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Abstract. In this paper we compute the exponent of the weight distribution of Low-Density
Parity-Check (LDPC) code ensembles through a statistical physics method and a combinatorics method.
We show that the two approaches agree for regular LDPC codes.However, for irregular codes this is
not necessarily the case.
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1. Introduction. The weight distribution is an important characterization of a code. In
general though it is hard to compute. In fact, even the determination of the minimum distance is NP-
complete [13]. In 1989, Sourlas showed that there is a strongconnection between error-correcting
codes and disordered spin models [10, 11]. This made it possible to apply the powerful methods of
statistical physics to problems in coding, especially for Low-Density Parity-Check (LDPC) codes,
which correspond to a disordered spin model on a diluted graph [1, 4, 7, 12].

For a codeG of lengthN, we useA(G ;N!), called the weight enumerator function, to denote the
number of code words with normalized weight!. Let us consider the exponent1

N lnA(G ;N!). We
are interested in determing the exponentW(!), if it exists, so that

Prfj 1
N

lnA(G ;N!)�W(!)j> Æg ���!
N!∞

0

for anyÆ > 0, i.e., the exponent of a “typical” code. To this end, we define the two quantities1:

Wsp(!) := lim
N!∞

1
N
EC [lnA(G ;N!)℄

Wcom(!) := lim
N!∞

1
N

lnEC [A(G ;N!)℄
If W(!) exists, thenW(!) = Wsp(!). The difference betweenWsp andWcom is the order of the
expectation and the logarithm. From Jensen’s inequality, we know

Wsp�Wcom;
i.e.,Wcom is an upper bound forWsp. The quantityWcom is easily computed combinatorically whereas
the quantityWsp is the object of interest in the replica method. Note that ifA(G ;N!) is strongly
concentrated around its mean thenWcom = Wsp =W(!). Indeed, for regular LDPC code ensembles,
both Condamin [1] and Mourik et. al. [12] have shown, thatWsp = Wcom. Here we show that in
general (irregular code ensembles) this is not always the case.

The paper is organized in the following way: a brief introduction of LDPC codes is given in
Section 2. In Section 3, the results for the exponent of the weight distribution are presented. An
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1Note that in statistical physics,Wsp is called thequenchedaverage whereasWcom is called the
annealedaverage.
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2. LDPC Codes. LDPC code ensembles, originally discovered by Gallager [5], are usually
defined in terms of ensembles ofbipartite graphs. A graph consists of a set ofvariablenodes and a set
of checknodes, together with edges connecting both sets. It gives rise to a code in the following way:
a vector(x1; � � � ;xN) 2GF(2)N is a code word if and only if for each check node the sum (modulo2)
of the values of its adjacent variable nodes is zero. The coordinates of a code word are indexed by the
variable nodes 1; � � � ;N.

An ensemble of bipartite graphs is defined in terms of a pair ofdegree distributions. A degree
distribution
(x) is a real valued polynomial with non-negative coefficients and
(1) = 1. Associated
with the ensemble is a degree sequence pair(�(x) = ∑i �ixi�1;�(x) = ∑ j � j xj�1), shorthand(�;�),
where�i (� j ) gives the probability of an edge connecting to a degreei ( j) variable (check) node.

The designrate is defined asr(�;�) := 1� R�R� . Given a pair(�;�) of degree distributions and the

block lengthN, anensembleof bipartite graphsCLDPC(N;�;�) is defined by running over all possible
permutations of edges connecting variable and check nodes according to� and�, respectively. One
can convert(�;�) into node perspective(L(x) = ∑i Lixi ;R(x) = ∑ j Rjxj ) by definingLi := �i

i
R� and

Ri := �i
i
R� . Each graph inCLDPC(N;�;�) hasNLi variable nodes of degreei and (1� r(�;�))NRj

check nodes of degreej.

One can associate an LDPC code ensemble to a set of sparse parity-check matrices. Each column
represents a variable node and each row represents a check node. Depending on the number of edges
emanating from each node, the number of ones in a row or a column is determined. So a code ensemble
CLDPC(N;�;�) can be defined as a set ofM�N binary matrices as follows:

CLDPC(N;�;�) = fAM�N :
M

∏
i=1

Æ( N

∑
k=1

aik�Ci) N

∏
j=1

Æ( M

∑
l=1

al j �Vj ) = 1g;
whereCi is the number of ones in thei-th row, i.e., the degree ofi-th check node, andVj is the number
of ones in thej-th column, i.e., the degree ofj-th variable nodes.M = (1� r(�;�))N is the number
of check nodes. The distribution ofCi andVi are determined by� and�.

Note that there is a slight difference between the definitionof code ensemble via graphs and
via matrices. In the graph case, one allows multiple edges connecting the same variable and check
node, unlike in the matrix case. Furthermore, in the language of spin models, one usually makes
a transfer from GF(2) to the setf�1;+1g. So a vectorx=(x1; � � � ;xN) 2 GF(2)N is replaced by a
spin configuration,� = (�1; � � � ;�N) such that�i = (�1)xi . Note that the modulo 2 operation is
transformed into a product.

Therefore, the code word (valid spin configuration) constraint can be written as:� is a code word ofAM�N , M

∑
i=1

( N

∏
j=1

�ai j
j �1) = 0:

Note that we use�(x), defined as1
N ∑N

i=1 xi , to represent a normalized weight of a code word and!(�) for its corresponding spin configuration. It is easy to checkthat�(x) = 1�!(�)
2 . Hereafter, we

make no difference between codewords and valid spin configurations.

3. The Exponent of Weight distribution of LDPC Codes.

3.1. Statistical Physics Approach. In Statistical Physics, the study of disordered ma-
terials has motivated the development of methods to analyzerandom ensembles. One standard (albeit
not rigorous) tool is the so calledReplica Method[6]. The basic idea, in the present context, is that
lnA(N!) should concentrate in probability. One computes its expectation using the trickE[ln A(N!)℄ = lim

n!0

E[An(N!)℄�1
n

:
Here we omit the lengthy calculation and present the replicasymmetric solution as follows:
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Wsp= ∑
i

Li

Z � � �Z
i

ln

 
eh

i

∏
l=1

(1+yi l )+e�h
i

∏
l=1

(1�yi l )! i

∏
l=1

dyi l �̂(yi l )� L0(1)
R0(1) ln2�h!sp+L0(1)

R0(1) ∑
j

Rj

Z � � �Z
j

ln(1+ j

∏
k=1

xjk) j

∏
k=1

�(xjk)dxjk �L0(1)ZZ �(x)�̂(y) ln(1+xy)dxdy

(3.1)!sp = ∑
i

Li

Z � � �Z
i

tanh

 
h+ i

∑
k=1

atanh(yik)! i

∏
k=1

dyik�̂(yik)
where� and�̂ are the solutions of8><>:�(x) = ∑i �i

R � � �R
i�1

Æ�x� tanh(h+∑i�1
k=1 atanh(yik))�∏i�1

k=1

R
dyik�̂(yik)�̂(y) = ∑ j � j

R � � �R
j�1

Æ�y�∏ j�1
k=1 xjk

�
∏ j�1

k=1�(xjk)dxjk

(3.2)�(x) and�̂(y) can be interpreted as the densities of messages from variable nodes to check nodes
and from check nodes to variable nodes respectively. The corresponding Message-Passing Algorithm
[8] is defined by the following updating rule as shown in Figure 1.

h
x
y1
y2

x= tanh(h+∑i�1
k=1atanh(yk))

x1
x2
x3
x4

x5

y

y= ∏ j�1
k=1xk

FIG. 1. Updating rules (we omit the neighbourhood notation for clarity)

Note that expressions similar to (3.1) and (3.2) have been derived in [4] (in the context of de-
terming the LDPC code performance over symmetric channels)and in [1, 12] for the weight enumer-
ator forregular Gallager codes.

3.2. Combinatorics Approach. We know from [2] thatECLDPC(n;�;�)[A(N�)℄= ∑
k

coeff

 
∏

i
(1+yxi )LiN;yN�xk

! coeff

�
∏ j

� (1+x) j+(1�x) j

2

�(1�r)NRj ;xk

��∑i Li iN
k

� (3.3)

To getWcom from (3.3) we use Hayman’s and Stirling’s formula. The details can be found in [3].
After a proper substitution of the variables, we can writeWcom as follows

Wcom= ∑
i

Li ln
�

eh(1+y)i +e�h(1�y)i
�� L0(1)

R0(1) ln2�h!com+L0(1)
R0(1) ∑

j
Rj ln(1+xj )�L0(1) ln(1+y x) (3.4)!com= ∑

i
Li tanh(h+ i atanh(y))
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wherex andy are defined by (
x = ∑i �̃i tanh(h+(i�1)atanh(y))
y = ∑ j �̃ j x j�1 (3.5)

and 8>>>><>>>>:�̃i = �i
eh(1+y)i�1+e�h(1�y)i�1

eh(1+y)i+e�h(1�y)i
∑k�k

eh(1+y)k�1+e�h(1�y)k�1

eh(1+y)k+e�h(1�y)k�̃ j = � j
1+xj

∑k
�k

1+xk

We interpret (3.4) and (3.5) as follows:h determines the weight, while (3.5) is the result of
both the consistence condition for the number of edges on both side of a bipartite graph and the
maximization on the number of edges, more precise, the equation for x comes from the consistence in
the number of edges (k in (3.3)), while the equation fory comes from the maximization overk.

Note the similarity of (3.4) and (3.5) with respective to their counterparts (3.1) and (3.2). A
detailed discussion will be given in next section.

4. Compare and Contrast. Let’s consider the case of regular codes. As shown in [1,
12], the solution for�(x) and�̂(y) of (3.2) have the form of Delta functions as follows.

Fact 1 : For a regular LDPC code ensemble(xJ�1;xK�1),(�(x) = Æ(x�a)�̂(y) = Æ(y�aK�1)
wherea is defined bya= tanh(h+(J�1)atanh(aK�1)).

ComputingWsp for this solution, we obtain exactly the same expression forWcom with x= a and
y= aK�1. So for a regular LDPC code,

Wsp=Wcom:
In Figure 2, we compareWsp andWcom for a regular(x2;x5) code ensemble. We simply call it(3;6) code ensemble.Wsp has been obtained numerically by means of a population dynamics approach

to solve� and�̂. Wcom was found based on the numerical solution of (3.5). Furthermore, in Figure
3, for two different weights, we show the numerically obtained distributions of� and�̂, which are
indeed Delta functions.
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FIG. 2. Exponent of the weight distribution for(3;6) code, including Wsp (the dotted one), Wcom

(the continuous one). The right one is a zoomed-in version for weight close to0.

Note that for irregular LDPC codes, it is easy to check that Delta functions are no longer the
solution for�(x) and�̂(y). It is difficult to solve�(x) and�̂(y) analytically. Nevertheless, we
can obtain them numerically. Let’s consider an irregular code ensemble with(� = 0:1x+0:2x2 +
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FIG. 3. Two distribution function of� and�̂ for (3;6) code, one at weight�1 = 0:45, another
at weight�2 = 0:0227close to the minimum distance0:02273339.

0:7x3;� = 0:5x3 +0:5x5). In Figure 4, we show the distribution of�(x) and�̂(y) for two different
weights�1 = 0:45 and�2 = 0:10715. Note that for the small weight 0:10715, the distributions of�(x) and �̂(y) are quite different from Delta functions. while for the large weight 0:45, they are
quite close to (but not equal to!) Delta functions. However,we see in Figure 5 thatWsp is not very
sensitive to the shape of the distribtutions and therefore the difference betweenWsp andWcom is small
and of order 10�4 for small weights.
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FIG. 4. Two distribution function of� and�̂ for the code ensemble with(� = 0:1x+0:2x2 +
0:7x3;� = 0:5x3 +0:5x5), one at weight�1 = 0:45, another at weight�2 = 0:10715close to the
minimum distance (0:0103). The correspondingx andy for�2 are also plotted.
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FIG. 5. Exponent of the weight distribution for the code ensemble with (� = 0:1x+0:2x2 +
0:7x3;�= 0:5x3 +0:5x5), including Wsp (the dotted one), Wcom (the continuous one). The right one is
a zoomed-in version for weight close to0.
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5. Discussion. What’s the meaning ofx andy? Clearly, if�(x) and�̂(y) are Delta func-
tions, x andy are the averages of the edge messages from variable nodes to check nodes and from
check nodes to variable nodes respectively. However, if�(x) and�̂(y) are no longer Delta functions,
are they still averages? One knows from the Fourier Transform of Density Evolution [9] that simple
formulas can be obtained for two dual spaces in which update rules will be linear. Ifx and y are
averages, they should be averages in these spaces. However,to connect these two spaces, the duality
transform needs to be applied. This induces the modificationof � and� to �̃ and �̃ depending onx
andy.

We conclude that for some cases, both methods give the same orvery similar results. However,
for other interesting cases, the results can be different. We have identified the origin of this difference
in the shape of the message distributions. So far, we have notyet investigated in detail how much the
replica symmetric assumption influences the result, instead we have concentrated on the comparison
of the two presented methods. Future research will include amore detailed investigation of this issue.
Furthermore, new applications of the method to other code properties will be investigated.
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