]

γ

)
, (3.14)

where Z1 ∼ (γ −X1)+ and X1 ∼ Pois(γ−). We get (3.4) out of (3.12) and (3.14) upon observing that

E[Z1] = γ − E[X1] + E[(γ −X1)−] = γ − γ− + E[(X1 − γ)+] =
√
γ log γ +Oγ(1) (3.15)

(see (3.11) for the right-most identity). By an analogous calculation, we find that for all σ ∈ Ωn,

E
[
cutGBB

(σ)
]

=
n(n− 1)γ2

2(nγ − 1)

(E[Z1]

γ

)2 1

2(1− 1/n)
= n

[1
4

(log γ)2 + oγ(1)
]

+ o(n).

Turning to (3.5), the same argument as in (3.12) implies that

E
[
cut

G̃RR
(σ)
]

= E
[
Eσ? [cut

G̃RR
(σ?)]

]
,

for σ? chosen unifomly from Ωn. Further, similarly to (3.13) we find that given the graph G̃RR,

Eσ?
[

cut
G̃RR

(σ?)
]

=
|E2|

2(1− 1/n)
, (3.16)

where E2 denotes the set of edges in G̃RR excluding self-loops. Recall that |E(GRB)|−|ERB| and 1
2 |E(GRB)|−

|E2| count the number of self-loops in GRB and G̃RR, respectively. The expected number of such self-loops
is O(1) as n → ∞, hence E[ |E2| ] = 1

2E[ |ERB| ] + O(1), which upon comparing (3.13) to (3.16) yields the
required expression of (3.5).

3.3. Proof of Lemma 3.3. Starting with A = GRB ∪GBB clearly, for any xn > 0,

P
[

sup
σ∈Ωn

∣∣cutA(σ)− E[cutA(σ)]
∣∣ ≥ 2xn

]
≤ p1(n) + p2(n) (3.17)

where Z = (Z1, · · · , Zn) count the number of BLUE half-edges at each vertex of G1 and

p1(n) = P
[

sup
σ∈Ωn

∣∣cutA(σ)− c(σ,Z)
∣∣ ≥ xn] , (3.18)

p2(n) = P
[

sup
σ∈Ωn

∣∣c(σ,Z)− E[cutA(σ)]
∣∣ ≥ xn] , (3.19)

for c(σ,Z) := E[cutA(σ)|Z]. Letting Sn(Z) =
∑n

i=1 Zi, note that w.h.p. Z ∈ En for En = {z : |Sn(z) −
nE[Z1] | ≤ bn} and bn =

√
n log n. Hence, by a union bound over σ ∈ Ωn we get that

p1(n) ≤ 2n max
z∈En

max
σ∈Ωn

P
[
|cutA(σ)− c(σ,Z)| ≥ xn

∣∣∣Z = z
]

+ o(1) . (3.20)

We next apply Azuma-Hoeffding inequality to control the RHS of (3.20). To this end, fixing z ∈ En and
half-edge colors such that {Z = z}, we form G1 by sequentially pairing a candidate half-edge to uniformly
chosen second half-edge, using first BLUE half-edges as candidates for the pairing (till all of them are
exhausted). Then, fixing σ ∈ Ωn, we consider Doob’s martingale Mk = E[cutA(σ)|Fk], for the sigma-
algebra Fk generated by all half-edge colors and the first k ≥ 0 edges to have been paired. This martingale
starts at M0 = c(σ,Z), has differences |Mk − Mk−1| uniformly bounded by some universal finite non-
random constant κ (independent on n, σ and z), while M` = cutA(σ) for all ` ≥ Sn(z) (since the sub-graph
A = GRB ∪ GBB is completely formed within our sequential matching first Sn(z) steps). The bounded
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difference property of Mk follows easily from the “switching” argument in [Wor99, Theorem 2.19]. Thus,
from Azuma-Hoeffding inequality we get that for z ∈ En,

P
[
|cutA(σ)− c(σ,Z)| ≥ xn

∣∣∣Z = z
]
≤ 2 exp

(
− x2

n

8κ2Sn(z)

)
≤ 2 exp

(
− x2

n

8κ2(nE[Z1] + bn)

)
(3.21)

Recall (3.15) that E[Z1] =
√
γ log γ + Oγ(1), hence choosing xn = Cnγ1/4

√
log γ for some C2 > 8κ2 log 3,

we find that the RHS of (3.20) decays to zero as n→∞.
Turning to control p2(n), for i ∈ [n] and 1 ≤ j ≤ Zi, let Iij(σ) = 1 if the jth B half-edge of vertex i is

matched to some half-edge from the opposite side of the partition induced by σ, and Iij(σ) = 0 otherwise.
Then,

cutA(σ) =

n∑
i=1

Zi∑
j=1

Iij(σ)− cutGBB
(σ). (3.22)

For i such that σi = 1 and 1 ≤ j ≤ Zi we similarly set I ′ij(σ) = 1 if the jth B half-edge of vertex i is

matched to a B half-edge of a vertex from the opposite side, and I ′ij = 0 otherwise. Clearly then

cutGBB
(σ) =

∑
{i:σi=1}

Zi∑
j=1

I ′ij(σ) ,

so setting S+
n (σ,Z) :=

∑
{i:σi=1} Zi, we have from (3.22) that

c(σ,Z) =

n∑
i=1

Zi∑
j=1

P[Iij(σ) = 1|Z]−
∑
{i:σi=1}

Zi∑
j=1

P[I ′ij(σ) = 1|Z]

= Sn(Z)
(nγ)/2

nγ − 1
− S+

n (σ,Z)
Sn(Z)− S+

n (σ,Z)

nγ − 1
. (3.23)

Considering the extreme values of the RHS of (3.23) yields that for all σ ∈ Ωn,

1

2
Sn(Z)

(
1− Sn(Z)

2nγ

)
≤ c(σ,Z)

(
1− 1

nγ

)
≤ 1

2
Sn(Z) ,

from which we deduce that

n
E[Z1]

2

(
1− E[Z1]

2γ

)
+ o(n) ≤ inf

Z∈En
inf
σ∈Ωn

{c(σ,Z)}

≤ sup
Z∈En

sup
σ∈Ωn

{c(σ,Z)} ≤ nE[Z1]

2
+ o(n) . (3.24)

Further, while proving Lemma 3.2 we have shown that

E[cutA(σ)] = n
E[Z1]

2

nγ

(nγ − 1)

(
1− E[Z1]

2γ

)
,

hence from (3.24) and (3.15) it follows that

sup
Z∈En

sup
σ∈Ωn

∣∣ c(σ,Z)− E[cutA(σ)]
∣∣ ≤ nE[Z1]2

4γ
+ o(n) ≤ n(log γ)2 + o(n) ,

and since w.h.p. Z ∈ En, we conclude that p2(n) = o(1).

Next we consider the graph A = G̃RR and proceeding in a similar manner we have the decomposition
(3.17), except for replacing in this case Z in (3.18)-(3.19) by the count Y = (Y1, Y2, · · · , Yn) of number of R
half-edges at each vertex at the initiation of the second stage. The total number Sn(Y) of R half-edges to
be matched in the second step is less than the initial number Sn(Z) of B half-edges. Consequently, if Z ∈ En
then Y ∈ E+

n := {y : Sn(y) ≤ nE[Z1] + bn}, and we have again a bound of the type (3.20) on p1(n), just
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taking here the maximum over y ∈ E+
n instead of z ∈ En. Further, we repeat the martingale construction

that resulted with the RHS of (3.21). Specifically, here F0 is the sigma-algebra of Y, namely knowing the

degrees of vertices in G̃RR, and we expose in Fk the first k edges to have been paired en-route to the

uniform matching that forms G̃RR. As before the Doob’s martingale Mk = E[cut
G̃RR

(σ)|Fk] has uniformly

bounded differences, starting at M0 = c(σ,Y) and with the same choice of xn the desired bound on p1(n)
follows upon observing that M` = cut

G̃RR
(σ) for all ` ≥ Sn(y), hence as soon as ` = nE[Z1] + bn. Turning

to deal with p2(n) in this context, by the same reasoning that led to (3.23) we find that for S = Sn(y) ≥ 2
and S+(σ) = S+

n (σ,y),

c(σ,y) = E[cut
G̃RR

(σ)|Y = y] =
S+(σ)(S − S+(σ))

S − 1
=
S2 −

(
2S+(σ)− S

)2
4(S − 1)

. (3.25)

While proving Lemma 3.2 we have shown that

cn := 4E[cut
G̃RR

(σ)] = n
[
E[Z1] +Oγ(1)

]
+ o(n)

and that cn is constant over σ ∈ Ωn. As cn ≥ 6xn for n and γ large, while |S2/(S − 1) − S| is uniformly
bounded, we deduce from (3.25) that for any yn ≤ xn,

{|2S+(σ)− S′| < xn}
⋂
{|S − S′| < yn}

⋂
{|S′ − cn| < xn} =⇒ {|4c(σ,y)− cn| < 4xn} .

Now, w.h.p. S′ = Sn(Z) is in In := [nE[Z1] − bn, nE[Z1] + bn] with |S′ − cn| < xn, and taking then the
union over σ ∈ Ωn, we get similarly to the derivation of (3.20) that

p2(n) ≤2n max
sn∈In

max
σ∈Ωn

P
[
|2S+(σ)− sn| ≥ xn , S > sn − yn

∣∣S′ = sn

]
+ max
sn∈In

P
(
S ≤ sn − yn

∣∣S′ = sn
)

+ o(1) =: p3(n) + p4(n) + o(1) . (3.26)

Starting with 2N = nγ half-edges of G1 of whom S′ = sn colored B (while all others are colored R), the
non-negative number S′ − S of half-edges in GBB is stochastically dominated by a Bin(sn, sn/(2N − sn))
random variable. For sn ∈ In the latter Binomial has mean nE[Z1]2/(γ − E[Z1]) + o(n), hence in view
of (3.15), p4(n) = o(1) provided yn ≥ 3n(log γ)2. For bounding p3(n) we assume w.l.o.g. that σi = 1 iff
i ≤ n/2, with S+(σ) the total number of R half-edges for vertices i ≤ n/2, which are matched to B half-
edges by the uniform matching in the first step. Fixing the total number sn of B half-edges in G1, clearly

S+(σ) is stochastically decreasing in the number S′+ =
∑n/2

i=1 Zi of B half-edges among vertices i ≤ n/2.
Thus, it suffices to bound p3(n) in the extreme cases, of S′+ = 0, and of S′+ = sn. The uniform matching
of the first step induces a sampling without replacement with S+(σ) denoting the number of marked balls
when drawing a sample of (random) size S ∈ (sn − yn, sn], uniformly without replacement from an urn
containing 2N − sn balls, of which either N or N − sn balls are marked. By stochastic monotonicity, it
suffices to consider the relevant tails of S+(σ)− sn/2 only in the extreme cases of S = sn− yn and S = sn.
As 2N/n = γ, sn/n� γ and yn � xn, standard tail bounds for the hyper-geometric distribution [Chv79]
imply that p3(n) = o(1) for γ sufficiently large, thereby completing the proof.

3.4. A pairing lemma. We include here, for completeness, the formal proof of the fidelity of the two
stage pairing procedure (which was used in our preceding arguments).

Lemma 3.4. Given 2` labeled balls of color R and 2m labeled balls of color B for some m ≤ `, we get a
uniform random pairing of the R balls by the following two step procedure:

(a) First match the 2(m+ `) balls uniformly at random to obtain some RR, RB and BB pairs.
(b) Remove all B balls and uniformly re-match the R balls which were left unmatched due to the removal

of the B balls.

Proof. We use the notation (2k− 1)!! = (2k− 1)(2k− 3) · · · 1 and [m]k = m(m− 1) · · · (m− k+ 1) and let
P denote the random pairing of the 2` R balls by our two-stage procedure (which first generated 2s pairs
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of type RB, (m− s) of type BB and (`− s) of type RR). We then have that for any fixed final pairing P of
the R balls,

P[P = P ] =

m∑
s=0

(
`

s

)
[2m]2s(2(m− s)− 1)!!

(2m+ 2`− 1)!!(2s− 1)!!

=
`!(2m)!2`

(2m+ 2`)!

m∑
s=0

22s

(
m+ `

m− s, `− s, 2s

)
=

1

(2`− 1)!!
,

where the last identity follows upon observing that
∑m

s=0 22s
(

m+`
m−s,`−s,2s

)
=
(2(m+`)

2`

)
. 2

4. From Bisection to Cut: Proof of Theorem 1.6

Let I±(σ) := {i : σi = ±1} be the partition of [n] induced by σ and m(σ) := 1
2

∑n
i=1 σi the difference

in size of its two sides. Note that by the invariance of cutG(σ) under the symmetry σ → −σ, it suffices
to compare the cuts in S+

n = {σ ∈ {−1,+1}n : m(σ) ≥ 0} to those in Ωn. To this end, define the map
T : S+

n → Ωn where we flip the spins at the subset V (σ) of smallest m(σ) indices within I+(σ), thereby
moving all those indices to I−(T (σ)). Let X(σ), Y (σ) and Z(σ) count the number of edges from V (σ) to
I−(σ), I−(T (σ)) and I+(T (σ)) = I+(σ)\V (σ), respectively. Fixing 0 < δ < 1/4 let

S? =
{
σ ∈ S+

n : m(σ) ≤ γ−δn
}
. (4.1)

Then, for σ? ∈ S+
n such that MaxCut(Gn) = cutGn(σ?) we have

MaxCut(Gn) = cutGn(T (σ?)) +X(σ?)− Z(σ?) ≤ MCUT(Gn) + Y (σ?)− Z(σ?) .

Considering the union over σ ∈ S?, we get that

P[MaxCut(Gn) > MCUT(Gn) + ∆n] ≤ 2n max
σ∈S?

P
[
Y (σ)− Z(σ) > ∆n

]
+ P [σ? /∈ S?]

=: q1(n) + q2(n) . (4.2)

In proving part (a) of Theorem 1.6, we consider w.l.o.g. the Erdős-Rényi random graphs Gn ∼ GI(n,
γ
n)

as in Remark 1.3. For fixed σ ∈ S+
n each of the independent variables Y (σ) and Z(σ) is Bin(N, γ/n) for

N = m(σ)(n/2). Upon computing the m.g.f. of Y (σ) − Z(σ) we get by Markov’s inequality that for any
θ > 0,

P
[
Y (σ)− Z(σ) > ∆n

]
≤ e−2θ∆n [1 +

4γ

n
sinh2(θ)]N .

Setting ∆n = nγψ/2 for some ψ ∈ (1− δ, 1) fixed and the maximal N = 1
2n

2γ−δ for σ ∈ S?, we deduce that

lim sup
n→∞

n−1 logP
[
Y (σ)− Z(σ) > ∆n

]
≤ −2[θγψ/2 − γ1−δ sinh2(θ)] =: −J . (4.3)

Since ψ > 1− δ we have that γ1−δ sinh2(γ−ψ/2)→ 0, so taking θ = γ−ψ/2 results with J > 1 for all γ large
enough, in which case q1(n) = o(1) (see (4.2)). As for controlling q2(n), recall Theorem 1.2 that w.h.p.
MaxCut(Gn) ≥ MCUT(Gn) ≥ nγ/4. Hence, considering the union over σ /∈ S? we have that

q2(n) ≤ 2n max
σ/∈S?

P
(

cutGn(σ) ≥ nγ

4

)
.

For our Erdős-Rényi graphs cutGn(σ) ∼ Rk := Bin(k(n− k), γn) with k = n
2 −m(σ). Taking the maximal

k? := n
2−nγ

−δ for σ /∈ S? and computing the relevant m.g.f. yields, similarly to (4.3), that for f1(θ) = eθ−1,

f2(θ) = eθ − θ − 1 and any θ > 0,

lim sup
n→∞

n−1 logP
(
Rk? ≥

nγ

4

)
≤ γ

4
f2(θ)− γ1−2δf1(θ) := −J ′ . (4.4)
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Since γf2(γ−1/2) is uniformly bounded while γ1−2δf1(γ−1/2) = Oγ(γ1/2−2δ) diverges (due to our choice of

δ < 1/4), it follows that for θ = γ−1/2 and γ large enough, J ′ ≥ 1 hence q2(n) = o(1), thereby completing
the proof.

The Erdős-Rényi nature of the graph Gn is only used for deriving the large deviation bounds (4.3) and
(4.4). While slightly more complicated, similar computations apply also for GReg(n, γ). Indeed, in this case
Y (σ)−Z(σ) corresponds to the sum of spins in a random sample of size γm(σ) taken without replacement
from a balanced population of γn spins (so by standard tail estimates for the hyper-geometric law, here
too the LHS of (4.3) is at most −1 for any γ large enough). Similarly, now Rk? counts the pairs formed
by uniform matching of γn items, between a fixed set of γk? items and its complement (so by arguments
similar to those we used when proving Lemma 3.3, the LHS of (4.4) is again at most −1 for large γ). With
the rest of the proof unchanged, we omit its details.
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