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An instance of a random constraint satisfaction problem defi nes
a random subset S (the set of solutions) of a large product space
XN (the set of assignments). We consider two prototypical prob -
lem ensembles (random k-satisfiability and q-coloring of random
regular graphs), and study the uniform measure with support on
S. As the number of constraints per variable increases, this m ea-
sure first decomposes into an exponential number of pure stat es
(‘clusters’), and subsequently condensates over the large st such
states. Above the condensation point, the mass carried by th e n
largest states follows a Poisson-Dirichlet process.
For typical large instances, the two transitions are sharp. We de-
termine for the first time their precise location. Further, w e provide
a formal definition of each phase transition in terms of diffe rent
notions of correlation between distinct variables in the pr oblem.
The degree of correlation naturally affects the performanc es of
many search/sampling algorithms. Empirical evidence sugg ests
that local Monte Carlo Markov Chain strategies are effectiv e up to
the clustering phase transition, and belief propagation up to the
condensation point. Finally, refined message passing techn iques
(such as survey propagation) may beat also this threshold.

Phase transitions | Random graphs | Constraint satisfaction problems |
Message passing algorithms

Constraint satisfaction problems (CSPs) arise in a large spectrum
of scientific disciplines. An instance of a CSP is said to be satisfi-

able if there exists an assignment ofN variables(x1, x2, . . . , xN ) ≡
x, xi ∈ X (X being a finite alphabet) which satisfies all the con-
straints within a given collection. The problem consists infind-
ing such an assignment or show that the constraints are unsatisfi-
able. More precisely, one is given a set of functionsψa : X k →
{0, 1}, with a ∈ {1, . . . ,M} ≡ [M ] and of k-tuples of indices
{ia(1), . . . , ia(k)} ⊆ [N ], and has to establish whether there exists
x ∈ XN such thatψa(xia(1), . . . , xia(k)) = 1 for all a’s. In this arti-
cle we shall consider two well known families of CSP’s (both known
to be NP-complete [1]):

(i) k-satisfiability (k-SAT) with k ≥ 3. In this case
X = {0, 1}. The constraints are defined by fix-
ing a k-tuple (za(1), . . . , za(k)) for each a, and set-
ting ψa(xia(1), . . . , xia(k)) = 0 if (xia(1), . . . , xia(k)) =
(za(1), . . . , za(k)) and= 1 otherwise.

(ii) q-coloring (q-COL) with q ≥ 3. Given a graphG with N ver-
tices andM edges, one is asked to assign colorsxi ∈ X ≡
{1, . . . , q} to the vertices in such a way that no edge has the
same color at both ends.

The optimization (maximize the number of satisfied constraints)
and counting (count the number of satisfying assignments) versions
of this problems are defined straightforwardly. It is also convenient
to represent CSP instances as factor graphs [2], i.e. bipartite graphs
with vertex sets[N ], [M ] including an edge between nodei ∈ [N ]
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Fig. 1. The factor graph of a small CSP allows to define the distance d(i, j)
between variables xi and xj (filled squares are constraints and empty circles
variables). Here, for instance, d(6, 1) = 2 and d(3, 5) = 1.

anda ∈ [M ] if and only if thei-th variable is involved in thea-th
constraint, cf. Fig. 1. This representation allows to definenaturally a
distanced(i, j) between variable nodes.

Ensembles of random CSP’s (rCSP) were introduced (see e.g. [3])
with the hope of discovering generic mathematical phenomena that
could be exploited in the design of efficient algorithms. Indeed several
search heuristics, such as Walk-SAT [4] and ‘myopic’ algorithms [5]
have been successfully analyzed and optimized over rCSP ensembles.
The most spectacular advance in this direction has probablybeen the
introduction of a new and powerful message passing algorithm (‘sur-
vey propagation’, SP) [6]. The original justification for SPwas based
on the (non-rigorous) cavity method from spin glass theory.Subse-
quent work proved that standard message passing algorithms(such as
belief propagation, BP) can indeed be useful for some CSP’s [7, 8, 9].
Nevertheless, the fundamental reason for the (empirical) superiority
of SP in this context remains to be understood and a major openprob-
lem in the field. Building on a refined picture of the solution set of
rCSP, this paper provides a possible (and testable) explanation. We
consider two ensembles that have attracted the majority of work in the
field: (i) randomk-SAT: eachk-SAT instance withN variables and
M = Nα clauses is considered with the same probability;(ii) q-COL
on random graphs: the graphG is uniformly random among the ones
overN vertices, with uniform degreel (the number of constraints is
thereforeM = Nl/2).

Phase transitions in random CSP. It is well known that rCSP’s
may undergo phase transitions as the number of constraints per vari-
ableα is varied1. The best known of such phase transitions is the
SAT-UNSAT one: asα crosses a critical valueαs(k) (that can, in
principle, depend onN ), the instances pass from being satisfiable to
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Table 1. Critical connectivities for the dynamical, con-
densation and satisfiability transitions in k-SAT and q-COL

SAT αd αc αs[11] COL ld[16] lc ls[14]
k = 4 9.38 9.547 9.93 q = 4 9 10 10
k = 5 19.16 20.80 21.12 q = 5 14 14 15
k = 6 36.53 43.08 43.4 q = 6 18 19 20

unsatisfiable with high probability2 [10]. Fork-SAT, it is known that
αs(2) = 1. A conjecture based on the cavity method was put forward
in [6] for all k ≥ 3 that implied in particular the values presented in Ta-
ble 1 andαs(k) = 2k log 2− 1

2
(1+log 2)+O(2−k) for largek [11].

Subsequently it was proved thatαs(k) ≥ 2k log 2−O(k) confirming
this asymptotic behavior [12]. An analogous conjecture forq-coloring
was proposed in [13] yielding, for regular random graphs [14], the val-
ues reported in Table 1 andls(q) = 2q log q−log q−1+o(1) for large
q (according to our convention, random graphs are whp uncolorable if
l ≥ ls(q)). It was proved in [15, 12] thatls(q) = 2q log q−O(log q).

Even more interesting and challenging are phase transitions in the
structure of the setS ⊆ XN of solutions of rCSP’s (‘structural’ phase
transitions). Assuming the existence of solutions, a convenient way
of describingS is to introduce the uniform measure over solutions
µ(x):

µ(x) =
1

Z

MY

a=1

ψa(xia(1), . . . , xia(k)) , [1]

whereZ ≥ 1 is the number of solutions. Let us stress that, sinceS
depends on the rCSP instance,µ( · ) is itself random.

We shall now introduce a few possible ‘global’ characterizations
of the measureµ( · ). Each one of these properties has its counter-
part in the theory of Gibbs measures and we shall partially adopt that
terminology here [17].

In order to define the first of such characterizations, we leti ∈ [N ]
be a uniformly random variable index, denote asxℓ the vector of vari-
ables whose distance fromi is at leastℓ, and byµ(xi|xℓ) the marginal
distribution ofxi givenxℓ. Then we say that the measure[1] satisfies
the uniqueness condition if, for any giveni ∈ [N ],

E sup
x

ℓ
,x′

ℓ

X

xi∈X

˛̨
µ(xi|xℓ) − µ(xi|x

′
ℓ)

˛̨
→ 0 . [2]

asℓ → ∞ (here and below the limitN → ∞ is understood to be taken
beforeℓ→ ∞). This expresses a ‘worst case’ correlation decay con-
dition. Roughly speaking: the variablexi is (almost) independent of
the far apart variablesxℓ irrespective is the instance realization and the
variables distribution outside the horizon of radiusℓ. The threshold for
uniqueness (above which uniqueness ceases to hold) was estimated
in [9] for randomk-SAT, yieldingαu(k) = (2 log k)/k[1 + o(1)]
(which is asymptotically close to the threshold for the pureliteral
heuristics) and in [18] for coloring implyinglu(q) = q for q large
enough (a ‘numerical’ proof of the same statement exists forsmallq).
Below such thresholds BP can be proved to return good estimates of
the local marginals of the distribution[1].

Notice that the uniqueness threshold is far below the SAT-UNSAT
threshold. Furthermore, several empirical studies [19, 20] pointed out
that BP (as well as many other heuristics [4, 5]) is effectiveup to much
larger values of the clause density. In a remarkable series of papers
[21, 6], statistical physicists argued that a second structural phase
transition is more relevant than the uniqueness one. Following this
literature, we shall refer to this as the ‘dynamic phase transition’ (DPT)
and denote the corresponding threshold asαd(k) (or ld(q)). In order
to precise this notion, we provide here two alternative formulations

αd,+ αd αc αs

Fig. 2. Pictorial representation of the different phase transitions in the set of
solutions of a rCSP. At αd,+ some clusters appear, but for αd,+ < α < αd they
comprise only an exponentially small fraction of solutions. For αd < α < αc the
solutions are split among about eNΣ∗ clusters of size eNs∗ . If αc < α < αs

the set of solutions is dominated by a few large clusters (with strongly fluctuating
weights), and above αs the problem does not admit solutions any more.

corresponding to two distinct intuitions. According to thefirst one,
aboveαd(k) the variables(x1, . . . , xN) become globally correlated
underµ( · ). The criterion in[2] is replaced by one in which far apart
variablesxℓ are themselves sampled fromµ (‘extremality’ condition):

E

X

x
ℓ

µ(xℓ)
X

xi

|µ(xi|xℓ) − µ(xi)| → 0 . [3]

as ℓ → ∞. The infimum value ofα (respectivelyl) such that
this condition is no longer fulfilled is the thresholdαd(k) (ld(k)).
Of course this criterion is weaker than the uniqueness one (hence
αd(k) ≥ αu(k)).

According to the second intuition, aboveαd(k), the measure
[1] decomposes into a large number of disconnected ‘clusters’.
This means that there exists a partition{An}n=1...N of XN (de-
pending on the instance) such that:(i) One cannot findn such
that µ(An) → 1; (ii) Denoting by∂ǫA the set of configurations
x ∈ XN\Awhose Hamming distance fromA is at mostNǫ, we have
µ(∂ǫAn)/µ(An)(1− µ(An)) → 0 exponentially fast inN for all n
andǫ small enough. Notice that the measureµ can be decomposed as

µ( · ) =
NX

n=1

wn µn( · ) , [4]

wherewn ≡ µ(An) andµn( · ) ≡ µ( · |An). We shall always refer
to {An} as the ‘finer’ partition with these properties.

The above ideas are obviously related to the performance of algo-
rithms. For instance, the correlation decay condition in[3] is likely to
be sufficient for approximate correctness of BP on random formulae.
Also, the existence of partitions as above implies exponential slowing
down in a large class of MCMC sampling algorithms3.

Recently, some important rigorous results were obtained support-
ing this picture [22, 23]. However, even at the heuristic level, several
crucial questions remain open. The most important concern the dis-
tribution of the weights{wn}: are they tightly concentrated (on an
appropriate scale) or not? A (somewhat surprisingly) related ques-
tion is: can the absence of decorrelation aboveαd(k) be detected by
probing a subset of variables bounded inN?

SP [6] can be thought as an inference algorithm for a modified
graphical model that gives unit weight to each cluster [24, 20], thus
tilting the original measure towards small clusters. The resulting per-
formances will strongly depend on the distribution of the cluster sizes
wn. Further, under the tilted measure,αd(k) is underestimated be-
cause small clusters have a larger impact. The correct valuewas never
determined (but see [16] for coloring). The authors of [25] undertook

3One possible approach to the definition of a MCMC algorithm is to relax the constraints by
settingψa(· · · ) = ǫ instead of 0 whenever the a-th constraint is violated. Glauber dynamics
can then be used to sample from the relaxed measure µǫ( · ).
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Fig. 3. The Parisi 1RSB parameter m(α) as a function of the constraint den-
sity α. In the inset, the complexity Σ(s) as a function of the cluster entropy for
α = αs(k) − 0.1 (the slope at Σ(s) = 0 is −m(α)). Both curves have been
computed from the large k expansion.

the technically challenging task of determining the cluster size distri-
bution, without however clarifying several of its properties.

In this paper we address these issues, and unveil at least twoun-
expected phenomena. Our results are described in the next Section
with a summary just below. Finally we will discuss the connection
with the performances of SP. Some technical details of the calculation
are collected in the last Section.

Results and discussion
The formulation in terms of extremality condition, cf. Eq.[3], allows
for an heuristic calculation of the dynamic thresholdαd(k). Previous
attempts were based instead on the cavity method, that is an heuristic
implementation of the definition in terms of pure state decomposition,
cf. Eq. [4]. Generalizing the results of [16], it is possible to show that
the two calculations provide identical results. However, the first one
is technically simpler and under much better control. As mentioned
above we obtain, for allk ≥ 4 a value ofαd(k) larger than the one
quoted in [6, 11].

Further we determined the distribution of cluster sizeswn, thus
unveiling a third ‘condensation’ phase transition atαc(k) ≥ αd(k)
(strict inequality holds fork ≥ 4 in SAT andq ≥ 4 in coloring, see
below). Forα < αc(k) the weightswn concentrate on a logarith-
mic scale (namely− logwn is Θ(N) with Θ(N1/2) fluctuations).
Roughly speaking the measure is evenly split among an exponential
number of clusters.

Forα > αc(k) (and< αs(k)) the measure is carried by a subex-
ponential number of clusters. More precisely, the ordered sequence
{wn}converges to a well known Poisson-Dirichlet process{w∗

n}, first
recognized in the spin glass context by Ruelle [26]. This is defined by
w∗
n = xn/

P
xn, wherexn > 0 are the points of a Poisson process

with ratex−1−m(α) andm(α) ∈ (0, 1). This picture is known in spin
glass theory as ‘one step replica symmetry breaking’ (1RSB)and has
been proven in Ref. [27] for some special models. The ‘Parisi1RSB
parameter’m(α) is monotonically decreasing from1 to 0 whenα
increases fromαc(k), toαs(k), cf. Fig. 3.

Remarkably the condensation phase transition is also linked to
an appropriate notion of correlation decay. Ifi(1), . . . , i(n) ∈ [N ]
are uniformly random variable indices, then, forα < αc(k) and any
fixedn:

E

X

{xi(·)}

˛̨
µ(xi(1) . . . xi(n)) − µ(xi(1)) · · ·µ(xi(n))

˛̨
→ 0 [5]

asN → ∞. Conversely, the quantity on the left hand side remains
positive forα > αc(k). It is easy to understand that this condition is
even weaker than the extremality one, cf. Eq.[3], in that we probe

correlations of finite subsets of the variables. In the next two Sections
we discuss the calculation ofαd andαc.
Dynamic phase transition and Gibbs measure extremality.
A rigorous calculation ofαd(k) along any of the two definitions pro-
vided above, cf. Eqs.[3] and[4] remains an open problem. Each of
the two approaches has however an heuristic implementationthat we
shall now describe. It can be proved that the two calculations yield
equal results as further discussed in the last Section of thepaper.

The approach based on the extremality condition in[3] relies on
an easy-to-state assumption, and typically provides a moreprecise
estimate. We begin by observing that, due to the Markov structure of
µ( · ), it is sufficient for Eq.[3] to hold that the same condition is ver-
ified by the correlation betweenxi and the set of variables at distance
exactlyℓ from i, that we shall keep denoting asxℓ. The idea is then to
consider a large yet finite neighborhood ofi. Givenℓ̄ ≥ ℓ, the factor
graph neighborhood of radius̄ℓ aroundi converges in distribution to
the radius–̄ℓ neighborhood of the root in a well defined random tree
factor graphT .

For coloring of random regular graphs, the correct limitingtree
modelT is coloring on the infinitel-regular tree. For randomk-SAT,
T is defined by the following construction. Start from the rootvari-
able node and connect it tol new function nodes (clauses),l being a
Poisson random variable of meankα. Connect each of these function
nodes withk − 1 new variables and repeat. The resulting tree is infi-
nite with non-vanishing probability ifα > 1/k(k − 1). Associate a
formula to this graph in the usual way, with each variable occurrence
being negated independently with probability1/2.

The basic assumption within the first approach is that the ex-
tremality condition in[3] can be checked on the correlation between
the root and generation-ℓ variables in the tree model. On the tree,
µ( · ) is defined to be a translation invariant Gibbs measure [17] asso-
ciated to the infinite factor graph4 T (which provides a specification).
The correlation between the root and generation-ℓ variables can be
computed through a recursive procedure (defining a sequenceof dis-
tributionsP ℓ, see Eq. [ ] below). The recursion can be efficiently
implemented numerically yielding the values presented in Table 1 for
k (resp. q)= 4, 5, 6. For largek (resp. q) one can formally expand
the equations onPℓ and obtain

αd(k) =
2k

k

»
log k + log log k + γd +O

„
log log k

log k

«–
[6]

ld(q) = q [log q + log log q + γd + o(1)] [7]

with γd = 1 in the first case andγd ≤ 1 in the second.
The second approach to the determination ofαd(k) is based on

the ‘cavity method’ [6, 25]. It begins by assuming a decomposition in
pure states of the form[4] with two crucial properties:(i) If we denote
by Wn the size of then-th cluster (and hencewn = Wn/

P
Wn),

then the number of clusters of sizeWn = eNs grows approximately
aseNΣ(s); (ii) For each single-cluster measureµn( · ), a correlation
decay condition of the form[3] holds.

The approach aims at determining the rate functionΣ(s), ‘com-
plexity’: the result is expressed in terms of the solution ofa distri-
butional fixed point equation. For the sake of simplicity we describe
here the simplest possible scenario5 resulting from such a calcula-
tion, cf. Fig. 4. Forα < αd,−∞(k) the cavity fixed point equation
does not admit any solution: no clusters are present. Atαd,−∞(k) a
solution appears, eventually yielding, forα > αd,+ a non-negative

4More preciselyµ( · ) is obtained as a limit of free boundary measures (further details in [28]).
5The precise picture depends on the value of k (resp. q) and can be somewhat more compli-
cated.
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Fig. 4. The complexity function (the number of clusters with entropy density

s is eNΣ(s)) for the 6-colorings of l-regular graphs with l ∈ {17, 18, 19, 20}.
Circles indicate the dominating states with entropy s∗; the dashed lines have
slopes Σ′(s∗) = −1 for l = 18 and Σ′(s∗) = −0.92 for l = 19. The
dynamic phase transition is ld(6) = 18, the condensation one ld(6) = 19, and
the SAT-UNSAT one ls(6) = 20.
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Fig. 5. Correlation function [3 ] between the root and generation ℓ variables in
a random k-SAT tree formula. Here k = 4 and (from bottom to top) α = 9.30,
9.33, 9.35, 9.40 (recall that αd(4) ≈ 9.38). In the inset, the complexity Σ(s∗)
of dominant clusters as a function of α for 4-SAT.

complexityΣ(s) for some values ofs ∈ R+. The maximum and
minimum such values will be denoted bysmax andsmin. At a strictly
larger valueαd,0(k), Σ(s) develops a stationary point (local max-
imum). It turns out thatαd,0(k) coincides with the threshold com-
puted in [6, 11, 14]. In particularαd,0(4) ≈ 8.297,αd,0(5) ≈ 16.12,
αd,0(6) ≈ 30.50 andld,0(4) = 9, ld,0(5) = 13, ld,0(6) = 17. For
largek (resp. q), αd,0(k) admits the same expansion as in Eqs.[6],
[7] with γd,0 = 1− log 2. However, up to the larger valueαd(k), the
appearance of clusters is irrelevant from the point of view of µ( · ). In
fact, within the cavity method it can be shown thateN[s+Σ(s)] remains
exponentially smaller than the total number of solutionsZ: most of
the solutions are in a single “cluster”. The valueαd(k) is determined
by the appearance of a points∗ with Σ′(s∗) = −1 on the complexity
curve. Correspondingly, one hasZ ≈ eN[Σ(s∗)+s∗]: most of the so-
lutions are comprised in clusters of size abouteNs∗ . The entropy per
variableφ = limN→∞N−1 logZ remains analytic atαd(k).

Condensationphase transition. Asα increases aboveαd ,Σ(s∗)
decreases: clusters of highly correlated solutions may no longer sat-
isfy the newly added constraints. In the inset of Fig. 5 we show
the α dependency ofΣ(s∗) for 4-SAT. In the largek limit, with
α = ρ 2k we getΣ(s∗) = log 2 − ρ − log 2 e−kρ + O(2−k), and
s∗ = log 2 e−kρ +O(2−k).

The condensation pointαc(k) is the value ofα such thatΣ(s∗)
vanishes: aboveαc(k), most of the measure is contained in a sub-

N = 5 · 10
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N = 10
4

N = 2 · 10
4
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4-SAT α = 9

fraction of fixed variables
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Fig. 6. Performance of BP heuristics on random 4-SAT formulae. The residual
entropy per spin N−1 log Z (here we estimate it within Bethe approximation) as
a function of the fraction of fixed variables. tmax = 20 in these experiments.

exponential number of large clusters6. Our estimates forαc(k) are
presented in Table 1 (see also Fig. 4 forΣ(s) in the6-coloring) while
in the large-k limit we obtainαc(k) = 2k log 2− 3

2
log 2 +O(2−k)

[recall that the SAT-UNSAT transition is atαs(k) = 2k log 2 −
1+log 2

2
+O(2−k)] andlc(q) = 2q log q−log q−2 log 2+o(1) [with

the COL-UNCOL transition atls(q) = 2q log q− log q− 1 + o(1)].
Technically the size of dominating clusters is found by maximiz-
ing Σ(s) + s over thes interval on whichΣ(s) ≥ 0. For α ∈
[αc(k), αs(k)], the maximum is reached atsmax, with Σ(smax) = 0
yielding φ = smax. It turns out that the solutions are comprised
within a finite number of clusters, with entropyeNsmax+∆, where
∆ = Θ(1). The shifts∆ are asymptotically distributed according to
a Poisson point process of ratee−m(α)∆ with m(α) = −Σ′(smax).
This leads to the Poisson Dirichlet distribution of weightsdiscussed
above. Finally, the entropy per variableφ is non-analytic atαc(k).

Let us conclude by stressing two points. First, we avoided the
3-SAT and3-coloring cases. These cases (as well as the3-coloring
on Erdös-Rényi graphs [25]) are particular in that the dynamic tran-
sition pointαd is determined by a local instability (a Kesten-Stigum
[29] condition, see also [21]), yieldingαd(3) ≈ 3.86 andld(3) = 6
(the casel = 5, q = 3 being marginal). Related to this is the fact that
αc = αd: throughout the clustered phase, the measure is dominated
by a few large clusters (technically,Σ(s∗) < 0 for all α > αd). Sec-
ond, we did not check the ‘local stability’ of the 1RSB calculation.
By analogy with [30], we expect that an instability can modify the
curveΣ(s) but not the values ofαd andαc.

Algorithmic implications. Two message passing algorithms were
studied extensively on randomk-SAT: belief propagation (BP) and
survey propagation (SP) (mixed strategies were also considered in
[19, 20]). A BP messageνu→v(x) between nodesu andv on the
factor graph is usually interpreted as the marginal distribution of xu
(or xv) in a modified graphical model. An SP message is instead a
distribution over such marginalsPu→v(ν). The empirical superiority
of SP is usually attributed to the existence of clusters [6]:the distri-
butionPu→v(ν) is a ‘survey’ of the marginal distribution ofxu over
the clusters. As a consequence, according to the standard wisdom, SP
should outperform BP forα > αd(k).

This picture has however several problems. Let us list two of
them. First, it seems that essentially local algorithms (such as mes-
sage passing ones) should be sensitive only to correlationsamong

6Notice that forq-coloring, since l is an integer, the ‘condensated’ regime [lc(q), ls(q)]may be
empty: This is the case forq=4. On the contrary,q=5 is always condensated for ld < l < ls .
7This paradox was noticed independently by Dimitris Achlioptas (personal communication).
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finite subsets of the variables7, and these remain bounded up to the
condensation transition. Recall in fact that the extremality condition
in [3] involves a number of variables unbounded inN , while the
weaker in[5] is satisfied up toαc(k).

Secondly, it would be meaningful to weight uniformly the solu-
tions when computing the surveysPu→v(ν). In the cavity method
jargon, this corresponds to using a 1RSB Parisi parameterr = 1
instead ofr = 0 as is done in [6]. It is a simple algebraic fact of
the cavity formalism that forr = 1 the means of the SP surveys
satisfy the BP equations. Since the means are the most important
statistics used by SP to find a solution, BP should perform roughly
as SP. Both arguments suggest that BP should perform well up to the
condensation pointαc(k). We tested this conclusion on4-SAT at
α = 9.5 ∈ (αd(4), αc(4)), through the following numerical experi-
ment, cf. Fig. 6.(i) Run BP fortmax iterations.(ii) Compute the BP
estimatesνi(x) for the single bit marginals and choose the one with
largest bias.(iii) Fix xi = 0 or 1 with probabilitiesνi(0), νi(1).
(iv) Reduce the formula accordingly (i.e. eliminate the constraints
satisfied by the assignment ofxi and reduce the ones violated). This
cycle is repeated until a solution is found or a contradiction is en-
countered. If the marginalsνi( · ) were correct, this procedure would
provide a satisfying assignment sampled uniformly fromµ( · ). In
fact we found a solution with finite probability (roughly0.4), despite
the fact thatα > αd(4). The experiment was repeated atα = 9 with
a similar fraction of successes (more data on the success probability
will be reported in [31]).

Above the condensation transition, correlations become too strong
and the BP fixed point no longer describes the measureµ. Indeed the
same algorithm proved unsuccessful atα = 9.7 ∈ (αc(4), αs(4)).
As mentioned above, SP can be regarded as an inference algorithm in
a modified graphical model that weights preferentially small clusters.
More precisely, it selects clusters of sizeeNs̄ with s̄ maximizing the
complexityΣ(s). With respect to the new measure, the weak corre-
lation condition in[5] still holds and allows to perform inference by
message passing.

Within the cavity formalism, the optimal choice would be to take
r ≈ m(α) ∈ [0, 1). Any parameter corresponding to a non-negative
complexityr ∈ [0, m(α)] should however give good results. SP cor-
responds to the choicer = 0 that has some definite computational
advantages, since messages have a compact representation in this case
(they are real numbers).

Cavity formalism, tree reconstruction and SP
This Section provides some technical elements of our computation.
The reader not familiar with this topic is invited to furtherconsult
Refs. [6, 11, 25, 35] for a more extensive introduction. The expert
reader will find a new derivation, and some hints of how we overcame
technical difficulties. A detailed account shall be given in[31, 32].

On a tree factor graph, the marginals ofµ( · ), Eq. [1] can be com-
puted recursively. The edge of the factor graph from variable nodei
to constraint nodea (respectively froma to i) carries “message”ηi→a

(νa→i), a probability measure onX defined as the marginal ofxi in
the modified graphical model obtained by deleting constraint nodea
(resp. all constraint nodes aroundi apart froma). The messages are
determined by the equations

ηi→a(xi) =
1

zi→a({νb→i})

Y

b∈∂i\a

νb→i(xi) , [8]

νa→i(xi) =
1

bza→i({ηj→a})

X

x
∂a\i

ψa(x∂a)
Y

j∈∂a\i

ηj→a(xj) , [9]

where∂u is the set of nodes adjacent tou, \ denotes the set sub-
traction operation, andxA = {xj : j ∈ A}. These are just the BP
equations for the model[1]. The constantszi→a, bza→i are uniquely
determined from the normalization conditions

P
xi
ηi→a(xi) =P

xi
νa→i(xi) = 1. In the following we refer to these equations

by introducing functionsfi→a( · ), fa→i( · ) such that

ηi→a = fi→a({νb→i}b∈∂i\a) , νa→i = fa→i({ηj→a}j∈∂a\i) ,
[10]

The marginals ofµ are then computed from the solution of these equa-
tions. For instanceµ(xi) is a function of the messagesνa→i from
neighboring function nodes.

The log-number of solutions,logZ, can be expressed as a sum
of contributions which are local functions of the messages that solve
Eqs. [8], [9]

logZ =
X

a

log za({ηi→a}) +
X

i

log zi({νa→i})+

−
X

(ai)

log zai(ηi→a, νa→i) [11]

where the last sum is over undirected edges in the factor graph and

za ≡
X

x
∂a

ψa(x∂a)
Y

i∈∂a

ηi→a(xi) ,

zi ≡
X

xi

Y

a∈∂i

νa→i(xi) , zai ≡
X

xi

ηi→a(xi)νa→i(xi) .

Each termz gives the change in the number of solutions when merging
different subtrees (for instancelog zi is the change in entropy when
the subtrees aroundi are glued together). This expression coincides
with the Bethe free-energy [33] as expressed in terms of messages.

In order to move from trees to loopy graphs, we first consider an
intermediate step in which the factor graph is still a tree but a subset of
the variables,xB = {xj : j ∈ B} is fixed. We are therefore replacing
the measureµ( · ), cf. Eq. [1], with the conditional oneµ( · |xB). In
physics terms, the variables inxB specify a boundary condition.

Notice that the measureµ( · |xB) still factorizes according to (a
subgraph of) the original factor graph. As a consequence, the condi-
tional marginalsµ(xi|xB) can be computed along the same lines as
above. The messagesη

xB
i→a andν

xB
a→i obey Eqs.[10], with an appro-

priate boundary condition for messages fromB. Also, the number of
solutions that take valuesxB onj ∈ B (call itZ(xB)) can be computed
using Eq.[11].

Next, we want to consider the boundary variables themselvesas
random variables. More precisely, givenr ∈ R, we let the boundary
to bexB with probability

eµ(xB) =
Z(xB)

r

Z(r)
, [12]

whereZ(r) enforces the normalization
P
xB

eµ(xB) = 1. Define

Pi→a(η) as the probability density ofη
xB
i→a whenxB is drawn from

eµ, and similarlyQa→i(ν). One can show that Eq.[8] implies the
following relation between messages distributions

Pi→a(η) =
1

Zi→a

Z Y

b∈∂i\a

dQb→i(νb) δ[η−fi→a({νb})] zi→a({νb})
r,

[13]
wherefi→a is the function defined in Eq.[10], zi→a is determined
by Eq. [8], andZi→a is a normalization. A similar equation holds
for Qa→i(ν). These coincide with the “1RSB equations” with Parisi
parameterr. Survey propagation (SP) corresponds to a particular pa-
rameterization of Eq.[13] (and the analogous one expressingQa→i

in terms of theP ’s) valid for r = 0.
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The log-partition functionΦ(r) = logZ(r) admits an expression
that is analogous to Eq.[11],

logZ(r) =
X

a

logZa({Pi→a}) +
X

i

logZi({Qa→i})+

−
X

ai

logZai(Pi→a, Qa→i) [14]

where the ‘shifts’Z(· · · ) are defined through moments of orderr
of thez’s, and sums run over vertices not inB. For instanceZai is
the expectation ofzai(η, ν)r whenη, ν are independent random vari-
ables with distribution (respectively)Pi→a andQa→i. The (Shannon)
entropy of the distributioneµ is given byΣ(r) = Φ(r) − rΦ′(r).

As mentioned, the above derivation holds for tree factor graphs.
Nevertheless, the local recursion equations[10], [13] can be used
as an heuristics on loopy factor graphs as well. Further, although we
justified Eq. [13] through the introduction of a random boundary
conditionxB, we can takeB = ∅ and still look for non-degenerate
solutions of such equations.

Starting from an arbitrary initialization of the messages,the re-
cursions are iterated until an approximate fixed point is reached. After
convergence, the distributionsPi→a,Qa→i can be used to evaluate the
potentialΦ(r), cf. Eq. [14]. From this we compute the complexity
functionΣ(r) ≡ Φ(r) − rΦ′(r), that gives access to the decompo-
sition ofµ( · ) in pure states. More precisely,Σ(r) is the exponential
growth rate of the number of states with internal entropys = Φ′(r).
This is how curves such as in Fig. 4 are traced.

In practice it can be convenient to consider the distributions of
messagesPi→a, Qa→i with respect to the graph realization. This
approach is sometimes referred to as ‘density evolution’ incoding
theory. If one consider a uniformly random directed edgei → a
(or a → i) in a rCSP instance, the corresponding message will be
a random variable. Aftert parallel updates according to Eq.[13],
the message distribution converges (in theN → ∞ limit) to a well
defined lawPt (for variable to constraint messages) orQt (for con-
straint to variable). Ast → ∞, these converge to a fixed pointP , Q
that satisfy the distributional equivalent of Eq.[13].

To be definite, let us consider the case of graph coloring. Since
the compatibility functions are pairwise in this case (i.e.k = 2 in
Eq. [1]), the constraint-to-variable messages can be eliminated and

Eq. [13] takes the form

Pi→j(η) ∝

Z Y

l∈∂i\j

dPl→i(ηl) δ [η − f({ηl})] z({ηl})
r ,

wheref is defined byη(x) = z−1 Q
l 1 − ηl(x) andz by normal-

ization. The distribution ofPi→j is then assumed to satisfy a distri-
butional version of the last equation. In the special case ofrandom
regular graphs, a solution is obtained by assuming thatPi→j is indeed
independent of the graph realization and ofi, j. One has therefore
simply to setPi→j = P in the above and solve it forP .

In general, finding messages distributionsP , Q that satisfy the
distributional version of Eq.[13] is an extremely challenging task,
even numerically. We adopted the population dynamics method [35]
which consists in representing the distributions by samples (this is
closely related to particle filters in statistics). For instance, one rep-
resentsP by a sample ofP ’s, each encoded as a list ofη’s. Since
computer memory drastically limits the samples size, and thus the pre-
cision of the results, we worked in two directions:(1) We analytically
solved the distributional equations for largek (in the case ofk-SAT) or
q (q-coloring);(2) We identified and exploited simplifications arising
for special values ofr.

Let us briefly discuss point(2). Simplifications emerge forr = 0
andr = 1. The first case correspond to SP: Refs. [6, 11] showed
how to compute efficientlyΣ(r = 0) through population dynamics.
Building on this, we could show that the clusters internal entropy
s(r = 0) can be computed at a small supplementary cost (see [31]).

The valuer = 1 corresponds instead to the ‘tree reconstruction’
problem [34]: In this caseeµ(xB), cf. Eq. [12], coincides with the
marginal ofµ. Averaging Eq.[13] (and the analogous one forQa→i)
one obtains the BP equations[8], [9], e.g.

R
dPi→a(η) η = ηi→a.

These remark can be used to show that the constrained averages

P (η, η) =

Z
dP [P ] P (η) δ

„
η −

Z
dP (η′)η′

«
,

andQ(ν, ν) (defined analogously) satisfy closed equations which are
much easier to solve numerically.
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