Counter Braids: A Novel Counter Architecture for Per-Flow
Measurement

Yi Lu
Department of EE
Stanford University

yi.lu@stanford.edu

Sarang Dharmapurikar
Nuova Systems, Inc
San Jose, California

Andrea Montanari
Departments of EE and Stats
Stanford University
montanar@stanford.edu

Balaji Prabhakar
Departments of EE and CS
Stanford University
balaji@stanford.edu

Abdul Kabbani
Department of EE
Stanford University

sarang@nuovasystems.comakabbani@stanford.edu

ABSTRACT

Fine-grained network measurement requires routers and
switches to update large arrays of counters at very high link
speed (e.g. 40 Gbps). A naive algorithm needs an infeasible
amount of SRAM to store both the counters and a flow-to-
counter association rule, so that arriving packets can update
corresponding counters at link speed. This has made accu-
rate per-flow measurement complex and expensive, and mo-
tivated approximate methods that detect and measure only
the large flows.

This paper revisits the problem of accurate per-flow mea-
surement. We present a counter architecture, called Counter
Braids, inspired by sparse random graph codes. In a nut-
shell, Counter Braids “compresses while counting”. It solves
the central problems (counter space and flow-to-counter as-
sociation) of per-flow measurement by “braiding” a hierarchy
of counters with random graphs. Braiding results in drastic
space reduction by sharing counters among flows; and us-
ing random graphs generated on-the-fly with hash functions
avoids the storage of flow-to-counter association.

The Counter Braids architecture is optimal (albeit with a
complex decoder) as it achieves the maximum compression
rate asymptotically. For implementation, we present a low-
complexity message passing decoding algorithm, which can
recover flow sizes with essentially zero error. Evaluation on
Internet traces demonstrates that almost all flow sizes are
recovered exactly with only a few bits of counter space per
flow.

Categories and Subject Descriptors

C.2.3 [Computer Communication Networks|: Network
Operations - Network Monitoring; E.1 [Data Structures]

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

S GMETRICS 08, June 2—6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/06 ...$5.00.

General Terms

Measurement, Algorithms, Theory, Performance

Keywords

Statistics Counters, Network Measurement, Message Pass-
ing Algorithms

1. INTRODUCTION

There is an increasing need for fine-grained network mea-
surement to aid the management of large networks [14]. Net-
work measurement consists of counting the size of a logical
entity called “flow”; at an interface such as a router. A flow
is a sequence of packets that satisfy a common set of rules.
For instance, packets with the same source (destination) ad-
dress constitute a flow. Measuring flows of this type gives
the volume of upload (download) by a user and is useful
for accounting and billing purposes. Measuring flows with
a specific flow 5-tuple in the packet header gives more de-
tailed information such as routing distribution and types of
traffic in the network. Such information can help greatly
with traffic engineering and bandwidth provisioning. Flows
can also be defined by packet classification. For example,
ICMP Echo packets used for network attacks form a flow.
Measuring such flows is useful during and after an attack for
anomaly detection and network forensics.

Currently there exists no large-scale statistics counter ar-
chitecture that is both cheap and accurate. This is mainly
due to the lack of affordable high-density high-bandwidth
memory devices. To illustrate the problem, the processing
time for a 64-byte packet at a 40-Gbps OC-768 link is 12 ns.
This requires memories with access time much smaller than
that of commercially available DRAM (whose access time
is tens of nsec), and makes it necessary to employ SRAMs.
However, due to their low density, large SRAMs are expen-
sive and difficult to implement on-chip. It is, therefore, es-
sential to find a counter architecture that minimizes memory
space. There are two main components of the total space re-
quirement:

1. Counter space. Assuming that a million distinct flows
are observed in an interval’ and using one 64-bit counter

!Our OC-48 (2.5 Gbps) trace data show that are about
900, 000 distinct flow 5-tuples in a 5-minute interval. On
40-Gbps links, there can easily be an excess of a million dis-




per flow (a standard vendor practice [20]), 8 MB of SRAM
is needed for counter space alone.
2. Flow-to-counter association rule. The set of active
flows varies over time, and the flow-to-counter association
rule needs to be dynamically constructed. For a small num-
ber of flows, a content-addressable-memory (CAM) is used
in most applications. However, the high power consumption
and heat dissipation of CAMs forbid their use in realistic
scenarios, and SRAM hash tables are used to store the flow-
to-counter association rule. This requires at least another
10 MB of SRAM.

The large space requirement not only considerably in-
creases the cost of line cards, but also hinders a compact
layout of chips due to the low density of SRAM.

1.1 Previous Approaches

The wide applicability and inherent difficulty of design-
ing statistics counters have attracted the attention of the
research community. There are two main approaches: (i)
Exact counting using a hybrid SRAM-DRAM architecture,
and (ii) approximate counting by exploiting the heavy-tail
nature of flow size distribution. We review these approaches
below.

Exact counting. Shah et. al. [22] proposed and analyzed
a hybrid architecture, taking the first step towards an im-
plementable large-scale counter array. The architecture con-
sists of shallow counters in fast SRAM and deep counters in
slow DRAM. The challenge is to find a simple algorithm
for updating the DRAM counters so that no SRAM counter
overflows in between two DRAM updates. The algorithm
analyzed in [22] was subsequently improved by Ramabhad-
ran and Varghese [20] and Zhao et. al. [23]. This reduced
the algorithm complexity, making it feasible to use a small
SRAM with 5 bits per flow to count flow sizes in packets
(not bytes). However, all the papers above suffer from the
following drawbacks: (i) deep (typically 64 bits per flow)
off-chip DRAM counters are needed, (ii) costly SRAM-to-
DRAM updates are required, and (iii) the flow-to-counter
association problem is assumed to be solved using a CAM
or a hash table. In particular, they do not address the flow-
to-counter association problem.

Approximate counting. To keep cost acceptable, prac-
tical solutions from the industry and academic research ei-
ther sacrifice the accuracy or limit the scope of measure-
ment. For example, Cisco’s Netflow [1] counts both 5-tuples
and per-prefix flows based on sampling, which introduces a
significant 9% relative error even for large flows and more
errors for smaller flows [12]. Juniper Networks introduced
filter-based accounting [2] to count a limited set of flows pre-
defined manually by operators. The “sample-and-hold” solu-
tion proposed by Estan and Varghese in [12], while achieving
high accuracy, measures only flows that occupy more than
0.1% of the total bandwidth. Estan and Varghese’s approach
introduced the idea of exploiting the heavy-tail flow size dis-
tribution: since a few large flows bring most of the data, it
is feasible to quickly identify these large flows and measure
their sizes only.

tinct flow 5-tuples in a short observation interval. Or, for
measuring the frequency of prefix accesses, one needs about
500, 000 counters, which is the current size of IPv4 routing
tables [20]. Future routers may easily support more than a
million prefixes.

1.2 Our Approach

The main contribution of this paper is an SRAM-only
large-scale counter architecture with the following features:

1. Flow-to-counter association using a small number (e.g.
3) of hash functions.

2. Incremental compression of flow sizes as packets arrive;
only a small number (e.g. 3) of counters are accessed
at each packet arrival.

3. Asymptotic optimality. We have proved in [17] that
Counter Braids (CB), with an optimal (but NP-hard)
decoder, has an asymptotic compression rate matching
the information theoretic limit. The result is surprising
since CB forms a restrictive family of compressors.

4. A linear-complexity message passing decoding algo-
rithm that recovers all flow sizes from compressed counts
with essentially zero error. Total space in CB needed
for exact recovery is close to the optimal compression
of flow sizes.

5. The message passing algorithm is analyzable, enabling
the choice of design parameters for different hardware
requirement.

Remark: We note that CB has the disadvantage of not
supporting instantaneous queries of flow sizes. All flow sizes
are decoded together at the end of a measurement epoch.
We plan to address this problem in future work.

Informal description. Counter Braids is a hierarchy of
counters braided via random graphs in tandem. Figure 1(a)
shows a naive counter architecture that stores five flow sizes
in counters of equal depth, which has to exceed the size
of the largest flow. Each bit in a counter is shown as a
circle. The least significant bit (LSB) is the one closest to
the flow node. Filled circles represent a 1, and unfilled circles
a 0. This structure leads to an enormous wastage of space
because the majority of flows are small.

Figure 1(b) shows CB for storing the same flow sizes. It is
worth noting that: (i) CB has fewer “more significant bits”
and they are shared among all flows, and (ii) the exact flow
sizes can be obtained by “decoding” the bit patten stored in
CB. A comparison of the two figures clearly shows a great
reduction in space.

1.3 Reéated Theoretical Literature

Compressed Sensing. The idea of Counter Braids is the-
matically related to compressed sensing [6, 11], whose central
innovation is summarized by the following quote:

Since we can “throw away” most of our data and still be
able to reconstruct the original with no perceptual loss (as
we do with ubiquitous sound, image and data compression
formats, Jwhy can’t we directly measure the part that will
not end up being “thrown away”? [11]

For the network measurement problem, we obtain a vec-
tor of counter values, ¢, via CB, from the flow sizes f. If
has a small entropy, the vector ¢ occupies much less space
than f; it constitutes “the part (of f) that will not end up
being thrown away.” An off-chip decoding algorithm then
recovers f from c¢. While Compressed Sensing and CB are



O ®

™
e

Figure 1: (a) A simple counter structure. (b) Counter
Braids. (filled circle = 1, unfilled circle = 0).

thematically related, they are methodologically quite dif-
ferent: Compressed Sensing computes random linear trans-
formations of the data and uses LP (linear programming)
reconstruction methods; whereas CB uses a multi-layered
non-linear structure and a message passing reconstruction
algorithm.

Sparse random graph codes. Counter Braids is method-
ologically inspired by the theory of low-density parity check
(LDPC) codes[13, 21]. See also related literatures on Tor-
nado codes[18] and Fountain codes[4]. From the informa-
tion theoretic perspective, the design of an efficient count-
ing scheme and a good flow size estimation is equivalent
to the design of an efficient compressor, or a source code
[8]. However, the network measurement problem imposes a
stringent constraint on such a code: each time the size of a
flow changes (because a new packet arrives), a small number
of operations must be sufficient to update the compressed in-
formation. This is not the case with standard source codes
(such as the Lempel-Ziv algorithm), where changing a sin-
gle bit in the source stream may completely alter the com-
pressed version. We find that the class of source codes dual
to LDPC codes [5] work well under this constraint; using
features of these codes makes CB a good “incremental com-
pressor.”

There is a problem in using the design of LDPC codes for
network measurement: with the heavy-tailed distribution,
the flow sizes are a priori unbounded. In the channel coding
language, this is equivalent to using a countable but infinite
input alphabet. As a result, new ideas are developed for
proving the achievability of optimal asymptotic compression
rate. The full proof is contained in [17] and we state the
theorem in the appendix for completeness.

The large alphabet size also makes iterative message pass-
ing decoding algorithms [15], such as Belief Propagation,
highly complex to implement, as BP passes probabilities
rather than numbers. In this paper, we present a novel mes-
sage passing decoding algorithm of low complexity that is
easy to implement. The sub-optimality of the message pass-
ing algorithm naturally requires more counter space than

the information theoretic limit. We characterize the mini-
mum space required for zero asymptotic decoding error us-
ing “density evolution” [21]. The space requirement can be
further optimized with respect to the number of layers in
Counter Braids, and the degree distribution of each layer.
The optimized space is close to the information theoretic
limit, enabling CB to fit into small SRAM.

Count-Min Sketch. Like Counter Braids, the Count-Min
sketch [7] for data stream applications is also a random hash-
based structure. With Count-Min, each flow hashes to and
updates d counters; the minimum value of the d counters
is retrieved as the flow estimate. The Count-Min sketch
provides probabilistic guarantees for the estimation error:
with at least 1 — § probability, the estimation error is less
than €|f]1, where |f|1 is the sum of all flow sizes. To have
small § and €, the number of counters needs to be large.
The Count-Min sketch is different from Counter Braids in
the following ways: (a) There is no “braiding” of counters,
hence no compression. (b) The estimation algorithm for the
Count-Min sketch is one-step, whereas it is iterative for CB.
In fact, comparing the Count-Min algorithm to our recon-
struction algorithm on a one-layer CB, it is easy to see that
the estimate by Count-Min is exactly the estimate after the
first iteration of our algorithm. Thus, CB performs at least
as well as the Count-Min algorithm.? (c) Our reconstruc-
tion algorithm detects errors. That is, it can distinguish
the flows whose sizes are incorrectly estimated, and produce
an upper and lower bound of the true value; whereas the
Count-Min sketch only guarantees an over-estimate. (d) CB
needs to decode all the flow sizes at once, unlike the Count-
Min algorithm which can estimate a single flow size. Thus,
Count-Min is better at handling online queries than CB.

Structurally related to Counter Braids (random hashing
of flows into counters and a recovery algorithm) is the work
of Kumar et. al. [16]. The goal of that work is to estimate
the flow size distribution and not the actual flow sizes, which
is our aim.

In Section 2, we define the goals of this paper and outline
our solution methodology. Section 3 describes the Counter
Braids architecture. The message passing decoding algo-
rithm is described in Section 4 and analyzed in Section 5.
Section 6 explores the choice of parameters for multi-layer
CB. The algorithm is evaluated using traces in Section 7.
We discuss implementation issues in Section 8 and outline
further work in Section 9.

2. PROBLEM FORMULATION

We divide time into measurement epochs (e.g. 5 minutes).
The objective is to count the number of packets per flow for
all active flows within a measurement epoch. We do not
deal with the byte-counting problem in this paper due to
space limitation, but there is no constraint in using Counter
Braids for byte-counting.

Goals: As mentioned in Section 1, the main problems we
wish to address are: (i) compacting (or eliminating) the
space used by flow-to-counter association rule, and (ii) sav-
ing counter space and incrementally compressing the counts.

2This is similar to the benefit of Turbo codes over conven-
tional soft-decision decoding algorithms and illustrates the
power of the “Turbo principle.”



Additionally, we would like (iii) a low-complexity algorithm
to reconstruct flow sizes at the end of a measurement epoch.

Solution methodology: Corresponding to the goals, we
(i) use a small number of hash functions, (ii) braid the coun-
ters, and (iii) use a linear-complexity message-passing algo-
rithm to reconstruct flow sizes. In particular, by using a
small number of hash functions, we eliminate the need for
storing a flow-to-counter association rule.

Performance measures:

(1) Space: measured in number of bits per flow occupied by
counters. We denote it by r (to suggest compression rate as
in the information theory literature.) Note that the number
of counters is not the correct measure of compression rate;
rather, it is the number of bits.

(2) Reconstruction error: measured as the fraction of flows
whose reconstructed value is different from the true value:

_Isyr
Perr = Ezﬂ{fl 7& fl}7

i=1

where n is the total number of flows, ﬁ is the estimated
size of flow ¢ and f; the true size. I is the indicator func-
tion, which returns 1 if the expression in the bracket is true
and 0 otherwise. We chose this metric since we want exact
reconstruction.

(3) Average error magnitude: defined as the ratio of the sum
of absolute errors and the number of errors:

> 0(fi # 1i)

It measures how big an error is when an error has occurred.

The statement of asymptotic optimality in the appendix
yields that it is possible to keep space equal to the flow-
size entropy, and have reconstruction error going to 0 as the
number of flows goes to infinity.

Both analysis (Section 5) and simulations (Section 7) show
that with our low-complexity message passing decoding al-
gorithm, we can keep space close to the flow-size entropy
and obtain essentially zero reconstruction error. In addi-
tion, the algorithm offers a gracious degradation of error
when space is further reduced, even below the flow-size en-
tropy. Although reconstruction error becomes significant,
average error magnitude remains small, which means that
most flow-size estimates are close to their true values.

3. OURSOLUTION

The overall architecture of our solution is shown in Figure
2. Each arriving packet updates Counter Braids in on-chip
SRAM. This constitutes the encoding stage if we view mea-
surement as compression. At the end of a measurement
epoch, the content of Counter Braids, i.e., the compressed
counts, are transferred to an offline processing unit, such as
a PC. A reconstruction algorithm then recovers the list of
<flow ID, size> pairs.

We describe CB in Section 3.1 and specify the mapping
that solves the flow-to-counter association problem in Sec-
tion 3.2. We describe the updating scheme, or the on-chip
encoding algorithm, in Section 3.3, leaving the description
of the reconstruction algorithm to Section 4.

On-chip SRAM

1
Packet update Counter
stream Braids
* compressed counts
List of .
. Reconstruction Flow
<flow H,)’ size> Algorithm IDs
pairs
Offline

Figure 2: System Diagram.

3.1 Counter Braids

Counter Braids has a layered structure. The [-th layer has
my counters with a depth of d; bits. Let the total number
of layers be L. In practice, L = 2 is usually sufficient as will
be shown in Section 6. Figure 3 illustrates the case where
L = 2. For a complete description of the structure, we leave
L as a parameter.

Flows Counter Braids W status bit

O —_
\

N\ .
\\\\:“—_—j ] m, m,

o7 counters |counters

Figure 3: Two-layer Counter Braids with two hash func-
tions and status bits.

We will show in later sections that we can use a decreasing
number of counters in each layer of CB, and still be able
to recover the flow sizes correctly. The idea is that given
a heavy-tail distribution for flow sizes, the more significant
bits in the counters are poorly utilized; since braiding allows
more significant bits to be shared among all flows, a reduced
number of counters in the higher layers suffice.

Figure 3 also shows an optional feature of CB, the status
bits. A status bit is an additional bit on a first-layer counter.
It is set to 1 after the corresponding counter first overflows.
Counter Braids without status bits is theoretically sufficient:
the asymptotic optimality result in the appendix is shown
without status bits, assuming a high-complexity optimal de-
coder. However, in practice we use a low-complexity mes-
sage passing decoder, and the particular shape of the net-
work traffic distribution is better exploited with status bits.

Status bits occupy additional space, but provide useful in-
formation to the message-passing decoder so that the num-
ber of second-layer counters can be further reduced, yield-
ing a favorable tradeoff in space. Status bits are taken into
account when computing the total space; in particular, it
figures in the performance measure, r, “space in number of



bits per flow.” In CB with more than two layers, every layer
except the last will have counters with status bits.

3.2 TheRandom (Hash) Mappings

We use the same random mapping in two settings: (i)
between flows and the first-layer counters, and (ii) between
two consecutive layers of counters. The dashed arrows in
Figure 3 illustrate both (i) and (ii) (which is between the
first and second layer counters.)

Consider the random mapping between flows and the layer-
1 counters. For each flow ID, we apply k& pseudo-random
hash functions with a common range {0, - - - ,m1 — 1}, where
m is the number of counters in layer 1, as illustrated in Fig-
ure 3 (with £ = 2.) The mapping has the following features:

1. It is dynamically constructed for a varying set of ac-
tive flows, by applying hash functions to flow IDs. In
other words, no memory space is needed to describe
the mapping explicitly.

The storage for the flow-to-counter association
is simply the size of description of the k& hash
functions and does not increase with the num-
ber of flows n.

2. The number of hash functions k is set to a small con-
stant (e.g. 3). This allows counters to be updated with
only a small number of operations at a packet arrival.

Remark. Note that the mapping does not have any special
structure. In particular, it is not bijective. This necessi-
tates the use of a reconstruction algorithm to recover the
flow sizes. Using k > 1 adds redundancy to the mapping
and makes recovery possible. However, the random mapping
does more than simplifying the flow-to-counter association.
In fact, it performs the compression of flow sizes into
counter values and reduces counter space.

Next consider the random mapping between two consec-
utive layers of counters. For each counter location (in the
range {0,---,m; — 1}) in the I-th layer, we apply k hash
functions to obtain the corresponding (I+1)-th layer counter
locations (in the range {0,--- ,m;11 — 1}). It is illustrated
in Figure 3 with k& = 2. The use of hash functions enables
us to implement the mapping without extra circuits in the
hardware; and the random mapping further compresses the
counts in layer-2 counters.

3.3 Encoding: The Updating Algorithm

The initialization and update procedures of a two-layer
Counter Braids with 2 hash functions at each layer are spec-
ified in Exhibit 1. The procedures include both the gener-
ation of random mapping using hash functions and the up-
dating scheme. When a packet arrives, both counters its flow
label hashes into are incremented. And when a counter in
layer 1 overflows, both counters in layer 2 it hashes into are
incremented by 1, like a carry-over. The overflowing counter
is reset to 0 and the corresponding status bit is set to 1.

It is evident from the exhibit that the amount of updat-
ing required is very small. Yet after each update, the coun-
ters store a compressed version of the most up-to-date flow
sizes. The incremental nature of this compression algorithm
is made possible with the use of random sparse linear codes,
which we shall further exploit at the reconstruction stage.

Exhibit 1: The Update Algorithm

1:  Initialize

2: for layer [ =1 to 2

3: for counter ¢ = 1 to my

4: countersl][i] =0

5: Update

6: Upon the arrival of a packet pkt

T tdzl = hash-functionl(pkt);

8: idx2 = hash-function2(pkt);

9: counters[1][idz1l] = counter[1][idz1] 4 1;
10: counters[1][idz2] = counter[1][idz2] + 1;
11: if counters[1][idz1] overflows,

12: Update second-layer counters (idz1);
13: if counters[1][idz2] overflows,

14: Update second-layer counters (idz2)

15: Update second-layer counters (idx)

16: statusbit[1][idz] = 1;

17: idz3 = hash-function3(idz);

18: idz4 = hash-function4(idx);

19: counters|2][idz3] = counter[2][idz3] + 1;
20: counters|2][idzd] = counter[2][idz4] + 1

The update of the second-layer counters can be pipelined.
It can be executed together with the next update of the
first-layer counters. In general, pipelining can be used for
CB with multiple layers.

Figure 4: A toy example for updating. Numbers next
to flow nodes are current flow sizes. Dotted lines indi-
cate hash functions. Thick lines indicate hash functions
being computed by an arriving packet. The flow with an
arriving packet is indicated by an arrow.

Figure 4 illustrates the updating algorithm with a toy ex-
ample. (a) shows the initial state of CB with two flows. In
(b), a new flow arrives, bringing the first packet; a layer-1
counter overflows and updates two layer-2 counters. In (c), a
packet of an existing flow arrives and no overflow occurs. In
(d), another packet of an existing flow arrives and another
layer-1 counter overflows.



4. MESSAGE PASSING DECODER

The sparsity of the random graphs® in CB opens the way
to using low-complexity message passing algorithms for re-
construction of flow sizes, but the design of such an algo-
rithm is not obvious. In the case of LDPC codes, message
passing decoding algorithms hold the promise of approach-
ing capacity with unprecedentedly low complexity. However,
the algorithms used in coding, such as Belief Propagation,
have increasing memory requirement as the alphabet size
grows, since BP passes probability distributions instead of
single numbers. We develop a novel message passing algo-
rithm that is simple to implement on countable alphabets.

4.1 Onelayer

Consider the random mapping between flows and the first-
layer counters. It is a bipartite graph with flow nodes on the
left and counter nodes on the right, as shown in Figure 5.
An edge connects flow ¢ and counter « if one of the k hash
functions maps flow ¢ to counter a. The vector f denotes
flow sizes and ¢ denotes counter values.

=2 F
i€0a

where da denotes all the flows that hash into counter a. The
problem is to estimate f given c.

Figure 5: Message passing on a bipartite graph with
flow nodes (circles) and counter nodes (rectangles.)

Message passing algorithms are iterative. In the t** iter-
ation messages are passed from all flow nodes to all counter
nodes and then back in the reverse direction. A message goes
from flow 4 to counter a (denoted by v;,) and vice versa (de-
noted by pqi) only if nodes ¢ and a are neighbors (connected
by an edge) on the bipartite graph.

Our algorithm is described in Exhibit 2. The messages
Via(0) are initialized to 0, although any initial value less
than the minimum flow size, min, will work just as well.
The interpretation of the messages is as follows: pq; conveys
counter a’s guess of flow i’s size based on the information
it received from neighboring flows other than flow i. Con-
versely, v, is the guess by flow i of its own size, based on
the information it received from neighboring counters other
than counter a.

Remark 1. Since v;,(0) = 0,

ftai(1) = ca and  fi(1) = min{ca},

3Each random mapping in CB is a random bipartite graph
with edges generated by the k hash functions. It is sparse
because the number of edges is linear in the number of nodes,
as opposed to quadratic for a complete bipartite graph.

Exhibit 2: The Message Passing Decoding Algorithm

1: Initialize

2: min = minimum flow size;
3: via(0) =0 Vi and Va;

4: ca = at” counter value

Iterations
for iteration number t =1 to T’

7 Hai(t) = max{(ca — >z Via(t — 1)) ,min};

s Via(t) = ming£q ppi(t) if ¢ is odd,
' YN maxpza pei(t) if € s even.

9: Final Estimate

) > ming{pai(T)} if T is odd,
10: F(T) = { maxq{tae:(T)} if T is even.

sizes counts
1 34
1 34
32 32
Iteration O Iteration 1
(0,0) (34,34,34) (34,34) (1,1,1)
(0,0) (34,34,34) (34,34) (1,1,1)
(0,0) (32) (32,32,34) (32)
Iteration 2 Iteration 3
(1,1) (1,1,32) 1,1) (1,1,32)
1,1) (1,1,32) 1,1) (1,1,32)
(32,32,1) (32) (32,32,32) (32)

Figure 6: The decoding algorithm over 4 iterations.
Numbers in the topmost figure are true flow sizes and
counter values. In an iteration, numbers next to a node
are messages on its outgoing edges, from top to bot-
tom. Each iteration involves messages going from flows
to counters and back from counters to flows.

which is precisely the estimate of the Count-Min algorithm.
Thus, the estimate of Count-Min is the estimate of our
message-passing algorithm after the first iteration.

Remark 2. The distinction between odd and even itera-
tions at line 8 and 10 is due to the “anti-monotonicity prop-
erty” of the message-passing algorithm, to be discussed in
Section 5.

Remark 3. It turns out that the algorithm remains un-
changed if the minimum or maximum at line 8 is over all
incoming messages, that is,

Via(t) = ming ppi (t) if ¢ is odd,
T maxp i (t) if ¢ s even.

The change will save some computations in implementation.
The proof of this fact and ensuing analytical consequences
is deferred to forthcoming publications. In this paper, we
stick to the algorithm in Exhibit 2.



Toy example. Figure 6 shows the evolution of messages
over 4 iterations on a toy example. In this particular exam-
ple, all flow sizes are reconstructed correctly. Note that we
are using different degrees at some flow nodes. In general,
this gives potentially better performance than all flow nodes
having the same degree, but we will stick to the latter in
this paper for its ease of implementation.

The flow estimates at each iteration are listed in Table 1.
All messages converge in 4 iterations and the estimates at
Iteration 1 (second column) is the Count-Min estimate.

iteration [ 0 1 2 3 4
f1 0 34 1 1 1
f2 0 34 1 1 1
f3 0 32 32 32 32

Table 1: Flow estimates at each iteration. All messages
converge after Iteration 3.

4.2 Multi-layer

Multi-layer Counter Braids are decoded recursively, one
layer at a time. It is conceptually helpful to construct a
new set, of flows f; for layer-I counters based on the counter
values at layer (I — 1). The presence of status bits affects

the definition of fj.
v
E % 53

Figure 7: Without status bits, flows in f> have a one-to-
one map to all counter in c; .

A

G

Figure 8: With status bits, flows in f; have a one-to-one
map to only counters that have overflown (whose status
bits are set to 1).

Figure 7 illustrates the construction of f2 when there are
no status bits. The vector fa has a one-to-one map to coun-
ters in layer 1, and a flow size in f2 equals the number
of times the corresponding counter has overflown, with the
minimum value 0.

Figure 8 illustrates the construction of fo when there are
status bits. The vector fo now has a one-to-one correspon-

dence with only those counters in layer 1 that have over-
flown; that is, counters whose status bits are set to 1. The
new flow size is still the number of times the corresponding
counter overflows, but in this case, the minimum value is 1.
It is clear from the figure that the use of status bits effec-
tively reduces the number of flow nodes in layer 2. Hence,
fewer counters are needed in layer 2 for good decodability.
This reduction in counter space at layer 2 trades off with
the additional space needed for status bits themselves! As
we shall see in Section 6, when the number of layers in CB
is small, the tradeoff favors the use of status bits.

The flow sizes are decoded recursively, starting from the
topmost layer. For example, after decoding the layer-2 “flows,”
we add their sizes (the amount of overflow from layer-1 coun-
ters) to the values of layer-1 counters. We then use the new
values of layer-1 counters to decode the flow sizes. Details
of the algorithm are presented in Exhibit 3.

Exhibit 3: The Multi-layer Algorithm

1: forl=Ltol

2: construct the graph for l;, layer
as in Figure 7 if without status bits;
as in Figure 8 if with status bits;

3: decode f; from c¢; as in Exhibit 2

4: cio1 =c¢_1 +f; x 2%-1
where d;—; is the counter depth in bits
at layer (I — 1)

5. SINGLE-LAYER ANALYSIS

The decoding algorithm works one layer at a time; hence,
we first analyze the single-layer message passing algorithm
and determine its rate r and reconstruction error probability
Perr. This analysis lays the foundation for the design of
multi-layer Counter Braids, to be presented in Section 6.
Since all counters in layer 1 have the same depth di, a very
relevant quantity for the analysis is the number of counters
per flow:

B=m/n,

where m is the number of counters and n is the number
of flows. The compression rate in bits per flow is given by
r = [Bdi. The bipartite graph in Figure 5 will be the focus
of study, as its properties determine the performance of the
algorithm.

LEMMA 1. Toggling Property. If vio(t — 1) < f; for
every i and a, then pqi(t) > fi and via(t) > fi. Conversely,
if via(t — 1) > fi for every i and a, then pqi(t) < fi and
Via(t) < fi.

The proof of this lemma follows simply from the definition
of v and p and is omitted.

LEMMA 2. Anti-monotonicity Property. If v and v/
are such that for every i and a, via(t — 1) < v, (t —1) < fi,
then viq(t) > vig(t) > fi. Consequently, since ?(0) =0,
?(275) < f component-wise and ?(275) is component-wise non-
decreasing. Similarly (2t + 1) > £ and is component-wise
non-increasing.



Proof. It follows from line 7 of Exhibit 2 that, if v, (t —1) <
Via(t — 1) < fi, then piai(t) > ph;(t) > f;.* From this and
the definitions of v and fat lines 8 and 10 of Exhibit 2, the
rest of the lemma follows. |

The above lemmas give a powerful conclusion: The true
value of the flow-size vector is sandwiched between monoton-
ically increasing lower bounds and monotonically decreasing
upper bounds. The question, therefore, is:

Convergence: When does the sandwich close? That is,
under what conditions does the message passing algorithm
converge?

We give two answers. The first is general, not requiring any
knowledge of the flow-size distribution. The second uses
the flow-size distribution, but gives a much better answer.
Indeed, one obtains an exact threshold for the convergence
of the algorithm: For 8 > 3 the algorithm converges, and
for B < B* it fails to converge (i.e. the sandwich does not
close.)

5.1 Message Passing on Trees

DEFINITION 1. A graph is a forest if for all nodes in the
graph, there exists no path of non-vanishing length that starts
and ends at the same node. In other words, the graph con-
tains no loops. Such a graph is a tree if it is connected.

Fact 1. Consider a bipartite graph with n flow nodes and
m = [Bn counters nodes, where each flow node connects to
k uniformly sampled counter nodes. It is a forest with high
probability iff 3 > k(k — 1) [19].

Assume the bipartite graph is a forest. Since the flow
nodes have degree k > 1, the leaves of the trees have to be
counter nodes.

THEOREM 1. For any flow node i belonging to a tree com-
ponent in the bipartite graph, the message passing algorithm
converges to the correct flow estimates after a finite number
of iterations. In other words, for every a, pai(t), via(t) and

ﬁ(t) all coincide with f; for all t large enough.

Figure 9: The tree T,; rooted at the directed edge a —
i. Its depth is Dq; = 2.

Proof For simplicity we prove convergence for pq:(t), as
the convergence of other quantities easily follows. Given
the directed edge a — %, consider the subtree T,; rooted at
a — 1 obtained by cutting all the counter nodes adjacent to
i but a, cf. Figure 9. Clearly pqi(t) only depends on the
counter values inside T,;, and we restrict our attention to
this subtree. Let D,; denote the depth of T,;. We shall
prove by induction on Dg; that pe:(t) = fi for any t > Da;.

“Note that we implicitly assume that ¢ is odd to be consis-
tent with the definition of v(-) at line 8.

If Dq; = 1, this is trivially true: at any time pqi(t) = cq
and since ¢, = fi, the thesis follows.

Assume now that the thesis holds for all depths up to D,
and consider D,; = D + 1. Let j be one of the flows in
Ta: that hashes to counter a, and let b denote one of the
other counters to which it contributes, cf. Figure 9. Since
the depth of the subtree Ty; is at most D, by the induction
hypothesis, p;(t) = f; for any t > D. Consider now t > D+
1. From the messages defined in Exhibit 2 and the previous
observation, it follows that pai(t) = ca — Zj# fi = fi as
claimed. |

Unfortunately, the use of the above theorem for CB re-
quires 3 > k(k — 1), which leads to an enormous wastage
of counters. We will now assume knowledge of the flow-size
distribution and dramatically reduce 8. We will work with
sparse random graphs that are not forests, but rather they
will have a locally tree-like structure.

5.2 Sparse Random Graph

It turns out that we are able to characterize the recon-
struction error probability at ¢-th iteration of the algorithm
more precisely. A nice observation enables us to use the
idea of density evolution, developed in coding theory [21],
to compute the error probability recursively in the large n
limit. Due to space limitation, we are unable to fully de-
scribe the ideas of this section. We will be content to state
the main theorem and make some useful remarks.

Consider a bipartite graph with n flow nodes and m = n
counter nodes, where each flow node connects to k uniformly
sampled counter nodes. Let

-1

m(as):z;%.

where v = nk/m is the average degree of a counter node.
The degree distribution of a counter node converges to a
Poisson distribution as n — oo, and p~(x) is the generating
function for the Poisson distribution.

Assume that we are given the flow size distribution and let
e = P(fi > min).

Recall that min is the minimum value of flow sizes.
Let

flrm) =efl = py (1= [1 = py (1 — )" 1},
and

~v* =sup{y € R: x = f(v, ) has no solution Vx € (0, 1]}.

THEOREM 2. The Threshold. We have

3|3
Pl

g =

such that in the large n limit

(i) If B > 8%, £(2t) 1 £ and £(2t + 1) | £.

(i1) If B < B, there exists a positive proportion of flows such
that f;(2t) < fi(2t + 1) for all t. Thus, some flows are not
correctly reconstructed.®

°In the event of ﬁ-(2t) < fi(2t + 1), we know that an error

has occurred. Moreover, f;(2t) lower bounds and fi(2t +1)
upper bounds the true value f;.



0.9}
0.8t y=X—3
0.7
06
0.5
0.4
.l y=1f(y.x)
0.2

0.1

Figure 10: Density evolution as a walk between two
curves.

Remark 1. The characterization of the threshold S*
largely depends on the locally treelike structure of the sparse
random graph. More precisely, it means that the graph
contains no finite-length loops as n — oco. Based on this,
the density evolution principle recursively computes the er-
ror probability after a finite number of iterations, during
which all incoming messages at any node are independent.
With some observations specific to this algorithm, we obtain
f(v,z) as the recursion.

Remark 2. The definition of v* can be understood vi-
sually using Figure 10. The recursive computation of er-
ror probability® corresponds to a walk between the curve
y = f(v,z) and the line y = z, where two iterations (even
and odd) correspond to one step. If v < ~*, y = f(y,z) is
below y = x, and the walk continues all the way to 0, cf.
Figure 10. This means that the reconstruction error is 0. If
v >~ y = f(v,z) intersects y = x at points above 0, and
the walk ends at a non-zero intersection point. This means
that there is a positive error for any number of iterations.

Remark 3. The minimum value of 8* = /e can be ob-
tained after optimizing over all degree distributions, includ-
ing irregular ones. For the specific bipartite graph in CB,
where flow nodes have regular degree k and counter nodes
have Poisson distributed degrees, we obtain

* 1 *
’-Y - \/E7 ﬁ - 2\/27
for k = 2. The values of v* and 8* for different k are listed
in Table 2 for P(f; > z) = ™", The optimum value /¢ =
0.595 in this case. The value k = 3 achieves the lowest 3*
among 2 < k < 7, which is 18% more than the optimum.

o

2 3 4 5 6 7
~* 1169 423 541 6.21 6.82 7.32
g* 118 0.71 0.74 0.80 0.88 0.96

Table 2: Single-layer rate for 2 < k < 7. P(f; > z) = 2~ 15,

6. MULTI-LAYER DESIGN

Given a specific flow size distribution (or an upper bound
on the empirical tail distribution), we have a general algo-
rithm that optimizes the number of bits per flow in Counter

5More precisely, it refers to the probability that an outgoing
message is in error.

Braids over the following parameters: (1) number of layers,
(2)number of hash functions in each layer, (3) depth of coun-
ters in each layer and (4) the use of status bits. We present
below the results from the optimization.

50 SR
IR

.
10 N
N

Space in bits per flow, r

2
number of layers, L

Figure 11: Optimized space against number of layers.

(i) Two layers are usually sufficient.

Figure 11 shows the decrease of total space (number of bits
per flow) as the number of layers increases, for power-law
distributions P(f; > «) = =% with = 1.5, 1.1 and 0.6. For
distributions with relatively light tails, such as a = 1.5 or
1.1, two layers accomplish the major part of space reduction;
whereas for heavier tails, such as a = 0.6, three layers help
reduce space further.

Note that the distribution with a = 0.6 has very heavy
tails. For instance, the flow distributions from real Internet
traces, such as those plotted in [16], has a &= 2. Hence two
layers suffice for most network traffic.

(ii) 3 hash functions is optimal for two-layer CB.
We optimized total space over the number of hash functions
in each layer for a two-layer CB. Using 3 hash functions in
both layers achieves the minimum space. Fixing k£ = 3 and
using the traffic distribution, we can find 8* according to
Theorem 2. The number of counters in layer 1 is m1 = 8*n,
where n is the number of flows.

(iii) Layer-1 counter depth and number of layer-2
counters.

There is a tradeoff between the depth of layer-1 counters
and the number of layer-2 counters, since shallow layer-1
counters overflow more often. For most network traffic with
a > 1.1, 4 or 5 bits in layer 1 suffice. For distributions with
heavier tails, such as a = 1, the optimal depth is 7 to 8
bits. Since layer-2 counters are much deeper than layer-1
counters, it is usually favorable to have at least one order
fewer counters in layer 2.

(iv) Status bits are helpful.

We consider a two-layer CB and compare the optimized rate
with and without status bits. Sizings that achieve the min-
imum rate with o = 1.5 and maximum flow size 13 are
summarized below. Here r denotes the total number of bits
per flow. (3; denotes the number of counters per flow in the
i-th layer. di denotes the number of bits in the first layer,
(in the two-layer case, do = maximum flow size —d1). k;
denotes the number of hash functions in the i-th layer. CB
with status bits achieves smaller total space, r. Similar re-
sults are observed with other values of @ and maximum flow
size.



r 51 B2 di k1 ke
4.13 0.71 0.065 4 3 3
4.66 0.71 0.14 5 3 3

status bit
no status bit

We summarize the above as the following rules of thumb.

1. Use a two-layer CB with status bits and 3 hash func-
tions at each layer.

2. Empirically estimate (or guess based on historical data)
the heavy-tail exponent o and the max flow size.

3. Compute 8* according to Theorem 2. Set mi1 = ™n
and mo = 0.18"n.

4. Use 5-bit counters at layer 1 for o > 1.1, and 8-bit
counters for a < 1.1. Use deep enough counters at
layer 2 so that the largest flow is accommodated (in
general, 64-bit counters at layer-2 are deep enough).

7. EVALUATION

We evaluate the performance of Counter Braids using
both randomly generated traces and real Internet traces.

In Section 7.1 we generate a random graph and a random
set of flow sizes for each run of experiment. We use n =
1000 and are able to average the reconstruction error, Perr,
and the average error magnitude, F,,, over enough rounds
so that their standard deviation is less than 1/10 of their
magnitude.

In Section 7.2 we use 5-minute segments of two one-hour
contiguous Internet traces and generate a random graph for
each segment. We report results for the entire duration of
two hours. The reconstruction error Pe,r is the total number
of errors divided by the total number of flows, and the av-
erage error magnitude FE,, measures how big the deviation
from the actual flow size is provided an error has occurred.

7.1 Performance

First, we compare the performance of one-layer and two-
layer CB. We use 1000 flows randomly generated from the
distribution P(f; > x) = 27'°, whose entropy is a little less
than 3 bits. We vary the total number of bits per flow in
CB and compute Pery and Fy,. In all experiments, we use
CB with 3 hash functions. For the two-layer CB, we use
4-bit deep layer-1 counters with status bits. The results are
shown in Figure 12.

The points labelled 1-layer and 2-layer threshold respec-
tively are asymptotic threshold computed using density evo-
lution. We observe that with 1000 flows, there is a sharp
decrease in Pey around this asymptotic threshold. Indeed,
the error is less than 1 in 1000 when the number of bits per
flow is 1 bit above the asymptotic threshold. With a larger
number of flows, the decrease around threshold is expected
to be even sharper.

Similarly, once above the threshold, the average error mag-
nitude for both 1-layer and 2-layer Counter Braids is close
to 1, the minimum magnitude of an error. When below the
threshold, the average error magnitude increases only lin-
early as the number of bits decreases. At 1 bit per flow, we
have 40 — 50% flows incorrectly decoded, but the average er-
ror magnitude is only about 5. This means that many flow
estimates are not far from the true values.

Together, we see that the 2-layer CB has much better
performance than the 1-layer CB with the same space. As
we increase the number of layers, the asymptotic threshold

T T
! |
“““““ . - - |
——
5 :
o 107t Iz |
- |
o
<l P&
] |
c | | one layer T
S 107’ two layers [ E
5] ! | I
=} I |
=
@ ! | 1
S | 1-layer -
g 10° ! threshold I 4
g entropy | ! g
! 2-layer | T
| _threshold !
107 . . . | . . ] .
0 1 2 3 4 5 6 7l 8 9
bits per flow
5.5
sl i
I.IJE
o 45 4
=}
= ar -
=
& L i
= 3.5
5 of 1
|
D 2.5 _
=
o
I<5) 25 7
=
1.5 ~
1

a 5
bits per flow

Figure 12: Performance over a varying number of bits
per flow.

will move closer to entropy. However, we observe that the
2-layer CB has already accomplished most of the gain.

°
©

oo below threshold
- - -at threshold
—— above threshold

Count-Min

°
©

°
2

°
>

°
=

estimated incorrectly
o °

proportion of flows

°
’

5 10 . 15 . 20 25
number of iterations

Figure 13: Performance over number of iterations. Note
that Pe;r for a Count-Min sketch with the same space as
CB is high.

Next, we investigate the number of iterations required to
reconstruct the flows. Figure 13 shows the remaining pro-
portion of incorrectly decoded flows as the number of iter-
ations increases. The experiments are run for 1000 flows
with the same distribution as above, on a one-layer Counter
Braids. The number of bits per flow is chosen to be below, at
and above the asymptotic threshold. As predicted by den-
sity evolution, P.,, decreases exponentially and converges to
0 at or above the asymptotic threshold, and converges to a
positive error when below threshold. In this experiment, 10
iterations are sufficient to recover most of the flows.



7.2 Trace Simulation

We use two OC-48 (2.5 Gbps) one-hour contiguous traces
at a San Jose router. Trace 1 was collected on Wednesday,
Jan 15, 2003, 10am to 1lam, hence representative of week-
day traffic. Trace 2 was collected on Thur Apr 24, 2003,
12am to lam, hence representative of night-time traffic. We
divide each trace into 12 5-minute segments, corresponding
to a measurement epoch. Figure 14 plots the tail distribu-
tion (P(fi > z)) for all segments. Although the line rate
is not high, the number of active flows is already signifi-
cant. Each segment in trace 1 has approximately 0.9 million
flows and 20 million packets, and each segment in trace 2
has approximately 0.7 million flows and 9 million packets.
The statistics across different segments within one trace are
similar.

"'sg,.

D
107 AN —trace 1, 12 segments
- - trace 2, 12 segments

2
ey
*
)
0
*a
e,

i
i
o

tail distribution. P(f>x)
P
o
/

flow size in packets

Figure 14: Tail distribution.

Trace 1 has heavier traffic than trace 2 and also a heavier
tail. In fact, it is the heaviest trace we have encountered so
far, and is much heavier than, for instance, traces plotted in
[16]. The proportion of one-packet flows in trace 1 is only
0.11, similar to that of a power-law distribution with a =
0.17. Flows with size larger than 10 packets are distributed
similar to a power law with o =~ 1.

We fix the same sizing of CB for all segments, mimicking
the realistic scenario where traffic varies over time and CB
is built in hardware. We present the proportion of flows
in error Pe,y and the average error magnitude FE,, for both
traces together. We vary the total number of bits in CB”,
denoted by B, and present the result in Table 3.

For all experiments, we use a two-layer CB with status
bits, and 3 hash functions at both layers. The layer-1 coun-
ters are 8 bits deep and the layer-2 counters are 56 bits deep.

B(MB) | 12 13 135 14
P.. |033 025 015 0
Em 3 19 12 0

Table 3: Simulation results of counting 2 traces in 5-
minute segments, on a fixed-size CB with total space B.

We observe a similar phenomenon as in Figure 12. As
we underprovide space, the reconstruction error increases
significantly. However, the error magnitude remains small.
For these two traces, 1.4 MB is sufficient to count all flows
correctly in 5-minute segments.

"We are not using bits per flow here since the number of
flows is different in different segments.

8. IMPLEMENTATION

8.1 On-Chip Updates

Each layer of CB can be built on a separate block of SRAM
to enable pipelining. On pre-built memories, the counter
depth is chosen to be an integer fraction of the word length,
so as to maximize space usage. This constraint does not
exist with custom-made memories.

We need a list of flow labels to construct the first-layer
graph for reconstruction. In cases where access frequencies
for pre-fixes or filters are being collected, the flow nodes are
simply the set of pre-fixes or filter criteria, which are the
same across all measurement epochs. Hence no flow labels
need to be collected or transferred.

In other cases where the flow labels are elements of a large
space (e.g. flow 5-tuples), the labels need to be collected and
transferred to the decoding unit. The method for collecting
flow labels is application-specific, and may depend on the
particular implementation of the application. We give the
following suggestion for collecting flow 5-tuples in a specific
scenario.

For TCP flows, a flow label can be written to a DRAM
which maintains flow IDs when a flow is established; for
example, when a “SYN” packet arrives. Since flows are es-
tablished much less frequently than packet arrivals (approx-
imately one in 40 packets causes a flow to be set up [10]),
these memory accesses do not create a bottleneck. Flows
that span boundaries of measurement epochs can be identi-
fied using a Bloom Filter[3].

Finally, we evaluated the algorithm by measuring flow
sizes in packets. The algorithm can be used to measure
flow sizes in bytes. Since most byte-counting is really the
counting of byte-chunks (e.g. 32 or 64 byte-chunks), there
is the question of choosing the “right granularity”: a small
value gives accurate counts but uses more space and vice
versa. We are working on a nice approach to this problem
and will report results in future publications.

8.2 Computation Cost of Decoder

We reconstruct the flow sizes using the iterative message
passing algorithm in an offline unit. The decoding com-
plexity is linear in the number of flows. Decoding CB with
more than one layer imposes only a small additional cost,
since the higher layers are 1 — 2 orders smaller than the first
layer. For example, decoding 1 million flows on a two-layer
Counter Braids takes, on average, 15 seconds on a 2.6GHz
machine.

9. CONCLUSION AND FURTHER WORK

We presented Counter Braids, a efficient minimum-space
counter architecture, that solves large-scale network mea-
surement problems such as per-flow and per-prefix counting.
Counter Braids incrementally compresses the flow sizes as
it counts and the message passing reconstruction algorithm
recovers flow sizes almost perfectly. We minimize counter
space with incremental compression, and solve the flow-to-
counter association problem using random graphs. As shown
from real trace simulations, we are able to count upto 1 mil-
lion flows purely in SRAM and recover the exact flow sizes.
We are currently implementing this in an FPGA to deter-
mine the actual memory usage and to better understand
implementation issues.



Several directions are open for further exploration. We
mention two: (i) Since a flow passes through multiple routers,
and since our algorithm is amenable to a distributed imple-
mentation, it will save counter space dramatically to com-
bine the counts collected at different routers. (ii) Since
our algorithm “degrades gracefully,” in the sense that if the
amount of space is less than the required amount, we can
still recover many flows accurately and have errors of known
size on a few, it is worth studying the graceful degradation
formally as a “lossy compression” problem.

Acknowledgement: Support for OC-48 data collection is
provided by DARPA, NSF, DHS, Cisco and CAIDA mem-
bers. This work has been supported in part by NSF Grant
Number 0653876, for which we are thankful. We also thank
the Clean Slate Program at Stanford University, and the
Stanford Graduate Fellowship program for supporting part
of this work.

10. REFERENCES

[1] http://www.cisco.com/warp/public/732/ Tech/netflow.

[2] Juniper networks solutions for network accounting.
www.juniper.net/techcenter/appnote/350003. html.

[3] B. Bloom. Space/time trade-offs in hash coding with
allowable errors. Comm. ACM, 13, July 1970.

[4] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege.
A digital fountain approach to reliable distribution of
bulk data. In SIGCOMM, pages 56-67, 1998.

[5] G. Caire, S. Shamai, and S. Verdu. Noiseless data
compression with low density parity check codes. In
DIMACS, New York, 2004.

[6] E. Candés and T. Tao. Near optimal signal recovery
from random projections and universal encoding
strategies. IEEE Trans. Inform. Theory, 2004.

[7] G. Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1), April 2005.

[8] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley, New York, 1991.

[9] M. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: Evidence and possible causes.
IEEE/ACM Trans. Networking, 1997.

[10] S. Dharmapurikar and V. Paxson. Robust tcp stream
reassembly in the presence of adversaries. 14th
USENIX Security Symposium, 2005.

[11] D. Donoho. Compressed sensing. IEEE Trans. Inform.
Theory, 52(4), April 2006.

[12] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. Proc. ACM SIGCOMM
Internet Measurement Workshop, pages 75-80, 2001.

[13] R. G. Gallager. Low-Density Parity-Check Codes. MIT
Press, Cambridge, Massachussetts.

[14] M. Grossglauser and J. Rexford. Passive traffic
measurement for ip operations. The Internet as a
Large-Scale Complex System, 2002.

[15] F. Kschischang, B. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Trans.
Inform. Theory, 47:498-519, 2001.

[16] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data
streaming algorithms for efficient and accurate
estimation of flow size distribution. Proceedings of
ACM SIGMETRICS, 2004.

[17] Y. Lu, A. Montanari, and B. Prabhakar. Detailed
network measurements using sparse graph counters:
The theory. Allerton Conference, September 2007.

[18] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. A.
Spielman, and V. Stemann. Practical loss-resilient
codes. In Proc. of STOC, pages 150-159, 1997.

[19] M. Mézard and A. Montanari. Constraint satisfaction
networks in Physics and Computation. In Preparation.

[20] S. Ramabhadran and G. Varghese. Efficient
implementation of a statistics counter architecture.
Proc. ACM SIGMETRICS, pages 261-271, 2003.

[21] T. Richardson and R. Urbanke. Modern Coding
Theory. Cambridge University Press, 2007.

[22] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown.
Analysis of a statistics counter architecture. Proc.
IEEE Hotl 9.

[23] Q. G. Zhao, J. J. Xu, and Z. Liu. Design of a novel
statistics counter architecture with optimal space and
time efficiency. SIGMetrics/Performance, June 2006.

Appendix: Asymptotic Optimality
We state the result on asymptotic optimality without a

proof. The complete proof can be found in [17].
We make two assumptions on the flow size distribution p:

1. It has at most power-law tails. By this we mean that
P{fi > z} < Az~° for some constant A and some € > 0.
This is a valid assumption for network statistics [9].

2. It has decreasing digit entropy.
Write f; in its g-ary expansion ) ., fi(a)q®. Let h; =
> P(fi(l) = x)log, P(fi(l) = =) be the g-ary entropy
of fi(l). Then h; is monotonically decreasing in [ for
any q large enough.

We call a distribution p with these two properties admis-
sible. This class includes most cases of practical interest.
For instance, any power-law distribution is admissible. The
(binary) entropy of this distribution is denoted by Hz(p) =
— 22, p(x)log, p(x).

For this section only, we assume that all counters in CB
have an equal depth of d bits. Let ¢ = 2¢.

DEFINITION 2. We represent CB as a sparse graph G,
with vertices consisting of n flows and a total of m(n) coun-
ters in all layers. A sequence of Counters Braids {Gy}has
design rate r if

m(n)

r = lim

n— oo

log, q. (1)

It is reliable for the distribution p if there erists a sequence
of reconstruction functions F,, = Fg,, such that

Perr (Grmi:\n) = ]P){Fn (C) 75 f} 50. (2)

Here is the main theorem:

THEOREM 3. For any admissible input distribution p, and
any rate r > Ha(p) there exists a sequence of reliable sparse
Counter Braids with asymptotic rate r.

The theorem is satisfying as it shows that the CB archi-
tecture is fundamentally good in the information-theoretic
sense. Despite being incremental and linear, it is as good
as, for example, Huffman codes, at infinite blocklength.



