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Abstract—We consider the problem of positioning a cloud of
points in the Euclidean spaceR

d, from noisy measurements
of a subset of pairwise distances. This task has applications
in various areas, such as sensor network localizations, NMR
spectroscopy of proteins, and molecular conformation. Also,
it is closely related to dimensionality reduction problemsand
manifold learning, where the goal is to learn the underlying
global geometry of a data set using measured local (or partial)
metric information. Here we propose a reconstruction algorithm
based on a semidefinite programming approach. For a random
geometric graph model and uniformly bounded noise, we provide
a precise characterization of the algorithm’s performance: In the
noiseless case, we find a radiusr0 beyond which the algorithm
reconstructs the exact positions (up to rigid transformations). In
the presence of noise, we obtain upper and lower bounds on the
reconstruction error that match up to a factor that depends only
on the dimensiond, and the average degree of the nodes in the
graph.

I. I NTRODUCTION

A. Problem Statement

Consider the random geometric graph modelG(n, r) =
(V, E) where V is a set ofn nodes distributed uniformly
at random in thed-dimensional hypercube[−0.5, 0.5]d, and
E ∈ V ×V is a set of edges that connect the nodes which are
close to each other; i.e.,(i, j) ∈ E ⇔ dij = ‖xi − xj‖ ≤ r.
For each edge(i, j) ∈ E, d̃ij denotes the measured distance
between nodesi and j. Denoting byzij ≡ d̃2

ij − d2
ij the

measurement error, we consider a“worst case model”, in
which the errors{zij}(i,j)∈E are arbitrary but uniformly
bounded|zij | ≤ ∆.

Given the graphG(n, r) and its associated proximity dis-
tance measurements,d̃ij , the localizationproblem is to recon-
struct the positions of the nodes. In this paper, we propose an
algorithm for this problem based on semidefinite programming
and provide a rigorous analysis of its performance.

Notice that the positions of the nodes can only be deter-
mined up to rigid transformations (a combination of rotation,
reflection and translation) of the nodes, because the inter point
distances are invariant to rigid transformations. Therefore, we
use the following metric, similar to the one defined in [8], to
evaluate the distance between the original position matrixX ∈
R

n×d and the estimation̂X ∈ R
n×d. Let L = I − (1/n)uuT ,

where u ∈ R
n is the all-ones vector. It is easy to see that

LXXTL is invariant under rigid transformations ofX . The
metric is defined asd(X, X̂) = 1/n2‖LXXTL−LX̂X̂T L‖1.
This is a measure of the average reconstruction error per point,

whenX andX̂ are aligned optimally. More specifically, there
exists a rotation ofX̂, call it Ŷ , such thatd(X, X̂) measures
the mean error between the positions inX and in Ŷ .

Remark. Clearly, connectivity ofG is a necessary assumption
for the localization problem to be solvable. It is a well
known result that the graphG(n, r) is connected with high
probability if Kdr

d > (log n + cn)/n, where Kd is the
volume of thed−dimensional unit ball andcn → ∞ [9].
Viceversa, the graph is with positive probability disconnected
if Kdr

d ≤ (log n + C)/n for some constantC. Hence, we
focus on the regime wherer = α(log n/n)

1
d for some constant

α. We further notice that, under the random geometric graph
model, the configuration of the points is almost surelygeneric,
in the sense that the coordinates do not satisfy any nonzero
polynomial equation with integer coefficients.

B. Algorithm and main results

The following algorithm uses semidefinite programming
(SDP) to solve the localization problem.

Algorithm SDP-based Algorithm for Localization
Input: dimensiond, distance measurements̃dij

for (i, j) ∈ E, bound on the measurement noise∆
Output: estimated coordinates inRd

1: Solve the following SDP problem:
minimize Tr(Q)

s.t.
∣∣∣〈Mij , Q〉 − d̃ij

2
∣∣∣ ≤ ∆, (i, j) ∈ E

Q � 0.
2: Compute the best rank-d approximationUdΣdU

T
d of Q

3: ReturnX̂ = UdΣ
1/2
d .

Here Mij = eije
T
ij ∈ R

n×n, whereeij ∈ R
n is the vector

with +1 at the ith position,−1 at thejth position and zero
everywhere else. Also,〈A, B〉 ≡ tr(AT B). Note that with a
slight abuse of notation, the solution of the SDP problem in
the first step is denoted byQ.

Let Q0 := XXT be Gram matrix of the node positions,
namely Q0,ij = xi · xj . A key observation is thatQ0 is a
low rank matrix: rank(Q0) ≤ d, and obeys the constraints
of the SDP problem. By minimizingTr(Q) in the first step,
we promote low-rank solutionsQ (sinceTr(Q) is the sum of
the eigenvalues ofQ). Alternatively, this minimization can be
interpreted as setting the center of gravity of{x1, . . . , xn} to



coincide with the origin, thus removes the degeneracy due to
translational invariance.

In step 2, the algorithm computes the eigendecomposition
of Q and retains thed largest eigenvalues. This is equivalent
to computing the best rank-d approximation ofQ in Frobenius
norm. The gravity center of the reconstructed points remains
at the origin by this operation.

Our main result provides a complete characterization of
the robustness properties of the SDP-based algorithm. Here
and below ‘with high probability’ means with probability
converging to1 asn → ∞ for d fixed.

Theorem I.1 Let {x1, . . . , xn} be n nodes distributed uni-
formly at random in the hypercube[−0.5, 0.5]d. Further,
assume connectivity radiusr ≥ α(log n/n)

1
d , with α >

16 · (8/Kd)
1/d, and Kd the volume ofd−dimensional unit

ball. Then with high probability, the error distance between
the estimateX̂ returned by the SDP-based algorithm and the
correct coordinate matrixX is upper bounded as

d(X, X̂) ≤ C1(nrd)
∆

r4
. (1)

Conversely, with high probability, there exist adversarial
measurement errors{zij}(i,j)∈E such that

d(X, X̂) ≥ C2 min{∆

r4
, 1} , (2)

Here, C1 and C2 denote constants that depend only ond.

A special case of this theorem concerns the case of exact
measurements.

Corollary I.1. Let {x1, . . . , xn} be n nodes distributed uni-
formly at random in the hypercube[−0.5, 0.5]d. If r ≥
16 ·(8/Kd)

1/d(log n/n)
1
d , and the distance measurements are

exact, then with high probability, the SDP-based algorithm
recovers the exact positions (up to rigid transformations).

C. Related work

The localization problem and its variants have attracted
significant interest over the past years due to their applications
in numerous areas, such as sensor network localization [2],
NMR spectroscopy [5], and manifold learning [10], [12]; to
name a few.

Of particular interest to our work are the algorithms pro-
posed for the localization problem [8], [11], [2]. In general,
few analytical results are known about the performance of
these algorithms, particularly in the presence of noise.

The existing algorithms can be categorized in to two groups.
The first group consists of algorithms who try first to estimate
the missing distances and then use MDS to find the positions
from the reconstructed distance matrix [8], [3]. The algorithms
in the second group formulates the localization problem as
a non-convex optimization problem and then use different
relaxation schemes to solve it. A recent example of this typeis
relaxation to an SDP [2]. A crucial assumption in these works
is the existence of some anchors among the nodes whose exact
positions are known. The SDP is then used to efficiently check

whether the graph is uniquelyd-localizable and to find its
unique realization.

II. PRELIMINARIES

A. Rigidity Theory

This section is a very brief overview of definitions and
results in rigidity theory which will be useful in this paper. We
refer the interested reader to [6], [1], for a thorough discussion.

A frameworkGX is an undirected graphG = (V, E) along
with a configurationX ∈ R

n×d whoseith row xT
i ∈ R

d is the
position of nodei in the graph. The edges ofG correspond
to the distance constraints.

Rigidity matrix. Consider a motion of the framework with
xi(t) being the position vector of pointi at timet. Any smooth
motion that instantaneously preserves the distancedij must
satisfy d

dt‖xi − xj‖2 = 0 for all edges(i, j). Equivalently,

(xi − xj)
T (ẋi − ẋj) = 0 ∀(i, j) ∈ E, (3)

whereẋi is the velocity of theith point. Given a framework
GX ∈ R

d, a solutionẊ = [ẋT
1 ẋT

2 · · · ẋT
n ]T , with ẋi ∈ R

d,
for the linear system of equations (3) is called aninfinitesimal
motionof the frameworkGX . This linear system of equations
consists of|E| equations indn unknowns and can be written
in the matrix formRG(X)Ẋ = 0, whereRG(X) is called the
|E| × dn rigidity matrix.

It can be seen that for every skew symmetric matrix
A ∈ R

d×d and for every vectorb ∈ R
d, ẋi = Axi + b

is an infinitesimal motion. Notice that these motions span a
d(d+1)/2 dimensional space, accountingd(d− 1)/2 degrees
of freedom for orthogonal transformations,A, andd degrees
of freedom for translations,b. Hence, dim Ker(RG(X)) ≥
d(d + 1)/2. A framework is said to beinfinitesimally rigid if
dim Ker(RG(X)) = d(d + 1)/2.

Stress matrix. A stressfor a frameworkGX is an assignment
of scalarsωij to the edges such that for eachi ∈ V ,

∑

j:(i,j)∈E

ωij(xi − xj) = (
∑

j:j 6=i

ωij)xi −
∑

j:j 6=i

ωijxj = 0.

A stress vector can be rearranged into ann × n symmetric
matrix Ω , known as thestress matrix, such that fori 6= j, the
(i, j) entry of Ω is Ωij = −ωij, and the diagonal entries for
(i, i) are Ωii =

∑
j:j 6=i ωij . Since all the coordinate vectors

of the configuration as well as the all-ones vector are in the
null space ofΩ, the rank of the stress matrix for generic
configurations is at mostn − d − 1.

B. Notations

For a vectorv ∈ R
n, and a subsetT ⊆ {1, · · · , n}, vT

is the restriction ofv to indices inT . We use the notation
〈v1, · · · , vn〉 to represent the subspace spanned by vectorsvi,
1 ≤ i ≤ n. The orthogonal projections onto subspacesV
andV ⊥ are respectively denoted byPV andP⊥

V . Throughout
this paper,u ∈ R

n is the all-ones vector andC is a constant
depending only on the dimensiond, whose value may change
from case to case.



Given a matrixA, we denote its operator norm by‖A‖2,
its Frobenius norm by‖A‖F and its nuclear norm by‖A‖∗.
(the latter is simply the sum of the singular values ofA).

Finally, we denote byx(i) ∈ R
n, i ∈ {1, . . . , d} the ith

column of the positions matrixX . In other wordsx(i) is the
vector containing theith coordinate of pointsx1, . . . , xn.

Throughout the proof we shall adopt the convention of
using the notationsX , {xj}j∈[n], and {x(i)}i∈[d] to denote
the centered positions. In other wordsX = LX ′ where the
rows of X ′ are i.i.d. uniform in[−0.5, 0.5]d.

III. PROOF OFTHEOREM I.1

Let V = 〈u, x(1), · · · , x(d)〉 and for any matrixS ∈ R
n×n,

define

S̃ = PV SPV + PV SP⊥
V + P⊥

V SPV , S⊥ = P⊥
V SP⊥

V .

ThusS = S̃ + S⊥. Also, denote byR the difference between
the optimum solutionQ and the actual Gram matrixQ0, i.e.,
R = Q − Q0. The proof of Theorem I.1 is based on the
following key lemmas that boundR⊥ and R̃ separately.

Lemma III.1. There exists a numerical constantC = C(d),
such that, with high probability,

‖R⊥‖∗ ≤ C
n

r4
(nrd)∆ . (4)

Lemma III.2. There exists a numerical constantC = C(d),
such that, with high probability,

‖R̃‖1 ≤ C
n2

r4
(nrd)∆ (5)

We defer the proof of lemmas III.1 and III.2 to the next section.
Proof (Theorem I.1): Let Q =

∑n
i=1 σiuiu

T
i , where

‖ui‖ = 1, uT
i uj = 0 for i 6= j and σ1 ≥ σ2 ≥ · · · ≥ 0.

In the second step of algorithm,Q is projected onto subspace
〈u1, · · · , ud〉. Denote the result byPd(Q). As pointed out
before, Pd(Q)u = 0 and Q0u = 0. This implies that
Pd(Q) = LPd(Q)L andQ0 = LQ0L. By triangle inequality,

‖LPd(Q)L − LQ0L‖1 = ‖Pd(Q) − Q0‖1

≤ ‖Pd(Q) − Q̃‖1 + ‖Q̃ − Q0‖1. (6)

Observe that,̃Q = Q0 + R̃ andQ⊥ = R⊥. SincePd(Q)− Q̃
has rank at most3d, it follows that ‖Pd(Q) − Q̃‖1 ≤
n‖Pd(Q) − Q̃‖F ≤

√
3dn‖Pd(Q) − Q̃‖2 (for any matrixA,

‖A‖F ≤ rank(A)‖A‖2). By triangle inequality, we have

‖Pd(Q) − Q̃‖2 ≤ ‖Pd(Q) − Q‖2 + ‖Q − Q̃︸ ︷︷ ︸
R⊥

‖2 (7)

Note that ‖Pd(Q) − Q‖2 = σd+1. Recall the variational
principle for the eigenvalues.

σq = min
H,dim(H)=n−q+1

max
y∈H,‖y‖=1

yT Qy

Taking H = 〈x(1), · · · , x(d)〉⊥, for any y ∈ H , yT Qy =
yT P⊥

V QP⊥
V y = yT Q⊥y = yT R⊥y, where we used the fact

Qu = 0 in the first equality (recall thatQu = 0 becauseQ

minimizesTr(Q)). Therefore,σd+1 ≤ max‖y‖=1 yT R⊥y =
‖R⊥‖2 It follows from Eqs. (6) and (7) that

‖LPd(Q)L − LQ0L‖1 ≤ 2
√

3dn‖R⊥‖2 + ‖R̃‖1

Using Lemma III.1 and III.2, we obtain

d(X, X ′) =
1

n2
‖LPd(Q)L − LQ0L‖1 ≤ C(nrd)

∆

r4

which proves the thesis.
A proof sketch of the converse part is provided in Ap-

pendix B.

IV. PROOFS OF THE LEMMAS

In this section we provide the proofs of lemmas III.1
and III.2. Due to space limitations, we will omit the proofs of
several technical steps, and defer them to [7].

A. Proof of Lemma III.1

The proof is based on the following three steps:(i) Con-
struct a stress matrixΩ of rankn− d− 1 for the framework;
(ii) Upper bound the quantity〈Ω, R⊥〉; (iii) Lower bound the
minimum nonzero eigenvalue ofΩ.

For the graphG, we definecliq(G) := {C1, · · · , Cn}, where
Ci = {j ∈ V (G) : dij ≤ r/2}. (Note that the nodes in eachCi

form a clique inG). Our first lemma estabilishes a simple
property ofcliq(G). Its proof is immediate and deferred to a
journal version of this paper [7].

Proposition IV.1. If r ≥ α(log n/n)1/d with α > 16 ·
(8/Kd)

1/d, the following is true with high probability. For any
two nodesi andj, such that‖xi−xj‖ ≤ r/2, |Ci∩Cj | ≥ d+1.

A crucial role in the proof is played by the stress matrix
of GX . A special construction of such a matrix is obtained as
follows

Ω =
∑

Ci∈cliq(G)

P⊥

〈u
Ci

,x
(1)
Ci

,··· ,x
(d)
Ci

〉
.

The proof of the next statement is again immediate and omitted
from this version of the paper.

Proposition IV.2. The matrixΩ defined above is a positive
semidefinite (PSD) stress matrix of rankn − d − 1 for the
frameworkGX .

Proposition IV.3. There exists a constantC = C(d), such
that, with high probability,

〈Ω, R⊥〉 ≤ Cn(nrd)2∆

Proof: Note that the matrixΩ = [ωij ] can be written as
Ω =

∑
(i,j)∈E ωijMij . Defineωmax = max

i6=j
|ωij |. Then,

〈Ω, R⊥〉 (a)
= 〈Ω, R〉 =

∑

(i,j)∈E

ωij〈Mij , R〉

≤
∑

(i,j)∈E

ωmax|〈Mij , Q − Q0〉|

≤
∑

(i,j)∈E

ωmax(|〈Mij , Q〉 − d̃ij
2| + | d̃ij

2 − d2
ij︸ ︷︷ ︸

zij

|)

≤ 2ωmax|E|∆,



where (a) follows from the factΩX = 0. Note that the
expected number of edges inG is at most12n2Kdr

d, and the
number of edges is concentrated around its mean (Chernoff
bounds). Hence, with high probability,|E| ≤ n2Kdr

d. Setting
C = 2Kd, we get〈Ω, R⊥〉 ≤ C ωmaxn(nrd)∆.

Since Ω � 0, for any 1 ≤ i, j ≤ n, ω2
ij ≤ ωiiωjj =

(eT
i Ωei)(e

T
j Ωej) ≤ σ2

max(Ω), whereσmax(Ω) is the largest
eigenvalue ofΩ.

Hence,ωmax ≤ σmax(Ω) ≤ Cnrd whereby the last step is
is proved in the Claim below.

Claim IV.1. There exists a constantC = C(d), such that, with
high probability,

σmax(Ω) ≤ Cnrd

Proof: For any vectorv ∈ R
n,

vT Ωv = ‖
∑

Ci∈cliq(G)

P⊥

〈u
Ci

,x
(1)
Ci

,··· ,x
(d)
Ci

〉
v‖2 ≤

n∑

i=1

‖vCj
‖2

=

n∑

j=1

v2
j

∑

i:j∈Ci

1 =

n∑

j=1

|Cj|v2
j ≤ Cnrd‖v‖2.

The last inequality follows from the fact that, with high
probability, |Cj | ≤ Cnrd for all j and some constantC.
We now pass to lower bounding the smallest non-zero singular
value of Ω, σmin(Ω). To prove such an estimate, recall that
the laplacianL of the graphG is the symmetric matrix
indexed by the verticesV , such thatLij = −1 if (i, j) ∈ E,
Lii =degree(i) andLij = 0 otherwise. It is useful to recall a
basic estimate on the laplacian of random geometric graphs.

Remark IV.1. Let Lsym denote the normalized laplacian of
the random geometric graphG(n, r), defined asLsym =
D−1/2LD−1/2, where D is the diagonal matrix with de-
grees of the nodes on diagonal. Then, with high probability,
λ2(Lsym), the second smallest eigenvalue ofLsym, is at least
Cr2. Therefore,λ2(L) ≥ C(nrd)r2.

Proposition IV.4. There exists a constantC = C(d), such
that, with high probability,Ω � Cr2L on the spaceV ⊥.

Proof: Due to space limitations, we present the proof for
the cased = 1. The general argument proceeds along the same
lines, and we defer it to [7].

Let v ∈ V ⊥ be an arbitrary vector. Decomposev locally as
vCi

= βix̃Ci
+ γiuCi

+ w(i), wherex̃Ci
= P⊥

uCi
x and w(i) ∈

〈xCi
, uCi

〉⊥. Hence,vT Ωv =
∑n

i=1 ‖w(i)‖2. Note thatvCi∩Cj

has two representations, whence we obtain

w
(i)
Ci∩Cj

− w
(j)
Ci∩Cj

= (βj − βi)x̃Ci∩Cj
+ γ̃i,juCi∩Cj

. (8)

Here, x̃Ci∩Cj
= P⊥

uCi∩Cj
xCi∩Cj

. The value ofγi,j does not
matter to our argument; however it can be given explicitly.

Claim IV.2. There exists a constantC = C(d), such that, with
high probability,

L � C

n∑

i=1

P⊥
uCi

.

We omit the proof of this claim due to space constraint. The
argument is closely related to the Markov chain comparison
technique [4].

Using Claim IV.2,vTLv ≤∑n
i=1 C(β2

i ‖x̃Ci
‖2 + ‖w(i)‖2).

Hence, we only need to show

n∑

i=1

‖w(i)‖2 ≥ Cr2
n∑

i=1

β2
i ‖x̃Ci

‖2, (9)

Since the degree of each node is bound byCnrd (with high
probability), we have

n∑

i=1

‖w(i)‖2 ≥ (Cnrd)−1
∑

(i,j)∈E

(‖w(i)‖2 + ‖w(j)‖2)

≥ (Cnrd)−1
∑

(i,j)∈E

(‖w(i)
Ci∩Cj

− w
(j)
Ci∩Cj

‖2)

(8)
≥ (Cnrd)−1

∑

(i,j)∈E

(βj − βi)
2‖x̃Ci∩Cj

‖2

Applying Chernoff bounds, there exists constantsC1 andC2,
such that, with high probability,‖x̃Ci∩Cj

‖2 ≥ C1(nrd)r2

and ‖x̃Ci
‖2 ≤ C2(nrd)r2 for all i and j. Thus, in or-

der to prove (9), we need to show
∑

(i,j)∈E(βj − βi)
2 ≥

C(nrd)r2
∑n

i=1 β2
i .

Define β = (β1, · · · , βn). Observe that
∑

(i,j)∈E(βj −
βi)

2 = βTLβ ≥ σmin(L)‖P⊥
u β‖2, whereσmin(L) denotes

the minimum nonzero eigenvalue ofL. Sincev ⊥ x, it can
be shown that‖P⊥

u β‖2 ≥ C‖β‖2 (we omit the details). The
proof is completed by using Remark IV.1.

We are finally in position to prove Lemma III.1.
Proof (Lemma III.1):Note thatR⊥ = Q⊥ = P⊥

V QP⊥
V �

0. Write R⊥ =
∑n−d−1

i=1 λiuiu
T
i , where ‖ui‖ = 1,

uT
i uj = 0 for i 6= j and λ1 ≥ λ2 ≥ · · ·λn−d−1 ≥

0. Therefore, 〈Ω, R⊥〉 = 〈Ω,
∑n−d−1

i=1 λi uiu
T
i 〉 =∑n−d−1

i=1 λiu
T
i Ωui ≥ σmin(Ω)‖R⊥‖∗, whereσmin(Ω) denotes

the minimum nonzero eigenvalue ofΩ. Here, we used the fact
that ui ∈ V ⊥ = Ker⊥(Ω).

As a direct consequence of proposition IV.4 and Re-
mark IV.1, σmin(Ω) ≥ C(nrd)r4. The result follows.

B. Proof of Lemma III.2

Recall thatR̃ = PV RPV + PV RPV ⊥ + PV ⊥RPV . There-
fore, there exist a matrixY ∈ R

n×d and a vectora ∈ R
n such

that R̃ = XY T + Y XT + uaT + auT . Denote byyT
i ∈ R

d,
i ∈ [n], the ith row of the matrixY .

The following proposition plays a key role in the proof. Its
proof is deferred to the next subsection.

Proposition IV.5. There exists a constantC = C(d), such
that, with high probability,
∑

i,j

|〈xi − xj , yi − yj〉| ≤ Cr−d−2
∑

(l,k)∈E

|〈xl − xk, yl − yk〉|

The next statement provides an upper bound on‖R̃‖1. We
defer its proof to [7].



Proposition IV.6. There exists a constantC = C(d), such
that, with high probability,

‖R̃‖1 ≤ C
∑

i,j

|〈xi − xj , yi − yj〉|.

Now we have in place all we need to prove lemma III.2.
Proof (Lemma III.2): Define the operatorAG : R

n×n →
R

|E| asAG(S) = [〈Mij , S〉](i,j)∈E . By our assumptions,

|〈Mij , R̃〉 + 〈Mij , R
⊥〉| = |〈Mij , Q〉 − 〈Mij , Q0〉|

≤ |〈Mij , Q〉 − d̃2
ij | + |d̃2

ij − 〈Mij , Q0〉|︸ ︷︷ ︸
|zij |

≤ 2∆.

Therefore,‖AG(R̃)‖1 ≤ 2|E|∆ + ‖AG(R⊥)‖1. Write the
laplacian matrixL as L =

∑
(i,j)∈E Mij . Then, 〈L, R⊥〉 =∑

(i,j)∈E〈Mij , R
⊥〉 = ‖AG(R⊥)‖1. Here, we used the fact

that 〈Mij , R
⊥〉 ≥ 0, sinceMij � 0 and R⊥ � 0. Hence,

‖AG(R̃)‖1 ≤ 2|E|∆ + 〈L, R⊥〉.
Applying propositions IV.4 and IV.3, 〈L, R⊥〉 ≤

Cr−2〈Ω, R⊥〉 ≤ Cnr−2(nrd)2∆, whence we obtain
‖AG(R̃)‖1 ≤ Cnr−2(nrd)2∆.

The last step is to write‖AG(R̃)‖1 more explicitly. Notice
that, ‖AG(R̃)‖1 =

∑
(l,k)∈E |〈Mlk, XY T + Y XT + uaT +

auT 〉| = 2
∑

(l,k)∈E |〈xl − xk, yl − yk〉|.
The result follows as a direct consequence of proposi-

tions IV.5 and IV.6.

C. Proof of Proposition IV.5

We will focus here on the cased = 2. The general argument
proceeds along the same lines and is deferred to [7].

We first need to establish the following definition.

Definition 1. A chain Gij is a sequence of subgraphs
H1, H2, · · · , Hk along with the verticesi and j, such that,
eachHp is isomorphic toK4 and each two successiveHp

share one side. Further,i (resp. j) is connected to the two
vertices inV (H1) \ V (H2) (resp.V (Hk) \ V (Hk−1)).

See Fig. 1 in the Appendix A for an illustration of a chain.

Proposition IV.7. For any two nodesi and j in our random
geometric graphG, there exists a chainGij ⊆ G.

Proposition IV.8. For any two nodesi and j, there exists a
constantC = C(d), such that,

|〈xi − xj , yi − yj〉| ≤ Cr−1
∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉|

Proof: Assume that|V (Gij)| = m + 1 . Relabel the
vertices in the chain such that the nodesi andj have labels0
andm respectively. Since both sides of the desired inequality
are invariant to translations, without loss of generality we
assume thatx0 = y0 = 0. For a fixed vectorym consider
the following optimization problem.

Θ = min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(Gij)

|〈xl − xk, yl − yk〉| .

To each edge(l, k) ∈ E(Gij), assign a numberλlk. For any
assignment withmax |λlk| ≤ 1, we have

Θ ≥ min
y1,··· ,ym−1∈Rd

∑

(l,k)∈E(G∗)

λlk〈xl − xk, yl − yk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈G∗

l 6=0

∑

k∈∂l

λlk〈yl, xl − xk〉

= min
y1,··· ,ym−1∈Rd

∑

l∈G∗

l 6=0

〈yl,
∑

k∈∂l

λlk(xl − xk)〉,

where ∂l denotes the set of adjacent vertices tol in Gij .
The numbersλlk that maximize the right hand side should
satisfy

∑
k∈∂l λlk(xl − xk) = 0, ∀l 6= 0, m. Thus, Θ ≥

〈ym,
∑

k∈∂m λmk(xm − xk)〉. The result follows as a direct
consequence of the following Claim whose proof is deferred
to Appendix A.

Claim IV.3. There exist numbersλlk that satisfy the following
three conditions∑

k∈∂l

λlk(xl − xk) = 0 ∀l 6= 0, m,

∑

k∈∂m

λmk(xm − xk) = xm,

max |λlk| ≤ Cr−1.

(10)

The proof of Proposition IV.5 is completed by the following
proposition, whose proof we omit due to space constraints.

Proposition IV.9. Define the “congestion number” of the
graph G as b(G) = maxe∈E(G) ♯{Gi,j ⊆ G : e ∈ E(Gij)}.
Then,b(G) ≤ Cr−d−1, for some constantC = C(d).
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APPENDIX

A. Proof of Claim IV.3

Proof: Notice that for any valuesλlk satisfying (10), we
have

∑
k∈∂0 λ0k(x0 − xk) = −xm. As a generalization, con-

sider the following linear system of equations with unknown
variablesλlk.

∑

k∈∂l

λlk(xl − xk) = ul, for l = 0, · · · , m (11)

Writing Eqs. (11) in terms of the rigidity matrix ofGij , and
using the characterization of its null space, as discussed in
section II-A, it follows that Eqs. (11) have a solution if and
only if

m∑

i=0

ui = 0,

m∑

i=0

uT
i Axi = 0, (12)

whereA ∈ R
d×d is an arbitrary skew symmetric matrix.

A mechanical interpretation. If we think of eachui as a force
imposed on the nodei, then the first constraint in Eq. (12)
states that the net force onGij is zero (force equilibrium),
while the second condition states that the net torque is zero
(torque equilibrium).

With this interpretation in mind, we propose a two-stage
procedure to find the valuesλlk that obey the constraints
in (10).

Stage (i):Let Fp denote the common side ofHp andHp+1.
Without loss of generality, assumeV (Fp) = {1, 2}. Find the
forcesf1, f2 such that

f1 + f2 = xm, f1 ∧ x1 + f2 ∧ x2 = 0,

‖f1‖2 + ‖f2‖2 ≤ C‖xm‖2.
(13)

To this end, we solve the following optimization problem.

minimize 1/2(‖f1‖2 + ‖f2‖2)

s.t. f1 + f2 = xm, f1 ∧ x1 + f2 ∧ x2 = 0
(14)

It is easy to see that the solutions of (14), given by
{

f1 = 1
2xm + 1

2γA(x1 − x2)

f2 = 1
2xm − 1

2γA(x1 − x2)

γ = − 1

‖x1 − x2‖2
xT

mA(x1 + x2), A =

(
0 −1
1 0

)

satisfy the constraints in (13).
Stage (ii): For eachHp consider the following set of forces

f̃i =

{
fi if i ∈ V (Fp)

−fi if i ∈ V (Fp−1)
, f̃m = xm, f̃0 = −xm (15)

See Fig. 2 for an illustration. Notice that
∑

i∈V (Hp) f̃i = 0,
∑

i∈V (Hp) f̃i ∧ xi = 0, and thus by our previous discussion,

there exist valuesλ(Hp)
lk , such that,

∑
k:(l,k)∈E(Hp) λ

(Hp)
lk (xl −

xk) = f̃l, ∀l ∈ V (Hp). Writing this in terms ofR(Hp), the
rigidity matrix of Hp, we haveR(Hp)λ(Hp) = f̃ . Therefore,
σmin(R(Hp))‖λ(Hp)‖∞ ≤ σmin(RHp)‖λ(Hp)‖2 ≤ ‖f̃‖ ≤

u

H
1

H
2 H

k

v

Fig. 1. An illustration of a chainGuv

H p
˜ f i
1

= f i
1

˜ f i
2

= f i
2

˜ f i
3

= ! f i
3

˜ f i
4

= ! f i
4

Fig. 2. Hp and the set of forces in Stage(ii)

C‖xm‖. It can be shown thatσmin(RHp) ≥ Cr (we omit
the proof). Also,‖xm‖ = O(1). Hence,‖λ(Hp)‖∞ ≤ Cr−1.

Now defineλlk =
∑

Hp:(l,k)∈E(Hp) λ
(Hp)
lk for every(l, k) ∈

E(Gij). We claim that the valuesλlk satisfy the constraints
in (10). First, note that in the summation

∑
k∈∂l λlk(xl −xk),

all the internal forces cancel each other and the sum is zero at
the internal nodesl. At the extreme nodes0 andm, this sum
would be equal to−xm andxm respectively. In addition, since
each edge participates in at most twoHp, we have|λlk| ≤
Cr−1.

B. Proof Sketch of the Converse to Theorem I.1

Proof: Consider the ‘bending’ map T : [−0.5, 0.5]d →
R

d+1, defined as

T (t1, t2, · · · , td) = (R sin(t1/R), R(1−cos(t1/R)), t2, · · · , td)

This map bends the hypercube in thed+1 dimensional space.
Here,R is the curvature radius of the embedding (for instance,
R ≫ 1 corresponds to slightly bending the hypercube).

Now for a given∆, let R = max{1, r2∆−1/2} and give the
distancesd̃ij = ‖T (xi) − T (xj)‖ as the proximity measure-
ments to the algorithm. First we show that these adversarial
measurements satisfy the noise constraint,‖d̃2

ij − d2
ij‖ ≤ ∆.

d2
ij − d̃2

ij = (x
(1)
i − x

(1)
j )2 − R2

(
sin(

x
(1)
i

R
) − sin(

x
(1)
j

R
)

)2

− R2

(
cos(

x
(1)
i

R
) − cos(

x
(1)
j

R
)

)2

= (x
(1)
i − x

(1)
j )2 − R2

(
2 − 2 cos(

x
(1)
i − x

(1)
j

R
)

)

≤
(x

(1)
i − x

(1)
j )4

2R2
≤ r4

2R2
≤ ∆.

Also, d̃ij ≤ dij . Therefore,|zij | = |d̃2
ij − d2

ij | ≤ ∆.
The crucial point is that given the measurementsd̃ij as the

input to the algorithm, the SDP in the first step will return the
positionsx̃i = LT (xi), since it is oblivious of dimensiond.



Let Q be Gram matrix of the positions{x̃i}i∈[n], namely
Qij = x̃i · x̃j . Denote by{u1, · · · , ud}, the eigenvectors of
Q corresponding to thed largest eigenvalues. In the second
step, the positions{x̃i}i∈[n] are projected onto the space
U = 〈u1, · · · , ud〉 and the results are returned as the estimated
positions inR

d. Hence,

d(X, X̂) =
1

n2
‖XXT − PU X̃X̃T PU‖1

Let W = 〈e1, e3, · · · , ed+1〉, where ei refers to theith

standard basis element, e.g.,e1 = (1, 0, · · · , 0). Then,

d(X, X̂) ≥ 1

n2
‖XXT − PW X̃X̃T PW ‖1

− 1

n2
‖PW X̃X̃T PW − PU X̃X̃T PU‖1

(16)

We bound each terms on the right hand side separately.

1

n2
‖XXT − PW X̃X̃T PW ‖1

=
1

n2

∑

1≤i,j≤n

|x(1)
i x

(1)
j − R2 sin(

x
(1)
i

R
) sin(

x
(1)
j

R
)|

≥ C

R2
, (17)

where the last inequality follows from Taylor’s theorem.
(Notice thatR ≥ 1 and so the termsx(1)

i /R are less than
one).

The next Claim provides an upper bound for the second
term on the right hand side of Eq. (16). We defer the proof
to [7].

Claim A.1. There exists a constantC, such that, with high
probability,

1

n2
‖PW X̃X̃T PW − PU X̃X̃T PU‖1 ≤ C

(
log n

n

) 1
4

Using the bounds given by Claim A.1 and Eq. (17), we
obtain that with high probability,

d(X, X̂) ≥ C1

R2
− C2

(
log n

n

) 1
4

≥ C min{1,
∆

r4
} + o(1).


