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Abstract

We consider the Sherrington-Kirkpatrick model of spin glasses at high-temperature and no external
field, and study the problem of sampling from the Gibbs distribution µ in polynomial time. We prove
that, for any inverse temperature β < 1/2, there exists an algorithm with complexity O(n2) that samples
from a distribution µalg which is close in normalized Wasserstein distance to µ. Namely, there exists a
coupling of µ and µalg such that if (x,xalg) ∈ {−1,+1}n×{−1,+1}n is a pair drawn from this coupling,
then n−1 E{‖x − xalg‖22} = on(1). The best previous results, by Bauerschmidt and Bodineau [BB19]
and by Eldan, Koehler, Zeitouni [EKZ21], implied efficient algorithms to approximately sample (under
a stronger metric) for β < 1/4.

We complement this result with a negative one, by introducing a suitable “stability” property for
sampling algorithms, which is verified by many standard techniques. We prove that no stable algorithm
can approximately sample for β > 1, even under the normalized Wasserstein metric.

Our sampling method is based on an algorithmic implementation of stochastic localization, which
progressively tilts the measure µ towards a single configuration, together with an approximate message
passing algorithm that is used to approximate the mean of the tilted measure.
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1 Introduction

This Sherrington-Kirkpatrick (SK) Gibbs measure is the probability distribution over Σn = {−1,+1}n
given by

µA(x) =
1

Z(β,A)
exp

{β
2
〈x,Ax〉

}
, (1.1)

where β ≥ 0 is an inverse temperature parameter and A ∼ GOE(n); i.e., A is symmetric, Aij ∼ N(0, 1/n)
i.i.d. for i ≤ j ≤ n and Aii ∼ N(0, 2/n), i ≤ n. The parameter β is fixed and we will leave implicit the
dependence of µ upon β, unless mentioned otherwise.

In this paper, we consider the problem of efficiently sampling from the Sherrington-Kirkpatrick spin
glass measure. Namely, we seek a randomized algorithm that accepts as input A and generates xalg ∼ µalg

A ,
such that: (i) The algorithm runs in polynomial time (for any A); (ii) The distribution µalg

A is close to µA
for typical realizations of A. Given a bounded distance dist(µ, ν) between probability distributions µ, ν,
the second condition can be formalized by requiring E{dist(µA, µalg

A )} = on(1).
Gibbs sampling (also known in this context as Glauber dynamics) provides an algorithm to approxi-

mately sample from µA. However, standard techniques to bound its mixing time (e.g., Dobrushin condition
[AH87]) only imply polynomial mixing for a vanishing interval of temperatures β = O(n−1/2). By contrast,
physicists [SZ81, MPV87] predict fast convergence to equilibrium (at least for certain observables) for all
β < 1.

Significant progress on this question was achieved only recently. In [BB19], Bauerschmidt and Bodineau
showed that, for β < 1/4, the measure µA can be decomposed into a log-concave mixture of product
measures. They use this decomposition to prove that µA satisfies a log-Sobolev inequality, although not
for the Dirichlet form of Glauber dynamics1. Eldan, Koehler, Zeitouni [EKZ21] prove that, in the same
region β < 1/4, µA satisfies a Poincaré inequality for the Dirichlet form of Glauber dynamics. Hence
Glauber dynamics mixes in O(n2) spin flips in total variation distance. This mixing time estimate was
improved to O(n log n) by [AJK+21] using a modified log Sobolev inequality, see also [CE22, Corollary 51].
The aforementioned results apply deterministically to any matrixA satisfying β(λmax(A)−λmin(A)) ≤ 1−ε
(for some constant ε > 0).

For spherical spin glasses, it is shown in [GJ19] that Langevin dynamics have a polynomial spectral gap
at high temperature. Meanwhile [BAJ18] proves that at sufficiently low temperature, the mixing times of
Glauber and Langevin dynamics are exponentially large in Ising and spherical spin glasses, respectively.

In this paper we develop a different approach which is not based on a Monte Carlo Markov Chain
strategy. We build on the well known remark that approximate sampling can be reduced to approximate
computation of expectations of the measure µA, and of a family of measures obtained from µA. One well
known method to achieve this reduction is via sequential sampling [JVV86, CDHL05, BD11]. A sequential

1We note in passing that their result immediately suggests a sampling algorithm: sample from the log-concave mixture
using Langevin dynamics, and then sample from the corresponding component using the product form.
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sampling approach to µA would proceed as follows. Order the variables x1, . . . , xn ∈ {−1,+1} arbitrarily.
At step i compute the marginal distribution of xi, conditional to x1, . . . , xi−1 taking the previously chosen

values: p
(i)
s := µA(xi = s|x1, . . . , xi−1), s ∈ {−1,+1}. Fix xi = +1 with probability p

(i)
+1 and xi = −1 with

probability p
(i)
−1.

We follow a different route, which is similar in spirit, but that we find more convenient technically, and
of potential practical interest. Our approach is motivated by the stochastic localization process [Eld20].
Given any probability measure µ on Rn with finite second moment, positive time t > 0, and vector y ∈ Rn,
define the tilted measure

µy,t(dx) :=
1

Z(y)
e〈y,x〉−

t
2
‖x‖22 µ(dx) , (1.2)

and let its mean vector be

m(y, t) :=

∫
Rn

xµy,t(dx) . (1.3)

Consider the stochastic differential equation2 (SDE)

dy(t) = m(y(t), t)dt+ dB(t), y(0) = 0 , (1.4)

where (B(t))t≥0 is a standard Brownian motion in Rn. Then, the measure-valued process (µy(t),t)t≥0 is a
martingale and (almost surely) µy(t),t ⇒ δx? as t → ∞, for some random x? (i.e. the measure localizes).
As a consequence of the martingale property, E[

∫
ϕ(x)µy(t),t(dx)] is a constant for any bounded continuous

function ϕ, whence E[ϕ(x?)] =
∫
ϕ(x)µ(dx). In other words, x? is a sample from µ. For further information

on this process, we refer to Section 3.
In order to use this process as an algorithm to sample from the SK measure µ = µA, we need to

overcome two problems:

• Discretization. We need to discretize the SDE (1.4) in time, and still guarantee that the discretization
closely tracks the original process. This is of course possible only if the map y 7→m(y, t) is sufficiently
regular.

• Mean computation. We need to be able to compute the mean vector m(y, t) efficiently. To this end,
we use an approximate message passing (AMP) algorithm for which we can leverage earlier work
[DAM17] to establish that ‖m(y) − m̂AMP(y)‖22/n = on(1) along the algorithm trajectory. (Note
that the SK measure is supported on vectors with ‖x‖22 = n, and hence the quadratic component
of the tilt in Eq. (1.2) drops out. We will therefore write m(y) or m(A,y) instead m(y, t) for the
mean of the Gibbs measure.)

To our knowledge, ours is the first algorithmic implementation of the stochastic localization process, al-
though a recent paper by Nam, Sly and Zhang [NSZ22] uses this process (without naming it as such)
to show that the Ising measure on the infinite regular tree is a factor of IID process up to a constant
factor away from the Kesten–Stigum, or “reconstruction”, threshold. Their construction can easily be
transformed into a sampling algorithm.

In order to state our results, we define the normalized 2-Wasserstein distance between two probability
measures µ, ν on Rn with finite second moments as

W2,n(µ, ν)2 = inf
π∈C(µ,ν)

1

n
Eπ
[∥∥X − Y ∥∥2

2

]
, (1.5)

where the infimum is over all couplings (X,Y ) ∼ π with marginals X ∼ µ and Y ∼ ν.
In this paper, we establish two main results.

2If µ is has finite variance, then y → m(y, t) is Lipschitz and so this SDE is well posed with unique strong solution.
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Sampling algorithm for β < 1/2. We prove that the strategy outlined above yields an algorithm with
complexity O(n2), which samples from a distribution µalg

A such that W2,n(µalg

A , µA) = oP,n(1).

Hardness for stable algorithms, for β > 1. We prove that no algorithm satisfying a certain stability
property can sample from the SK measure (under the same criterion W2,n(µalg

A , µA) = oP,n(1)) for
β > 1, i.e., when replica symmetry is broken. Roughly speaking, stability formalizes the notion that
the algorithm output behaves continuously with respect to the matrix A.

It is worth pointing out that we expect our algorithm to be successful (in the sense described above) for all
β < 1 and that closing the gap between β = 1/2 and β = 1 should be within reach of existing techniques,
at the price of a longer technical argument. We expound on this point in Remark 2.1 further below, and
in Section 4.3.

The hardness results for β > 1 are proven using the notion of disorder chaos, in a similar spirit
to the use of the overlap gap property for random optimization, estimation, and constraint satisfaction
problems [GS14, RV17, GS17, CGPR19, GJ21, GJW20, Wei22, GK21, BH21, GJW21, HS21]. While the
overlap gap property has been used to rule out stable algorithms for this class of problems, and variants
have been used to rule out efficient sampling by specific Markov chain algorithms, to the best of our
knowledge we are the first to rule out stable sampling algorithms using these ideas. In sampling there is
no hidden solution or set of solutions to be found, and therefore no notion of an overlap gap in the most
natural sense. Instead, we argue directly that the distribution to be sampled from is unstable in a W2,n

sense at low temperature, and hence cannot be approximated by any stable algorithm.
The rest of the paper is organized as follows. In Section 2 we formally state our results. In Section 3

we collect some useful properties of the stochastic localization process, and we present the analysis of our
algorithm in Section 4. Finally, the proof of hardness under stability is given in Section 5.

2 Main results

2.1 Sampling algorithm for β < 1/2

In this section we describe the sampling algorithm, and formally state the result of our analysis. As pointed
out in the introduction, a main component is the computation of the mean of the tilted SK measure:

µA,y(x) :=
1

Z(A,y)
exp

{β
2
〈x,Ax〉+ 〈y,x〉

}
, x ∈ {−1,+1}n . (2.1)

We describe the algorithm to approximate this mean in Section 2.1.1, the overall sampling procedure (which
uses this estimator as a subroutine) in Section 2.1.2, and our Wasserstein-distance guarantee in Section
2.1.3.

2.1.1 Approximating the mean of the Gibbs measure

We will denote our approximation of the mean of the Gibbs measure µA,y by m̂(A,y), while the actual
mean will be m(A,y).

The algorithm to compute m̂(A,y) is given in Algorithm 1, and is composed of two phases:

1. An Approximate Message Passing (AMP) algorithm is run for KAMP iterations and constructs a first
estimate of the mean. We denote by AMP(A,y; k) the estimate produced after k AMP iterations

AMP(A,y; k) := m̂k . (2.2)
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Algorithm 1: Mean of the tilted Gibbs measure

Input: Data A ∈ Rn×n, y ∈ Rn, parameters β, η > 0, q ∈ (0, 1), iteration numbers KAMP, KNGD.
1 m̂−1 = z0 = 0,
2 for k = 0, · · · ,KAMP − 1 do

3 m̂k = tanh(zk), bk = β2

n

∑n
i=1

(
1− tanh2(zki )

)
,

4 zk+1 = βAm̂k + y − bkm̂
k−1 ,

5 end
6 u0 = zKAMP ,
7 for k = 0, · · · ,KNGD − 1 do
8 uk+1 = uk − η · ∇FTAP(m̂+,k;y, q),

9 m̂+,k+1 = tanh(uk+1),

10 end
11 return m̂+,KNGD

2. Natural gradient descent (NGD) is run forKNGD iterations with initialization given by vector computed
at the end of the first phase. This phase attempts to minimize the following version of the TAP free
energy (for a specific value of q):

FTAP(m;y, q) := −β
2
〈m,Am〉 − 〈y,m〉 −

n∑
i=1

h(mi)−
nβ2(1− q)(1 + q − 2Q(m))

4
, (2.3)

Q(m) =
1

n
‖m‖2, h(m) = −1 +m

2
log

(
1 +m

2

)
− 1−m

2
log

(
1−m

2

)
. (2.4)

The second stage is motivated by the TAP (Thouless-Anderson-Palmer) equations for the Gibbs mean
of a high-temperature spin glass [MPV87, Tal10]. Essentially by construction, stationary points for the
function FTAP(m;y, q) satisfy the TAP equations, and we show in Lemma 4.11 that the first stage above
constructs an approximate stationary point for FTAP(m;y, q). The effect of the second stage is therefore
numerically small, but it turns out to reduce the error incurred by discretizing time in line 6 of Algorithm 2.

Let us emphasize that this two-stage construction is considered for technical reasons. Indeed a simpler
algorithm, that runs AMP for a larger number of iteration, and does not run NGD at all, is expected
to work but our arguments do not go through. The hybrid algorithm above allows us to exploit known
properties of AMP (precise analysis via state evolution) and of FTAP(m;y, q) (Lipschitz continuity of the
minimizer in y).

2.1.2 Sampling via stochastic localization

Our sampling algorithm is presented as Algorithm 2. The algorithm makes uses of constants qk := qk(β, t).
With W ∼ N(0, 1) a standard Gaussian, these constants are defined for k, β, t ≥ 0 by the recursion

qk+1 = E
{

tanh
(
β2qk + t+

√
β2qk + tW

)2}
, q0 = 0 , q∗ = lim

k→∞
qk . (2.5)

This iteration can be implemented via a one-dimensional integral, and the limit q∗ is approached exponen-
tially fast in k (see Lemma 4.5 below). The values q∗(β, t = `δ) for ` ∈ {0, . . . , L} can be precomputed and
are independent of the input A. For the sake of simplicity, we will neglect errors in this calculation.
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Algorithm 2: Approximate sampling from the SK Gibbs measure

Input: Data A ∈ Rn×n, parameters (β, η,KAMP,KNGD, L, δ)
1 ŷ0 = 0,
2 for ` = 0, · · · , L− 1 do
3 Draw w`+1 ∼ N(0, In) independent of everything so far;
4 Set q = q∗(β, t = `δ);
5 Set m̂(A, ŷ`) the output of Algorithm 1, with parameters (β, η, q,KAMP,KNGD);

6 Update ŷ`+1 = ŷ` + m̂(A, ŷ`) δ +
√
δw`+1

7 end
8 Set m̂(A, ŷL) the output of Algorithm 1, with parameters (η, q,KAMP,KNGD);
9 Draw {xalg

i }i≤n conditionally independent with E[xalg

i |y, {w`}] = m̂i(A, ŷL)
10 return xalg

The core of the sampling procedure is step 6, which is a standard Euler discretization of the SDE (1.4),
with step size δ, over the time interval [0, T ], T = Lδ. The mean of the Gibbs measure m(A,y) is replaced
by the output of Algorithm 1 which we recall is denoted by m̂(A,y). We reproduce the Euler iteration
here for future reference

ŷ`+1 = ŷ` + m̂(A, ŷ`) δ +
√
δw`+1 . (2.6)

The output of the iteration is m̂(A, ŷL), which should be thought of as an approximation ofm(A,y(T )),
T = Lδ, that is the mean of µA,y(T ). According to the discussion in the introduction, for large T , µA,y(T )

concentrates around x? ∼ µA. In other words, m(A,y(T )) is close to the corner x? of the hypercube. We
round its coordinates independently to produce the output xalg.

2.1.3 Theoretical guarantee

Our main positive result is the following.

Theorem 2.1. For any ε > 0 and β0 < 1/2 there exist η,KAMP,KNGD, L, δ independent of n, so that the fol-
lowing holds for all β ≤ β0. The sampling algorithm 2 takes as input A and parameters (η,KAMP,KNGD, L, δ)
and outputs a random point xalg ∈ {−1,+1}n with law µalg

A such that with probability 1 − on(1) over
A ∼ GOE(n),

W2,n(µalg

A , µA ) ≤ ε . (2.7)

The total complexity of this algorithm is O(n2).

Remark 2.1. The condition β < 1/2 arises because our proof requires the Hessian of the TAP free energy
to be positive definite at its minimizer. A simple calculation yields

∇2FTAP(m;y, q) = −βA+D(m) + β2(1− q) In , D(m) := diag
(
{(1−m2

i )
−1}i≤n

)
. (2.8)

A crude bound yields ∇2FTAP(m;y, q) � −βA + In � (1 − βλmax(A))In. Since p-limn→∞ λmax(A) = 2
the desired condition holds trivially for β < 1/2. However, we expect that a more careful treatment will
reveal that the Hessian is locally positive in a neighborhood of the minimizer for all β < 1.
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2.2 Hardness for stable algorithms, for β > 1

The sampling algorithm 2 enjoys stability properties with respect to changes in the inverse temperature
β and the matrix A which are shared by many natural efficient algorithms. We will use the fact that the
actual Gibbs measure does not enjoy this stability property for β > 1 to conclude that sampling is hard
for all stable algorithms.

Throughout this section, we denote the Gibbs and algorithmic output distributions by µA,β and µalg

A,β

respectively to emphasize the dependence on β.

Definition 2.2. Let {ALGn}n≥1 be a family of randomized sampling algorithms, i.e., measurable maps

ALGn : (A, β, ω) 7→ ALGn(A, β, ω) ∈ [−1, 1]n ,

where ω is a random seed (a point in a probability space (Ω,F ,P)). Let A′ and A ∼ GOE(n) be independent
copies of the coupling matrix, and consider perturbations As =

√
1− s2A + sA′ for s ∈ [0, 1]. Finally,

denote by µalg

As,β
the law of the algorithm output, i.e., the distribution of ALGn(As, β, ω) when ω ∼ P

independent of As, β which are fixed.
We say ALGn is stable with respect to disorder, at inverse temperature β, if

lim
s→0

p-lim
n→∞

W2,n(µalg

A,β, µ
alg

As,β
) = 0 . (2.9)

We say ALGn is stable with respect to temperature at inverse temperature β, if

lim
β′→β

p-lim
n→∞

W2,n(µalg

A,β, µ
alg

A,β′) = 0 . (2.10)

We begin by establishing the stability of the proposed sampling algorithm.

Theorem 2.3 (Stability of the sampling Algorithm 2). For any β ∈ (0,∞) and fixed parameters (η, KAMP,
KNGD, L, δ), Algorithm 2 is stable with respect to disorder and with respect to temperature.

This theorem is proved in Section 5.1. As a consequence, the Gibbs measures µA,β enjoy similar stability
properties for β < 1/2, which amount (as discussed below) to the absence of chaos in both temperature
and disorder:

Corollary 2.4. For any β < 1/2, the following properties hold for the Gibbs measure µA,β of the
Sherrington-Kirkpatrick model, cf. Eq. (1.1):

1. lims→0 p-limn→∞W2,n(µA,β, µAs,β) = 0.

2. limβ′→β p-limn→∞W2,n(µA,β, µA,β′) = 0.

Proof. Take ε > 0 arbitrarily small and choose parameters (η,KAMP,KNGD, L, δ) of Algorithm 2 with the
desired tolerance ε so that Theorem 2.1 holds. Combining with Theorem 2.3 using the same parameters
(η,KAMP,KNGD, L, δ) implies the result since ε is arbitrarily small. (Recall that (η,KAMP,KNGD, L, δ) can be
chosen independent of β for β ≤ β0 < 1/2.)

Remark 2.2. We emphasize that Corollary 2.4 makes no reference to the sampling algorithm, and is
instead a purely structural property of the Gibbs measure. The sampling algorithm, however, is the key
tool of our proof.
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Stability is related to chaos, which is a well studied and important property of spin glasses, see e.g.
[Cha09, Che13, Cha14, CHHS15, CP18]. In particular, “disorder chaos” refers to the following phenomenon.

Draw x0 ∼ µA,β independently of xs ∼ µAs,β, and denote by µ
(0,s)
A,β := µA,β⊗µAs,β their joint distribution.

Disorder chaos holds at inverse temperature β if

lim
s→0

lim
n→∞

Eµ(0,s)
A,β

{( 1

n
〈x0,xs〉

)2}
= 0 . (2.11)

Note that disorder chaos is not necessarily a surprising property. For instance when β = 0, the distribution
µAs,β is simply the uniform measure over the hypercube {−1,+1}n for all s, and this example exhibits
disorder chaos in the sense of Eq. (2.11). In fact, the SK Gibbs measure exhibits disorder chaos at all
β ∈ [0,∞) [Cha09]. However, for β > 1, Eq. (2.11) leads to a stronger conclusion.

Theorem 2.5 (Disorder chaos in W2,n distance). For all β > 1,

inf
s∈(0,1)

lim inf
n→∞

E
[
W2,n(µA,β, µAs,β)

]
> 0 .

Finally, we obtain the desired hardness result by reversing the implication in Corollary 2.4: no stable
algorithm which can approximately sample from the measure µA,β in the W2,n sense for β > 1.

Theorem 2.6. Fix β > 1, and let {ALGn}n≥1 be a family of randomized algorithms which is stable with
respect to disorder as per Definition 2.2 at inverse temperature β. Let µalg

A,β be the law of the output
ALGn(A, β, ω) conditional on A. Then

lim inf
n→∞

E
[
W2,n(µalg

A,β, µA,β)
]
> 0 .

We refer the reader to Section 5.2 for the proof of this theorem.

2.3 Notations

We use on(1) to indicate a quantity tending to 0 as n → ∞. We use on,P(1) for a quantity tending to
0 in probability. If X is a random variable, then L(X) indicates its law. The quantity C(β) refers to a
constant depending on β. For x ∈ Rn and ρ ∈ R≥0, we denote the open ball of center x and radius ρ
by B(x, ρ) := {y ∈ Rn : ‖y − x‖2 < ρ}. The uniform distribution on the interval [a, b] is denoted by
Unif([a, b]). The set of probability distributions over a measurable space (Ω,F) is denoted by P(Ω).

3 Properties of stochastic localization

We collect in this section the main properties of the stochastic localization process needed for our analysis.
To be definite, we will focus on the stochastic localization process for the Gibbs measure (1.1), although
most of what we will say generalizes to other probability measures in Rn, under suitable tail conditions.
Throughout this section, the matrix A is viewed as fixed.

Recalling the tilted measure µA,y of Eq. (1.2), and the SDE of Eq. (1.4), we introduce the shorthand

µt = µA,y(t) .

The following properties are well known. See for instance [ES22, Propositions 9, 10] or [Eld20]. We
provide proofs for the reader’s convenience.
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Lemma 3.1. For all t ≥ 0 and all x ∈ {−1,+1}n,

dµt(x) = µt(x)〈x−mA,y(t), dB(t)〉 . (3.1)

As a consequence, for any function ϕ : Rn → Rm, the process
(
Ex∼µt

[
ϕ(x)

])
t≥0

is a martingale.

Proof. Let us evaluate the differential of logµt. By writing Zt for the normalization constant Z(y(t)) of
Eq. (1.2), we get

d logµt(x) = 〈dy(t),x〉 − d logZt . (3.2)

Using Itô’s formula for Zt we have

dZt = d
∑

x∈{−1,+1}n
e(β/2)〈x,Ax〉+〈y(t),x〉

=
∑

x∈{−1,+1}n

(
〈dy(t),x〉+

1

2
‖x‖2dt

)
e(β/2)〈x,Ax〉+〈y(t),x〉 .

Therefore, denoting by [Z]t the quadratic variation process associated to Zt,

d logZt =
dZt
Zt
− 1

2

d[Z]t
Z2
t

= 〈dy(t),mA,y(t)〉+
1

2
Eµt [‖x‖2]dt− 1

2
‖mA,y(t)‖2dt

= 〈dy(t),mA,y(t)〉+
n

2
− 1

2
‖mA,y(t)‖2dt .

Substituting in (3.2) we obtain

d logµt(x) = 〈dy(t),x−mA,y(t)〉 −
n

2
dt+

1

2
‖mA,y(t)‖2dt

= 〈dBt,x−mA,y(t)〉 −
1

2
‖x−mA,y(t)‖2dt .

Applying Itô’s formula to elog µt(x) yields the desired result.
Finally, Eq. (3.1) implies that µt(x) is a martingale for every x ∈ {−1,+1}n. Since Ex∼µt

[
ϕ(x)

]
is a

linear combination of martingales, it is itself a martingale.

Lemma 3.2 ([Eld20]). For all t > 0,

E cov(µt) �
1

t
In . (3.3)

Lemma 3.3. For all t > 0,

W2,n

(
µA,L(mA,y(t))

)2 ≤ 1

t
. (3.4)

In particular, the mean vector mA,y(t) converges in distribution to a random vector x? ∼ µA as t→∞.

Proof. By Lemma 3.2,

E
[
Ex∼µt [‖x−mA,y(t)‖2]

]
≤ n

t
,

therefore

E
[
W2,n

(
µt, δmA,y(t)

)2] ≤ 1

t
.

Notice that (µ, ν) 7→W 2
2,n(µ, ν) is jointly convex. Since µA = E[µt], this implies

W2,n

(
µA,L(mA,y(t))

)2 ≤ E
[
W2,n

(
µt, δmA,y(t)

)2] ≤ 1

t
.

9



4 Analysis of the sampling algorithm and proof of Theorem 2.1

This section is devoted to the analysis of Algorithm 2 described in the previous section. An important
simplification is obtained by reducing ourselves to working with a corresponding planted model. This
approach has two advantages: (i) The joint distribution of the matrix A and the process (y(t))t≥0 in (1.4)
is significantly simpler in the planted model; (ii) Analysis in the planted model can be cast as a statistical
estimation problem. In the latter, Bayes-optimality considerations can be exploited to relate the output
of the AMP algorithm AMP(A,y; k) to the true mean vector m(A,y).

This section is organized as follows. Section 4.1 introduces the planted model and its relation to the
original model. We then analyze the AMP component of our algorithm in Section 4.2, and the NGD
component in Section 4.3. Finally, Section 4.4 puts the various elements together and proves Theorem 2.1.

4.1 The planted model and contiguity

Let ν be the uniform distribution over {−1,+1}n and consider the joint distribution of pairs (x,A) ∈
{−1,+1}n × Rn×nsym ,

µpl(dx,dA) =
1

Zpl

exp
{
− n

4

∥∥∥A− βxx>

n

∥∥∥2

F

}
ν(dx) dA , (4.1)

where dA is the Lebesgue measure over the space of symmetric matrices Rn×nsym , and the normalizing
constant

Zpl :=

∫
exp

{
− n

4

∥∥∥A− βxx>

n

∥∥∥2

F

}
dA (4.2)

is independent of x ∈ {−1,+1}n. It is easy to see by construction that the marginal distribution of x under
µpl is ν, and the conditional law µpl( · |x) is a rank-one spiked GOE model with spike βxx>/n. Namely,
under µpl( · |x), we have

A =
β

n
xx> +W , W ∼ GOE(n) . (4.3)

On the other hand, µpl( · |A) is the SK measure µA.
The marginal of A under µpl is not the GOE(n) distribution µGOE but takes the form

µpl(dA) =
1

Zpl

e−
n
4
‖A‖2F ZSK(A) dA (4.4)

= µGOE(dA)ZSK(A) , (4.5)

where ZSK(A) is the (rescaled) partition function of the SK measure

ZSK(A) = 2−n
∑

x∈{−1,+1}n
exp

{β
2
〈x,Ax〉 − β2n

4

}
. (4.6)

By a classical result [ALR87], ZSK(A) has log-normal fluctuations for all β < 1:

Theorem 4.1 ([ALR87]). Let β < 1, A ∼ µGOE and σ2 = 1
4(− log(1− β2)− β2). Then

ZSK(A)
d−−−→

n→∞
exp(W ) , (4.7)

where W ∼ N
(
− σ2, 2σ2

)
.
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Therefore, by Le Cam’s first lemma [VdV98, Lemma 6.4], µpl(dA) and µGOE(dA) are mutually contigu-
ous for all β < 1. For the purpose of our analysis we will need a stronger result about the joint distributions
of (A,y) under our “random” model and a planted model which we now introduce.

Recall that m(A,y) denotes the mean of the Gibbs measure µA,y in Eq. (1.2). For a fixed T ≥ 0, we
define two Borel distributions P and Q on (A,y) ∈ Rn×nsym × C([0, T ],Rn) as follows:

Q :


A ∼ µGOE ,

y(t) =

∫ t

0
m(A,y(s)) ds+B(t) , t ∈ [0, T ] ,

(random) (4.8)

P :


x0 ∼ ν ,

A ∼ µpl( · |x0) ,

y(t) = tx0 +B(t) , t ∈ [0, T ]

(planted) (4.9)

where (B(t))t≥0 is a standard Brownian motion in Rn independent of everything else. Note the SDE defin-
ing the process y = (y(t))t∈[0,T ] in Eq. (4.8) is a restatement of the stochastic localization equation (1.4)
applied to the SK measure µA.

Proposition 4.2. For all T ≥ 0 and β ≥ 0, P absolutely continuous with respect to Q and for all
(A,y) ∈ Rn×nsym × C([0, T ],Rn),

dP
dQ

(A,y) = ZSK(A) .

Therefore, for all β < 1, P and Q are mutually contiguous. (Namely, for a sequence of events En,
limn→∞ P(En) = 0 if and only if limn→∞Q(En) = 0.)

Proof. Fix x0 ∈ Rn. We first calculate the density of the process y(t) = tx0 + B(t) with respect to
Brownian motion. Let W be the Wiener measure on C([0, T ],Rn). We obtain by Girsanov’s theorem that

dP( · |x0)

dW
(y) = e〈x0,y(T )〉−T‖x0‖2/2 . (4.10)

Notice that the above density only depends on the endpoint y(T ) of the process y. From this, we obtain
an explicit formula for the density of P with respect to (dA)×W:

P(dA, dy) =
1

Zpl

(∫
exp

{
− n

4

∥∥∥A− βx0x
>
0

n

∥∥∥2

F
+ 〈x0,y(T )〉 − T

2
‖x0‖2

}
ν(dx0)

)
dA W(dy) , (4.11)

where Zpl =
∫
e−n‖A‖

2
F /4dA is given in Eq. (4.2).

Next we derive a similar formula for Q. Fix a matrix A ∈ Rn×nsym and let y be the solution to the
SDE in (4.8). Let (B̄(t))t≥0 be another standard Brownian motion in Rn, and consider the process
ȳ = (ȳ(t))t∈[0,T ] defined by

ȳ(t) = tx+ B̄(t) where x ∼ µA independently of B̄ . (4.12)

Then, there exists another Brownian motion (W (t))t≥0 adapted to the filtration (Ft = σ(ȳ(s) : s ≤
t))t∈[0,T ] such that dȳ(t) = mA,ȳ(t)dt+ dW (t) for all t ∈ [0, T ]. This is stated as Theorem 7.12 of [LS77],
and can be proved directly applying Levy’s characterization of Brownian motion to the process ȳ(t) −∫ t

0 m(A, ȳ(s))ds.
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Therefore, the processes ȳ and y share the same law conditional on A. Since we computed the law of
ȳ in (4.10), we obtain

Q(dA, dy) =
1

Zpl

(∫
exp

{
− n

4

∥∥A∥∥2

F
+ 〈x,y(T )〉 − T

2
‖x‖2

}
µA(dx)

)
dA W(dy) , (4.13)

where Zpl is as above. Since µA(dx) = ZSK(A)−1eβ〈x,Ax〉/2−β2n/4ν(dx), we obtain after simplification

dP
dQ

(A,y) = ZSK(A) . (4.14)

Mutual contiguity follows from Theorem 4.1 and Le Cam’s first lemma.

Therefore, for the remainder of the proof of Theorem 2.1, we work under the “planted” distribution P.
All results proven under P transfer to Q by contiguity.

4.2 Approximate Message Passing

In this section we analyze the AMP iteration of 1, which we copy here for the reader’s convenience

m̂−1 = z0 = 0,

m̂k = tanh(zk), bk =
β2

n

n∑
i=1

(
1− tanh2(zki )

)
∀k ≥ 0 , (4.15)

zk+1 = βAm̂k + y − bkm̂
k−1 .

When needed, we will specify the dependence on A,y by writing m̂k = m̂k(A,y) = AMP(A,y; k) and
zk = zk(A,y). Throughout this section (A,y) ∼ P will be distributed according to the planted model
introduced above.

Our analysis will be based on the general state evolution result of [BM11, JM13], which implies the
following asymptotic characterization for the iterates. Set γ0(β, t) = 0,Σ0,i(β, t) = 0 and recursively define

γk+1(β, t) = β2 · E [tanh (γk(β, t) + t+Gk)] , (4.16)

Σk+1,j+1(β, t) = β2 · E [tanh (γk(β, t) + t+Gk) tanh (γj(β, t) + t+Gj)] , (4.17)

where (Gj)≤k are jointly Gaussian, with zero mean and covariance Σ≤k + t11>, Σ≤k := (Σij)i,j≤k.

Proposition 4.3 (Theorem 1 of [BM11]). For (A,y) ∼ P and any k ∈ Z≥0, the empirical distribution of
the coordinate of the AMP iterates converges almost surely in W2(Rk+2) as follows:

1

n

n∑
i=1

δ(z1i ,··· ,zki ,xi,yi)
W2−−−→
n→∞

L (γ≤k(β, t)X +G+ Y 1, X, Y ) , (4.18)

γ≤k(β, t) =
(
γ1(β, t), . . . , γk(β, t)

)
, G ∼ N(0,Σ≤k) . (4.19)

On the right-hand side, X is uniformly random in {−1,+1}, Y = tX +
√
tW where W ∼ N(0, 1) and

X,G,W are mutually independent.

Remark 4.1. This specific statement follows from [BM11, Theorem 1] by a change of variables, as in
[DAM17] or [MV21].
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As in [DAM17, Eqs. (69,70)] we argue that the state evolution equations (4.16), (4.17) take a simple
form thanks to our specific choice of AMP non-linearity tanh(·). It will be convenient to use the notations

γ̃k(β, t) = γk(β, t) + t ,

Σ̃k,j(β, t) = Σk,j(β, t) + t .

Proposition 4.4. For any t ∈ R≥0 and k, j ∈ Z≥0,

Σk,j(β, t) = γk∧j(β, t) , and Σ̃k,j(β, t) = γ̃k∧j(β, t) .

Proof. The two claims are equivalent and we proceed by induction. The base case k = 0 holds by definition,
so we may assume Σi,j(β, t) = γi∧j(β, t) for i, j ≤ k− 1. Set Zj = γjX + G̃j where G̃ ∼ N(0, Σ̃≤k−1). Note
that, by the induction hypothesis, Zk−1 is a sufficient statistic for X given (Zj)j≤k−1. Using Bayes’ rule,

and writing σ̃2
k−1 := Σ̃k−1,k−1, one easily computes

E[X|Zk−1] =
eγ̃k−1Zk−1/σ̃

2
k−1 − e−γ̃k−1Zk−1/σ̃

2
k−1

eγ̃k−1Z/σ̃
2
k−1 + e−γ̃k−1Z/σ̃

2
k−1

= tanh(Z) .

Therefore using Eq. (4.16), the fact that tanh is an odd function and WX
d
= W ,

Σ̃k,j = E
[
E[X|Zk−1]E[X|Zj−1]

]
(a)
= E

[
X E[X|Zj−1]

]
= E

[
X tanh(γ̃j−1X + σ̃2

j−1W )
]

= E
[
tanh(γ̃j−1 + σ̃2

j−1W )
]

= γj ,

where in step (a) we crucially used the sufficient statistic property. This completes the inductive step and
hence the proof.

Define the function mmse : R→ R given by

mmse(γ) ≡ 1− E
[

tanh(γ +
√
γW )2

]
= 1− E

[
E[X|γX +

√
γW ]2

]
.

It follows from Proposition 4.4 that (4.16) and (4.17) can be expressed just in terms of the sequence γk(β, t)
defined by γ0(t) = 0 and the recursion

γk+1(β, t) = β2
(
1−mmse(γk(β, t) + t)

)
. (4.20)

Note that γk(β, t) depends also on β, which is usually treated as constant. The following result details
some useful properties of mmse.

Lemma 4.5 (Lemma 6.1 of [DAM17]). The following properties hold, where {γk(β, t)}k≥1 is as defined by
(4.20).

(a) mmse is differentiable, strictly decreasing, and convex in γ ∈ R≥0.

(b) mmse(0) = 1, mmse′(0) = −1 and limγ→∞mmse(γ) = 0.
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(c) For t ≥ 0 there exists a non-negative solution γ∗ = γ∗(β, t) to the fixed point equation

γ∗ = β2(1−mmse(γ∗ + t)) . (4.21)

The solution to this equation is unique for all t > 0.

(d) The function (β, t) 7→ γ∗(β, t) is differentiable for t > 0.

(e) For all β < 1 and t > 0,

1− β2k ≤ γk(β, t)

γ∗(β, t)
≤ 1 . (4.22)

(f) For β < 1 and T > 0, there exist constants c(β, T ), C(β, T ) ∈ (0,∞) such that, for all t ∈ (0, T ],

c(β, T ) ≤ γ∗(β, t)

t
≤ C(β, T ) . (4.23)

(g) For β < 1 and any t1, t2 ∈ (0,∞),

γ∗(β, t1)− γ∗(β, t2) ≤ β2

1− β2
|t1 − t2|. (4.24)

Proof. Lemma 6.1 in [DAM17] proves that γ 7→ mmse(γ) is differentiable, strictly decreasing, and convex
in γ ∈ R≥0 (note that the statement of that Lemma does not claim differentiability, but this is actually
proved there by a simple application of dominated convergence). This proves point (a).

Point (b) follows by a direct calculation, cf. [DAM17]. Indeed, by Stein’s lemma (Gaussian integration
by parts), with Z = γ +W

√
γ,

−mmse′(γ) =
d

dγ
E[tanh(γ +W

√
γ)2]

= E[2 tanh(Z) tanh′(Z) + tanh′(Z)2 + tanh(Z) tanh′′(Z)]

Evaluating at γ = 0 shows
mmse′(0) = −1.

Also, dominated convergence yields the desired limit values.
Point (c), namely existence and uniqueness of solutions of Eq. (4.21) follows from the above monotonic-

ity and convexity properties. Point (d) follows from the implicit function theorem.
We are left with the task of proving (4.22), (4.23) and (4.24), which are not given in [DAM17].
Define

ft(γ) ≡ β2(1−mmse(γ + t))

so that ft(γk(β, t)) = γk+1(β, t). By point (b), ft(0) ≥ 0. By point (a), ft(·) is increasing and concave.
Combined with the computation above, we conclude that f ′t(γ) ∈ [0, β2] for all γ ≥ 0. By the mean value
theorem, it follows that for γ < γ∗,

0 ≤ γ∗(β, t)− ft(γ) = f(γ∗(β, t))− ft(γ) ≤ β2(γ∗(β, t)− γ) . (4.25)

Setting γ = γj(β, t), we obtain

0 ≤ γ∗(β, t)− γj+1(β, t)

γ∗(β, t)− γj(β, t)
≤ β2.
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Multiplying for j ∈ {0, . . . , k − 1}, we find

0 ≤ γ∗(β, t)− γk(β, t)
γ∗(β, t)

≤ β2k ,

or,
γk(β, t)

γ∗(β, t)
∈
[
1− β2k, 1

]
,

which proves (4.22).
To prove (4.23), note that we just showed

γ1(β, t)

γ∗(β, t)
∈
[
1− β2, 1

]
.

Therefore it suffices to show that

c(β, T ) ≤ γ1(β, t)

t
≤ C(β, T ), t ∈ (0, T ] . (4.26)

By definition, γ1(β, t) = β2(1−mmse(t)). Thus (4.26) follows from the fact that mmse(0) = 1, mmse′(0) =
−1, and mmse : R≥0 → [0, 1] is convex and strictly decreasing. In fact we have γ1(β, T )/T ≤ γ1(β, t)/t ≤ β2

for all t ∈ (0, T ].
Finally, we prove (4.24). Since |mmse′(t)| ≤ 1 for all t ≥ 0 we find that for t1, t2 ≥ 0,

|γ∗(β, t1)− γ∗(β, t2)| = β2|mmse(γ∗(β, t1) + t1)−mmse(γ∗(β, t2) + t2)|
≤ β2|γ∗(β, t1)− γ∗(β, t2)|+ β2|t1 − t2|.

Rearranging, we obtain
|γ∗(β, t1)− γ∗(β, t2)|

|t1 − t2|
≤ β2

1− β2
.

For (A,y) ∼ P and x ∼ µA,y(t), define

MSEAMP(k;β, t) = p-lim
n→∞

1

n
E
∥∥x− m̂k(A,y(t))

∥∥2

2
, m̂k(A,y(t)) := AMP(A,y(t); k) , (4.27)

where the limit is guaranteed to exist by Proposition 4.3.

Lemma 4.6. We have

MSEAMP(k;β, t) = 1− γk+1(β, t)

β2
.

In particular,

lim
k→∞

MSEAMP(k;β, t) = 1− γ∗(β, t)

β2
.
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Proof. By state evolution

MSEAMP(k;β, t) = p-lim
n→∞

1

n
E
∥∥m̂k(A,y(t))− x

∥∥2

2

= E
[(

tanh(γkX + σkW + Y )−X
)2]

= E
[(

tanh(γ̃kX + σ̃kW )−X
)2]

= 1− 2E[tanh(γ̃kX + σ̃kW )X] + E[tanh(γ̃kX + σ̃kW )2]

= 1− 2γk+1/β
2 + σ2

k+1/β
2

= 1− γk+1/β
2,

where the last line follows from Proposition 4.4.

We next show that, for any t > 0, the mean square error achieved by AMP is the same as the Bayes
optimal error, i.e., the mean squared error achieved by the posterior expectation m(A,y(t)).

Proposition 4.7. Fix β < 1 and t ≥ 0. We have

lim
n→∞

1

n
E
[∥∥x−m(A,y(t))

∥∥2

2

]
=
γ∗(β, t)

β2
. (4.28)

Proof. The proof is an adaptation from [DAM17], which we will present succinctly.
Let I(X;Y ) denote the mutual information between random variables X,Y on the same probability

space. Letting X ∼ Unif({−1,+1}) independent of W ∼ N(0, 1), define the function

I(γ) := I
(
X; γX +

√
γW

)
(4.29)

= γ − E log cosh
(
γ +
√
γW )

)
. (4.30)

We also define the function

Ψ(γ;β, t) :=
β2

4
+

γ2

4β2
− γ

2
+ I(γ + t) . (4.31)

As in [DAM17], it is easy to check that ∂γΨ(γ∗(β, t);β, t) = 0 and, using the continuity of (β, t) 7→ γ∗(β, t),

d

d(β2)
Ψ(γ∗(β, t);β, t) =

1

4

(
1− γ∗(β, t)

2

β4

)
, (4.32)

d

dt
Ψ(γ∗(β, t);β, t) =

1

2

(
1− γ∗(β, t)

β2

)
. (4.33)

We further note that by the de Brujin identity (also known as I-MMSE relation [GSV05])

d

d(β2)
I(x;A(β),y(t)) =

1

4n
E
[∥∥xx> − E{xx>|A(β),y(t)}

∥∥2

F

]
, (4.34)

d

dt
I(x;A(β),y(t)) =

1

2
E
[∥∥x− E{x|A(β),y(t)}

∥∥2

2

]
. (4.35)
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Here we write A = A(β) to emphasize the dependence upon β. Using Eqs. (4.32) and (4.34), we have

log 2− I(t) = lim
β→∞

lim
n→∞

1

n

[
I(x;A(β),y(t))− I(x;A(0),y(t))

]
= lim

n→∞

∫ ∞
0

1

4n
E
[∥∥xx> − E{xx>|A(β),y(t)}

∥∥2

F

]
dβ2

≤ lim
k→∞

lim
n→∞

∫ ∞
0

1

4n
E
[∥∥xx> − m̂k(A(β),y(t))m̂k(A(β),y(t))>

∥∥2

F

]
dβ2

= lim
k→∞

∫ ∞
0

1

4

(
1− γk(β, t)

2

β4

)
dβ2

=

∫ ∞
0

1

4

(
1− γ∗(β, t)

2

β4

)
dβ2

= lim
β→∞

[
Ψ(γ∗(β, t);β, t)−Ψ(γ∗(0, t); 0, t)

]
.

(The exchanges of limits are justified by dominated convergence.)
Finally, a direct calculation reveals that limβ→∞

[
Ψ(γ∗(β, t);β, t) − Ψ(γ∗(0, t); 0, t)

]
= log(2) − I(t)

and therefore equality holds at each of the steps above. We deduce that limn→∞ n
−1I(x;A(β),y(t)) =

Ψ(γ∗(β, t);β, t).
Using this fact, together with Eqs. (4.33), (4.35) and the fact that the right hand sides of these equations

are monotone decreasing in t, we get that the following holds for almost every t > 0:

lim
n→∞

1

n
E
[∥∥x− E{x|A(β),y(t)}

∥∥2

2

]
= 1− γ∗(β, t)

β2
. (4.36)

This coincides with the claim (4.28), and actually holds for every t > 0 since the right-hand side of
Eq. (4.28) is continuous in t > 0 by Lemma 4.5.

It follows that AMP approximately computes the posterior mean m(A,y(t)) in the following sense.

Proposition 4.8. Fix β < 1, T > 0 and let t ∈ (0, T ]. Recalling that m̂k(A,y(t)) := AMP(A,y(t); k)
denotes the AMP estimate afte k iterations, and that zk is defined by Eq. (4.15), we have

lim
k→∞

sup
t∈(0,T )

p-lim
n→∞

‖m(A,y(t))− m̂k(A,y(t))‖2
‖m(A,y(t))‖2

= 0 . (4.37)

Moreover

lim
k→∞

sup
t∈(0,T )

p-lim
n→∞

‖zk+1 − zk‖
‖zk‖

= 0 . (4.38)

Remark 4.2. A somewhat similar result has recently been proved by Chen and Tang [CT21] where the
external field vector y(t) is replaced by a multiple of the all-ones vector h1, for any pair (β, h) for which a
certain condition of uniform concentration of the overlap between two independent draws from the measure
µA,h1 holds. In our setting, we are concerned with a different family of external fields, namely the ones
generated by the stochastic localization process (1.4). The argument, which proceeds via the planted
model, does not require the uniform concentration condition.
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Proof. Throughout this proof we write y instead of y(t) for ease of notation. To show Eq. (4.37), observe
that the bias-variance decomposition yields (recalling the definition MSEAMP( · ) in Eq. (4.27))

MSEAMP(k;β, t) = p-lim
n→∞

{
1

n
E
[∥∥m̂k(A,y)−m(A,y)

∥∥2

2

]
+

1

n
E
[∥∥x−m(A,y)

∥∥2

2

]}
.

Using Lemma 4.6 for the left-hand side and Proposition 4.7 for the second step the second term on the
right-hand side, we get

p-lim
n→∞

1

n
E
[∥∥m̂k(A,y)−m(A,y)

∥∥2

2

]
=
γ∗(β, t)− γk+1(β, t)

β2
. (4.39)

Claim (4.37) now follows by combining Eq. (4.39) with Eqs. (4.22) and (4.23) of Lemma 4.5.
Finally, Eq. (4.38) is an immediate consequence of Proposition 4.3 and Proposition 4.4. Indeed, by

Proposition 4.3, we have

p-lim
n→∞

1

n

∥∥zk∥∥2

2
= E

[
(γkX +Gk + Y )2

]
= (γk + t)2 + γk + t , (4.40)

p-lim
n→∞

1

n

∥∥zk+1 − zk
∥∥2

2
= E

[(
(γk+1 − γk)X +Gk+1 −Gk)2

]
(4.41)

= (γk+1 − γk)2 + (Σk+1,k+1 − 2Σk,k+1 + Σk,k) (4.42)

= (γk+1 − γk)2 + (γk+1 − γk) , (4.43)

where in the last step we used Proposition 4.4. We therefore obtained we have

p-lim
n→∞

‖zk+1 − zk
∥∥2

2

‖zk‖22
=

(γk+1 − γk)2 + (γk+1 − γk)
(γk + t)2 + γk + t

. (4.44)

Hence Eq. (4.38) also follows from Eq. (4.22).

We conclude this subsection with a lemma controlling the regularity of the posterior path t 7→m(A,y(t)),
which will be useful later.

Lemma 4.9. Fix β < 1 and 0 ≤ t1 < t2 ≤ T . Then

p-lim
n→∞

sup
t∈[t1,t2]

1

n

∥∥m(A,y(t))−m(A,y(t1))
∥∥2

2
= p-lim

n→∞

1

n

∥∥m(A,y(t2))−m(A,y(t1))
∥∥2

2
(4.45)

=
γ∗(β, t2)− γ∗(β, t1)

β2
. (4.46)

Proof. We will exploit the fact that (m(A,y(t)))t≥0 is a martingale, as a consequence of Lemma 3.1 (with
ϕ : Rn → Rn given by ϕ(x) = x).

Using Proposition 4.7, we obtain, for any t1 < t2

lim
n→∞

1

n
E
[∥∥m(A,y(t2))−m(A,y(t1))

∥∥2

2

]
= p-lim

n→∞

1

n

{
E
[∥∥x−m(A,y(t1))

∥∥2

2

]
− E

[∥∥x−m(A,y(t1))
∥∥2

2

]}
=
γ∗(β, t2)− γ∗(β, t1)

β2
,

18



where the first equality uses the fact that E{m(A,y(t2))|A,y(t1)} = m(A,y(t1)). By Lemma 4.8, we
have, with high probability, ‖m(A,y(ti))− m̂k(A,y(t))‖22/n ≤ εk, for some deterministic constants εk so
that εk → 0 as k →∞. As a consequence

p-lim
n→∞

1

n

∥∥m(A,y(t2))−m(A,y(t1))
∥∥2

2
=
γ∗(β, t2)− γ∗(β, t1)

β2
. (4.47)

Now, since t→mA,y(t) is a bounded martingale, it follows that, for any fixed constant c, the process

Yn,t :=
∣∣Mn,t − c

∣∣ , where Mn,t :=
1√
n

∥∥m(A,y(t))−m(A,y(t1))
∥∥

2
, (4.48)

is a positive bounded submartingale for t ≥ t1. Therefore by Doob’s maximal inequality [Dur19],

P
(

sup
t∈[t1,t2]

Yn,t ≥ a
)
≤ 1

a
E
[
Yn,t2

]
≤ 1

a
E
[
Y 2
n,t2

]1/2
, (4.49)

for any a > 0. We choose c =
√
γ∗(β, t2)− γ∗(β, t1)/β. By (4.47), we have

p-lim
n→∞

M2
n,t2 =

γ∗(t2)− γ∗(t1)

β2
= c2 ,

and therefore, since Mn,t is bounded, for any fixed a > 0

lim
n→∞

P
(

sup
t∈[t1,t2]

Mn,t ≥ c+ a
)
≤ lim

n→∞
P
(

sup
t∈[t1,t2]

Yn,t ≥ a
)

≤ 1

a
lim
n→∞

E
[
(Mn,t2 − c)2

]1/2
= 0 .

Together with Eq. (4.47), this yields

p-lim
n→∞

sup
t∈[t1,t2]

M2
n,t =

γ∗(t2)− γ∗(t1)

β2
,

which coincides with the claim (4.46).

4.3 Natural Gradient Descent

Algorithm 3: Natural Gradient Descent on FTAP( · ;y, q)
Input: Initialization u0 ∈ Rn, data A ∈ Rn×n, ŷ ∈ Rn, step size η > 0, q ∈ (0, 1), integer K > 0.

1 m̂+,0 = tanh(u0).
2 for k = 0, · · · ,K − 1 do
3 uk+1 ← uk − η · ∇FTAP(m̂+,k;y, q),

4 m̂+,k+1 = tanh(u+,k+1),

5 end
6 return m̂+,K

The main objective of this section is to show that FTAP(m;y, q) behaves well for q = q∗(β, t) and
for m in a neighborhood of m̂KAMP . Namely it has a unique local minimum m∗ = m∗(A,y) in such a
neighborhood, and NGD approximates m∗ well for large number of iterations K. Crucially, the map y 7→
m∗ will be Lipschitz. For reference, we reproduce the NGD algorithm as Algorithm 3. This corresponds
to lines 6-11 of Algorithm 1.
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Lemma 4.10. Let β < 1
2 , c ∈ (0, 1 − 2β), and T > 0 be fixed. Then there exists ε0 = ε0(β, T ) such that,

for all ε ∈ (0, ε0) there exists KAMP = KAMP(β, T, ε) and ρ0 = ρ0(β, T, ε) such that for all ρ ∈ (0, ρ0) there
exists KNGD = KNGD(β, T, ε, ρ), such that the following holds.

Let m̂AMP = AMP(A,y(t);KAMP) be the output of the AMP after KAMP iterations, when applied to y(t).
Fix K ≥ KAMP. With probability 1−on(1) over (A,y) ∼ P, for all t ∈ (0, T ] and all ŷ ∈ B

(
y(t), c

√
εtn/4

)
,

setting q∗ := q∗(β, t):

1. The function
m 7→ FTAP(m; ŷ, q∗)

restricted to B
(
m̂AMP,

√
εtn
)
∩ (−1, 1)n has a unique stationary point

m∗(A, ŷ) ∈ B
(
m̂AMP,

√
εtn/2

)
∩ (−1, 1)n

which is also a local minimum. In the case ŷ = y(t), m∗(A,y(t)) also satisfies

m∗(A,y) ∈ B
(
m̂k′ ,

√
εtn/2

)
∩ (−1, 1)n

for all k′ ∈ [KAMP,K], where m̂k′ = AMP(A,y(t); k′).

2. The stationary point m∗(A, ŷ) satisfies (recall that m(A,y) denotes the mean of the Gibbs measure)∥∥m(A,y)−m∗(A,y)
∥∥

2
≤ ρ
√
tn .

3. The stationary point m∗ satisfies the following Lipschitz property for all ŷ, ŷ′ ∈ B
(
y(t), c

√
εtn/4

)
:∥∥m∗(A, ŷ)−m∗(A, ŷ′)

∥∥ ≤ c−1‖ŷ − ŷ′‖ . (4.50)

4. There exists a learning rate η = η(β, T, ε) such that the following holds. Let m̂NGD(A, ŷ) be the
output of NGD (Algorithm 3), when run for KNGD iterations with parameter q∗, ŷ, η. Assume that
the initialization u0 satisfies

∥∥u0 − arctanh(m̂AMP)
∥∥ ≤ c

√
εtn

200
. (4.51)

Then the algorithm output satisfies∥∥m̂NGD(A, ŷ)−m∗(A, ŷ)
∥∥ ≤ ρ√tn . (4.52)

The proof of this lemma is deferred to the appendix. Here we will prove the two key elements: first that
m̂AMP is an approximate stationary point of FTAP( · ;y(t), q∗) (Lemma 4.11), and second that FTAP( · ; ŷ, q∗)
is strongly convex in a neighborhood of m̂AMP (Lemma 4.12). Let us point out that, in the local convexity
guarantee, it is important that the neighborhood has radius Θ(

√
tn) as t→ 0.

We recall below the expressions for the gradient and Hessian of FTAP( · ;y, q) at m ∈ (−1, 1)n:

∇FTAP(m;y, q) = −βAm− y + arctanh(m) + β2 (1− q)m (4.53)

∇2FTAP(m;y, q) = −βA+D(m) + β2 (1− q) In , D(m) := diag
(
{(1−m2

i )
−1}i≤n

)
. (4.54)

In (4.53), arctanh is applied coordinate-wise to m ∈ (−1, 1)n.
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For t > 0, k ≥ 0 we let m̂k = AMP(A,y(t); k) and define the quantities

qk(β, t) :=
γk+1(β, t)

β2
, q∗(β, t) :=

γ∗(β, t)

β2
. (4.55)

Note that, by Lemma 4.6, we have

qk(β, t) = p-lim
n→∞

∥∥m̂k
∥∥2

n
, q∗(β, t) = lim

k→∞
qk(β, t) . (4.56)

We will use the bounds (4.22), (4.23) in Lemma 4.5 several times below, which ensures that (qk(β, t)/t) ∈
[c, C] holds for constants c, C > 0 independent of t ∈ (0, T ] and k ≥ 1.

Lemma 4.11. Let m̂k = m̂k(A,y(t)) denote the AMP iterates on input A,y(t). Then for any T > 0,

lim
k→∞

sup
t∈(0,T ]

sup
q∈[qk(β,t),q∗(β,t)]

p-lim
n→∞

∥∥∇FTAP(m̂k;y(t), q)
∥∥

√
tn

= 0.

Proof. As in Algorithm 1, let

zk+1 = arctanh(m̂k+1) = βAm̂k + y − β2

(
1− 1

n

∥∥m̂k
∥∥2
)
m̂k−1.

Let q ∈ [qk(β, t), q∗(β, t)]. Combining the above with Eqs. (4.53) and (4.56) yields

1√
n
‖∇FTAP(AMP(A,y; k);y, q)‖ =

1√
n

∥∥∥−βAm̂k − y + arctanh(m̂k) + β2(1− q)m̂k
∥∥∥

=
1√
n

∥∥∥zk − βAm̂k − y + β2 (1− q) m̂k
∥∥∥

≤ 1√
n
‖zk+1 − zk‖+

1√
n

∥∥∥zk+1 − βAm̂k − y + β2 (1− q) m̂k
∥∥∥

=
1√
n

∥∥zk+1 − zk
∥∥+

β2

√
n

∥∥∥(1− ∥∥m̂k
∥∥2
/n
)
m̂k−1 − (1− q) m̂k

∥∥∥
≤ 1√

n

∥∥zk+1 − zk
∥∥+

β2

√
n

∥∥m̂k−1 − m̂k
∥∥

+ β2(q∗(β, t)− qk(β, t)) + on,P(1).

Here on,P(1) denotes terms which converge to 0 in probability as n→∞. By (4.38), (4.56) and the bound
(qk(β, t)/t) ∈ [c, C]

lim
k→∞

sup
t∈(0,T )

p-lim
n→∞

‖zk+1 − zk‖√
tn

= 0.

Moreover, ‖m̂k−1 − m̂k‖ ≤ ‖zk−1 − zk‖ since the function x 7→ tanh(x) is 1-Lipschitz. Finally (4.22) and
(4.23) of Lemma 4.5 imply

lim
k→∞

sup
t∈(0,T ]

q∗(β, t)− qk(β, t)√
t

= 0 .

Combining the above statements concludes the proof.

We next control on the Hessian ∇2FTAP( · ;y, q). As anticipated in Remark 2.1, this is the only part
of our proof that requires β < 1/2 instead of β < 1.
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Lemma 4.12. Let β > 0, y ∈ Rn and q ∈ [0, 1]. Then for all m ∈ (−1, 1)n,(
1− β‖A‖op

)
D(m) � ∇2FTAP(m;y, q) �

(
1 + β2 + β‖A‖op

)
D(m) . (4.57)

In particular if β ≤ 1
2 − c, for c > 0, then with probability 1− on(1), for all m ∈ (−1, 1)n,

cD(m) � ∇2FTAP(m;y, q) � 2D(m) . (4.58)

Proof. The upper and lower bounds in Eq. (4.57) are obtained from (4.54) using the fact that D(m) � In
for all m ∈ (−1, 1)n. Further, we use the fact that ‖A‖op ≤ 2+on(1) with probability 1−on(1). Therefore,
Eq. (4.58) follows from the assumption β ≤ 1

2 − c.

As mentioned above, our convergence analysis of NGD, and proof of Lemma 4.10 are given in Ap-
pendix A. The key insight is that the main iterative step in line 3 of Algorithm 3 can be expressed as
a version of mirror descent. Define the concave function h(m) =

∑n
i=1 h(mi) for m ∈ (−1, 1)n (recall

that h(x) := −((1 + x)/2) log((1 + x)/2) − ((1 − x)/2) log((1 − x)/2)). Following [LFN18], we define for
m,n ∈ (−1, 1)n the Bregman divergence

D−h(m,n) = −h(m) + h(n) + 〈∇h(n),m− n〉 . (4.59)

Then with L = 1/η, the update in line 3 admits the alternate description

m̂+,k+1 = arg min
x∈(−1,1)n

〈
∇FTAP(m̂+,k;y, q),x− m̂+,k

〉
+ L ·D−h(x, m̂+,k) . (4.60)

We will use this description to prove convergence.

Remark 4.3. If the Hessian ∇2FTAP were bounded above and below by constant multiples of the identity
matrix instead of D(m), then we could use simple gradient descent instead of NGD in Algorithm 1. This
would also simplify the proof. However, ∇2FTAP is not bounded above near the boundaries of (−1,+1)n.
The use of NGD to minimize TAP free energy was introduced in [CFM21], which however considered a
different regime in the planted model.

Remark 4.4. Our proof of Lemma 4.10 does not require ∇2FTAP to be globally convex. Instead, we only
use the fact that, with probability 1− on(1),

∇2FTAP(m;y, q) � cD(m), ∀m ∈ B
(
m̂AMP,

√
εtn
)
∩ (−1, 1).

For β ∈ [1/2, 1) we expect only this weaker guarantee to hold. We believe the technique of [CFM21] could
be used to prove such local strong convexity in the full regime β ∈ [0, 1).

4.4 Continuous limit and proof of Theorem 2.1

We fix (β, T ) and choose constants KAMP = KAMP(β, T, ε), ρ0 = ρ0(β, T, ε,KAMP), ρ ∈ (0, ρ0) and KNGD =
KNGD(β, T, ε, ρ) so that Lemma 4.10 holds.

We couple the discretized process (ŷ`)`≥0 defined in Eq. (2.6) (line 6 of Algorithm 2) to the continuous
time process (y(t))t∈R≥0

(cf. Eq. (4.8)) via the driving noise, as follows:

w`+1 =
1√
δ

∫ (`+1)δ

`δ
dB(t) . (4.61)
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We denote by m̂(A,y) the output of the mean estimation algorithm 1 on input A,y. By Lemma 4.10,
which ensures that, for any t ∈ (0, T ], with probability 1− on(1),∥∥m̂(A,y(t))−m∗(A,y(t); q∗(β, t))

∥∥ ≤ ρ√tn . (4.62)

Here and below we note explicitly the dependence of m∗ on t via q∗. The next lemma provides a crude
estimate on the Lipschitz continuity of AMP with respect to its input.

Lemma 4.13. Recall that AMP(A,y; k) ∈ Rn denotes the output of the AMP algorithm on input (A,y),
after k iterations, cf. Eq. (2.2). If ‖A‖op ≤ 3, then, for any y, ŷ ∈ Rn,∥∥ arctanh

(
AMP(A,y; k)

)
− arctanh

(
AMP(A, ŷ; k)

)∥∥
2
≤ k6k ‖y − ŷ‖2 . (4.63)

Proof. For 0 ≤ j ≤ k, set:

mj = AMP(A,y; j), zj = arctanh(mj), bj =
β2

n

n∑
i=1

(
1− tanh2(zji )

)
,

m̂j = AMP(A, ŷ; j), ẑj = arctanh(m̂j), b̂j =
β2

n

n∑
i=1

(
1− tanh2(ẑji )

)
.

Using the AMP update equation (line 4 of Algorithm 1) and the fact that tanh( · ) is 1-Lipschitz, we obtain

‖zj+1 − ẑj+1‖ ≤ ‖βA(mj − m̂j)‖+ ‖y − ŷ‖+ ‖bjmj−1 − bjm̂
j−1‖+ ‖bjm̂j−1 − b̂jm̂

j−1‖

≤ 3β‖zj − ẑj‖+ ‖y − ŷ‖+ bj‖zj−1 − ẑj−1‖+ |bj − b̂j |
√
n .

Note that |1− tanh2(x)| ≤ 1 for all x ∈ R and |bj | ≤ β2. Setting Ej = maxi≤j ‖zi+1 − ẑi+1‖, we find

Ej+1 ≤ (3β2 + 3β)Ej + ‖y − ŷ‖
≤ 6Ej + ‖y − ŷ‖ .

It follows by induction that
Ej ≤ j6j‖y − ŷ‖ .

Setting j = k concludes the proof.

Define the random approximation errors

A` :=
1√
n

∥∥ŷ` − y(`δ)
∥∥ , (4.64)

B` :=
1√
n

∥∥m̂(A, ŷ`)−m(A,y(`δ))
∥∥ . (4.65)

Note that A0 = B0 = 0. In the next lemma we bound the above quantities:

Lemma 4.14. For β < 1/2 and T > 0, there exists a constant C = C(β) < ∞, and a deterministic
non-negative sequence ξ(n) with limn→∞ ξ(n) = 0 such that the following holds with probability 1− on(1).
For every ` ≥ 0, δ ∈ (0, 1) such that `δ ≤ T ,

A` ≤ CeC`δ`δ
(
ρ
√
`δ +

√
δ
)

+ ξ(n) , (4.66)

B` ≤ CeC`δ`δ
(
ρ
√
`δ +

√
δ
)

+ Cρ
√
`δ + ξ(n) . (4.67)
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Proof. Throughout the proof, we denote by ξ(n) a deterministic non-negative sequence ξ(n) with limn→∞ ξ(n) =
0, which can change from line to line. Also, C will denote a generic constant that may depend on β, T,KAMP.

The proof proceeds by induction on `. As the base case is trivial, we assume the result holds for all
j ≤ ` and we prove it for `+ 1. We first claim that with probability 1− on(1),

A`+1 ≤ A` + δB` + Cδ3/2. (4.68)

Indeed, using (4.61) we find

A`+1 −A` ≤ n−1/2

∫ (`+1)δ

`δ

∥∥m̂(A, ŷ`)−m(A,y(t))
∥∥dt

≤ δn−1/2
(∥∥m̂(A, ŷ`)−m(A,y(`δ))

∥∥+ sup
t∈[`δ,(`+1)δ]

∥∥m(A,y(t))−m(A,y(`δ))
∥∥)

≤ δB` + δn−1/2 · sup
t∈[`δ,(`+1)δ]

∥∥m(A,y(t))−m(A,y(`δ))
∥∥

≤ δB` + C(β)δ3/2 + ξ(n) ,

where the last line holds with high probability by Lemma 4.9 and Eq. (4.24) of Lemma 4.5. Using this
bound together with the inductive hypothesis on A` and B`, we obtain

A`+1 ≤ CeC(`+1)δ`δ(ρ
√
`δ +

√
δ) + Cρδ

√
`δ + Cδ3/2 + ξ(n)

≤ CeC(`+1)δ(`+ 1)δ(ρ+
√
δ) + ξ(n) .

This implies Eq. (4.66) for `+ 1.
We next show that Eq. (4.67) holds with ` replaced by ` + 1. By the bound (4.66) for ` + 1, taking

δ ≤ δ(β, ε,KAMP, T ) and ρ ∈ (0, ρ0) ρ = ρ(β, ε,KAMP, T ) ensures that

A`+1 ≤
c
√
ε`δ

200KAMP6KAMP
,

where ε can be chosen an arbitrarily small constant. So by Lemma 4.13, we have with probability 1−on(1),∥∥ arctanh(AMP(A,y((`+ 1)δ);KAMP))− arctanh(AMP(A, ŷ`+1;KAMP))
∥∥

2
≤ KAMP6KAMPA`+1

√
n

≤ c
√
ε`δn

200
.

By choosing ε ≤ ε0(β, T ), we obtain that Lemma 4.10, part 4 applies. We thus find

‖m̂(A, ŷ`+1)−m∗(A, ŷ`+1)‖ ≤ ρ
√
`δn .

Using parts 3 and 2 respectively of Lemma 4.10 on the other terms below, by triangle inequality we obtain
(writing for simplicity q` := q∗(β, `δ))

‖m̂(A, ŷ`+1)−m(A,y((`+ 1)δ))‖ ≤ ‖m̂(A, ŷ`+1)−m∗(A, ŷ`+1; q`+1)‖
+ ‖m∗(A, ŷ`+1; q`+1)−m∗(A,y((`+ 1)δ); q`+1)‖
+ ‖m∗(A,y((`+ 1)δ); q`+1)−m(A,y((`+ 1)δ))‖

≤
(
ρ
√
`δ + c−1A`+1 + ρ

√
`δ + ξ(n)

)√
n .

(4.69)
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In other words with probability 1− on(1),

B`+1 ≤ c−1A`+1 + 2ρ
√
`δ + ξ(n) .

Using this together with the bound (4.66) for `+ 1 verifies the inductive step for (4.67) and concludes the
proof.

Finally we show that standard randomized rounding is continuous in W2,n.

Lemma 4.15. Suppose probability distributions µ1, µ2 on [−1, 1]n are given. Sample m1 ∼ µ1 and m2 ∼ µ2

and let x1,x2 ∈ {−1,+1}n be standard randomized roundings, respectively of m1 and m2. (Namely, the
coordinates of xi are conditionally independent given mi, with E[xi|mi] = mi.) Then

W2,n(L(x1),L(x2)) ≤ 2
√
W2,n(µ1, µ2) .

Proof. Let (m1,m2) be distributed according to a W2,n-optimal coupling between µ1, µ2. Couple the
roundings x1,x2 by choosing i.i.d. uniform random variables ui ∼ Unif([0, 1]) for i ∈ [n], and for (i, j) ∈
[n]× {1, 2} setting

(xj)i =

{
+1, if u ≤ 1+(mj)i

2 ,

−1, else.

Then it is not difficult to see that

1

n
E
[
‖x1 − x2‖2 |(m1,m2)

]
=

2

n

n∑
i=1

|(m1)i − (m2)i|

≤ 2

√
1

n
‖m1 −m2‖2.

Averaging over the choice of (m1,m2) implies the result.

Proof of Theorem 2.1. Set ` = L = T/δ and ρ =
√
δ in Eq. (4.67). With all laws L( · ) conditional on A

below, we find

EW2,n(µA,L(m̂(A, ŷL))) ≤ EW2,n(µA,L(m(A,y(T )))) + EW2,n(L(m(A,y(T )))),L(m̂(A, ŷL)))

≤ T−1/2 + C(β, T )
√
δ + on(1).

Here the first term was bounded by Eq. (3.4) in Section 3 and the second by Eq. (4.67). Taking T sufficiently
large, δ sufficiently small, and n sufficiently large, we may obtain

EW2,n

(
µA,L(m̂NGD(A, ŷL))

)
≤ ε2

4

for any desired ε > 0. Applying Lemma 4.15 shows that

EW2,n(µA,x
alg) ≤ ε .

The Markov inequality now implies that (2.7) holds with probability 1− on(1) as desired.
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5 Algorithmic stability and disorder chaos

In this section we prove Theorem 2.3 establishing that our sampling algorithm, Algorithm 2 is stable. Next,
we prove that the Sherrington-Kirkpatrick measure µA,β exhibits W2-disorder chaos for β > 1, proving
Theorem 2.5 and deduce that no stable algorithm can sample in normalized W2 distance for β > 1, see
Theorem 2.6.

5.1 Algorithmic stability: Proof of Theorem 2.3

Recall Definition 2.2, defining sampling algorithms as measurable functions ALGn : (A, β, ω) 7→ ALGn(A, β, ω) ∈
[−1, 1]n where β ≥ 0 and ω is an independent random variable taking values in some probability space.

Remark 5.1. In light of Lemma 4.15, we can always turn a stable sampling algorithm ALG with codomain
[−1, 1]n into a stable sampling algorithm with binary output:

ÃLGn(A, β, ω̃) ∈ {−1,+1}n .

Indeed this is achieved by standard randomized rounding, i.e., drawing a (conditionally independent)

random binary value with mean
(
ÃLG(A, β, ω̃)

)
i

for each coordinate 1 ≤ i ≤ n.

Recall the definition of the interpolating family (As)s∈[0,1] whereby A0,A1 ∼ GOE(n) i.i.d. and

As =
√

1− s2A0 + sA1 , s ∈ [0, 1] , (5.1)

We take µAs,β(x) ∝ exp
{

(β/2)〈x,As x〉
}

to be the corresponding Gibbs measure.
We start with the following simple estimate.

Lemma 5.1. There exists an absolute constant C > 0 such that

inf
s∈(0,1)

P
(∥∥A0u−Asv

∥∥ ≤ C(‖u− v‖+ s
√
n) , ∀ u,v ∈ [−1, 1]n

)
= 1− on(1) . (5.2)

Proof. We write ∥∥A0u−Asv
∥∥ ≤ ∥∥A0u−A0v

∥∥+
∥∥A0v −Asv

∥∥
≤ ‖A0‖op

∥∥u− v∥∥+
∥∥(1−

√
1− s2)A0 − sA1

∥∥
op
‖v‖ .

We note that (1−
√

1− s2)A0− sA1
d
=
√

2(1−
√

1− s2)A0 and
√

2(1−
√

1− s2) ∼ s for small s and this

quantity is bounded above by a constant for any s ∈ [0, 1]. The result follows since ‖A0‖op ≤ 2.1 with
probability 1− on(1).

Proposition 5.2. Suppose an algorithm ALG is given by an iterative procedure

zk+1 = Gk
(
(zj , βAmj ,Amj , β2mj ,wj)0≤j≤k

)
, 0 ≤ k ≤ K − 1,

mk = ρk(z
k), 0 ≤ k ≤ K − 1,

ALGn(A, β, ω) := mK ,

where the sequence ω = (w0, . . . ,wK−1) ∈ (Rn)K , the initialization z0 ∈ Rn, and A are mutually inde-
pendent, and the functions Gk : (Rn)5k+5 → Rn and ρk : Rn → [−1, 1]n are L0-Lipschitz for L0 ≥ 0 an
n-independent constant. Then ALG is both disorder-stable and temperature-stable.
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Proof. Let us generate iterates zk = zk(A0, β) and z̃k = zk(As, β̃) for 0 ≤ k ≤ K using the same
initialization z0 = z̃0 and external randomness ω = (w0, . . . ,wK−1), but with different Hamiltonians and
inverse temperatures. Similarly let mk = ρk(z

k) and m̃k = ρk(z̃
k). We will allow C to vary from line to

line in the proof below.
First by Lemma 5.1, with probability 1− on(1),

‖βA0m
k − β̃Asm̃

k‖ ≤ ‖βA0m
k − βAsm̃

k‖+ ‖βAsm̃
k − β̃Asm̃

k‖

≤ Cβ‖mk − m̃k‖+ Cβs
√
n+ |β − β̃| · ‖Asm̃

k‖

≤ C(‖mk − m̃k‖+ s
√
n+ |β − β̃|

√
n) .

Similarly as long as β̃ ≤ 2β so that |β2 − β̃2| ≤ 3β|β − β̃|, we have

‖β2mk − β̃2m̃k‖ ≤ ‖β2mk − β2m̃k‖+ ‖β2m̃k − β̃2m̃k‖

≤ β2‖mk − m̃k‖+ 3β|β − β̃|
√
n.

It follows that the error sequence

Ak =
1√
n

max
j≤k
‖zj+1(A0, β)− zj+1(As, β̃)‖

satisfies with probability 1− on(1) the recursion

Ak+1 ≤ L0k
1/2C(Ak + s+ |β − β̃|) ,

A0 = 0 ,

for a suitable C = C(β). It follows that with probability 1− on(1),

AK ≤
K∑
k=1

(L0k
1/2C)k(s+ |β − β̃|) ≤ K(L0KC)K(s+ |β − β̃|) . (5.3)

Since ‖mK(A0)−mK(As)‖ ≤ 2
√
n almost surely, we obtain for any η > 0

n−1 E
[∥∥mK(A0)−mK(As)

∥∥2
]
≤
(
L0K(L0KC)K(s+ |β − β̃|)

)2
+ η

if n ≥ n0(η) is large enough so that Eq. (5.3) holds with probability at least 1 − η
4 . The stability of the

algorithm follows.

Proof of Theorem 2.3. We show that Algorithm 2 with n-independent parameters (β, η,KAMP,KNGD, L, δ) is
of the form in Proposition 5.2 for a constant L0 = L0(β, η,KAMP,KNGD, L, δ). Indeed note that the algorithm
goes through L iterations, indexed by ` ∈ {0, . . . , L− 1}.

During each of these iterations, two loops are run (here we modify the notation introduced in Algorithm
1 and Algorithm 2, to account for the dependence on `, and to get closer to the notation of Proposition 5.2):

1. The AMP loop, whereby, for k = 0, · · · ,KAMP − 1,

m̂`,k = tanh(z`,k), b(m̂`,k) =
β2

n

n∑
i=1

tanh′(z`,ki ) , (5.4)

z`,k+1 = βAm̂`,k + ŷ` − b(z`,k) m̂`,k−1 . (5.5)

(Here tanh′(x) denotes the first derivative of tanh(x).)
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2. The NGD loop, whereby, for k = KAMP, · · · ,KAMP +KNGD − 1, setting q` = qKAMP
(β, t = `δ),

m̂`,k = tanh(z`,k) , (5.6)

z`,k+1 = z`,k + η
[
βAm̂`,k + y` − z`,k − β2 (1− q`)m`,k

]
. (5.7)

Further, recalling line 6 of Algorithm 2, ŷ` is updated via

ŷ`+1 = ŷ` + m̂`,KAMP+KNGD δ +
√
δw`+1 . (5.8)

These updates take the same form as in Proposition 5.2, with iterations indexed by (`, k), ω = (w`)`≤L,
ρ`,k(z) = tanh(z) for all `, k, and

G`,k

(
(z`
′,j , βAm̂`′,j ,Am̂`′,j , β2m̂`′,j ,w`′)`′,j

)
= βAm̂`,k + ŷ` − b(z`,k)m̂`,k−1 , 0 ≤ k ≤ KAMP − 1 ,

(5.9)

G`,k

(
(z`
′,j , βAm̂`′,j ,Am̂`′,j , β2m̂`′,j ,w`′)`′,j

)
=

= z`,k + η
[
βAm̂`,k + y`−z`,k − β2 (1− q`)m`,k

]
, KAMP ≤ k ≤ KAMP +KNGD − 1 .

(5.10)

Notice that these functions depend on previous iterates both explicitly, as noted, and implicitly through
ŷ`. By summing up Eq. (5.8), we obtain

ŷ` =

`−1∑
j=0

m̂j,KAMP+KNGD δ +
√
δ
∑̀
j=1

w`+1 , (5.11)

which is Lipschitz in the previous iterates (mj,k)j≤`−1,k<KAMP+KNGD
. Since both (5.9) and (5.10) depend

linearly on ŷ` (with n-independent coefficients), it is sufficient to consider the explicit dependence on
previous iterates of G`,k. Namely, it is sufficient to control the Lipschitz modulus of the following functions

G̃`,k

(
z`,k, βAm̂`,k, m̂`,k−1

)
= βAm̂`,k − b(z`,k)m̂`,k−1 , k < KAMP (5.12)

G̃`,k

(
z`,k, βAm`,k, β2m`,k

)
= z`,k + η

[
βAm̂`,k − z`,k − β2 (1− q`) m̂`,k

]
, k > KAMP . (5.13)

Consider first Eq. (5.12). Since | tanh′′(x)| ≤ 2 for all x ∈ R, it follows that

|b(z)− b(z̃)| ≤ 2β2

n

n∑
i=1

|zi − z̃i| ≤
2β2

√
n
‖z − z̃‖2.

Therefore, that for any (u,v, β, ũ, ṽ, β̃) (noting explicitly the dependence of b upon β):

‖bβ(u) tanh(v)− b
β̃
(ũ) tanh(ṽ)‖ ≤ ‖bβ(u) tanh(v)− bβ(ũ) tanh(v)‖+ ‖bβ(ũ) tanh(v)− b

β̃
(ũ) tanh(ṽ)‖

≤ 2β2

√
n
‖u− ũ‖ · ‖ tanh(v)‖+

( 1

n

n∑
i=1

tanh′(ũi)
)
‖β2 tanh(v)− β̃2 tanh(ṽ)‖

≤ 2β2‖u− ũ‖+ ‖β2 tanh(v)− β̃2 tanh(ṽ)‖.

Using this bound implies that the function G̃ of Eq. (5.12) satisfies the Lipschitz assumption of Proposi-
tion 5.2.

Consider next Eq. (5.13). Since this function is linear in its arguments, with coefficients independent
of n, it follows that it satisfies Lipschitz assumption of Proposition 5.2. This completes the proof.
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5.2 Hardness for stable algorithms: Proof of Theorems 2.5 and 2.6

Before proving Theorem 2.5 and Theorem 2.6 we recall a known result about disorder chaos, already stated

in Eq. (2.11). Draw x0 ∼ µA,β independently of xs ∼ µAs,β, and denote by µ
(0,s)
A,β := µA,β ⊗ µAs,β their

joint distribution. Then [Cha14, Theorem 1.11] implies that, for all β ∈ (0,∞),

lim
s→0

lim
n→∞

Eµ(0,s)
A,β

{( 1

n
〈x0,xs〉

)2}
= 0 . (5.14)

The following simple estimate will be used in our proof.

Lemma 5.3. Recall that P({−1,+1}n) denotes the space of probability distributions over {−1,+1}n, and
let the function f : P({−1,+1}n)2 → R be defined as

f(µ, µ′) = E(x,x′)∼µ⊗µ′
{ 1

n
|〈x,x′〉|

}
. (5.15)

Then, for all µ1, µ2, ν1, ν2 ∈P({−1,+1}n), we have∣∣f(µ1, ν1)− f(µ2, ν2)
∣∣ ≤W2,n(µ1, µ2) +W2,n(ν1, ν2) .

Proof. Let the vector pairs (xµ1 ,xµ2) and (xν1 ,xν2) be independently drawn from the optimal W2,n-
couplings of the pairs (µ1, µ2) and (ν1, ν2), respectively. Then we have:∣∣∣E{|〈xµ1 ,xν1〉|}− E

{
|〈xµ2 ,xν2〉|

}∣∣∣ ≤ ∣∣∣E{|〈xµ1 ,xν1〉| − |〈xµ2 ,xν1〉|}∣∣∣+
∣∣∣E{|〈xµ2 ,xν1〉| − |〈xµ2 ,xν2〉|}∣∣∣

≤
√
n
(
E
∥∥xµ1 − xµ2∥∥+ E

∥∥xν1 − xν2∥∥)
≤
√
n
(
E
[∥∥xµ1 − xµ2∥∥2

]1/2
+ E

[∥∥xν1 − xν2∥∥2
]1/2)

,

where the second inequality follows from the fact that x 7→ |〈v,x〉| is Lipschitz continuous with Lipschitz
constant ‖v‖2.

We are now in position to prove Theorem 2.5.

Proof of Theorem 2.5. Using the notations of the last lemma Eq. (5.14) implies that for all s ∈ (0, 1],

lim
n→∞

E f(µAs,β, µA0,β) = 0 . (5.16)

Therefore, Theorem 2.5 follows from Lemma 5.3 if we can show that f(µA0,β, µA0,β) remains bounded
away from zero. This is in turn a well-known consequence of the Parisi formula, as we recall below.

Define the free energy density of the SK model as

Fn(β) =
1

n
E log

{ ∑
x∈{−1,+1}n

eβ〈x,Ax〉/2
}
. (5.17)

The free energy Fn is convex in β and one obtains by Gaussian integration parts that

d

dβ
Fn(β) =

β

2

(
1− EµA0,β ⊗ µA0,β

{( 1

n
〈x1,x2〉

)2})
. (5.18)
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Moreover, the limit of Fn(β) for large n is known to exist for all β > 0 and its value is given by the Parisi
formula [Tal06b]:

lim
n→∞

Fn(β) = inf
ζ∈P([0,1])

Pβ(ζ) , (5.19)

where P([0, 1]) denotes the set of Borel probability measures supported on [0, 1], and Pβ is the Parisi
functional at inverse temperature β; see for instance [Tal06b] or [Pan13, Chapter 3] for definitions.

The following properties are known:

1. A unique minimizer ζ∗β ∈P([0, 1]) of Pβ exists for all β [AC15].

2. If β > 1, then ζ∗β is not an atom on 0: ζ∗β 6= δ0. This follows from Toninelli’s theorem [Ton02] that

lim supn→∞ Fn(β) ≤ log 2 + β2/4− ε(β) for some continuous ε(β), with ε(β) > 0 when β > 1.

3. The function β 7→ Pβ(ζ∗β) is convex and differentiable at all β > 0, and

d

dβ
Pβ(ζ∗β) =

β

2

(
1−

∫
q2ζ∗β(dq)

)
. (5.20)

See for instance [Pan13, Theorem 3.7] or [Tal06a, Theorem 1.2] for a proof.

The convexity of Fn implies that for almost all β > 0, limn→∞ F
′
n(β) = d

dβPβ(ζ∗β). Using Eq. (5.18)
and Eq. (5.20) we obtain

lim
n→∞

β

2

(
1− EµA0,β ⊗ µA0,β

{( 1

n
〈x1,x2〉

)2)}
=
β

2

(
1−

∫
q2ζ∗β(dq)

)
<
β

2
− ε(β) , (5.21)

where the last inequality holds for almost all β > 1 by Property 2 above. Since the both sides are non-
decreasing and the right hand side is continuous, the inequality holds for all β. This is equivalent to

lim
n→∞

E f(µA0,β, µA0,β) > 0 . (5.22)

Now, using Eq. (5.16) and Eq. (5.22), together with the continuity of f (Lemma 5.3) implies the claim of
the theorem.

We next prove that Theorem 2.6 is an immediate consequence of Theorem 2.5.

Proof of Theorem 2.6. Fix s ∈ (0, 1) and µalg

As,β
be the law of ALGn(As, β, ω) conditional on As. By the

triangle inequality,

W2,n(µAs,β,s, µA0,β) ≤W2,n(µAs,β, µ
alg

As,β
) +W2,n(µalg

As,β
, µalg

A0,β
) +W2,n(µalg

A0,β
, µA0,β,0) .

Taking expectations over A and As, we have E
[
W2,n(µAs,β, µ

alg

As,β
)
]

= E
[
W2,n(µalg

A0,β
, µA0,β)

]
. Further, by

stability of the algorithm, E
[
W2,n(µalg

As,β
, µalg

A0,β
)
]
→ 0 when n → ∞ followed by s → 0. Therefore, using

Theorem 2.5 and choosing s sufficiently small, we obtain

lim inf
n→∞

E
[
W2,n(µalg

A0,β
, µA0,β)

]
≥W∗ > 0 .

30



References

[AC15] Antonio Auffinger and Wei-Kuo Chen, The Parisi formula has a unique minimizer, Communi-
cations in Mathematical Physics 335 (2015), no. 3, 1429–1444.

[AH87] Michael Aizenman and Richard Holley, Rapid convergence to equilibrium of stochastic Ising
models in the Dobrushin Shlosman regime, Percolation theory and ergodic theory of infinite
particle systems, Springer, 1987, pp. 1–11.

[AJK+21] Nima Anari, Vishesh Jain, Frederic Koehler, Huy Tuan Pham, and Thuy-Duong Vuong, En-
tropic Independence I: Modified Log-Sobolev Inequalities for Fractionally Log-Concave Distribu-
tions and High-Temperature Ising Models, arXiv preprint arXiv:2106.04105 (2021).

[ALR87] Michael Aizenman, Joel L Lebowitz, and David Ruelle, Some rigorous results on the
Sherrington–Kirkpatrick spin glass model, Communications in Mathematical Physics 112
(1987), no. 1, 3–20.

[BAJ18] Gérard Ben Arous and Aukosh Jagannath, Spectral gap estimates in mean field spin glasses,
Communications in Mathematical Physics 361 (2018), no. 1, 1–52.

[BB19] Roland Bauerschmidt and Thierry Bodineau, A very simple proof of the LSI for high tempera-
ture spin systems, Journal of Functional Analysis 276 (2019), no. 8, 2582–2588.

[BD11] Joseph Blitzstein and Persi Diaconis, A sequential importance sampling algorithm for generating
random graphs with prescribed degrees, Internet Mathematics 6 (2011), no. 4, 489–522.

[BH21] Guy Bresler and Brice Huang, The Algorithmic Phase Transition of Random k-SAT for Low
Degree Polynomials, 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), 2021, pp. 298–309.

[BM11] Mohsen Bayati and Andrea Montanari, The dynamics of message passing on dense graphs, with
applications to compressed sensing, IEEE Transactions on Information Theory 57 (2011), no. 2,
764–785.

[CDHL05] Yuguo Chen, Persi Diaconis, Susan P Holmes, and Jun S Liu, Sequential Monte Carlo methods
for statistical analysis of tables, Journal of the American Statistical Association 100 (2005),
no. 469, 109–120.

[CE22] Yuansi Chen and Ronen Eldan, Localization schemes: A framework for proving mixing bounds
for Markov chains, arXiv preprint arXiv:2203.04163 (2022).

[CFM21] Michael Celentano, Zhou Fan, and Song Mei, Local convexity of the TAP free energy and AMP
convergence for Z2-synchronization, arXiv preprint arXiv:2106.11428 (2021).

[CGPR19] Wei-Kuo Chen, David Gamarnik, Dmitry Panchenko, and Mustazee Rahman, Suboptimality of
local algorithms for a class of max-cut problems, The Annals of Probability 47 (2019), no. 3,
1587–1618.

[Cha09] Sourav Chatterjee, Disorder chaos and multiple valleys in spin glasses, arXiv preprint
arXiv:0907.3381 (2009).

[Cha14] , Superconcentration and related topics, vol. 15, Springer, 2014.

31



[Che13] Wei-Kuo Chen, Disorder chaos in the Sherrington–Kirkpatrick model with external field, The
Annals of Probability 41 (2013), no. 5, 3345–3391.

[CHHS15] Wei-Kuo Chen, Hsi-Wei Hsieh, Chii-Ruey Hwang, and Yuan-Chung Sheu, Disorder chaos in
the spherical mean-field model, Journal of Statistical Physics 160 (2015), no. 2, 417–429.

[CP18] Wei-Kuo Chen and Dmitry Panchenko, Disorder chaos in some diluted spin glass models, The
Annals of Applied Probability 28 (2018), no. 3, 1356–1378.

[CT21] Wei-Kuo Chen and Si Tang, On Convergence of the Cavity and Bolthausen’s TAP Iterations
to the Local Magnetization, Communications in Mathematical Physics 386 (2021), no. 2, 1209–
1242.

[DAM17] Yash Deshpande, Emmanuel Abbe, and Andrea Montanari, Asymptotic mutual information for
the balanced binary stochastic block model, Information and Inference: A Journal of the IMA 6
(2017), no. 2, 125–170.

[Dur19] Rick Durrett, Probability: Theory and Examples, vol. 49, Cambridge university press, 2019.

[EKZ21] Ronen Eldan, Frederic Koehler, and Ofer Zeitouni, A spectral condition for spectral gap: fast
mixing in high-temperature Ising models, Probability Theory and Related Fields (2021), 1–17.

[Eld20] Ronen Eldan, Taming correlations through entropy-efficient measure decompositions with appli-
cations to mean-field approximation, Probability Theory and Related Fields 176 (2020), no. 3,
737–755.

[ES22] Ronen Eldan and Omer Shamir, Log concavity and concentration of Lipschitz functions on the
Boolean hypercube, Journal of Functional Analysis (2022), 109392.

[GJ19] Reza Gheissari and Aukosh Jagannath, On the spectral gap of spherical spin glass dynamics, An-
nales de l’Institut Henri Poincaré, Probabilités et Statistiques, vol. 55, Institut Henri Poincaré,
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[GK21] David Gamarnik and Eren C. Kızıldağ, Algorithmic obstructions in the random number parti-
tioning problem, arXiv preprint arXiv:2103.01369 (2021).

[GS14] David Gamarnik and Madhu Sudan, Limits of local algorithms over sparse random graphs,
Proceedings of the 5th conference on Innovations in theoretical computer science, ACM, 2014,
pp. 369–376.

[GS17] , Performance of sequential local algorithms for the random NAE-K-sat problem, SIAM
Journal on Computing 46 (2017), no. 2, 590–619.

32



[GSV05] Dongning Guo, Shlomo Shamai, and Sergio Verdú, Mutual information and minimum mean-
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A Convergence analysis of Natural Gradient Descent

The main objective of this appendix is to prove Lemma 4.10, which we will do in Section A.2, after some
technical preparations in Section A.1.

A.1 Technical preliminaries

Definition A.1. Let Q ⊆ (−1, 1)n be a convex set. We say that a twice differentiable function F : Q→ R
is relatively c-strongly convex if it satisfies

∇2F(m) � cD(m) ∀m ∈ Q . (A.1)

We say it is relatively C-smooth if it satisfies

∇2F(m) � CD(m) ∀m ∈ Q . (A.2)

As D(m) = ∇2(−h(m)) � In, it follows that (A.1) implies ordinary c-strong convexity in Euclidean
norm. The next proposition connects relative strong convexity with the Bregman divergence introduced
in Eq. 4.59.

Proposition A.2 (Proposition 1.1 in [LFN18]). A twice differentiable function F : Q → R is relatively
c-strongly convex if and only if

F(m) ≥ F(n) + 〈∇F(n),m− n〉+ cD−h(m,n), ∀m,n ∈ Q . (A.3)

Lemma A.3. For m,n ∈ (−1, 1)n,

D−h(m,n) ≥ ‖m− n‖
2
2

2
, (A.4)

D−h(m,n) ≤ 10n

(
1 +
‖ arctanh(n)‖2√

n

)
, (A.5)

D−h(m,n) ≤ ‖ arctanh(m)− arctanh(n)‖22 . (A.6)

Proof. Observe that h′′(x) = −1/(1 − x2) ≤ −1 for all x ∈ (−1, 1) with equality if and only if x = 0.
Therefore

D−h(m,n) =
n∑
i=1

∫ ni

mi

(x−mi)(−h′′(x)) dx

=
n∑
i=1

(ni −mi)
2

2
.

This proves Eq. (A.4).
Next, Eq. (A.5) follows from Eq. (4.59) and the fact that the binary entropy h : R → R is uniformly

bounded.
Finally Eq. (A.6) follows from

D−h(m,n) ≤ 〈∇h(n)−∇h(m),m− n〉
=
〈

arctanh(m)− arctanh(n),m− n
〉

≤
∥∥ arctanh(m)− arctanh(n)

∥∥2

2
.

Here in the last step we used that tanh(·) is 1-Lipschitz.
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Lemma A.4. If F : Q → R is relatively c-strongly convex for some convex set Q ⊆ (−1, 1)n, and
∇F(m∗) = 0 for m∗ ∈ Q, it follows that

F(m)−F(m∗) ≥
c‖m−m∗‖22

2
.

for all m ∈ Q.

Proof. Using (A.3) and (A.4), and observing that ∇F(m∗) = 0, we obtain

F(m)−F(m∗)

‖m−m∗‖22
≥ F(m)−F(m∗)

2 ·D−h(m,m∗)
≥ c

2
.

Lemma A.5. Suppose F : Q∗ → R is c-strongly convex in the convex set Q∗ := B(, ρ) ∩ (−1, 1)n. If
x∗ ∈ ∂Q∗, x∗,k = +1 (respectively, x∗,k = −1) and |xj | < 1 for all j ∈ [n] \ {k}, then limt→0+ ∂xkF(x∗ −
tek) = +∞ (respectively limt→0+ ∂xkF(x∗ + tek) = −∞.)

Proof. Consider the case xk = +1 (as the case xk = −1 follows by symmetry.) Then there exists t0 > 0
such that x∗ − tek ∈ Q∗ for all t ∈ (0, t0]. Let x(s) := x∗ − (t0 − s)ek, s ∈ [0, t0). Then

∂xkF (x(s)) = ∂xkF (x(0)) +

∫ s

0
∂2
xk
F (x(u)) du

= ∂xkF (x(0)) +

∫ s

0
〈ek,∇2F (x(u))ek〉du

≥ ∂xkF (x(0)) + c

∫ s

0
(1− xk(u)2)−1 du

≥ ∂xkF (x(0)) + c

∫ s

0
(1− (1− t0 + u)2)−1 du, .

The last integral diverges as s ↑ t0, thus proving the claim.

Lemma A.6. Suppose F : Q → R is c-strongly convex for a convex set Q ⊆ (−1, 1)n. Moreover suppose
that

‖∇F(m)‖ ≤ c
√
εn

for some m ∈ Q with
B
(
m, 2
√
εn
)
∩ (−1, 1)n ⊆ Q .

Then there exists a unique m∗ ∈ B (m, 2
√
εn)∩ (−1, 1)n satisfying ∇F(m∗) = 0, which is in fact a global

minimizer of F on Q. Moreover
F(m)−F(m∗) ≤ 2cεn . (A.7)

Proof. Let Q≤ := {x ∈ Q : F(x) ≤ F(m)}. Then, for any x ∈ Q0, we have

0 ≥ F(x)−F(m)

≥ −c
√
εn‖x−m‖2 + cD−h(x;m)

≥ −c
√
εn‖x−m‖2 +

c

2
‖x−m‖22 .
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Hence Q≤ ⊆ Q∗ := B (m,
√
εn) ∩ (−1, 1)n, Q∗ ⊆ Q. By continuity three cases are possible: (i) The

minimum of F is achieved in the interior of Q≤; (ii) The minimum is achieved along a sequence (xi)i≥0,
‖xi‖∞ → 1; (iii) the minimum is achieved at m∗ 6= m such that F(m∗) = F(m). Case (iii) cannot hold
by strong convexity, and case (ii) cannot hold by Lemma A.5.

Uniqueness of m∗ follows by strong convexity, and ∇F(m∗) = 0 by differentiability. Finally

F(m)−F(m∗) ≤ ‖∇F(m)‖ · ‖m−m∗‖ ≤ 2cεn .

Lemma A.7. Suppose F : Q → R is relatively c-strongly convex. Let m∗ be a local minimum of F
belonging to the interior of Q, and suppose that B (m∗, 2

√
εn) ∩ (−1, 1)n ⊆ Q. Consider for y ∈ Rn the

function
Fy(m) = F(m)− 〈y,m〉.

Then Fy is relatively c-strongly convex on Q for any y ∈ Rn. If ‖y‖ ≤ (c/2)
√
εn, then Fy has a unique

stationary point and minimizer m∗(y) ∈ Q. Moreover if ‖y‖, ‖ŷ‖ ≤ c
√
εn

2 then

‖m∗(y)−m∗(ŷ)‖ ≤ ‖y − ŷ‖
c

. (A.8)

Proof. The relative c-strong convexity of Fy is clear as the Hessian of Fy does not depend on y. For
‖y‖ ≤ (c/2)

√
εn, because

‖∇Fy(m∗)‖ = ‖y‖ ≤ c
√
εn

2
and B

(
m∗,
√
εn
)
∩ (−1, 1)n ⊆ Q ,

Lemma A.6 implies the existence of a unique minimizer

m∗(y) ∈ B
(
m∗,
√
εn
)
∩ (−1, 1)n ⊆ Q .

If ‖ŷ‖ ≤ (c/2)
√
εn also holds, Fŷ is c-strongly convex on

B
(
m∗(ŷ),

√
εn
)
∩ (−1, 1)n ⊆ B

(
m∗, 2

√
εn
)
∩ (−1, 1)n ⊆ Q.

Moreover since ‖y − ŷ‖ ≤ c
√
εn, we obtain

‖∇Fŷ(m∗(y))‖ = ‖y − ŷ‖ = c
√
ε′n ,

for ε′ = ‖y−ŷ‖2
c2n

≤ ε. Therefore the conditions of Lemma A.6 are satisfied with (Fŷ,m∗(y), ε′) in place of
(F ,m, ε). Equation (A.8) now follows since

‖m∗(y)−m∗(ŷ)‖ ≤
√
ε′n =

‖y − ŷ‖
c

.

We now analyze the convergence of Algorithm 3 from a good initialization.
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Lemma A.8. Suppose F(·) = FTAP( · ;y, qK(β, t)) has a local minimum at m∗ and is relatively c-strongly-
convex on B(m∗,

√
εn) ∩ (−1, 1)n, and also C-relatively smooth on (−1, 1)n. Suppose

m̂0 ∈ B
(
m∗,
√
εn
)
∩ (−1, 1)n (A.9)

satisfies

F(m̂0) < F(m∗) +
cεn

8
. (A.10)

Then there exist constants η0, C
′ > 0 depending only on (C, c, ε) such that the following holds. If Algo-

rithm 3 is initialized at m̂0 with learning rate η = 1/L ∈ (0, η0), then, for every K ≥ 1

F(m̂K) ≤ F(m∗) + C ′n

(
1 +
‖ arctanh(m̂0)‖2√

n

)
(1− cη)K , (A.11)

‖m̂K −m∗‖2 ≤ C ′
√
n

(
1 +
‖ arctanh(m̂0)‖2√

n

)
(1− cη)K/2. (A.12)

Proof. Recall Eq. (4.60), which we copy here for the reader’s convenience:

m̂i+1 = arg min
x∈(−1,1)n

〈
∇F(m̂i),x− m̂i

〉
+ L ·D−h(x, m̂i). (A.13)

If η0 ≤ 1
2C then [LFN18, Lemma 3.1] applied to the linear (hence convex) function 〈∇F(m̂i), · 〉 states

that for all m ∈ (−1, 1)n,

〈∇F(m̂i), m̂i+1〉+ LD−h(m̂i+1, m̂i) + LD−h(m, m̂i+1) ≤ 〈∇F(m̂i),m〉+ LD−h(m, m̂i). (A.14)

Moreover the global relative smoothness shown in (4.57) implies that for m,m′ ∈ (−1, 1)n,

F(m) ≤ F(m′) + 〈∇F(m′),m−m′〉+ C ·D−h(m,m′). (A.15)

Combining Eqs. (A.14) and (A.15) yields

F(m̂i+1) ≤ F(m̂i) + 〈∇F(m̂i), m̂i+1 − m̂i〉+ LD−h(m̂i+1, m̂i)

≤ F(m̂i) + 〈∇F(m̂i),m− m̂i〉+ LD−h(m, m̂i)− LD−h(m, m̂i+1).
(A.16)

Setting m = m̂i, we find
F(m̂i+1) ≤ F(m̂i), ∀ i ∈ [K].

We next prove by induction that for each i ≥ 1,

F(m̂i) < F(m∗) +
cεn

8
, ‖m̂i −m∗‖ <

√
εn. (A.17)

The base case i = 0 holds by assumption. Suppose (A.17) holds for i. It follows that

F(m̂i+1) ≤ F(m̂i) ≤ F(m∗) +
cεn

8
.

In fact, local c-strong convexity

∇2F(m) � cD(m) � cIn, m ∈ B(m∗,
√
εn) ∩ (−1, 1)n
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implies m̂i is even closer to m∗ than required by (A.17):

‖m̂i −m∗‖2 ≤
√
F(m̂i)−F(m∗)

c
≤
√
εn

2
.

Next we bound the movement from a single NGD step. Comparing values of (A.13) at m̂i and the
minimizer m̂i+1 implies

〈∇F(m̂i), m̂i+1 − m̂i〉+ LD−h(m̂i+1, m̂i) ≤ 0. (A.18)

From definition of Bregman divergence and the fact that (on the high probability event ‖A‖op ≤ 3)
‖∇F +∇h‖2 ≤ C

√
n (thanks to the special form of F( · ) = FTAP( · ;y, qK(β, t)),

|〈∇F(m̂i), m̂i+1 − m̂i〉+D−h(m̂i+1, m̂i)| = |〈∇F(m̂i) +∇h(m̂i), m̂i+1 − m̂i〉 − h(m̂i+1) + h(m̂i)|

≤ C1n

(
1 +
‖m̂i+1 − m̂i‖√

n

)
.

Moreover assuming L > 1, (A.4) implies

(L− 1)D−h(m̂i+1, m̂i) ≥ L− 1

2
‖m̂i+1 − m̂i‖2.

Substituting the previous two displays into (A.18) yields

0 ≥ L− 1

2
‖m̂i+1 − m̂i‖2 − C2

√
n‖m̂i+1 − m̂i‖2 − C2n

and so

‖m̂i+1 − m̂i‖2 ≤
C3
√
n√

L− 1
.

Taking L large enough, it follows that

‖m̂i+1 −m∗‖ ≤ ‖m̂i+1 − m̂i‖2 + ‖m̂i −m∗‖2 ≤
√
εn.

This completes the inductive proof of Eq. (A.17), which we now use to analyze convergence of Algorithm 3.
Indeed from the first part of (A.17), the local relative strong convexity of F implies

F(m̂i) + 〈∇F(m̂i),m∗ − m̂i〉 ≤ F(m∗)− cD−h(m∗, m̂
i), ∀ i ∈ [K].

Setting m = m∗ in (A.16) and combining yields

F(m̂i+1) ≤ F(m∗) + (L− c)D−h(m∗, m̂
i)− LD−h(m∗, m̂

i+1).

Multiplying by
(

L
L−c

)i+1
and summing over i gives

K−1∑
i=0

(
L

L− c

)i+1

F(m̂i+1) ≤
K−1∑
i=0

(
L

L− c

)i+1

F(m∗) + LD−h(m∗, m̂
0).

Since the values F(m̂i) are decreasing, we find

F(m̂K) ≤ F(m∗) + L

(
K−1∑
i=0

(
L

L− c

)i+1
)−1

D−h(m∗, m̂
0)

≤ F(m∗) + L (1− cη)K D−h(m∗, m̂
0).
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Using Eq. (A.5) together with the last display proves Eq. (A.11).
It was shown above by induction that m̂K is in a c-strongly convex neighborhood of m∗. Using strong

convexity in Euclidean norm yields

‖m̂k −m∗‖ ≤
√
F(m̂K)−F(m∗)

c

and so (A.12) follows as well.

Lemma A.9. Assume ‖A‖op ≤ 3. For any m,n ∈ (−1, 1)n, and y, ŷ ∈ Rn, and q ∈ [0, 1] :

‖∇FTAP(m,y, q)−∇FTAP(n, ŷ, q)‖ ≤ (4β2 + 4)‖ arctanh(m)− arctanh(n)‖+ ‖y − ŷ‖. (A.19)

Proof. The inequality (A.19) follows with the smaller constant factor β2 + 3β + 1 ≤ 4β2 + 4 using (4.53)
and the fact that tanh(·) is 1-Lipschitz.

A.2 Proof of Lemma 4.10

We split the proof into four parts.

Proof of Lemma 4.10, Part 1. Fix c = (1/4)−(β/2) > 0. Lemma 4.11 implies that forKAMP = KAMP(β, T, ε)
sufficiently large, we have with probability 1− on(1)

‖∇FTAP(m̂AMP;y, q∗)‖ ≤
c
√
εtn

4
, (A.20)

m̂AMP := AMP(A,y(t);KAMP), q∗ := q∗(β, t) .

Therefore, if ‖y(t)− ŷ‖ ≤ (c
√
εtn)/4 then

‖∇FTAP(m̂AMP; ŷ, q∗)‖ ≤ ‖∇FTAP(m̂AMP;y(t), q∗)‖+ ‖y − ŷ‖ ≤ c

2

√
εt

Moreover Lemma 4.12 implies that there exist ε0, c > 0 such that for all ε ∈ (0, ε0),

∇2FTAP(m; ŷ, q∗) = ∇2FTAP(m;y(t), q∗) � cD(m), ∀ m ∈ B
(
m̂AMP,

√
εtn
)
∩ (−1, 1)n.

Using εt/4 in place of ε in Lemma A.6, it follows that there exists a local minimum

m∗(A, ŷ; q∗) ∈ B
(
m̂AMP,

√
εtn

2

)
∩ (−1, 1)n

of FTAP( · , ŷ; q∗) which is also the unique stationary point in B
(
m̂AMP, (1/2)

√
εtn
)
∩ (−1, 1)n.

We next claim that, for any K > KAMP, with probability 1 − on(1), this local minimum is also the
unique stationary point in B

(
AMP(A,y(t); k), (1/2)

√
εtn
)
∩ (−1, 1)n. Indeed for KAMP sufficiently large

(writing for simplicity y = y(t)):

p-lim
n→∞

sup
k1,k2∈[KAMP,K]

‖AMP(A,y; k1)− AMP(A,y; k2)‖2 = sup
k1,k2∈[kalg,K]

p-lim
n→∞

‖AMPβ(A,y; k1)− AMPβ(A,y; k2)‖2

≤ n · sup
k1,k2≥KAMP

|qk1(β, t)− qk2(β, t)|.
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From Eq. (4.22), by eventually increasing KAMP, we have

sup
k1,k2≥KAMP

|qk1(β, t)− qk2(β, t)| ≤ εt

16
.

For such KAMP, with probability 1− on(1), all k ∈ [KAMP,K] satisfy

‖m∗(A,y; qKAMP
)− AMP(A,y; k)‖ ≤ ‖m∗(A,y; qAMP)− AMP(A,y;KAMP)‖

+ ‖AMP(A,y; k)− AMP(A,y;KAMP)‖

≤
√
εtn

2
+

√
εtn

4

≤ 3

4

√
εtn.

Let
S(k, ρ) := B (AMPβ(A,y; k), ρ) ∩ (−1, 1)n , ρn,t :=

√
εnt

Recall that m∗(A,y; q∗) is the unique stationary point of FTAP( · ;y, q∗) in S(KAMP, ρn,t). By the above, it
is also a stationary point in S(k, ρn,t), for k ∈ [KAMP,K]. Repeating the same argument as before, there is
only one stationary point inside S(k, ρn,t), hence this must coincide with m∗(A,y; q∗).

Proof of Lemma 4.10, Part 2. Because KAMP is large depending on δ0, Lemma 4.11 implies that with prob-
ability 1− on(1),

‖∇FTAP(AMP(A,y;KAMP),y; q∗)‖ ≤
cδ0

√
tn

4
.

Using δ0
√
t

4 in place of ε in Lemma A.6, it follows that the local minimizer m∗(A,y; q∗) of FTAP( · ;y, q∗)
satisfies

‖AMP(A,y;KAMP)−m∗(A,y; q∗)‖ ≤
δ0

√
tn

2
.

Since K is sufficiently large depending on δ0, Lemma implies that with probability 1− on(1),

‖m(A,y)− AMP(A,y;KAMP)‖ ≤ δ0

√
tn

2
.

Combining, we obtain that with probability 1− on(1),

‖m(A,y)−m∗(A,y; q∗)‖ ≤ ‖m(A,y)− AMP(A,y;KAMP)‖+ ‖AMP(A,y;KAMP)−m∗(A,y; q∗)‖
≤ δ0

√
tn.

Proof of Lemma 4.10, Part 3. The result is immediate from (A.8).

Proof of Lemma 4.10, Part 4. We apply Lemma A.8 with F( · ) = FTAP( · ; ŷ, q∗) and m∗ = m∗(A, ŷ; q∗))
(with q∗ = q∗(β, t)). We need to check that assumptions (A.9), (A.10) of Lemma A.8 hold for m̂0 =
tanh(u0) with u0 satisfying Eq. (4.51).
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To check assumption (A.9), we take KAMP sufficiently large and δ0 sufficiently small, obtaining

‖m̂0 −m∗(A, ŷ; q∗)‖ ≤ ‖m̂0 − AMP(A,y;KAMP)‖+ ‖AMP(A,y;KAMP)−m(A,y)‖
+ ‖m(A,y)−m∗(A,y; q∗)‖+ ‖m∗(A,y; q∗)−m∗(A, ŷ; q∗)‖

(a)

≤ c
√
εtn

96(β2 + 1)
+

1

100

√
εtn+ δ0

√
tn+

‖y − ŷ‖
c

≤
√
εtn

3

where inequality (a) holds with probability 1− on(1). In the last step we used c ≤ 1.
To check Eq. (A.10), we use (A.19) we find that with probability 1− on(1),

‖∇FTAP(m̂0; ŷ, q∗)‖ ≤ ‖∇FTAP(AMP(A,y;KAMP);y, q∗)‖+ ‖y − ŷ‖
+ (4β2 + 4)‖ arctanh(m̂0)− arctanh(AMP(A, ŷ;KAMP))‖

≤ ‖∇FTAP(AMP(A,y;KAMP);y, q∗)‖+
c
√
εtn

24
+
c
√
εtn

4
.

Combining with Eq. (A.20), we find that with probability 1− on(1),

‖∇FTAP(m̂0; ŷ, q∗)‖ ≤
c
√
εtn

6
.

Finally, we apply Lemma A.6 with εt
9 in place of ε, to get

FTAP(m̂0; ŷ, q∗) ≤ FTAP(m∗(A, ŷ; q∗); ŷ, q∗) +
ncεt

9
.

Lemma A.8 now applies for η0 sufficiently small. Moreover, with probability 1−on(1) the initialization
x0 satisfies

‖ arctanh(m̂0)‖ ≤ ‖ arctanh(m̂0)− arctanh(AMP(A,y;KAMP))‖+ ‖ arctanh(AMP(A,y;KAMP))‖

≤ c
√
εtn

96(β2 + 1)
+
√

3(γ∗(β, t) + t)
√
n

≤ C(β, c, T )
√
tn.

Thus, (A.12) implies (4.52) for a sufficiently large number KNGD of natural gradient iterations.
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