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Abstract. In this paper we compute the exponent of the weight disivbuof Low-Density
Parity-Check (LDPC) code ensembles through a statistlogdips method and a combinatorics metigpd.
We show that the two approaches agree for regular LDPC caédimsever, for irregular codes this is
not necessarily the case.
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1. Introduction. The weight distribution is an important characterizatidhaccode. In
general though it is hard to compute. In fact, even the détextion of the minimum distance is NP-
complete [13]. In 1989, Sourlas showed that there is a stoomgpection between error-correcting
codes and disordered spin models [10, 11]. This made it Iplest apply the powerful methods of
statistical physics to problems in coding, especially fomtDensity Parity-Check (LDPC) codes,
which correspond to a disordered spin model on a dilutedgfap4, 7, 12].

For a codeg of lengthN, we useA(G, Nw), called the weight enumerator function, to denote the
number of code words with normalized weight Let us consider the exponeﬁtInA(g Nw). We
are interested in determing the expon@f(w), if it exists, so that

1
Pr{\N INA(G,Nw) —W(w)| > §} o 0
for anyd > 0, i.e., the exponent of a “typical” code. To this end, we defite two quantiti€s
Wep(w) = fim S INA(G,Nw)]
Spw-iNAWN ¢ g:Nw
.1
Weom(w) := ,\ll'inw N INEc[A(G,Nw)]

If W(w) exists, therW(w) = Wsp(w). The difference betweeWs, and Weom is the order of the
expectation and the logarithm. From Jensen'’s inequaliéykmow

Wep < Weom,

i.e.,Weom is an upper bound fdig,. The quantityWeon is easily computed combinatorically whereas
the quantityWs; is the object of interest in the replica method. Note tha(it;, Nw) is strongly
concentrated around its mean th&kym = Wsp = W(w). Indeed, for regular LDPC code ensembles,
both Condamin [1] and Mourik et. al. [12] have shown, tida}, = Weom. Here we show that in
general (irregular code ensembles) this is not always the.ca

The paper is organized in the following way: a brief introtloic of LDPC codes is given in
Section 2. In Section 3, the results for the exponent of thigihwedistribution are presented. An
comparison is given in Section 4. Discussion and concluafergiven in Section 5.
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INote that in statistical physic¥ysp is called thequenchedaverage whereadtom is called the
annealedaverage.
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2. LDPC Codes. LDPC code ensembles, originally discovered by Gallagerd#s usually
defined in terms of ensembleshipartite graphs A graph consists of a set wériablenodes and a set
of checknodes, together with edges connecting both sets. It gigegaia code in the following way:
avector(xy,--- ,xn) € GF(2)N is a code word if and only if for each check node the sum (mo@jlo
of the values of its adjacent variable nodes is zero. Thedioates of a code word are indexed by the
variable nodes 1. | N.

An ensemble of bipartite graphs is defined in terms of a pategfree distributions A degree
distribution(x) is a real valued polynomial with non-negative coefficientd (1) = 1. Associated
with the ensemble is a degree sequence Peik) = $; \iX L, p(x) = Yi pixl 1), shorthand ), p),
where ) (p;j) gives the probability of an edge connecting to a dedrép variable (check) node.

The desigmrate is defined as (X, p) :=1— f—g’. Given a pair(\, p) of degree distributions and the
block lengthN, anensemblef bipartite graphsi ppc(N, A, p) is defined by running over all possible
permutations of edges connecting variable and check nanmesding toX and p, respectively. One
can convert(\, p) into node perspectivéL(x) = 5; Lix,R(x) = v R;jx) by definingL; := I% and
R = %. Each graph inGippc(N, A, p) hasNL; variable nodes of degrdeand (1—r (X, p))NR;
check nodes of degree

One can associate an LDPC code ensemble to a set of spatgechadk matrices. Each column
represents a variable node and each row represents a cheéekDepending on the number of edges
emanating from each node, the number of ones in a row or a coisidfetermined. So a code ensemble
Goprc(N, A, p) can be defined as a setMdfx N binary matrices as follows:

M N N M
Gopc(N, A, p) = {Avxn _r!(s(kzlaik -G) |_|15(|zlalj —Vj) =1},
i1 k= =1 1=

whereG; is the number of ones in thieth row, i.e., the degree fth check node, and; is the number
of ones in thej-th column, i.e., the degree ¢fth variable nodesM = (1—r (X, p))N is the number
of check nodes. The distribution 6f andV; are determined by andp.

Note that there is a slight difference between the definibbrtode ensemble via graphs and
via matrices. In the graph case, one allows multiple edgeseaxaiing the same variable and check
node, unlike in the matrix case. Furthermore, in the languayspin models, one usually makes
a transfer from GR) to the set{—1,+1}. So a vectox=(x,--- ,xn) € GF(2)N is replaced by a
spin configurationo = (o1, -+ ,on) such thato; = (—1)%. Note that the modulo 2 operation is
transformed into a product.

Therefore, the code word (valid spin configuration) constrean be written as:

MON
o is a code word ofly N < Z(H gfﬂ —-1) =0
i=1 j=1

Note that we use(x), defined ash s, x;, to represent a normalized weight of a code word and
1 w(o

w(o) for its corresponding spin configuration. It is easy to chéek a(x) = T) Hereafter, we
make no difference between codewords and valid spin cofiigums.

3. The Exponent of Weight distribution of LDPC Codes.

3.1. Statistical Physics Approach. In Statistical Physics, the study of disordered ma-
terials has motivated the development of methods to anafyrmom ensembles. One standard (albeit
not rigorous) tool is the so calle@eplica Method6]. The basic idea, in the present context, is that
InA(Nw) should concentrate in probability. One computes its exgtiet using the trick

EA" (Nw)] — 1

EfIn A(Nw)] = fim. :

Here we omit the lengthy calculation and present the regijgametric solution as follows:
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L'

\Nsp:zl-i/ /|n< (1+yy)+e I_l (1-y; )I_ldY| (¥i) — (l) IN2—hwgp

L'(2) J
+R’E1) ZRJ/ /In (1+ ijk |:| (X, )dx;, — L' (1 //H y) In(1+ xy)dxdy
(3.1)
wep = IzLi/.i../tanh<h+kzlatanliyik)) k|j|1dy.kf7(yik)
whereIT and IT are the solutions of
T =3NS 8 (x— tanhth+ 5} Satantiy, ) M S dn T On)
(3.2)

iy = 2i Pij;'l'f‘s (y* ﬂk—lXJk) ﬂkfln(xjk)dxjk

T7(x) and T (y) can be interpreted as the densities of messages from \ariatles to check nodes
and from check nodes to variable nodes respectively. Thegponding Message-Passing Algorithm
[8] is defined by the following updating rule as shown in Figr

h,e Vi = tanh(h+ 511 atanffy,))
v

FiG. 1. Updating rules (we omit the neighbourhood notation for itigr

Note that expressions similar to (3.1) and (3.2) have beemedkin [4] (in the context of de-
terming the LDPC code performance over symmetric chaneld)in [1, 12] for the weight enumer-
ator forregular Gallager codes.

3.2. Combinatorics Approach. We know from [2] that
B ppc(nx.0) [A(N)]
coeﬁ(nj ((1+X>1J£(1 Xl )(1 FINR; 7xk>
Zcoeff( (14 yR)HiN YNy k) ) (3.3)
k

To getWeom from (3.3) we use Hayman'’s and Stirling’s formula. The dstaan be found in [3].
After a proper substitution of the variables, we can wyitg, as follows

Weom = zLi In (eh(1+y)i +e h(lfy)i) - % In2— hweom
LI zRJ In(1+x)—L'(1)In(1+yx) (3.4

Weom = z Litanh(h+i atanky))
1
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wherex andy are defined by

{x = 5i ditanh(h+ (i - 1)atank(y)) 35)
y =3ipx* '

and

3 yi—lieha gji-t
X " y)ire Py
' 1+yK Tre M gk T

A
Zk k d 1+yR+e (1 yR

s 1+il
pi= 2k ‘Rpk
14X

We interpret (3.4) and (3.5) as follows$ determines the weight, while (3.5) is the result of
both the consistence condition for the number of edges oh bide of a bipartite graph and the
maximization on the number of edges, more precise, the equiatr x comes from the consistence in
the number of edgek {n (3.3)), while the equation foy comes from the maximization ovér

Note the similarity of (3.4) and (3.5) with respective toitheounterparts (3.1) and (3.2). A
detailed discussion will be given in next section.

4. Compare and Contrast. Let's consider the case of regular codes. As shown in [1,
12], the solution forl7 (x) and 77(y) of (3.2) have the form of Delta functions as follows.
Fact 1 : For a regular LDPC code ensemlfié 1,x< 1),

{n(x) =5(x—a)
II(y) =é(y—a 1

wherea is defined bya = tanh(h+ (J — 1)atania¥~1)).
ComputingW, for this solution, we obtain exactly the same expressiomgr, with X = a and
y=af 1. Sofor aregular LDPC code,

VVsp = Weom:

In Figure 2, we comparé, andWeom for a regular(x2,x%) code ensemble. We simply call it
(3,6) code ensembléis, has been obtained numerically by means of a population digsaapproach
to solve T and 7. Weom Was found based on the numerical solution of (3.5). Furtioeemin Figure
3, for two different weights, we show the numerically ob&irdistributions off7 and I7, which are
indeed Delta functions.
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FiG. 2. Exponent of the weight distribution ¢8,6) code, including \ (the dotted one), Wm
(the continuous one). The right one is a zoomed-in versiowéight close td.

Note that for irregular LDPC codes, it is easy to check thaltdDfinctions are no longer the
solution for I7(x) and I7(y). It is difficult to solve IT(x) and IT(y) analytically. Nevertheless, we
can obtain them numerically. Let's consider an irreguladee@nsemble withfA = 0.1x + 0.2 +
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FiG. 3. Two distribution function of7 and IT for (3,6) code, one at weight; = 0.45, another
at weightay = 0.0227close to the minimum distan€e02273339

0.7¢,p = 0.5 + 0.5). In Figure 4, we show the distribution & (x) and I7(y) for two different
weightsa; = 0.45 anda, = 0.10715. Note that for the small weight1®715, the distributions of
IT(x) and 71 (y) are quite different from Delta functions. while for the largveight 045, they are
quite close to (but not equal to!) Delta functions. Howeweg, see in Figure 5 thatk, is not very
sensitive to the shape of the distribtutions and therefmeedifference betweeWs, andWeom is smalll
and of order 10* for small weights.
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FIG. 4. Two distribution function of7 and i7 for the code ensemble wifth = 0.1x+ 0.2x? +
0.7%3,p = 0.5<% + 0.5x°), one at weighta; = 0.45, another at weightap = 0.10715close to the
minimum distance((0103. The corresponding andy for o, are also plotted.
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FiG. 5. Exponent of the weight distribution for the code ensembth (N = 0.1x + 0.2 +
0.7, p = 0.5¢ +0.5x°), including W, (the dotted one), Wm (the continuous one). The right one is
a zoomed-in version for weight closeGo
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5. Discussion. What's the meaning at andy? Clearly, if 1 (x) and /1 (y) are Delta func-
tions, X andy are the averages of the edge messages from variable nodesdo ©odes and from
check nodes to variable nodes respectively. Howevér,(if) andil (y) are no longer Delta functions,
are they still averages? One knows from the Fourier Transfoi Density Evolution [9] that simple
formulas can be obtained for two dual spaces in which updaes will be linear. IfX andy are
averages, they should be averages in these spaces. Hoteesennect these two spaces, the duality
transform needs to be applied. This induces the modificaifoh andp to A and g depending orx
andy.

We conclude that for some cases, both methods give the sawegyosimilar results. However,
for other interesting cases, the results can be differertheve identified the origin of this difference
in the shape of the message distributions. So far, we havgenatvestigated in detail how much the
replica symmetric assumption influences the result, istea have concentrated on the comparison
of the two presented methods. Future research will includ®ee detailed investigation of this issue.
Furthermore, new applications of the method to other codpgties will be investigated.
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