
ar
X

iv
:c

on
d-

m
at

/0
00

32
18

 v
1 

  1
3 

M
ar

 2
00

0

Turbo codes: the phase transition.

Andrea Montanari ∗

Scuola Normale Superiore and INFN – Sezione di Pisa
I-56100 Pisa, ITALIA

Internet: montanar@cibs.sns.it

October 23, 2006

Abstract

Turbo codes are a very efficient method for communicating reliably through
a noisy channel. There is no theoretical understanding of their effectiveness. In
Ref. [1] they are mapped onto a class of disordered spin models. The analytical
calculations concerning these models are reported here. We prove the existence of
a no-error phase and compute its local stability threshold. As a byproduct, we gain
some insight into the dynamics of the decoding algorithm.
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1 Introduction.

Communication through a noisy channel is a central problem in Information Theory
[2]. Error correcting codes are a widespread method for compensating the information
corruption due to the noise, by cleverly increasing the redundancy of the message. Turbo
codes [3, 4, 5] are a recently invented class of error correcting codes with nearly optimal
performances. They allows reliable communication (i.e. very low error per bit probability)
with practical communication rates.

It is known, since the work of Sourlas [6, 7, 8, 9], that there exists a close relationship
between the statistical behavior of error correcting codes and the physics of some disor-
dered spin models. Recently the tools developed in statistical physics have been employed
in studying Gallager-type codes [11, 10, 12].

In Ref. [1] the equivalence discovered by Sourlas is extended to turbo codes, and the
basic features of the corresponding spin models are outlined. A remarkable property of a
large family of turbo codes, presented in Ref. [1], is the existence of a no-error phase. In
other words the error probability per bit vanishes beyond some critical (finite) signal to
noise ratio. In Ref. [1] some intuitive arguments supporting this thesis are given. Some
analytical results concerning the critical value of the signal to noise ratio are announced
without giving any derivation. These results are compared with numerical simulations.

In this paper we present the analytical results in their full generality, and explain their
derivation. We prove the existence of the no-error phase and find the condition for its
local stability. This condition is derived in two different approaches. In the first one we
study the asymptotic dynamics of the decoding algorithm. In the second approach we use
replicas and establish the condition for stability in the full replica space. Local stability
is a necessary but not sufficient condition for the stability of the no-error phase. The
critical signal to noise ratio obtained from local stability is the correct one only if the
phase transition is a second order one: in the general case it is only a lower bound.

The spin models which are equivalent to turbo codes have the following statistical
weight [1]:

P(σ(1),σ(2)|J , β) ≡
1

Z(J , β)

N
∏

i=1

δ
(

ǫρ(i)(σ
(1)), ǫi(σ

(2))
)

e−β
∑2

k=1 H(k)(σ(k)) (1.1)

H(k)(σ) ≡ −
N
∑

i=1

J
(k)
i ǫi(σ) −

N
∑

i=1

h
(k)
i ηi(σ) (1.2)

The dynamical variables of the model are the spins σ
(k) ≡ {σ

(k)
1 , . . . , σ

(k)
N } with k =

1, 2. We shall choose them to be Ising spins 1, that is σ
(k)
i = ±1. The spins enters in

the hamiltonians H(k)(σ) through the local interaction terms ǫi(σ) and ηi(σ) which are
products of σ’s. Their exact form can be encoded in two set of numbers κ(j; 1) = 0, 1

and κ(j; 2) = 0, 1 as follows: ǫi(σ) ≡
∏r

j=0 σ
κ(j;1)
i−j and ηi(σ) ≡

∏r
j=0 σ

κ(j;2)
i−j . In order to fix

completely our notation we set κ(0; 1) = κ(0; 2) = 1. The quenched variables are:

1This corresponds to considering codes which works with a binary alphabet.
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• the couplings J ≡ {J
(k)
i ; h

(k)
i }, whose distribution P(J) ≡

∏

i,k P (J
(k)
i ) P (h

(k)
i )

satisfies the conditions
∫

dJ
(k)
i P (J

(k)
i ) J

(k)
i > 0 and

∫

dh
(k)
i P (h

(k)
i ) h

(k)
i > 0;

• the permutation ρ : {1, . . . , N} → {1, . . . , N}, which has uniform distribution.

It is convenient to impose a fixed boundary condition at one end of the chain (i.e. σi = +1
for i ≤ 0) and a free boundary condition at the other end. The model is composed by
two one dimensional substructures (chains), which interact through the Kronecker delta
functions in Eq. (1.1). When the average over permutations is taken into account this
interaction turns into a mean field one. This interplay between the two subsystems, each
one possessing a one dimensional structure, and the mean field interaction which couples
them is clearly displayed by the analytical calculations. For further explanations on Eqs.
(1.1-1.2) and their motivation we refer to [1].

The paper is organised as follows. In Sections 2 and 3 we present a first derivation of
the stability condition. We write a “mean field” equation which describes the dynamics
of the decoding algorithm (Sec. 2), we show that it possesses a no-error fixed point and
then study its behavior in a neighbourhood of this fixed point (Sec. 3). Thanks to this
derivation we will understand how this fixed point is reached. In Section 4 replicas are
introduced in order to compute the average over the permutations. We exhibit the no-
error saddle point. In Section 5 the stability of the no-error saddle point is studied by
diagonalizing the second derivative of the free energy. Finally in Section 6 the validity
of our calculations is discussed. Appendix A collects some useful (although simple) facts
of algebra. In Appendix B the type of integral equations which appear in Section 3 is
studied in detail.

2 A “mean field” equation for the decoding algo-

rithm.

Some properties concerning the models defined by Eqs. (1.1-1.2) can be obtained by
considering the “turbo decoding” algorithm and making some factorization hypothesis.
These hypothesis enable us to obtain a recursive integral equation for the probability
distribution of a local field. They can be justified on heuristic grounds and arguments of
this kind will be given later in this Section. Moreover the replica calculation presented in
the Section 4 does support our arguments. In particular this approach allows us to derive
the critical noise below which “perfect” decoding is possible.

Turbo decoding is an iterative algorithm. The iteration variables are the fields Γ(k) ≡
{Γ

(k)
1 , . . . ,Γ

(k)
N } with k = 1, 2. The step t of the turbo decoding algorithm is defined as

follows [1]:

Γ
(1)
i (t+ 1) =

1

β
arctanh

[

〈ǫρ−1(i)(σ)〉
(2)

Γ(2)(t)

]

− Γ
(2)

ρ−1(i)(t) (2.1)

Γ
(2)
i (t+ 1) =

1

β
arctanh

[

〈ǫρ(i)(σ)〉
(1)

Γ(1)(t)

]

− Γ
(1)
ρ(i)(t) (2.2)
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The expectation value 〈·〉
(k)

Γ(k) is intended to be taken with respect to the Boltzmann

weight with the modified hamiltonian H(k)(σ) −
∑N

i=1 Γ
(k)
i ǫi(σ). The iteration variables

Γ
(k)
i should be interpreted as external fields conjugate to the operators ǫi(σ

(k)). They
describe, in an approximate way, the action of each of the two chains on the other one.

In order to lighten the notation, let us write Eqs. (2.1-2.2) in the form:

Γ(k)(t+ 1) = F (k)
ρ

(

Γ(k′)(t),J (k′)
)

(2.3)

with k′ = 2 if k = 1, and k′ = 1 if k = 2. Due to the randomness in the couplings J ,
the fields Γ are random variables. Equation (2.3) implies an integral equation for the
probability distribution of Γ:

Pt+1(Γ
(k)) =

∫

dΓ(k′)

∫

dJ (k′)Pt(Γ
(k′),J (k′))δ

[

Γ(k) − F (k)
ρ

(

Γ(k′),J (k′)
)]

(2.4)

Let us state a few approximations which allow us to reduce Eq. (2.4) to a much simpler
one.

(1) We make the substitution Pt(Γ
(k′),J (k′)) → Pt(Γ

(k′))P(J (k′)) in Eq. (2.4). This
yields a closed integral equation describing the evolution of the distribution Pt(Γ

(k)).

(2) We neglect correlations between the fields at different sites:

Pt(Γ
(k)) ≃

N
∏

i=1

π
(k)
i,t (Γ

(k)
i ) (2.5)

These two hypothesis imply that Eq. (2.4) is equivalent to:

π
(k)
i,t+1(y) =

∫ +∞

−∞

dπ
(k′)
t [x]

∫

dP[J ] δ

(

y −
1

β
arctanh

(

〈ǫρ̂(i)(σ)〉J ,x

)

+ xρ̂(i)

)

(2.6)

dπ
(k′)
t [x] ≡

N
∏

i=1

dxi π
(k′)
t (xi) (2.7)

where ρ̂ is the appropriate permutation of {1, . . . , N}, i.e. ρ̂ = ρ−1 if k = 1 and ρ̂ = ρ if
k = 2. The expectation value 〈·〉J ,x on the right hand side of Eq. (2.6) has to be taken

with respect to the hamiltonian H(σ) ≡ −
∑N

i=1(Ji + xi)ǫi(σ) −
∑N

i=1 hiηi(σ).
Let us now define a field distribution averaged over the permutations and the sites:

π
(k)
t (x) ≡

1

N !

∑

ρ

1

N

N
∑

i=1

π
(k)
i,t (x|ρ) (2.8)

where we made explicit the dependence of π
(k)
i,t upon the specific permutation ρ which

defines the code. We can now state our last approximation.

(3) We make the substitution π
(k)
i,t (x|ρ) → π

(k)
t (x) on the right hand side of Eq. (2.6).
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This yields a recursive equation for π
(k)
t :

πt+1(y) =
1

N

N
∑

i=1

∫ +∞

−∞

dπt[x]

∫

dP[J ] δ

(

y −
1

β
arctanh

(

〈ǫi(σ)〉J ,x

)

+ xi

)

(2.9)

The indices (k) and (k′) have been dropped since we can define πt = π
(1)
t for t odd, and

πt = π
(2)
t for t even, or vice-versa. A byproduct of this heuristic derivation is the expression

for the probability distribution of the expectation values 〈ǫi(σ)〉 after t iterations of the

turbo decoding algorithm: Pt(ǫ) = 1
N

∑N
i=1

∫ +∞

−∞
dπt[x]

∫

dP[J ] δ
(

ǫ− 〈ǫi(σ)〉J ,x

)

.

Let us discuss the validity of the approximations made in deriving Eq. (2.9).

(1) and (2) These approximations should be accurate in the thermodynamic limit for a generic
random permutation ρ. The reason is that the correlations produced by Eqs. (2.1-
2.2) have short range: 〈ǫi(σ)〉 and 〈ǫj(σ)〉 have a significant correlation only if |i−j|
is less than some characteristic length. The random permutation ρ reshuffles the
sites so that the correlation between two fields Γ

(k)
i and Γ

(k)
j is vanishing with high

probability if |i − j| is required to be “small”. The correlations which “survive”
(non vanishing only between “distant” sites) are irrelevant when computing the
expectation values of local operators. In order to make this last assertion plausible,
let us suppose that, for each site i, we can find a “large” 2 interval [i−L(N), i+L(N)]
of the chain, such that the correlations between the couplings inside the interval are
negligible. The expectation value 〈ǫi(σ)〉J ,x will not depend (as N → ∞) upon the

couplings outside [i− L(N), i+ L(N)] (this is always true in one dimension at non
zero temperature) and can be then safely computed without taking into account
the correlations. It is easy to find a similar argument concerning the correlations
between Γ(k′) and J

(k′) in Eq. (2.4).

(3) This is the probabilistic analogue of the replica symmetric approximation. Let us
consider the fixed point equation πt+1 = πt corresponding to the dynamics defined
by Eq. (2.9). It is remarkable that this fixed point equation coincides with the
saddle point equation obtained by the standard replica method in the replica sym-
metric approximation (see Section 4). This fact confirms our conclusions about the
relevance of the various approximations.

3 The behavior of the decoding algorithm.

Equation (2.9) is the final outcome of our heuristic derivation. We want to study its
behavior when the distribution π(x) is concentrated on large values of the field x, that
is when the error probability is very small. In this regime the most relevant spin config-
uration satisfies ǫi(σ) = +1 for each i = 1, . . . , N . The lowest excitations are such that
ǫi(σ) = −1 only on a few sites. The first crucial point will be to understand that, for a
class of hamiltonians of the type (1.2) (which will be defined as “recursive ”), the energy

2Here “large” means that limN→∞ L(N) = ∞.
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to be paid for flipping a single ǫ variable diverges in the thermodynamic limit. The second
point will be to evaluate the energy to be paid for flipping two ǫ variables. In order to
treat both these passages in full generality it is convenient to use an algebraic bookkeeping
technique which we shall soon explain. The results concerning these two points will be
useful again in Section 5.

A preliminary step consists in making the change of variables Xi ≡ e−2βxi and intro-
ducing the corresponding distribution function Qt(X)dX = πt(x)dx. Low X’s correspond
then to large local fields, i.e. to low error probability. The result is

Qt+1(Y ) =
1

N

N
∑

i=1

∫ ∞

0

dQt[X]

∫

dP[J ] δ

(

Y −
1

Xi

Z(ǫi(σ) = −1; J ,X)

Z(ǫi(σ) = +1; J ,X)

)

(3.1)

where

Z(ǫi(σ) = ǫ; J ,X) ≡ Zi(ǫ) =
∑

σ:ǫi(σ)=ǫ

e−βH(σ)

N
∏

k=1

X
1
2
(1−ǫk(σ))

k (3.2)

with H(σ) = −
∑

i Jiǫi(σ) −
∑

i hiηi(σ). Let us introduce some notations in order to
write down the small X expansion of Zi(ǫ): (k1, . . . , kl) is an l-uple (not ordered) of
integers in {1, . . . , i−1, i+1, . . . , N}; σ0 is the configuration such that ǫi(σ) = +1 for all
the sites i; σ(k, l,m, . . .) is the configuration such that ǫj(σ) = −1 if j = k, l,m, . . . and
ǫj(σ) = 1 otherwise (there is at most one such configuration once the boundary conditions
have been specified); E0 ≡ H(σ0) is the energy of the ordered configuration; finally
∆(k, l,m, . . .) ≡ H(σ(k, l,m, . . .))−H(σ0). The following expressions are straightforward:

Zi(+1) = e−βE0

N−1
∑

l=0

∑

(k1,...,kl)

Xk1 . . .Xkl
e−β∆(k1,...,kl) (3.3)

Zi(−1) = Xie
−βE0

N−1
∑

l=0

∑

(k1,...,kl)

Xk1 . . .Xkl
e−β∆(i,k1,...,kl) (3.4)

The “bookkeeping technique ” which we shall adopt in treating the above expansions
consists in using the algebra of “generating polynomials” [1]. This approach allows us to
consider a general hamiltonian of the type (1.2). Let us define the following polynomials
on Z2: G(x) ≡

∑∞
j=1Gjx

j , with σj = (−1)Gj ; gn(x) =
∑r

j=0 κ(j;n)xj; G(n)(x) ≡ gn(x) ·

G(x) ≡
∑∞

j=1 G
(n)
j xj . Notice that the boundary condition on σ can be translated as

follows: G(x) is a series of strictly positive powers of x.
It is necessary to distinguish two types of models: in the first case g1(x) divides g2(x),

i.e. g2(x)/g1(x) is a polynomial (these are the “non recursive” models, a particular case
being ǫi(σ) = σi); in the second one g1(x) does not divide g2(x), i.e. g2(x)/g1(x) is a
series (“recursive” models).

We shall treat the “recursive” models first. In this case the first order terms in the
expansions (3.3) and (3.4) are exponentially small in the size. In order to prove this
assertion, let us consider the configuration σ(l). The relevant generating polynomials are
G(1)(x) = xl and G(2)(x) = xlg2(x)/g1(x). The form of G(2)(x) is given by the following
result of algebra

6



Lemma 3.1 Let g(x) and f(x) be two polynomials on Z2 such that g(0) = f(0) = 1,
f(x) 6≡ 1, and their greatest common divisor gcd(f(x), g(x)) is equal to 1. Then there
exists an integer ω such that g(x)/f(x) =

∑∞
n=0 x

nωpn(x) with deg[pn(x)] < ω and pn(x) =
p∞(x) 6= 0 if n is large enough. Hereafter we shall call ω(f) the smallest of such integers.

An explicit expression for ω(f) is given in the Appendix A. The Lemma 3.1 applies
to our case if we divide both g1(x) and g2(x) by their greater common divisor: fk(x) ≡
gk(x)/ gcd(g1(x), g2(x)), so that gcd(f1(x), f2(x)) = 1. It implies that if we write down the
numbers ηj(σ(i)) = ±1 we get an antiperiod followed by a non trivial periodic sequence
with period ω(f1). Let us consider a site “in the bulk”: Nδ < i < N(1 − δ) with δ a
(small) positive number. Then, using the convention hj = 0 for j > N , we get:

∆(i) = 2Ji + 2

N
∑

j=1

G
(2)
j hj = 2Ji + 2

∞
∑

n=0

ω(f1)−1
∑

k=0

pn,khi+nω(f1)+k (3.5)

which diverges almost surely in the thermodynamic limit if 〈h〉 > 0 (see the Introduction
on this point). In Eq. (3.1) we must sum also terms which are “near” the boundaries, i.e.
i ≤ Nδ or i ≥ N(1 − δ). These give however a negligible contribution.

Let us now consider the second order terms of the expansions (3.3) and (3.4). They
involve configurations σ(k, l) with two flipped ǫ(σ)’s. The only configurations which
give a non negligible contribution are the ones which involve a finite (in the N → ∞
limit) number of flipped η(σ)’s. This corresponds to choosing k and l such that (xk +
xl)g2(x)/g1(x) is a polynomial (and not an infinite series). The following useful result is
proved in the Appendix A.

Lemma 3.2 Let f(x) be a polynomial on Z2 such that f(0) = 1 and k an integer. Then
there exists an integer ω(f) such that f(x) divides 1 + xk if and only if k is a strictly
positive multiple of ω(f).

As suggested by the notation the ω(f)’s cited in Lemmas 3.1 and 3.2 are indeed equal.
The terms which give a non vanishing contribution at order X2 in the expansions (3.3-3.4)
are the ones corresponding to configurations σ(k, l) such that |k− l| is a multiple of ω(f1).
In order to evaluate these terms we must count the number of flipped η(σ)’s. This number
is nothing but the number of non zero coefficients in the polynomial (xk +xl)g2(x)/g1(x).
Let us define the weight of a polynomial p(x) =

∑

k pkx
k over Z2 as the number of its non

zero coefficients: weight(p) ≡ # {pk|pk 6= 0}. The weight of (xk + xl)g2(x)/g1(x) is given,
for a large class of hamiltonians, by the following lemma.

Lemma 3.3 Let f(x) and g(x) be two polynomial on Z2 such that f(0) = g(0) = 1,
f(x) 6≡ 1, and gcd(f(x), g(x)) = 1. If deg(g) ≤ ω(f) then the weight of sm(x) ≡ (1 +
xmω(f))g(x)/f(x) is given by weight(sm) = w0(f, g) + w1(f, g)m for each m ≥ 1. The
coefficients w0(f, g) and w1(f, g) are positive integers whose explicit expressions are given
by Eqs. (A.8-A.9).

Appendix A contains also an illustration of what could happen in the more general case.
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By using Lemmas 3.2 and 3.3 we can linearize with respect to X the expression on
the r.h.s. of Eq. (3.1):

1

Xi

Zi(−1)

Zi(+1)
=
∑

m6=0

Xi+mω(f1)e
−β∆(i,i+mω(f1)) +O(X2) (3.6)

and defining sm(x) ≡ (1 + xmω(f1))g2(x)/g1(x) =
∑

j sm,jx
j we get

∆(k, l) = 2Jk + 2Jl + 2
∑

j

sm,jhmin(k,l)+j (3.7)

if |k−l| = mω(f1). Clearly Eq. (3.6) holds only for i in the “bulk” (i.e. Nδ < i < (1−δ)N)
up to terms which are exponentially small in the size N .

Our first important observation is that the right hand side of Eq. (3.6) vanishes if
Xk = 0 for k = 1, . . . , N . This means that Q∗(X) = δ(X) is a fixed point of Eq. (3.1)
for “recursive” models. Recall that the change of variables which yields Eq. (3.1) is
X = e−2βx and that x has the meaning of an effective field acting on ǫi(σ). The solution
Q∗(X) corresponds then to a phase with completely frozen spins: 〈ǫi(σ)〉 = +1.

We would like to understand if this phase is stable for some temperature β and some
distribution of the couplings. A possible approach is to study the turbo decoding dynamics
(as described by Eq. (3.1)) when starting from a distribution “near” Q∗(X). Let us
suppose that, for Qt(X) near enough to Q∗(X), we can safely neglect O(X2) terms on
the r.h.s. of Eq. (3.6):

Qt+1(Y ) =
1

N

N
∑

i=1

∫ ∞

0

dQt[X ]

∫

dP[J ] δ

(

Y −
∑

m6=0

Xi+mω(f1)e
−β∆(i,i+mω(f1))

)

(3.8)

This equation is very similar to a class of recursive equations which appear in a completely
different context: polymers on disordered trees [13, 14, 15, 16, 17]. These are of the type

Pt+1(Z) =

∫ ∞

0

K
∏

i=1

dZi Pt(Zi)

∫

ρ(V1, . . . , VK) dV1 . . . dVK δ

(

Z −

K
∑

i=1

e−βViZi

)

(3.9)

The only non trivial difference is that the linear function of X appearing inside the delta
function on the r.h.s. of Eq. (3.8) depends upon a macroscopic (indeed linear in N)
number of X’s. In Eq. (3.9), instead, only a finite number of variables appears: K
is the coordination number of the tree minus one. Notice however that, for m large,
∆(i, i+mω(f1)) ∼ 2 weight(sm)〈h〉 ∼ 2w1(f1, f2)m〈h〉. We can thus truncate the sum in
Eq. (3.8) to m ≤ M by making an error of order O(e−cM) and we guess that the limit
M → ∞ can be taken at the end without problems 3.

Let us summarize some results of [13] which are useful in our discussion. It turns out
that Eq. (3.9) is equivalent to a discretization of the Kolmogorov-Petrovsky-Piscounov

3This argument is not mathematically rigorous since it is not honest to use the central limit theorem
in this case: we refer to Appendix B for more convincing arguments.
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(KPP) equation [18] (a well studied partial differential equation). Using this equivalence
the large time limit of Eq. (3.9) is obtained:

Pt(X) → e−βc(β)t P (Xe−βc(β)t) (3.10)

corresponding to a front wave solution of the KPP equation with front velocity c(β). If
we define the function

v(β) ≡
1

β
log

(

K
∑

i=1

∫

dV1 . . . dVK ρ(V1, . . . , VK) e−βVi

)

(3.11)

then the front velocity is given by the following construction:

c(β) =

{

v(β) if β ≤ βc

v(βc) if β > βc
(3.12)

with βc given by

d

dβ

∣

∣

∣

∣

βc

v(β) = 0 (3.13)

At the critical temperature βc a freezing phenomenon takes place with the front velocity
sticking to its minimal value.

Let us apply these results to our case, i.e. to Eq. (3.8). The large time solution
Qt(X) ∼ e−βc(β)t Q(Xe−βc(β)t) gives the correct behavior for t → ∞ only if c(β) < 0. In
this case limt→∞Qt(X) = Q∗(X) and it is then correct to linearize Eq. (3.1): the frozen
phase is stable. If, on the other hand, c(β) ≥ 0 then we must take into account higher
order terms in the low X expansion and the asymptotic form is no longer of the type
defined by Eq. (3.10): the frozen phase is unstable.

In the thermodynamic limit we get

eβv(β) =
∑

m6=0

∫

dP[J ]e−β∆(i,i+mω(f1)) = (3.14)

= 2

(
∫

dJ P (J) e−2βJ

)2 ∞
∑

m=1

(
∫

dh P (h) e−2βh

)weight(sm)

The front velocity c(β) is obtained by applying the construction given in Eqs. (3.12-3.13)
to Eq. (3.14). If the hypothesis of Lemma 3.3 are satisfied we can easily sum the series:

eβv(β) =

2

(
∫

dJ P (J) e−2βJ

)2(∫

dh P (h) e−2βh

)w0(f1,f2)+w1(f1,f2)

1 −

(
∫

dh P (h) e−2βh

)w1(f1,f2)
(3.15)

We discuss now Eq. (3.15), the more general case being completely analogous. The series
converges only if

∫

dh P (h) e−2βh < 1. If
∫

dh P (h) h > 0, as we supposed sinc the

9



beginning, then convergence is assured for 0 < β < β1 with
∫

dh P (h) e−2β1h = 1. It is
easy to see that βv(β) is strictly convex for 0 < β < β1 and thus v(β) has either one global
minimum or is strictly monotonic for 0 < β < β1. Since limβ→0+ v(β) = limβ→β−

1
v(β) =

+∞ the first possibility is excluded and we conclude that 0 < βc < β1. The important
point is that the right hand side of Eq. (3.14) is well defined every time we need of it, i.e.
for 0 < β < βc.

In applications to turbo codes a simplification occurs: we are interested in a particular
temperature, β = 1, and we are left with a unique parameter: the signal to noise ratio
1/w2. Moreover the probability distributions of the couplings are fixed by the character-
istics of the communication channel [6, 1]. If we introduce the auxiliary variables Ĵ and ĥ,
which correspond to the output of the channel, the probability distributions are obtained
as follows

P (J) dJ = P (Ĵ| + 1) dĴ with J =
1

2
log

P (Ĵ | + 1)

P (Ĵ| − 1)
(3.16)

where P (Ĵ|τ) is the probability distribution of the output of the channel conditional
to the input τ . A similar expression holds for h. If the channel is symmetric (i.e. if
P (Ĵ | − 1) = P (−Ĵ | + 1)) one easily obtains β1 = 1 and then c(β = 1, w2) = v(βc, w

2).
We can distinguish the two cases defined below.

• If v(β, w2) < 0 for some 0 < β < 1 then we are in the no-error phase and the
turbo decoding algorithm converges to the message with “velocity” c(β = 1, w2) =
min0<β<1 v(β, w

2). We expect the condition v(βc, w
2) < 0 to be verified in the “low

noise” region w2 < w2
loc.

• If v(β, w2) ≥ 0 in the interval 0 < β < 1 then c(β = 1, w2) ≥ 0 and the linearization
in Eq. (3.8) is no longer reliable. In this case πt(x) is expected to converge for
t→ ∞ to some distribution supported on finite fields x. The decoded message will
be plagued by a finite error probability per bit, no matter how many times do we
iterate the turbo decoding algorithm.

Let us now study some examples. We consider a gaussian channel with:

P (Ĵ |τ) =
1

(4πw2)1/2
exp

{

−
(Ĵ − τ)2

4w2

}

(3.17)

P (ĥ|τ) =
1

(2πw2)1/2
exp

{

−
(ĥ− τ)2

2w2

}

(3.18)

This choice of the variances is justified since it corresponds to a code with rate 1/3 (see
Ref. [1]). It is useful to define the function

z(β, w2) =

∫

dh P (h) e−2βh =

(
∫

dJ P (J) e−2βJ

)2

= exp

[

2β(β − 1)

w2

]

(3.19)

The three cases below have been already considered in Ref. [1]. We refer to the Appendix
A for the calculation of the constants w0 and w1 to be used in Eq. (3.15).
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(a). A model with nearest neighbours interaction is: ǫi(σ) ≡ σiσi−1 and ηi(σ) = σi

(which corresponds to the generating polynomials g1(x) = 1 + x and g2(x) = 1).
Using Eq. (3.15) and the fact that w0(f1, f2) = 0 and w1(f1, f2) = 1 we get

v(β, w2) =
1

β
log

2z2(β, w2)

1 − z(β, w2)
(3.20)

It is easy to see that v(β, w2) ≥ 0 for each 0 < β < 1 if w2 ≥ w2
loc = 1/ log 4.

(b). For ǫi(σ) ≡ σiσi−1σi−2 and ηi(σ) = σiσi−2 (generating polynomials: g1(x) = 1+x+
x2 and g2(x) = 1 + x2) we obtain w0(f1, f2) = 2 and w1(f1, f2) = 2 and then

v(β, w2) =
1

β
log

2z5(β, w2)

1 − z2(β, w2)
(3.21)

Finally w2
loc = −1/(2 log zc) where zc is the only real solution of the equation 2z5 +

z2 = 1.

(c). If we consider the model given by ǫi(σ) ≡ σiσi−1σi−2σi−3σi−4 and ηi(σ) = σiσi−4

(generating polynomials: g1(x) = 1+x+x2 +x3 +x4 and g2(x) = 1+x4) we obtain
w0(f1, f2) = 2 and w1(f1, f2) = 2 as in the previous example. Both v(β, w2) and
w2

loc coincide with the ones obtained above.

Let us make a few observations about the validity of our calculation. The threshold
w2

loc has been obtained by starting from a distribution Q(X) very near to the “frozen” one
Q∗(X) and linearizing Eq. (3.1) in X. It must then be interpreted as a threshold for local
stability of the “frozen” solution. Moreover, if we take seriously the heuristic derivation
of Eq. (2.9), we can deduce something about the dynamics of the turbo decoding algo-

rithm in the error-free phase: the probability distribution of the auxiliary fields Γ
(k)
i (t)

moves towards infinitely large fields with an average velocity c(β, w2). This conclusion
is compared with numerical data in Fig. (1): the agreement seems to be quite good.
An interesting outcome of the previous calculation is that the approach to the perfect
decoding becomes slower near to the critical signal to noise ratio.

Let us now discuss the “non recursive” models, that is models such that g1(x) divides
g2(x). In this case the energy ∆(i) to be paid for flipping ηi(σ) remains finite in the
thermodynamic limit. The low X expansions in Eqs. (3.3-3.4) have a non vanishing
term of order O(X). This implies that Q∗(X) = δ(X) is no longer a fixed point of Eq.
(3.1). Let us compute ∆(i). For “non recursive” models we can define the polynomial
s(x) ≡

∑

k skx
k ≡ g2(x)/g1(x). It is easy to show that ∆(i) = 2Ji+2

∑

k skhi+k. A simple
approximation of the fixed point of Eq. (3.1) is:

Q∞(X) ∼

∫

dJ P (J)

∫ w
∏

i=1

dhi P (hi)δ
(

X − e−2βJ−2β
∑w

i=1 hi

)

(3.22)

with w ≡ weight(s). This approximation is supposed to be good in the low noise region
where we expect the distributions Qt(X) to be concentrated on small X’s.
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4 The replica calculation.

The replica method [19] starts with the computation of the (integer) moments of the
partition function. This can be done by introducing an appropriate order parameter (the
choice is a matter of convenience) and by recurring to standard tricks. Here we choose to
use the (multi)-overlaps qa1...al

and their complex conjugates q̂a1...al
:

Zn =

∫

N

π
dq0 dq̂0

∫

∏

a

N

π
dqa dq̂a

∫

∏

(a,b)

N

π
dqab dq̂ab . . . e

−NS[q,q̂] (4.1)

S[q, q̂] = −1 + q0q̂0 +
∑

a

qaq̂a +
∑

(a,b)

qabq̂ab + . . .+ n log 2 + (4.2)

+βF1d,n[q] + βF1d,n[q̂]

F1d,n[q] ≡ − lim
N→∞

1

Nβ
logZ1d,n[q] (4.3)

Z1d,n[q] ≡
∑

{σa
i }

N
∏

i=1

[q0 +
∑

a

qaǫi(σ
a) +

∑

(a,b)

qabǫi(σ
a)ǫi(σ

b) + . . .] · (4.4)

·

∫

dP[J ] exp

{

−β
∑

a

H(σa; J)

}

where H(σ; J) = −
∑

i Jiǫi(σ) −
∑

i hiηi(σ). and the replica indices a, b, . . . run from 1
to n. The usual mean field models have no geometrical structure at all. In those cases
the introduction of the order parameters leads to a (replicated) partition function which
factorizes over the sites. In our case we are left with the problem of computing the one
dimensional partition functions Z1d,n[q]. These correspond to the one dimensional sub-
structures which are not destroyed by the randomness of the model. The saddle point
equations are easily written

q̂a1...al
= lim

N→∞

1

N

N
∑

i=1

〈

ǫi(σ
a1) · . . . · ǫi(σ

al)

[q0 +
∑

a qaǫi(σ
a) + . . .]

〉

q

(4.5)

where the expectation values 〈(·)〉q, 〈(·)〉q̂ are defined as follows

〈( · )〉q ≡
1

Z1d,n[q]

∫

dP[J ]
∑

{σa
i }

( · )
N
∏

i=1

[q0 +
∑

a

qaǫi(σ
a) + . . .] e−β

∑

a H[σa;J] (4.6)

In the recursive case Eq. (4.5) admits the following solution 4 corresponding to a no-error
phase: q∗a1...al

= q̂∗b1...bl
= 2−n/2. The free energy of this phase is f0(β) = −2

∫

dJ P (J) J−
2
∫

dh P (h) h. If we parametrize the replica symmetric ansatz as in Ref. [20]

qa1...al
=

∫ +∞

−∞

dx π(x) coshn(βx) tanhl(βx) (4.7)

4In fact there is a one parameter family of solutions which are degenerate. This fact is due to a (not
very interesting) symmetry of the action (4.2): S[q, q̂] = S[eiθq, e−iθ q̂]. However the integration over the
parameter θ does not pose any problem. We shall fix this freedom by imposing q0 to be real.
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and analogously for q̂b1...bm
(with a different distribution π̂(x)), the following free energy

functional can is obtained in the limit n→ 0:

f [π, π̂] =
1

β

∫

dx dy π(x)π̂(y) log [2 cosh(βx+ βy)] + FRS
1d [π] + FRS

1d [π̂] (4.8)

FRS
1d [π] ≡ − lim

N→∞

1

βN

∫

dP[J ]

∫

dπ[x] logZRS
1d [J ,x] (4.9)

ZRS
1d [J ,x] ≡

∑

σ

exp

[

β
N
∑

i=1

(Ji + xi)ǫi(σ) + β
N
∑

i=1

hiηi(σ)

]

(4.10)

The distributions π and π̂ are normalized (
∫

dx π(x) =
∫

dy π̂(y) = 1) and satisfy the
saddle point equation below:

π(y) = lim
N→∞

1

N

N
∑

i=1

∫ +∞

−∞

dπ̂[x]

∫

dP[J ] δ

(

y −
1

β
arctanh

(

〈ǫi(σ)〉J ,x

)

+ xi

)

(4.11)

which is identical to the fixed point equation corresponding to Eq. (2.9), if we suppose
the order parameters to be real at the saddle point.

Equation (4.11) is unpractical since it involves the unknown distributions π(x) and
π̂(x) infinitely many times. However due to the short range structure of the hamiltonians
defined in Eq. (1.2), it can be rewritten as a simple integral equation. Obviously the
precise form of this equation depends upon the form of the hamiltonian (1.2). In particular
it becomes simpler as the range of the interaction becomes shorter. Let us illustrate this
point by considering the model (a) of the previous Section: ǫi(σ) = σiσi−1, ηi(σ) = σi.
We start by defining the following (right and left) partition functions:

Z
(R)
i,M(σi) ≡

∑

σi+1...σi+M

exp

[

β

i+M
∑

k=i+1

(Jk + xk)σkσk−1 + β

i+M
∑

k=i

hkσk

]

(4.12)

Z
(L)
i,M(σi) ≡

∑

σi−M ...σi−1

exp

[

β
i
∑

k=i−M+1

(Jk + xk)σkσk−1 + β
i
∑

k=i−M

hkσk

]

(4.13)

and the (right and left) fields:

x
R/L
i ≡ lim

M→∞

1

2β
log

Z
(R/L)
i,M (+)

Z
(R/L)
i,M (−)

(4.14)

We define now a new couple of order parameters, the probability distributions ω(x) and
ω̂(x) of the right (or left) fields:

ω(x) =

∫

∏

i≥0

dhi P (hi)

∫

∏

i≥1

dJi P (Ji)

∫

∏

i≥1

dxi π(xi) δ
(

x− xR
0 [Ji; hi; xi]

)

(4.15)

It easy to show that, at the saddle point, ω(x) and ω̂(x) satisfy the following integral
equation:

ω(z) =

∫

dh P (h)

∫

dJ1 P (J1)

∫

dJ2 P (J2)

∫

dx1 ω̂(x1)

∫

dx2 ω̂(x2)

∫

dz′ ω(z′)
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δ {z − h− Θβ [z′; J1 + J2 + Θβ(x1; x2)]} (4.16)

Θβ(x; y) ≡
1

β
arctanh[tanh(βx) tanh(βy)] (4.17)

and that the solution of Eq. (4.11) is related to the solution of the previous equation as
follows:

π(x) =

∫

dJ P (J)

∫

dxL ω̂(xL)

∫

dxR ω̂(xR) δ[x− J − Θβ(xR; xL)] (4.18)

Equation (4.16) reduces to the Dyson Schmidt equation [21, 22, 23] for a one dimensional
model with nearest neighbour interaction if we keep the distribution ω̂(x) fixed. The
interaction between the two one-dimensional subsystems turns it into a nonlinear equation.
Moreover Eq. (4.16) can be treated numerically more easily than Eq. (4.11). A possible
approach consists in representing the unknown distribution as ω(x) =

∑K
j=1 δ(x−xj) and

iterating Eq. (4.16) until a fixed point is reached. An example of this kind of computations
is shown in Fig. (2).

It is simple to obtain the analogous of Eq. (4.16) for the simplest non recursive model,
defined by: ǫi(σ) = σi, ηi(σ) = σiσi−1. The final result is

ω(z) =

∫

dh P (h)

∫

dJ1 P (J1)

∫

dJ2 P (J2)

∫

dx1 ω̂(x1)

∫

dx2 ω̂(x2)

∫

dz′ ω(z′)

δ (z − Θβ [h; J1 + J2 + x1 + x2 + z′]) (4.19)

π(x) =

∫

dJ P (J)

∫

dxL ω̂(xL)

∫

dxR ω̂(xR) δ(x− J − xL − xR) (4.20)

A simple approximation to the solution of Eq. (4.19) can be obtained by starting from a
distribution ω(x) supported on very large fields x and iterating Eq. (4.19) one time. The
result is π(x) ∼

∫

dJ P (J)
∫

dh1 P (h1)
∫

dh1 P (h1) δ(x − J − h1 − h2), which coincides
with the more general Eq. (3.22) after the change of variables X = e−2βx. No such
approximation is possible for Eq. (4.16).

Expressions equivalent to Eqs. (4.16-4.19) can be derived for more complicated types
of interaction. In general the distribution ω(x), which is defined on the real line, will be
replaced by a distribution defined on R

2r−1, r being the range of the hamiltonian.

5 The stability of the frozen solution.

We would like to study local stability of the no-error phase in the context of the replica
method. This can be done5 by computing the eigenvalues of the matrices:

M±
a1...al,b1...bm

[q] = δa1...al,b1...bm
±

∂2βF1d,n[q]

∂qa1...al
∂qb1...bm

(5.1)

5For similar calculations see Ref. [24].
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M±[q] are the mass matrices for purely real (M+[q]), or purely immaginary (M−[q]), fluc-
tuations of the order parameter around the value q. We are interested in the saddle point
q∗a1...al

= 2−n/2. In order to write down all the 2n eigenvectors of M±[q∗] it is convenient
to change slightly our notation for the overlaps. Let us denote by Ω ⊂ {1, 2, . . . , n} the
set of l ≡ |Ω| different indices (aΩ

1 , . . . , a
Ω
l ). We can use the Ω’s as indices for the overlaps

with the natural identification qΩ ≡ qaΩ
1 ...aΩ

l
. It is not difficult to show that

T
(N)
Ωa,Ωb

≡
1

N

∂2 logZ1d,n[q]

∂qa1...al
∂qb1...bm

∣

∣

∣

∣

q=q∗
= (5.2)

=
21−n

N







∑

(i,j)

∫

dP[J ] enNβf−nβE0
(

1 + e−β∆(i,j)
)n
[

tanh

(

β∆(i, j)

2

)]u

−
N2

2







where ∆(i, j) is defined in Section 3, e−nNβf ≡
∫

dP[J ] e−nβH(σ0) and u ≡ ua1...al,b1...bm

counts the indices which are either in the set in Ωa ≡ (a1, . . . , al) or in the set Ωb ≡
(b1, . . . , bm) but not in both. If q is an eigenvector of T (N) with eigenvalue θN , then it is
an eigenvector of M±[q∗] with eigenvalue µ± = 1 ∓ limN→∞ θN .

Notice that T (N) is an hermitian matrix with respect to to the scalar product:

〈q, q′〉n ≡
n
∑

l=0

∑

(a1,...,al)

q∗a1...al
q′a1...al

=
∑

Ω

q∗Ωq
′
Ω (5.3)

We shall use another subset of {1, . . . , n} (let us call it Λ) to label the different eigenvectors
of T (N), which we now exhibit:

q
(Λ)
Ω ≡

1

2n/2
(−1)|Λ∩Ω| (5.4)

The vectors {q(Λ)} form an orthonormal set with respect to the scalar product defined in
Eq. (5.3). This is easily proven by induction on n. The vector q(∅) is nothing but the

constant one. The corresponding eigenvalue is θ
(∅)
N = −1, whence µ+

(∅) = 2 and µ−
(∅) = 0.

The eigenvalue µ−
(∅) = 0 is a remnant of the invariance of the action under the symmetry

cited in the footnote 4 of the previous Section. In order to compute the eigenvalues in
the subspace orthogonal to q(∅), the following formula turns out to be useful:

∑

Ω′

x|Ω△Ω′| q
(Λ)
Ω′ = (1 − x)|Λ|(1 + x)n−|Λ| q

(Λ)
Ω (5.5)

where Ω△Ω′ denotes the symmetric difference of Ω and Ω′ (i.e. Ω△Ω′ ≡ (Ω\Ω′)∪(Ω′\Ω)).
Using Eq. (5.5) and the results of algebra outlined in Section 3 we get (for Λ 6= ∅):

θN→∞(Λ) = 2ζ2
J

∞
∑

m=1

ζ
weight(sm)
h (5.6)

where weight(sm) is defined in Section 3 and

ζC = ζC(|Λ|, n, β) =

∫

dC P (C) e(n−2|Λ|)βC

∫

dC P (C) enβC

(5.7)
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for C → h or C → J . When the one dimensional hamiltonians (1.2) satisfy the hypothesis
of Lemma 3.3, the sum in Eq. (5.6) can be explicitly computed yielding:

θN→∞(Λ) =
2 ζ2

J ζ
w0(f1,f2)+w1(f1,f2)
h

1 − ζ
w1(f1,f2)
h

(5.8)

If n ≥ 2|Λ| then θ(Λ, n; β) is positive and decreasing with β. Moreover limβ→∞ θ(Λ, n; β) =
0 and limβ→0 θ(Λ, n; β) = ∞. We can thus define the critical temperatures βl,n for n/2 ≥
l = |Λ| ≥ 1, by requiring 6

θ(Λ, n; β|Λ|,n) = 1 (5.9)

If β > β|Λ|,n the “frozen” saddle point is stable with respect to the direction q(Λ). If
β < β|Λ|,n it becomes unstable: µ+

(Λ) = 1 − θ(Λ) < 0 while µ−
(Λ) = 1 + θ(Λ) > 0 (it

could be guessed that the “imaginary” directions would be stable because of the physical
interpretation of the overlaps). In the limit n → 0, βl,n → βc/l: the critical directions
are the ones corresponding to |Λ| = 1. It is easy to see that the critical temperature βc

coincides with the one obtained in Section 3.

6 Conclusion.

We have presented two derivations of the local stability condition for the no-error phase.
Both will be object of the criticism of the skeptical reader. In the first one we obtained
the “mean field” equation describing the dynamics of the decoding algorithm, Eq. (2.9),
by making use of heuristic arguments. Indeed we argued Eq. (2.9) to be valid only in the
replica symmetric approximation. In the second derivation we made use of the replica
method, which has not (yet) well founded mathematical basis.

We think that the two derivations compensate each other for their defects. Moreover
they yield the same replica symmetric saddle point equation (4.11) and give the same
picture of the instability which destroys the no-error (frozen) phase. This corresponds to
couples of flipped ǫ(σ)’s. Finally thanks to the first derivation we get some insight on the
behavior of the decoding algorithm. In particular we have seen that, in the frozen phase,
it approaches a no-error fixed point. This approach becomes slower near to the boundary
of the frozen phase.

In Ref. [1] the local stability threshold computed here has been compared with nu-
merical simulations for two types of code, respectively the models (a) and (b) presented
in Section 3. Good agreement was found only for model (a). We propose two possible
explanations of the disagreement for model (b):

• the phase transition is a first order one;

• the turbo decoding algorithm used in Ref. [1] gets sticked in some local minimum
of the free energy, characterized by a finite error probability per bit.

We have not yet enough informations for choosing between these two scenarios.

6Notice that Eq. (5.9) can have more than one solution for n < 2|Λ|. The “physical” critical point is
obtained by taking the limit n → 0 of the solution of Eq. (5.9) which exists for any n.
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A Useful algebra results.

In this Appendix we remind to the reader some known facts in the theory of finite fields
and we prove the propositions stated in Section 3. These are nothing but simple exercises
and we work out them in detail only for greater convenience of the reader. Finally we
illustrate a few applications of the results obtained. The reader interested in a more
complete treatment can consult Refs. [25, 26].

Let us begin with some elementary definitions. The basic object is Z2 i.e. the field of
integer numbers modulo 2. A polynomial over Z2, f(x) ∈ Z2[x] is simply a polynomial
whose coefficients are in Z2. We say f(x) ∈ Z2[x] to be irreducible if there do not exist two
noncostant polynomials g(x), h(x) ∈ Z2[x] such that f(x) = g(x) ·h(x). Any f(x) ∈ Z2[x]
possess an unique factorization, i.e. a decomposition of the form f(x) = f1(x)

r1 ·. . .·fh(x)
rh

where fi(x) ∈ Z2[x] are irreducible and ri ≥ 1 are integer numbers. Given two polynomials
f(x), g(x) ∈ Z2[x] we say that f(x) divides g(x) (in symbols f(x)|g(x)) if there exists
h(x) ∈ Z2[x] such that g(x) = f(x) ·h(x) 7. For an irreducible polynomial f(x) ∈ Z2[x] it
does make sense to define the order o(f): o(f) is the smallest positive integer k such that
f(x)|xk + 1. The basic result which we shall employ in this Appendix is the following:

Theorem A.1 Let f(x) be an irreducible polynomial over Z2. Then f(x)|xk + 1 if and
only if o(f)|k.

It is useful to know how to compute the order of an irreducible polynomial. The main
tool is the theorem below:

Theorem A.2 Let f(x) be an irreducible polynomial of degree d over Z2. Then d is the
smallest positive integer for which o(f)|2d − 1.

Moreover it is obvious from the definition that o(f) ≥ deg(f)
Our first step will be the proof of Lemma 3.2 which we restate here as follows

Lemma A.1 Let f(x) be a polynomial on Z2 with the following factorization

f(x) = f r1
1 (x) · . . . · f rh

h (x) ; ri ≥ 1 (A.1)

where the polynomials fi(x) are irreducible over Z2. Let pi be the smallest integer such
that 2pi ≥ ri. Then f(x)|(1 + xk) if and only if 2pi|k and o(fi)|k for i ∈ {1, . . . , h}.

Proof of Lemma A.1. Let us begin by noticing that, since the fi(x) are irreducible,
f(x)|(1 + xk) if and only if f ri

i (x)|(1 + xk) for i ∈ {1, . . . , h}. We can then limit ourselves
to the case f(x) = hr(x) with h(x) irreducible. It is convenient to work in an extension of
Z2, i.e. in a field containing Z2 as a subfield. We choose an extension (let us call it S) of
Z2 such that both h(x) and (1 + xk) can be decomposed in linear factors. The existence
of such an extension is a basic fact of field theory. We are then looking for the k such
that all the root of h(x) (in S) are roots of (1 + xk) with multiplicity at least r. It is then
necessary to study the multiplicity of the roots of (1 + xk). The first observation is that,

7Similarly, given two integer numbers p, q ∈ Z, we say that p divides q (and write p|q) if there exists
m ∈ Z, such that q = mp.
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if k is odd, all the roots are simple. In fact d
dx

(1 + xk) = kxk−1 has no roots in common
with (1 + xk). The second observation consists in noticing that (1 + x2k) = (1 + xk)2. We
deduce that (1 + x2mk) with k odd has k distinct roots (the same as (1 + xk)), each one
with multiplicity 2m. The final outcome is that hr(x)|(1+x2mk) if and only if 2m ≥ r and
o(h)|k �

From Lemma A.1 the explicit form of the period ω(f) used in Sec. 3 is easily obtained:

ω(f) = 2max(p1,...,ph) lcm(o(f1), . . . , o(fh)) (A.2)

The Lemmas 3.1 and 3.3 are easy consequences of Lemma 3.2.
Proof of Lemma 3.1. Let us begin by considering the series 1/f(x). We can always

define the polynomials ϕn(x) with deg(ϕn) < ω(f) such that 1/f(x) =
∑∞

n=0 ϕn(x) xnω(f).
Since f(x) divides (1 + xmω(f)) for all m ≥ 1, we conclude that ϕn(x) = ϕn′(x) ≡ ϕ(x)
for all n, n′ ≥ 0 and (1 + xmω(f))/f(x) =

∑m−1
k=0 ϕ(x) xkω(f). With the following definition

g(x)ϕ(x) ≡

L
∑

l=0

gl(x) x
lω(f) , deg[gl(x)] < ω(f) (A.3)

we get

g(x)

f(x)
=

∞
∑

n=0

xnω(f)

min(n,L)
∑

l=0

gl(x) ≡

∞
∑

n=0

xnω(f)pn(x) (A.4)

Notice that, for n ≥ L, pn(x) = p∞(x) ≡ g(x)/f(x) mod xω(f). An upper bound on L is
easily obtained from Eq. (A.3) yielding8 pn(x) = p∞(x) for n ≥ ⌈(deg[g(x)]− 1)/ω(f)⌉ ≥
L. Clearly it cannot be p∞(x) = 0 otherwise we would conclude that f(x) divides g(x) in
contradiction with the hypothesis. In order to complete the proof of let us suppose the
following equation to hold

g(x)

f(x)
=

∞
∑

n=0

xnω′

p′n(x) (A.5)

with ω′ < ω(f), deg(p′n) < ω′ and p′n(x) = p′∞(x) for n large enough. This implies that
f(x) divides g(x)(1 + xω′

) but, since gcd(f, g) = 1, we would conclude that f(x) divides
(1 + xω′

) contradicting Lemma 3.2 �

Proof of Lemma 3.3. It suffices to specialize the content of the previous paragraph to
the case deg[g(x)] ≤ ω(f):

g(x)ϕ(x) = g0(x) + g1(x) x
ω(f) (A.6)

sm(x) ≡
g(x)

f(x)
(1 + xmω(f)) = g0(x) + {g0(x) + g1(x)}

m−1
∑

h=1

xhω(f) + g1(x) (A.7)

8Here use the definition ⌈x⌉ ≡ min{n ∈ Z : n > x}.
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whence

weight[sm(x)] = w0 + w1 ·m (A.8)

w0 ≡ weight[g0(x)] + weight[g1(x)] − weight[g0(x) + g1(x)] (A.9)

w1 ≡ weight[g0(x) + g1(x)] (A.10)

�

What does it happen when the hypothesis of Lemma 3.3 are not satisfied? It is easy
to guess the answer. There exists a positive integer m0 such that, for m ≥ m0, weight(sm)
grows linearly with m: weight(sm) = w̃0(f, g) + w̃1(f, g) ·m with w̃1(f, g) = weight(p∞).
Thanks to this fact we can always sum the series in Eq. (3.14) in the interval 0 < β < β1.
The discussion of the behavior of Eq. (3.8) presented in Section 3 is then completely
general.

Let us return down to the earth and make a few examples. We shall consider the codes
presented in Ref. [1]:

(a). The simplest non trivial case: f(x) = 1+x, g(x) = 1. Clearly both the polynomials
are irreducible. The degree of f(x) is deg[f(x)] = 1. Because of Theorem A.2
o(f)|21 − 1 = 1 whence o(f) = 1 = ω(f). Theorem A.1 implies that f(x)|1 + xk

for each k ≥ 1. This conclusion is easily confirmed by the well known formula
(1+xk) = (1+x)(1+x+. . .+xk−1). Lemma 3.1 tells us that g(x)/f(x) =

∑∞
n=0 pnx

n

with pn = p∞ for n ≥ 0 and that p∞ = 1 (1 is the unique non zero polynomial of
degree zero). We have thus rediscovered the simple fact that (1 + x)−1 =

∑∞
n=0 x

n.
Finally we observe the hypothesis of Lemma 3.3 are satisfied and that (with the
notation of Eq. (A.6)), g0(x) = 1 and g1(x) = 0. From Eqs. (A.8-A.9-A.10) it
follows that weight[sm(x) = (1 + xm)/(1 + x)] = m which is easily confirmed by
observing that sm(x) = 1 + x+ . . .+ xm−1.

(b). A less elementary example is: f(x) = 1 + x + x2, g(x) = 1 + x2. It is easy to
see that f(x) is irreducible and that g(x) = (1 + x)2 whence gcd(f, g) = 1. From
o(f)|2deg(f) − 1 = 3 and o(f) ≥ deg(f) = 2 we deduce that o(f) = 3 = ω(f). In fact

1

1 + x+ x2
= 1 + x+ x3 + x4 + x6 + . . . =

∞
∑

n=0

ϕ(x)x3n (A.11)

ϕ(x) = 1 + x (A.12)

Thus by Lemma 3.2 f(x)|(1 + xk) if and only if k is a multiple of 3. We can use
Lemma 3.3 in order to compute the weight of sm(x) = (1+x2)(1+x3m)/(1+x+x2).
We see that g0(x) = 1+x+x2 and g1(x) = 1 whence weight[hm(x)] = 2+2m. With
some book-keeping one can confirm this result:

hm(x) = x+
m−1
∑

l=0

(x3l+1 + x3l+2) + x3m → weight[hm(x)] = 2 + 2m (A.13)

(c). Finally the generating polynomials used in Ref. [3] to build the first example of
turbo code: f(x) = 1 + x + x2 + x3 + x4, g(x) = 1 + x4. Also in this case f(x) is
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irreducible and g(x) = (1+x)4 yielding gcd(f, g) = 1. Since o(f)|2deg(f)−1 = 15 and
o(f) ≥ deg(f) = 4, we deduce that either o(f) = 5 or o(f) = 15. However we know
that (1+x5) = (1+x)(1+x+x2 +x3 +x4) and we conclude that o(f) = 5 = ω(f).
In fact

1

1 + x+ x2
= 1 + x+ x5 + x6 + x10 + x11 + . . . =

∞
∑

n=0

ϕ(x)x5n (A.14)

ϕ(x) = 1 + x (A.15)

Using the fact that g0(x) = 1+x+x4 and g1(x) = 1 we get weight[hm(x)] = 2m+2.

B On the asymptotic behavior of the solutions of Eq.

(3.8).

In this Appendix we study Eq. (3.8) in order to extend to this case the results concerning
Eq. (3.9) used in Section 3. We shall examine both the approach of Ref. [13], which
is based on the analogy with the KPP equation and is a non rigorous one, and the
approach of Ref. [14], which employs probability theory and is entirely satisfactory from
the mathematical point of view.

We would like to deal with this type of equation:

Qn+1(Z) =

∫ ∞

−∞

P (V ) dV

∫ ∞

−∞

∞
∏

i=1

p(h) dh

∫ ∞

0

∞
∏

i=1

Qn(Zi) dZi

δ

(

Z −
∞
∑

i=1

exp

{

−βV − β
i−1
∑

j=1

hj

}

Zi

)

(B.1)

with the requirement that
∫

dh p(h) h > 0 and the initial condition P0(Z) = δ(Z − 1).
Following Ref. [13] we introduce the function:

Gn(x) ≡

∫ ∞

0

dZ Qn(Z) exp{−e−βxZ} (B.2)

which satisfy this recurrence equation

Gn+1(x) =

∫ ∞

−∞

P (V ) dV

∫ ∞

−∞

∞
∏

i=1

p(hi) dhi

∞
∏

i=1

Gn(x+ V +
i−1
∑

j=1

hj) (B.3)

Let us make a few elementary observations concerning Eq. (B.3): if 0 ≤ Gm(x) ≤ 1 for
some m and all x then 0 ≤ Gn(x) ≤ 1 for all x and n > m; if lim supx→∞Gn(x) = g∞ < 1
then Gn+1 = 0; if Gn(x) is increasing and 0 < Gn(x) < 1 for some x (both these hypothesis
are implied by Eq. (B.2)) then limx→−∞Gn+1(x) = 0. The stationary uniform solutions
of Eq. (B.3) are GA

n (x) = 0 and GB
n (x) = 1. The first one is obviously stable. If we

consider a small fluctuation around GB
n (x), Gn(x) = 1 + ρn(x) we get:

ρn+1(x) ≃

∫ ∞

−∞

P (V ) dV

∫ ∞

−∞

∞
∏

i=1

p(h) dh
∞
∑

i=1

ρn(x+ V +
i−1
∑

j=1

hj) (B.4)
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which can be diagonalized in Fourier space:

ρ̂n+1(k) ≃
P̂ (k)

1 − p̂(k)
ρ̂n(k) ≡ λ(k)ρ̂n(k) (B.5)

Notice that |λ(k)| > 1 for k small enough and that |λ(k)| diverges at k = 0 in agreement
with the previous observation that if Gn(x) = 1 − ρ than Gn+1(x) = 0. The preceding
observations lead us to the hypothesis that the n → ∞ behavior of our problem is con-
trolled by front-like solutions Gn(x) = g(x−c(β)n) interpolating between the stable state
GA

n (x) = 0 at x→ −∞ and GB
n (x) = 1 at x→ ∞.

This scenario is easily confirmed in the case without disorder. If P (V ) = δ(V − V0)
and p(h) = δ(h − h0) one obtains Pn(Z) = δ(Z − eβc(β)n), Gn(x) = exp{−e−β(x−c(β)n)}
with

c(β) =
1

β
log

e−βV0

1 − e−βh0
(B.6)

In the general case we assume the existence of front-like solutions with the large x behavior
Gn(x) ∼ 1−e−β(x−c(β)n)+o(e−βx). The front velocity is obtained through the construction
given in Eqs. (3.12-3.13) with

v(β) ≡
1

β
logφ(β) =

1

β
log

〈e−βV 〉

1 − 〈e−βh〉
(B.7)

Notice that 〈h〉 > 0 implies that 〈e−βh〉 < 1 in some interval 0 < β < β1 and that
βc < β1. This remark allows us to sum the series

∑

k〈e
−βh〉k in the range 0 < β < βc,

thus obtaining Eq. (B.7). The same remark will be useful in the following.
Let us consider now the more rigorous approach used in Ref. [14]. We start by

defining the polymer model which corresponds to Eq. (B.1). We have to use a tree with
a numerable set of branches stemming from each node. A node of the n-th generation is
identified by n integer numbers ω ≡ (ω1, . . . , ωn); its generation is denoted by |ω|. We
denote by 0 the root node (i.e. the only node of the zeroth generation). We say that
the node ω′ belonging to the m-th generation is a descendant of the node ω of the n-th
generation (and write ω ≺ ω′ if n < m or ω � ω′ if n ≤ m ) if ω1 = ω′

1, . . . , ωn =
ω′

n. The node ω′ is said to be an older brother of the node ω with |ω′| = |ω| = n if
ω1 = ω′

1, . . . , ωn−1 = ω′
n−1 and ωn > ω′

n. A pair of random variables V (ω) and h(ω) is
attached at each node. All these variables are statistically independent and have marginal
distributions p(h) (the h(ω)’s) and P (V ) (the V (ω)’s). A directed polymer is given by a
pair of nodes ω1 ≺ ω2. To each polymer we assign an energy as follows:

E(ω1, ω2) =
∑

ω1�ω≺ω2

V (ω) +
∑

ω1≺ω�ω2

∑

ω′: ω′ is an older
brother of ω

h(ω′) (B.8)

Moreover we use the shorthand E(0, ω) → E(ω) and define the following partition func-
tions:

Zn(β) ≡
∑

ω: |ω|=n

e−βE(ω) (B.9)

Zn(β|ω) =
∑

ω′�ω:

|ω′|−|ω|=n

e−βE(ω,ω′) (B.10)
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The velocity of the front wave studied in the previous paragraphs corresponds in this
language to the random variable:

c(β) ≡ lim
n→∞

1

nβ
logZn(β) (B.11)

The model has two phases. In the high temperature phase (β ≤ βc) the fluctuations of
Zn(β) are small and

c(β) = lim
n→∞

1

nβ
log〈Zn(β)〉 = v(β) (B.12)

In the low temperature phase (β > βc) the fluctuations become large and c(β) is fixed
by simple convexity and monotonicity arguments. The key point of the approach used in
Ref. [14] is to estimate these fluctuations by proving that, for β < βc:

〈Zn(β)α〉

〈Zn(β)〉α
≤ Bound(α, β) (B.13)

for some 1 < α < 2 uniformly in n. This is enough for obtaining Eq. (B.12).
Let us define the normalized variables Mn(β) ≡ Zn(β)/〈Zn(β)〉. In Ref. [14] the

bound in Eq. (B.13) is obtained starting with the second moment of Mn(β), and then
refining the inequality for the fractional moments of order 1 < α < 2. Notice that looking
at the m-th moment of the partition function is a well known method [27] for obtaining
an upper estimate on the critical temperature (the estimate becomes worser as m gets
larger). Let us have a look at the first two integer moments:

〈Zn+1(β)〉 = 〈e−βV 〉
∞
∑

k=0

〈e−βh〉k 〈Zn(β)〉 (B.14)

〈Z2
n+1(β)〉 =

(

〈e−βV 〉

∞
∑

k=0

〈e−βh〉k

)2
[

〈Z2
n(β)〉 − Zn(2β)

]

+

+〈e−2βV 〉

∞
∑

k=0

〈e−2βh〉k

(

1 + 2

∞
∑

l=1

〈e−βh〉l

)

〈Zn(2β)〉 (B.15)

In general the m-th moment is finite (but not necessarily uniformly bounded) only if
〈e−mβh〉 < 1 i.e. if β < β1/m. There is no integer moment of order greater than one
which remains finite in the interval (0, βc). This fact forces us to a slight modification of
the proof presented in Ref. [14]. We use the trivial identity:

Zn+1(β) =
∑

ω: |ω|=1

e−βE(ω)Zn(β|ω) (B.16)

and estimate the α-th moment (with 1 < α < 2) as follows:

Zα
n+1(β) =















∑

ω1:

|ω1|=1

∑

ω2:

|ω2|=1

e−β[E(ω1)+E(ω2)] Zn(β|ω1) Zn(β|ω
2)















α/2

≤
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≤
∑

ω1:

|ω1|=1

∑

ω2:

|ω2|=1

e−
αβ

2
[E(ω1)+E(ω2)] Zα/2

n (β|ω1) Zα/2
n (β|ω2) (B.17)

For a temperature such that αβ < β1 we can take the averages and sum up the series:

〈Zα
n+1(β)〉 ≤

∑

ω:
|ω|=1

〈e−αβE(ω)〉 〈Zα
n (β)〉 +

∑

ω1 6=ω2:

|ωi|=1

〈e−
αβ

2
[E(ω1)+E(ω2)]〉 〈Zα/2

n (β)〉2 ≤

≤ φ(αβ)〈Zα
n (β)〉 + 2φ(αβ)

∞
∑

l=1

〈e−
αβ

2
h〉l〈Zn(β)〉α (B.18)

Rewriting this formula for the normalized variables we get

〈Mα
n+1(β)〉 ≤

[

φ(αβ)

φ(β)α

]

〈Mα
n (β)〉 + 2

[

φ(αβ)

φ(β)α

] ∞
∑

l=1

〈e−
αβ
2

h〉 ≡

≡ ψ(α, β)〈Mα
n (β)〉 + χ(α, β) (B.19)

At this point we observe, following Ref. [14], that, if dv
dβ

(β) < 0 (i.e. β < βc) then we can

choose α > 1 such that ψ(α, β) < 1. The condition to be imposed on α for obtaining this
inequality is α < βc/β (notice that this inequality implies the previous one α < β1/β).
The desired bound is obtained by using Gronwall lemma together with the fact that
〈Mα

0 (β)〉 = 1:

〈Mα
n (β)〉 ≤ ψn(α, β) +

1 − ψn(α, β)

1 − ψ(α, β)
χ(α, β) ≤ 1 +

1

1 − ψ(α, β)
χ(α, β) (B.20)
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Figure 1: The dynamics of the turbo decoding algorithm. The graph on the top gives the
average of the local field Γi (see Eqs.(2.1-2.2)) as a function of the number of iterations for
different sizes of the system. The slope of the straight line on the same graph indicates the
asymptotic velocity obtained in Section 3. The graph on the bottom gives the variance
of the distribution of the local field.
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Figure 2: The numerical results for the error probability per bit (stars, ∗), compared with
the analytical prediction (continuous line). The analytical prediction is obtained, within
the replica symmetric approximation, from Eq. (4.16). This graph refers to model (a)
defined in Section 3.
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