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Abstract—We consider the problem of positioning a cloud of whenX and X are aligned optimally. More specifically, there

points in the Euclidean spaceR’, from noisy measurements exists a rotation of{, call it Y, such thatd(X, X) measures

of a subset of pairwise distances. This task has applicatisn the mean error between the positionsinand iny
in various areas, such as sensor network localizations, NMR ’

spectroscopy of proteins, and molecular conformation. Als, Remark. Clearly, connectivity of7 is a necessary assumption
it is closely related to dimensionality reduction problemsand for the localization problem to be solvable. It is a well

manifold learning, where the goal is to learn the underlying nown result that the grapti(n, r) is connected with high
global geometry of a data set using measured local (or partia robability if K .r? ) ’ where K. is the
metric information. Here we propose a reconstruction algoithm P y ar® > (logn + ¢a)/n, d

based on a semidefinite programming approach. For a random Volume of thed—dimensional unit ball and;, — oo [9].
geometric graph model and uniformly bounded noise, we prowe  Viceversa, the graph is with positive probability discocteel
a precise characterization of the algorithm’s performance In the  if K¢ < (logn + C)/n for some constanf. Hence, we
noiseless case, we find a radiug beyond which the algorithm {505 on the regime where= a(log n/n)g for some constant

reconstructs the exact positions (up to rigid transformatons). In . .
the presence of noise, we obtain upper and lower bounds on the a. We further notice that, under the random geometric graph

reconstruction error that match up to a factor that depends aly ~model, the configuration of the points is almost suggyeric
on the dimensiond, and the average degree of the nodes in the in the sense that the coordinates do not satisfy any nonzero

graph. polynomial equation with integer coefficients.
I. INTRODUCTION

A. Problem Statement B. Algorithm and main results

The following algorithm uses semidefinite programming

Consider the random geometric graph modih, r) = (SDP) to solve the localization problem.

(V,E) whereV is a set ofn nodes distributed uniformly
at random in thed-dimensional hypercubg-0.5,0.5]¢, and i i B
E €V xVis a set of edges that connect the nodes which ar&/90rithm SDP-based Algorithm for Localization
close to each other; i.e(j,j) € E < dij = ||x; — x| < 7. Input: dimensiond, distance measurements; _
For each edgéi,j) € E, d;; denotes the measured distancefor (i,j) € E, bound on the measurement noise
between nodes and j. Denoting byz; = d7, — d?, the  Output: estimated coordinates iR
measurement error, we consideraorst case model’ in 1. Solve the following SDP problem:

which the errors{z;;} ;cz are arbitrary but uniformly minimize  Tr(Q) .,
boundedz;;| < A. sit. ‘<Mij, Q) —dy’l<A, (i) eE
Given the graphG(n,r) and its associated proximity dis- Q> 0.

tance measurements,;, thelocalizationproblem is to recon- - 2. Compute the best rankapproximationl/,S,U7 of Q
struct the positions of the nodes. In this paper, we propaose a,. o
P pap PTopOse 3. ReturnX = U5/

algorithm for this problem based on semidefinite prograngmin
and provide a rigorous analysis of its performance. Here M;; = eije;fg- € R™*", wheree;; € R"™ is the vector
Notice that the positions of the nodes can only be detexith 41 at thei*" position, —1 at the j** position and zero
mined up to rigid transformations (a combination of rotatio everywhere else. AlsoA, B) = tr(A” B). Note that with a
reflection and translation) of the nodes, because the infeat p slight abuse of notation, the solution of the SDP problem in
distances are invariant to rigid transformations. Theefae the first step is denoted hy.
use the following metric, similar to the one defined in [8], to Let Qy := XXT be Gram matrix of the node positions,
evaluate the distance between the original position mafrik  namely Qo ;; = x; - ;. A key observation is tha@), is a
R™*4 and the estimatioX € R"*?. Let L = I — (1/n)uu®, low rank matrix: rank(Qo) < d, and obeys the constraints
whereu € R™ is the all-ones vector. It is easy to see thatf the SDP problem. By minimizindr(Q) in the first step,
LXXTL is invariant under rigid transformations of. The we promote low-rank solution® (sinceTr(Q) is the sum of
metric is defined ad(X, X) = 1/n?|LXXTL—-LXXTL|;. the eigenvalues af)). Alternatively, this minimization can be
This is a measure of the average reconstruction error pat,pointerpreted as setting the center of gravity{of;,...,z,} to




coincide with the origin, thus removes the degeneracy duewdether the graph is uniquely-localizable and to find its

translational invariance. unigue realization.
In step 2, the algorithm computes the eigendecomposition

of @ and retains thel largest eigenvalues. This is equivalent

to computing the best rankapproximation o) in Frobenius A. Rigidity Theory

norm. The gravity center of the reconstructed points remain This section is a very brief overview of definitions and

at the origin by this operation. results in rigidity theory which will be useful in this pap&ve
Our main result provides a complete characterization gifer the interested reader to [6], [1], for a thorough déspon.

the robustness properties of the SDP-based algorithm. Her@ frameworkG y is an undirected grapf = (V, E) along

and below ‘with high probability’ means with probability\ith a configurationX € R"*¢ whosei" row 2T € R%is the

converging tol asn — oo for d fixed. position of nodei in the graph. The edges @ correspond

Theorem 1.1 Let {x1,...,2,} be n nodes distributed uni- {0 the distance constraints.

formly at random in the hypercubg-0.5,0.5]¢. Further, Rigidity matrix. Consider a motion of the framework with
assume connectivity radius > a(logn/n)%, with a« > x;(t) being the position vector of pointat timet¢. Any smooth
16 - (8/K4)'/4, and K, the volume ofd—dimensional unit motion that instantaneously preserves the distafjgemust
ball. Then with high probability, the error distance betweesatisfy 4 ||lz; — x;||2 = 0 for all edges(i, j). Equivalently,

the estimateX returned by the SDP-based algorithm and the T, . oy .

correct coordinate matrixX is upper bounded as (@i — ;)" (2 —a5) =0 V(i,j) € E, ®)

Il. PRELIMINARIES

. A wherez; is the velocity of thei*” point. Given a framework
d(X, X) < Cl(nrd)r—4. (D) Gx e RY, a solutionX = [iT &7 .. iT]7, with i; € R,
Conversely, with high probability, there exist adversialriafor t_he linear system of equatio_ns.(3) s callediaﬁnitesim_al
measurement errorz:;} ; . such that mothnof the framevyorIGX. This linear system of equat_lons
Jg)er consists of E| equations indn unknowns and can be written
in the matrix formR (X)X = 0, whereR(X) is called the
|E| x dn rigidity matrix.
Here, €, and C, denote constants that depend only én It can be seen that for every skew symmetric matrix
A € R and for every vectob € RY, &; = Ax; + b
A special case of this theorem concerns the case of exactn infinitesimal motion. Notice that these motions span a
measurements. d(d+1)/2 dimensional space, accountid@y — 1)/2 degrees
Corollary I.1. Let {z1,...,2,} ben nodes distributed uni- of freedom for orthogor_lal transformatic_ms, andd degrees
formly at random in the hypercubg-0.5,0.5%. If » > Of freedom for translations). Hence, dim KefRq(X)) >
16-(8/K4)/%(logn/n)%, and the distance measurements aré_(d+ 1)/2. A framework is said to bénfinitesimally rigid if
exact, then with high probability, the SDP-based algorithim Ker(Za (X)) = d(d +1)/2.
recovers the exact positions (up to rigid transformations) Stress matrix. A stressfor a frameworkG x is an assignment
of scalarsw;; to the edges such that for eack V,

Ad(X,X) > C, min{%, 1}, )
T

C. Related work

The localization problem and its variants have attracted Z wij (i — a;5) = (Z wij)Ti = Z wijj = 0.
significant interest over the past years due to their apjdies.~ 7:(8.5)€E g7 7
in numerous areas, such as sensor network localization [&]stress vector can be rearranged intorax n symmetric
NMR spectroscopy [5], and manifold learning [10], [12]; tanatrix 2 , known as thestress matrixsuch that for # j, the
name a few. (i,7) entry of Q is Q;; = —w;;, and the diagonal entries for
Of particular interest to our work are the algorithms proti, i) are Q; = Y., wi;. Since all the coordinate vectors
posed for the localization problem [8], [11], [2]. In genkeraof the configuration as well as the all-ones vector are in the

few analytical results are known about the performance gafill space of(2, the rank of the stress matrix for generic
these algorithms, particularly in the presence of noise. configurations is at most — d — 1.

The existing algorithms can be categorized in to two groups. )
The first group consists of algorithms who try first to estiena®: Notations
the missing distances and then use MDS to find the positiondor a vectorv € R", and a subsetl” C {1,---,n}, vr
from the reconstructed distance matrix [8], [3]. The aloris is the restriction ofv to indices inT. We use the notation
in the second group formulates the localization problem &s,,--- ,v,) to represent the subspace spanned by veetors
a non-convex optimization problem and then use differeit < i < n. The orthogonal projections onto subspadés
relaxation schemes to solve it. A recent example of this typeand V+ are respectively denoted g, and P;-. Throughout
relaxation to an SDP [2]. A crucial assumption in these workhis paperu € R™ is the all-ones vector and' is a constant
is the existence of some anchors among the nodes whose egagiending only on the dimensiah whose value may change
positions are known. The SDP is then used to efficiently chefiiom case to case.



Given a matrix4, we denote its operator norm A2, minimizes Tr(Q)). Therefore,cq1 < maxy =1 y" Rty =
its Frobenius norm byj A||r and its nuclear norm by A||.. | R*|2 It follows from Egs. (6) and (7) that
(the latter is simply the sum of the singular valuesA)f LP L — LOLIl: < 2v3dnllR: R
Finally, we denote by:() € R", i € {1,...,d} the " . ILFa(@) QoL = nH_ 2+ 1%l
column of the positions matrix. In other wordsz(?) is the Using Lemma Ill.1 and 111.2, we obtain
vector containing thé*” coordinate of points:, ..., z,. N1 oA
Throughout the proof we shall adopt the convention of (X, X7) = EHLP”’(Q)L — LQoLjy < C(nr )r_4
using the notationsX, {xz;},c,, and {z(V},cy to denote which proves the thesis.
the centered positions. In other words = LX’ where the A proof sketch of the converse part is provided in Ap-

rows of X’ are i.i.d. uniform in[—0.5,0.5]%. pendix B. ]
Ill. PROOF OFTHEOREMI.1 IV. PROOFS OF THE LEMMAS
LetV = (u C I :zr(d)> and for any matrixs € Rmxn In this section we provide the proofs of lemmas IlIl.1
define T "’ and ll.2. Due to space limitations, we will omit the proofs o

several technical steps, and defer them to [7].

SZPVSPV"‘PVSP&"FP&SPV’ S+ =PySPy. A. Proof of Lemma Ill.1

ThusS = S + S+. Also, denote byR the difference between The proof is based on the following three stefi: Con-
the optimum solutiorQ and the actual Gram matrigo, i.e., Struct a stress matri® of rankn —d — 1 for the framework;
R = Q — Qo. The proof of Theorem 1.1 is based on thdii) Upper bound the quantit{f2, R); (iii) Lower bound the
following key lemmas that boun&' and R separately. minimum nonzero eigenvalue 61.
) ) For the graphG, we definecliq(G) := {Cy,---,C,}, where
Lemma III.1. Thgre exists g_numerlcal constafit= C(d), C. = {j € V(G) : di; < r/2}. (Note that the nodes in each
such that, with high probability, form a clique inG). Our first lemma estabilishes a simple
IR, < C%(m,d)A. (4) property ofc_liq(G). I'Fs proof is immediate and deferred to a
r journal version of this paper [7].
Lemma lIl.2. There exists a numerical constafit= C(d), proposition IV.1. If » > a(logn/n)"/¢ with o > 16 -

such that, with high probability, (8/K4)'/?, the following is true with high probability. For any
. n2 two nodes andj, such that|xz; — ;|| < r/2, |C;NC;| > d+1.
d :
[R][1 < C— (nrf)A () . : : .
r A crucial role in the proof is played by the stress matrix
We defer the proof of lemmas I11.1 and 111.2 to the next setio Of Gx. A special construction of such a matrix is obtained as

Proof (Theorem I.1): Let Q@ = Y7, o;uul, where follows

7!

||ui]| = 1, uZTuj =0fori # jando; > o9 > -+ > 0. Q= (e, o) e Dy
In the second step of algorithr@) is projected onto subspace Cieciq(G) "
(u1,--- ,uq). Denote the result byP;(Q). As pointed out The proof of the next statement is again immediate and oshitte

before, Py(Q)u = 0 and Qou = 0. This implies that from this version of the paper.

FPa(Q) = LFa(Q)L and Qo = Lo L. By triangle inequality, Proposition IV.2. The matrixQ defined above is a positive

|LPy(Q)L — LQoL|1 = ||Pa(Q) — Qollx semidefinite (PSD) stress matrix of rank— d — 1 for the

< |1P#Q) = QllL + 11O — Qoll1. (6) frameworkG x.
Proposition IV.3. There exists a constar@ = C(d), such

Observe thatQ = QO + R and 62L = Rl. Sincepd(Q) - Q that, with h|gh probability,

has rank at mosBd, it follows that ||Py(Q) — Qll < . s
n||Pa(Q) — Q|lr < V3dn| Pi(Q) — Q|2 (for any matrix A, (Q,R) < Cn(nr)°A
[AllF < rank(A)[ Al|2). By triangle inequality, we have Proof: Note that the matriX2 = [w;;] can be written as

~ ~ Q= . i M. Definewmayx = +i|. Then,
1PAQ) — Q2 < I1PAQ) — Qla+ 1@ - Ql. (@) = Ltwer il Defineumau = maxws|

1 (a)
f - (QRY) S (QR) = Y wiy(Miy,R)
Note that ||P;(Q) — Q|2 = o4+1. Recall the variational (i,j)EE
rinciple for the eigenvalues.
p p g S Z wmax|<Mija Q - Q0>|
7 g (Il?)in LyeH ) 1yTQy DE
,dim =n—q+1yeH,|y|= ~ 2 ~ 92
: W L. L . < > wman(Miy, Q) — diy |+ | diy” =2 ])
Taking H = (z'V),..- ,2'¥)~, foranyy € H, y' Qy = (D) —
yTPFQPFy = yTQ1y = yT RYy, where we used the fact i
Qu = 0 in the first equality (recall thafu = 0 because) < 2wmax| E|A,



where (a) follows from the factQX = 0. Note that the We omit the proof of this claim due to space constraint. The
expected number of edges @ is at most%nQKdrd, and the argument is closely related to the Markov chain comparison
number of edges is concentrated around its mean (Cherrteffhnique [4].

bounds). Hence, with high probability| < n*K,r?. Setting ~ Using Claim IV.2,07Lv < 7 | C(8?||% w®||2).
C = 2K,4, we get(Q, Rt) < C wpaxn(nrd)A. Hence, we only need to show

SinceQ = 0, for any 1 < 4,j < n, W} < wiwj; = n n
(e] Qeq) (e Qej) < 02, (Q), whereon. () is the largest Z [w® 2 > OTQZ@Q i |12, 9)

eigenvalue ofQ.
Hence,wmax < omax () < Cnr? whereby the last step is

is proved in the Claim below. Since the degree of each node is boundy-¢ (with high

probability), we have
Claim IV.1. There exists a constant = C'(d), such that, with

high probability, w?|? > (Cnr? w2 + |w@|2
() < O ZH [ )7 ()P + @)

(i,5)EE
Proof: For any vectow € R", > (Cnrd)~? Z (ch e, (J) e, 12)
n (i,5)EE
T 1 2 2
v Qu = || P v|I* < llve, |l (8) .
CiG;iq(G) <uCi’I(cli)a"' ,zéc?) ; i (CTLT ) Z (ﬁ] _ /Bi)2||ICiij H2
n n (i,5)€EE
=3 02 Y 1= [Cv} < Cnrfv]. Applying Chernoff bounds, there exists constafi{fsand Cs,
j=1dget =l such that, with high probability||Zc,c, ||> > Ci(nrd)r?

The last inequality follows from the fact that, with highand [|Zc;[|* < Ca(nr?)r? for all i and j. Thus, in or-
probability, |C;| < Cnr? for all j and some constart. m  der to prove (9), we need to shoW,; »cp(B; — 8i)? >
We now pass to lower bounding the smallest non-zero singufatnr®)r? 31" | 52.

value of Q, omin(2). To prove such an estimate, recall that Define 8 = (31,---,8,). Observe thaty> ,p(8; —
the laplacianZ of the graphG is the symmetric matrix 3,)2 = 7L£3 > o (£)|| P 5|2, whereowin(£) denotes
indexed by the vertice¥’, such thatl;; = —1 if (i,j) € E, the minimum nonzero eigenvalue gf Sincev L z, it can
L;; =degregi) and L;; = 0 otherwise. It is useful to recall abe shown that|P;-8||> > C||8||> (we omit the details). The
basic estimate on the laplacian of random geometric graphsroof is completed by using Remark IV.1. [ ]

Remark IV.1. Let Lsym denote the normalized laplacian of We are finally in position to provi LemTa ”I'i N
the random geometric grapti(n,r), defined asCLeym = Proof (Lfmmalll %l) l;lolte thaﬂ;’ Q" = PyQby
D=1/2£D-1/2 where D is the diagonal matrix with de- OT Write' R = > 7" Aiugu, where [jui| =
grees of the nodes on diagonal. Then, with high probabilify; i = 0 for i 7ij and Ar 2 7;\2(121 "')‘n*%fl
Xa(Lsym), the second smallest eigenvalue @fm, is at least Therefore (LR = Q3,0 A wug)
C’I’Q. TherEfore,/\Q (E) > O(TLTd)’I’Q. Zz 1 )\ i Uy Quz > Umm( )”RL”*a Whereamln(Q) denotes

N ] the minimum nonzero eigenvalue Qf Here, we used the fact
Proposition IV.4. There exists a constart’ = C(d), such that, € V1 = Ker* (Q).

that, with high probability(2 = C72L on the space/~. As a direct consequence of proposition IV.4 and Re-

Proof: Due to space limitations, we present the proof fgnark IV.1, ouin(Q) > C(nr?)r*. The result follows. =
the casel = 1. The general argument proceeds along the sarge
lines, and we defer it to [7].

Letv € V- be an arbitrary vector. Decomposdocally as ~ Recall thatR = Py RPy + PyRPy. + Py RPy. There-
ve, = BiZe, + viue, + w, whereie, = pL z andw® ¢ fore, there exist a matriX € R™*? and a vector € R™ such

D T T T T T d
(xe,, ue, ). HencewQu = 37 [lw® 2, Note thatue, ¢, that R = X};h +YXT Fua +au”. Denote byy; € R¢,
has two representations, whence we obtain € [n], thei"" row of the matrixY’. .
_ The following proposition plays a key role in the proof. Its
wé?ﬁcj éj)mc (B — Bi)Zcine; + Fijucinc;-  (8) proof is deferred to the next subsection.

v =1y

Proof of Lemma I11.2

Here, Z¢c,nc, = = PL nc,. The value ofy; ; does not Proposition IV.5. There exists a constar® = C(d), such

uec;Ne;

matter to our argument; however it can be given explicitly. that, with high probability,

Claim IV.2. There exists a constadt = C(d), such that, with > _ [(zi — z;, 4 — y;)| < Cr™2 Y (@ — wx, y1 — v
high probability, i, (Lk)EE

L= CZchi. The next statement provides an upper bound|&fj,. We
i defer its proof to [7].



Proposition 1V.6. There exists a constartt’ = C(d), such
that, with high probability,

IR < C i — 5,41 — y5)].
i

Now we have in place all we need to prove lemma |Ill.2. - min

To each edgél, k) € E(G;;), assign a numbek;,. For any
assignment withmax || < 1, we have

o> >

v (Lk)EE(G*)

Z Z ik (Y1, ©1 — )

min

- Ak {Tr — T, i — Yk
sYm—1

Proof (Lemma 111.2): Define the operatads : R"*" — v ym o1 ERY o
RIZl as A (S) = [(Mij, S)](i.j)er- By our assumptions, 1#0
_ = min Z (i, Z ik (2 — 1)),
(Mg, B) + (My, R)] = (M3, Q) — (Myj, Qo) = =

< [(Mij, Q) — diy| + |dZ; — (Mij, Qo)| < 2A.

where J! denotes the set of adjacent vertices{tin G;;.

The numbers);; that maximize the right hand side should
. n ) satisfy >, oy Aix(z1 — xx) = 0,Vl # 0,m. Thus,® >

Therefore, | Ac (R)|h < 2[E|A + [|Ac(R )lh. Write the <ym,2keam Amk(Tm — x)). The result follows as a direct

i i — L. 1
laplacian matrlxli asl = Z(ij)eE M;;. Then, (L, R~) consequence of the following Claim whose proof is deferred
Ypen{Mij, RT) = [|Ag(R)[1. Here, we used the facty, Appendix A. -

that (M;;, R*) > 0, since M;; = 0 and R+ = 0. Hence,
[Ac(R)[x < 2|E|A + (L, R*).
Applying propositions V.4 and

[2i;]

Claim IV.3. There exist numberk;; that satisfy the following

three conditions

V.3, (L, RY) <

Cr=2(Q,Rt) < Cnr2(nr?)?A, whence we obtain > Ak(zi =) =0 VI#£0,m,
| Ac(R)||1 < Cnr—2(nrt)2A. keal

The last step is to writ§.Ac(1?)||1 more explicitly. Notice Z A (T — T%) = T, (10)
that, HAG(R)Hl = Z(l,k)eE |<Mlk,XYT + YyXxT + ual —+ kedm

au”)| =23 wyep (@ — 26,0 = i)l _ max | A | < Cr L.
The result follows as a direct consequence of proposi-The proof of Proposition IV.5 is completed by the following

tions IV.5 and IV.6. proposition, whose proof we omit due to space constraints.

C. Proof of Proposition IV.5 Proposition IV.9. Define the “congestion number” of the

We will focus here on the cage= 2. The general argumentgraph G as b(G) = max.cpe) H{Gi; C G : e € E(Gi;)}.
proceeds along the same lines and is deferred to [7]. Then,b(G) < Cr—?=1, for some constant’ = C(d).
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Definition 1. A chain G;; is a sequence of subgraphgind Fabian Pease Stanford Graduate Fellowship. This work
H,, H,,---,H, along with the vertices and j, such that, was partially supported by the NSF CAREER award CCF-

each H,, is isomorphic toK, and each two successivé, 0743978, the NSF grant DMS-0806211, and the AFOSR grant
share one side. Further,(resp.j) is connected to the two FA9550-10-1-0360.

vertices inV (H;) \ V(Hz) (resp.V(Hy) \ V(Hk—1)). REFERENCES
L. Asimow and B. Roth. The rigidity of graphsTrans. Amer. Math.
Soc, 245:279-289, 1978.

P. Biswas and Y. Ye. Semidefinite programming for ad hoceless
sensor network localization. IlPSN '04

T. Cox and M. Cox.Multidimensional Scaling. Monographs on Statistics
and Applied Probability 88 Chapman and Hall, 2001.

P. Diaconis and L. Saloff-Coste. Comparison theoremsréversible
markov chains.Annals of Applied Probability3(3):696—730, 1993.

L. Fan, S. Keles, S. J. Wright, and G. Wahba. Frameworkkiennel
regularization with application to protein clustering.linProc. National
Academic Sciencevolume 102, pages 12332-12337, USA, 2005.

S. J. Gortler, A. Healy, and D. Thurston. Characterizgeneric global
rigidity. American Journal of Mathematic432(4):897-939, 2010.

A. Javanmard and A. Montanari. Localization from incdetp noisy
distance measurementgurnal version, in preparation

S. Oh, A. Karbasi, and A. Montanari. Sensor network lzedion from
local connectivity: Performance analysis for the mds-migprihm. In

(1]
See Fig. 1 in the Appendix A for an illustration of a chain.

Proposition IV.7. For any two nodes and j in our random
geometric graph, there exists a chaidr;; C G.

Proposition IV.8. For any two nodes and j, there exists a
constantC' = C(d), such that,

(L,k)EE(Gj)

(i — zj,y: —y;)| < Cr? [(x1 — @k, Y1 — Y|

(6]

(7]
Proof: Assume that|V'(Gi;)| = m + 1 . Relabel the
(8]

vertices in the chain such that the nodesnd; have labelg

andm respectively. Since both sides of the desired inequality
are invariant to translations, without loss of generalitg w [9]
assume thatry = yo = 0. For a fixed vectory,, consider [10]
the following optimization problem. [11]

>

(1,k)EE(Gij)

©= (1 — @k, yi — Yk - [12]

Y1, Ym—1E€ERY

ITW, 2010.

M. Penrose.Random Geometric Graph©UP Inc., 2003.

L. Saul and S. Roweis. Think globally, fit locally: Unspised learning
of low dimensional manifoldsJMLR, 4:119-155, 2003.

A. Singer. A remark on global positioning from local @iaces.
PNAS volume 105, pages 9507-9511, 2008.

J. Tenenbaum, V. Silva, and J. Langford. A global gesimdétamework
for nonlinear dimensionality reductiorScience 290:2319-2323, 2000.

In



APPENDIX H, ~ H, H,

A. Proof of Claim IV.3 ul | I Y| e v
Proof: Notice that for any value$;;, satisfying (10), we
have), .5 Aok (z0 — 2x) = —2,,. As a generalization, con-
\s/;jrie;btlzi/\followmg linear system of equations with unknown Fig. 1. An illustration of a chainG..,
Lk
Aik(zp — zg) = uy, fOleO,---,m (11) 7 H ~
2l R
Writing Eqgs. (11) in terms of the rigidity matrix of/;;, and
using the characterization of its null space, as discussed Foo-g _ s Foof
section II-A, it follows that Egs. (11) have a solution if anc W =i € ok
only if
i 0 i T4 0 12) Fig. 2. H, and the set of forces in Stagé)
U; =V, u; Ar; = U,
=0 =0
where A € R%*? is an arbitrary skew symmetric matrix. ~ Cllzm|l- It can be shown thabi (R"r) > Cr (we omit

the proof). Also,||z,,|| = O(1). Hence, ||\ ||, < Cr—1.
Now definehie =3y . wmerm,) )\l(,fp) for every(l, k) €

E(G,;). We claim that the values;;, satisfy the constraints

'p (10). First, note that in the summation .., Aix(z1 — zx),

A mechanical interpretation. If we think of eachu; as a force
imposed on the nodé then the first constraint in Eq. (12)
states that the net force af;; is zero force equilibriun),

while the second condition states that the net torque is z I?th it If | h oth d th is 7
(torque equilibriun). all'the internal forces cancel each other and the sum is zero a

With this interpretation in mind, we propose a two—stagt?;be internal nodes. At the extreme nodes andm, this sum
; . >would be equal te-z,,, andx,,, respectively. In addition, since
procedure to find the valued;; that obey the constraints g .
in (10). eacﬂ edge participates in at most téf),, we have|\;| <
Stage (i): Let F,, denote the common side &f, and H, . Cre. -
Without loss of generality, assuné(F,) = {1, 2}. Find the B. Proof Sketch of the Converse to Theorem 1.1

forces /1, /2 such that Proof: Consider the bending map 7 : [-0.5,0.5]¢ —
fi+ fo=2m, fihzi+ faAzy=0, 13 R, defined as
A2+ 1 f2l? < Cllam |2 T (t1,t2,- -~ ,ta) = (Rsin(t1/R), R(1—cos(t1/R)), ta, - , t4)

To this end, we solve the following optimization problem. This map bends the hypercube in #he 1 dimensional space.
N 9 9 Here, R is the curvature radius of the embedding (for instance,
minimize - 1/2(][A1[|" + [l ~2[1) (14) R>1 corresponds to slightly bending the hypercube).
s.t. it fo=zm, fihzi+faAze=0 Now for a givenA, let R = max{1,72A~'/2} and give the
distancesd;; = || 7 (z;) — T(x;)|| as the proximity measure-
ments to the algorithm. First we show that these adversarial
{fl =12 + vA(21 — 22) measurements satisfy the noise constrajdf; — d2 | < A.

It is easy to see that the solutions of (14), given by

f2=txm — 27 A1 — 22)

1 0 1 " @ MED) 2 2
_ T _ - 2 72 2 2 : % : J
= 2 A A= S _ds = (x) — — — B
Y s _x2”2:cm (71 + x2), <1 O) di; — di; = (z; ;') =R <sm( 7 ) — sin( = ))
satisfy the constraints in (13). e L 2
Stage (ii): For eachH,, consider the following set of forces - R? (Cos( ]Z% ) — cos(#))
- | fieV(F) . - @ _
i = . sy Jm = Im;, = —Im 15 Ly — I
f {_fi iti e V(E, 1) Jm =Tm, fo Ty (15) — (@M x;l))2 _R2 <2 _ 2COS(TJ)>
See Fig. 2~for an illustration. Notice th@ieV(Hp) ﬁ =0, (%(-1) _ x§_1))4 !
Sievim,) fi N i (: O), and thus by our previous(di?cussion, S——m  Sym <A
. H, H, ~ ~,
there exist values,, ™", such that) . wepm,) A~ (11— Also, dy; < dy;. Therefore|z;;| = |d% — d%| < A.

wy) = fi, VI € V(H,). Writing this in terms ofR("»), the  The crucial point is that given the measuremehjsas the
rigidity matrix of H,, we haveR("»)\») — f. Therefore, input to the algorithm, the SDP in the first step will reture th
Omin(REP I ANHR)|| o < omin(REP)INHR) ||, < ||f|| < positionsi; = LT (x;), since it is oblivious of dimensiod.



Let @ be Gram matrix of the position§z; }ic(,;, Namely
Qij = %; - ;. Denote by{ui,--- ,uq}, the eigenvectors of
Q@ corresponding to the largest eigenvalues. In the second
step, the positiongz;};c;,,) are projected onto the space
U = (us,--- ,uq) and the results are returned as the estimated
positions inR¢. Hence,

~ 1 -~
d(X,X) = m|\XXT — Py XXTPy|x

Let W = (ej,es, - ,eqr1), Wheree; refers to theit®
standard basis element, e.es,= (1,0,---,0). Then,

~ 1 -
d(X,X) > | XX" — Pw XX Pyl
n 16)
1 . o (
— EHPWXXTPW ~ Py XXTPy;
We bound each terms on the right hand side separately.

1 -
EHXXT—PWXXTPW||1

LS 0, g oD !
= — |2y — R” sin(—%) sin(—=-)]

2 i

" 1<ig<n ’ R R

C

where the last inequality follows from Taylor's theorem.
(Notice thatR > 1 and so the termggl)/R are less than
one).

The next Claim provides an upper bound for the second
term on the right hand side of Eq. (16). We defer the proof
to [7].

Claim A.1. There exists a constarit, such that, with high
probability,

1
1 . . logn \ 7
F|PWXXTPW—PUXXTPU||1gc< i )

Using the bounds given by Claim A.1 and Eq. (17), we
obtain that with high probability,

ax, 5> ¢, <1°g”> > C'min{1, %} +o(1).
n T



