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Abstract

We use a generalization of the Lindeberg principle developed by Sourav Chatterjee to prove
universality properties for various problems in communications, statistical learning and random
matrix theory. We also show that these systems can be viewed as the limiting case of a properly
defined sparse system. The latter result is useful when the sparse systems are easier to analyze
than their dense counterparts. The list of problems we consider is by no means exhaustive. We
believe that the ideas can be used in many other problems relevant for information theory.

1 Introduction

The phenomenon of universality is common to many disciplines of science and engineering. A well
known example is the central limit theorem which, in a simple version, says the following. Let
{Xi}i≥1 be a collection of i.i.d. random variables with mean zero and variance E[X 2

i ] = 1. Then

1√
n

n∑

i=1

Xi
d→ N(0, 1),

where
d→ denotes convergence in distribution as n →∞, and N(0, 1) is a Gaussian random variable

with mean zero and variance one. In particular, the central limit theorem implies that the distribution
of n−1/2

∑n
i=1 Xi is asymptotically independent of the details of the distribution of the summands Xi.

In other words, its limit is “universal” for a large class of summands’ distributions. Other examples
include the limiting spectrum of random matrices [2], and various properties of statistical mechanics
models [3].

Examples in communications theory where universal properties have been established include the
MIMO communications problem [4]. In these problems it was shown the capacity of the system is
independent of the distribution of the fading coefficients and the spreading sequences respectively.

A different research area in which universality ideas appear ubiquitous is compressed sensing.
Donoho and Tanner [5] carried out a systematic empirical investigation of universality in this context.
In particular they showed that the phase transition boundary in the sparsity-undersampling tradeoff
is universal for a large class of sensing matrices. The precise location of this phase transition was
determined earlier on in the case of Gaussian sensing matrices [6].
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A related phenomenon which we study here is the sparse-dense equivalence. As an example con-
sider a uniformly random regular graph Gn of degree d over n vertices. Let An ∈ R

n×n be the symmet-
ric matrix whose non-vanishing entries correspond to edges in Gn and take values in {+1/

√
d,−1/

√
d}

independently and uniformly at random. As n →∞ the spectral measure of such a matrix converges
almost surely [7, 8] to a well defined limit ρd(dλ) supported on [−2

√
1− 1/d, 2

√
1− 1/d], where:

ρd(dλ) =
1

2π

√
4(1− 1/d) − λ2

1− λ2/d
dλ . (1)

If we now consider the d →∞ limit, this distribution converges weakly to the celebrated semi-circle
law

ρ∞(dλ) =
1

2π

√
4− λ2 dλ . (2)

This is the limiting spectrum of the standard (dense) Wigner matrices. We refer to this type of
property as to a sparse-dense equivalence. Showing such a relationship can be particularly useful
when the analysis of the sparse system is easier than its dense counterpart. Specific examples will
be provided below.

Universality and sparse-dense equivalence can have far reaching consequences in communications
and information theory. In this paper, we demonstrate this by studying both phenomena within a
common framework, and obtaining new results in each of the above mentioned problems. The main
tool that we use is the following generalization of Lindeberg’s principle that was proved in [1].

1.1 Lindeberg Principle

Given f : R
n → R, the generalized Lindeberg principle provides conditions under which the distri-

bution of f(X1, . . . , Xn) is approximately insensitive to the distribution of its arguments X1, . . . , Xn

which are assumed to be independent. This generalizes the classical Lindeberg proof of the central
limit theorem, that focused on f(x1, . . . , xn) = (x1 + · · ·+ xn)/

√
n.

Let us restate here the main result of [1].

Theorem 1 (Generalized Lindeberg Principle, [1]). Let U = (U1, . . . , Un) and V = (V1, . . . , Vn) be
two random vectors with mutually independent components. For 1 ≤ i ≤ n, define

ai ≡ |E[Ui]− E[Vi]|,
bi = |E[U2

i ]− E[V 2
i ]|.

and further assume maxi(E{|Ui|3} + E{|Vi|3}) ≤ M3. Suppose f : R
n → R is a thrice continuously

differentiable function, and for r = 1, 2, 3, let Lr(f) be a finite constant such that |∂r
i f(u)| ≤ Lr(f)

for each i and u ∈ R
n, where ∂r

i denotes the r-fold derivative in the ith coordinate. Then

|E[f(U)]− E[f(V )]| ≤
n∑

i=1

(aiL1(f) +
1

2
biL2(f)) +

1

6
nL3(f)M3.

Notice that, while this theorem explicitly bounds the change in expectation f( · ), it gives control
on its distribution as well, by applying it to g(f( · )), for g : R → R belonging to a suitable class of
test functions.

In many problems of interest for this paper, the bound on the derivatives of f required by the last
theorem does not hold, and a more careful analysis is needed. For that purpose we use the following
theorem. The proof is analogous to the one of Theorem 1, and is provided in Section 3.
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Theorem 2. Let U = (U1, . . . , Un) and V = (V1, . . . , Vn) be two random vectors with mutually
independent components. Let {ai}1≤i≤n and {bi}1≤i≤n be as defined in Theorem 1. Then

|E[f(U)]− E[f(V )]| ≤
n∑

i=1

{
aiE[|∂if(U i−1

1 , 0, V n
i+1)|] +

1

2
biE[|∂2

i f(U i−1
1 , 0, V n

i+1)|]

+
1

2
E

∫ Ui

0

[
|∂3

i f(U i−1
1 , s, V n

i+1)|
]
(Ui − s)2 ds

+
1

2
E

∫ Vi

0

[
|∂3

i f(U i−1
1 , s, V n

i+1)|
]
(Vi − s)2 ds

}
.

2 Applications

In this section we discuss the application of Theorem 2 to a problem from communications theory
(code division multiple access channels), and one from statistical learning theory (estimation via
LASSO). We also revisit a standard model from statistical mechanics (the Sherrington-Kirkpatrick
model), and the spectrum of Wishart matrices, which is related to capacity of MIMO channels. In
each of these cases, Theorem 2 implies both universality and sparse-dense equivalence results. We
will not try to be exhaustive, but rather to point out some selected conclusion. This Section contains
definitions and statements, while proofs are deferred to section 4.

In the following, we use uppercase letters, e.g, X,Y , to denote random variables and their low-
ercase counterparts, e.g. x, y, to denote realizations of such random variables. We also use boldface
characters to denote random matrices, with the subscript to indicate their dimension, e.g. An, Bn.

Most of our results concern random matrices with i.i.d. entries and apply under some simple
centering and normalization conditions, provided the entries have finite sixth moment. Rather than
repeating these conditions at each of the results below, we introduce them once and for all.

Definition 1 (Random Matrices of Standard Type). Let An = {Aij}1≤i≤m,1≤j≤n be a sequence of
random matrices indexed by their dimensions m and n (with m = mn an appropriate sequence of
integers). We say that An is a random matrix of standard type if the entries {Aij}i,j≥1 form an
array of independent and identically distributed random variables with E[Aij ] = 0, E[A2

ij] = 1 and

E[A6
ij ] ≤ K < ∞, for some K independent of m,n.

2.1 Capacity of a CDMA System

Code Division Multiple Access (CDMA) is a widely used communication system between multiple
users and a common receiver [9]. The scheme consists of n users modulating their information
sequence by a signature sequence (spreading sequence) of length m and transmitting the resulting
signal. The number m is sometimes referred to as the spreading gain or the number of chips per
sequence. The receiver obtains the sum of all transmitted signals and the noise which is often assumed
to be white and Gaussian (AWGN).

For the sake of simplicity, we will assume antipodal signals: each user wishes to communicate a
symbol Xk ∈ {+1,−1}, to the common receiver. User k uses a signature sequence (A1k, . . . , Amk),
with Aik ∈ R. The received signal Yi in the i-th time interval is given by

Yi =

n∑

k=1

Aik Xk + σ Zi ,
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where Zi are i.i.d. copies of N(0, 1) and therefore the noise power is σ2.
We use xin = (x1, . . . , xn) to denote any specific realization of the transmitted symbols, and will

assume that a realization of such symbols is used uniformly at random. The corresponding random
vector is X in = (X1, . . . , Xn) while Y = (Y1, . . . , Ym) is the received signal. Typically X in is chosen
to be uniformly distributed over {+1,−1}n. In this paper we restrict to this case. However it is
possible to generalize the results below to a large class of distributions for the symbol Xi.

We write An for the m × n matrix {Aik}1≤i≤m,1≤j≤n. Let Cn(An) denote the capacity of such
system, i.e. the number of bits per user that can be reliably transmitted to the common receiver
under the above constraints. Explicitly we have

Cn(An) = log 2− 1

2
α− 1

n
EY log

{ ∑

x∈{+1,−1}n

e−
1

2σ2
‖Y−Anx‖2

2

}
. (3)

Here expectation EY is taken over the received signal.
Random spreading sequences were initially considered in [10]. Here, the signature sequences are

modeled as random vectors with i.i.d. components {Aik}1≤i≤m,1≤k≤n. Without loss of generality we
can assume E{Aik} = 0 and E{A2

ik} = 1. We will be interested in the large system limit m,n →∞
with α = m/n fixed.

In order to keep the average power (per symbol) equal to 1, we will rescale the signature matrix by
a factor 1/n. For a random signature matrix An, we consider therefore the capacity Cn(m−1/2An),
which is itself random. As proved in [11], Cn(m−1/2An) does in fact concentrate exponentially
around its expectation. This motivates us to focus on its expectation.

Theorem 3 (Universality of the Capacity of random CDMA sytems). Let An = {Aij}1≤i≤m,1≤j≤n

and Bn = {Bij}1≤i≤m,1≤j≤n denote two m × n dimensional random spreading matrices of standard
type. Then

lim
n→∞,m=nα

{
E[Cn(m−1/2An)]− E[Cn(m−1/2Bn)]

}
= 0 .

The above theorem establishes that the per-user capacity of a CDMA channel is asymptotically
independent of the distribution of the spreading sequences. The conditions required to be satisfied
by the distributions are milder than the ones imposed in [11].

Our next result concerns the sparse-dense equivalence. Sparse signature schemes were proposed in
[12] both as a tool for simplifying mathematical analysis and as a design option with potential prac-
tical advantages. Given a signature matrix A = {Aij}1≤i≤m,1≤j≤n defined as above, its sparsification
A

γ
n is given by

Aγ
ij =

{
Aij with probability γ/n,
0 with probability 1− γ/n,

(4)

with γ > 0 a design parameter that is kept fixed in the large system limit. Under a sparse signature
scheme, the power per symbol is normalized to 1 if we rescale the signatures by a factor 1/

√
γ. The

channel output is therefore

Yi =
1√
γ

n∑

k=1

Aγ
ik Xk + σ Zi .

We can then prove the following sparse-dense equivalence result.
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Theorem 4 (Sparse-Dense Equivalence for CDMA channels). Let An = {Aij}1≤i≤m,1≤j≤n and
Bn = {Bij}1≤i≤m,1≤j≤n denote two m× n dimensional random spreading matrices of standard type.
For γ > 0, let A

γ
n be the sparsification of An. Then

lim
γ→∞

lim
n→∞,m=nα

{
E[Cn(γ−1/2Aγ

n)]− E[Cn(n−1/2Bn)]
}

= 0.

As already mentioned, establishing sparse-dense equivalence is particularly useful when the anal-
ysis of a sparse system is simpler than for its dense counterpart. In [12] it was shown that there
exists αs > 0 such that, for all α ≤ αs,

lim
γ→∞

lim
n→∞,m=nα

E[Cn(γ−1/2Aγ
n)] = min

m∈[0,1]
CRS(q) , (5)

where

CRS(q) =
λ

2
(1 + q)− 1

2α
log λσ2 − Ez{log(2 cosh(

√
λZ + λ))} , (6)

λ ≡ 1

σ2 + α(1− q)
, (7)

where Ez denotes expectation with respect to Z ∼ N(0, 1). The parameter αs is defined as the largest
α such that the maximizer in (5) is unique. Numerically αs ≈ 1.49. The same formula was derived
earlier by Tanaka [13] using the non-rigorous replica method from statistical physics.

Combining this with Theorem 4 we can conclude the following result for the capacity of a random
CDMA system.

Corollary 1 (Capacity of random CDMA systems). Let An denote an m× n dimensional random
spreading matrix with i.i.d. entries. Assume E[Aij ] = 0, E[A2

ij ] = 1 and E[A6
ij] ≤ K < ∞. Then for

α ≤ αs

lim
n→∞,m=nα

E[Cn(m−1/2An)] = min
q∈[0,1]

CRS(q).

2.2 Estimation via LASSO

The LASSO (also known as basis pursuit de-noising) is a popular strategy in statistical learning,
used for reconstructing high-dimensional parameter vectors from noisy measurements [14, 15]. It is
particularly well suited when the underlying parameters vector is sparse in an appropriate basis. For
this very reason, it is object of intense study within the compressed sensing literature.

We assume here that a signal x0 ∈ R
n is observed through the sensing matrix An which has

dimensions m× n. The measurements y ∈ R
m are modeled as a noisy linear functions

y = An x0 + z , (8)

with z ∈ R
m a noise vector. Let the noise vector z be i.i.d. Gaussian vector. The recovery of x0

from y is done using the following convex optimization problem

x̂(λ) = argminx∈Rn

{1

2
‖y −Anx‖2

2 + λ ‖x‖1

}
. (9)

For some applications the sensing matrix An is not far from random or pseudo-random. It is im-
portant to ask to which degree results obtained for a specific distribution of An generalize to other
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distributions [6, 5]. We consider the case in which the entries x0,i of x0 are uniformly bounded, i.e.,
|x0i| ≤ xmax for some constant xmax > 0 independent of n,m. We further assume that the noise
vector z has i.i.d. entries zi ∼ N(0, σ2) and focus on the limit m,n →∞ with m/n = α fixed.

The next result provides rigorous evidence towards the broader universality picture, by proving
universality for the normalized cost

L(An) =
1

n
min

x∈[−xmax,xmax]n

{1

2
‖y −Anx‖2

2 + λ ‖x‖1

}
. (10)

Theorem 5 (Universality for LASSO). Let An = {Aij}1≤i≤m,1≤j≤n and Bn = {Bij}1≤i≤m,1≤j≤n

denote two m× n dimensional random sensing matrices of standard type. Then

lim
n→∞,m=nα

{
E[L(n−1/2An)]− E[L(n−1/2Bn)]

}
= 0 .

2.3 Spectrum of Wishart matrices and capacity of MIMO channels

Given an n×n symmetric matrix Wn, let {λi(Wn)}1≤i≤n denote its eigenvalues. The spectral measure
of Wn is the probability measure

µn ≡
1

n

n∑

i=1

δλi(Wn) . (11)

The study of the limit of µn as n → ∞, for a sequence of random matrices Wn is a central topic
in random matrix theory, with important applications in multi-antenna communications. A well-
studied example is the family of Wishart matrices. Here, Wm = 1

nA>
n An, where An is an m × n

matrix, whose entries are i.i.d. realizations of a zero mean random variable with variance 1.
A standard approach to characterizing the spectral measure is through its Stieltjes transform [16]

which is defined as

Sn(Wn, z) =
1

n

n∑

i=1

1

z + λi(Wn)
=

1

n
Tr

(
(Wn + zIn)−1

)
,

where z ∈ C\R and In is the n-dimensional identity matrix. The limiting spectrum of the family
{Wn}n≥1 can be obtained by computing limn→∞ Sn(Wn, z). The universality of Wishart matrices
is a well known result [2]. The following is a sparse-dense equivalence result for this class of matrices.

Theorem 6 (Sparse-Dense Equivalence for Wishart Matrices). Let An = {Aij}1≤i≤m,1≤j≤n and
Bn = {Bij}1≤i≤m,1≤j≤n denote two m × n dimensional random matrices of standard type. For
γ > 0, let A

γ
n be the sparsification of An. Let W

γ
A,n ≡ γ−1(Aγ

n)>A
γ
n and WB,n ≡ n−1(Bn)>Bn.

Then for all z ∈ C\R

lim
γ→∞

lim
n→∞,m=nα

{
E[Sn(Wγ

A,n, z)]− E[Sn(WB,n, z)]
}

= 0 .

Under appropriate tightness conditions, convergence of Stieltjes transforms implies weak conver-
gence of the spectrum µn, which further implies the convergence of the empirical average 1

n

∑
i f(λi)

for any continuous bounded function f . As a particular application of this remark, we consider the
capacity of multi-input multi-output (MIMO) communication systems. The channel model is very
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similar to the CDMA system discussed in Section 2.1. For a channel input X = (X1, . . . , Xn), the
channel output is a vector Y = (Y1, . . . , Ym) in R

m, with components

Yi =

n∑

k=1

HikXk + σ Zi

where Zi are i.i.d. realizations of N(0, 1). However, in this case it is customary to not restrict the
inputs to be {+1,−1}, but rather to impose a power constraint n−1

∑n
i=1 E{X2

i } ≤ 1. Given a
channel gains matrix Hn = {Hij}1≤i≤m,1≤j≤n, the average capacity per input antenna [4] is then
given by

Cn(Hn) = max
{Q�0: 1

n

Pn
i=1

Qii=1}

1

2n
E

{
log Det

(
Im +

1

σ2
HnQH>

n

)}
.

when the input covariance is Q For the case of Hij being i.i.d. symmetric Gaussian random variables
it was shown in [4] that the above maximum is achieved for Q = In. Here, we assume that little is
known about the channel gains and therefore this covariance matrix is used for other matrices Hn

as well. Under this assumption, the achievable average rate is given by

Cn(Hn) =
1

2n

m∑

i=1

log
{

1 +
1

σ2
λi(HnH>

n )
}

=
1

2n

n∑

i=1

log
{

1 +
1

σ2
λi(H

>
n Hn)

}
.

Under the above theorem implies the following result for the MIMO channels.

Corollary 2 (Sparse-Dense Equivalence for the MIMO Capacity). Let An = {Aij}1≤i≤m,1≤j≤n and
Bn = {Bij}1≤i≤m,1≤j≤n denote two m×n dimensional random matrices of standard type. For γ > 0,
let A

γ
n be the sparsification of An. Then

lim
γ→∞

lim
n→∞,m=nα

{
E[Cn(γ−1/2Aγ

n)]− E[Cn(n−1/2Bn)]
}

= 0 .

2.4 Spin glass models

Spin glass models have been object of intense interest within statistical mechanics, mathematical
physics and probability theory. Both rigorous and heuristic techniques from this domain have been
applied with success in information theory [17].

A number of universality and sparse-dense equivalence results have been proved in this context
[1, 18, 19]. We re-derive two of these results here because they provide a very simple and instructive
illustration of the proof technique that is used in the more intricate examples listed in the previous
sections.

We focus in particular on the Sherrington-Kirkpatrick (SK) model. The model is defined by the
Hamiltonian function H : {+1,−1}n × R

n×n → R given by

H(x,An) = − 1√
2

n∑

i,j=1

Aijxixj = − 1√
2
x>Anx ,

for an n × n dimensional matrix An and x = (x1, . . . , xn) ∈ {+1,−1}n. An important object of
interest in this context is the free entropy density at inverse temperature β, which is defined by

f(β,An) ≡ 1

n
log

{ ∑

x∈{+1,−1}n

e−βH(x,An)
}
.
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Universality of the free energy for the SK model was established in [20] and was later extended
to general distributions in [21]. As shown in [1] the current approach gives a stronger result.

Theorem 7 (Universality for the SK model [1]). Let An = {Aij}1≤i,j≤n and Bn = {Bij}1≤i,j≤n be
two n× n dimensional random matrices. Assume that both {Aij} and {Bij} are collections of i.i.d.
random variables with E[Aij ] = E[Bij] = 0, E[A2

ij ] = E[B2
ij] = 1, and E[|Aij |3], E[|Bij |3] ≤ K < ∞.

Then

lim
n→∞

{
E[f(β, n−1/2An)]− E[f(β, n−1/2Bn)]

}
= 0 .

The sparse-dense equivalence was proved in [19] under the slightly stronger assumption of uni-
formly bounded entries |Aij| ≤ 1 with even distribution.

Theorem 8 (Sparse-Dense Equivalence). Let An = {Aij}1≤i,j≤n and Bn = {Bij}1≤i,j≤n be two n×n
dimensional random matrices. Assume that both {Aij} and {Bij} are collections of i.i.d. random
variables with E[Aij ] = E[Bij] = 0, E[A2

ij ] = E[B2
ij ] = 1, and E[|Aij|3], E[|Bij |3] ≤ K < ∞. For

γ > 0, let A
γ
n be the sparsification of An. Then

lim
γ→∞

lim
n→∞

{
E[f(β, γ−1/2Aγ

n)]− E[f(β, n−1/2Bn)]
}

= 0 .

3 Proof of Theorem 2

Proof of Theorem 2. Let ∂r
i f denote ∂rf

∂xr
i
. Let

W i = (U1, . . . , Ui, Vi+1, . . . , Vn),

W
0
i = (U1, . . . , Ui−1, 0, Vi+1, . . . , Vn).

Then

E[f(U)]− E[f(V )] =

n∑

i=1

(E[f(W i)]− E[f(W i−1)]) . (12)

From the third-order Taylor expansion, we have

f(W i) = f(W
0
i ) + Ui∂if(W

0
i ) +

U2
i

2
∂2

i f(W
0
i ) +

1

2

∫ Ui

0
∂3

i f(U i−1
1 , s, V n

i+1)(Ui − s)2ds . (13)

Similarly, we get

f(W i−1) = f(W
0
i ) + Vi∂if(W

0
i ) +

V 2
i

2
∂2

i f(W
0
i ) +

1

2

∫ Vi

0
∂3

i f(U i−1
1 , s, V n

i+1)(Vi − s)2ds. (14)

From Eq. (12), using (13) and (14), we get

E[f(U)]− E[f(V )] =

n∑

i=1

{
E[(Ui − Vi)∂if(W

0
i )] +

1

2
E[(U2

i − V 2
i )∂2

i f(W
0
i )]

+ E
[1

2

∫ Ui

0
∂3

i f(U i−1
1 , s, V n

i+1)(Ui − s)2ds
]
+ E

[1

2

∫ Vi

0
∂3

i f(U i−1
1 , s, V n

i+1)(Vi − s)2ds
]}

.

The result follows by noting that f(W
0
i ) is independent of {Ui, Vi}.
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4 Proofs of statements from Section 2

We will present the proofs starting from the last example, i.e. the Sherrington-Kirkpatrick model in
Section 2.4. As mentioned, this is a particularly simple example of the general proof strategy.

4.1 SK Model

As mentioned in Section 2.4, the Hamiltonian for this model is given by

H(x,An) = − 1√
2

x>Anx,

where An is an n×n dimensional matrix. For a function (x,An) 7→ g(x,An), we denote by 〈g(x,An)〉
its expectation with respect to the probability distribution pAn(x) ∝ exp{−βH(x,An)} on {+1,−1}n.
Explicitly:

〈g(x,An)〉 =

∑
x∈Xn g(x,An) e−H(x,Z,An)

∑
x∈Xn e−H(x,Z,An)

. (15)

Denote by ∂k
rc the k-th partial derivative with respect to Arc (row r, column c). A straightforward

calculation shows that third derivative ∂3
rcf(β,An) is given by

∂3
rcf(β,An) =

β3

√
2n
〈xrxr〉(1 − 〈xrxc〉2) ,

which implies L3(f) ≤ β3/(
√

2n) (with L3 defined as in Theorem 1).

Proof of Theorem 7. From the definition of the random matrices An and Bn, we have we have
E[Aij ] = E[Bij], E[A2

ij ] = E[B2
ij] and E[|Aij |3] ≤ (1 + K), E[|Bij |3] ≤ (1 + K). Using Theorem 1 we

get

|E[f(n−1/2An)]− E[f(n−1/2Bn)]| ≤ 1

6
n2 β3

√
2 n

max
r,c∈[n]

{
E

[ |Arc|3
n3/2

]
, E

[ |Brc|3
n3/2

]}
= O

( 1√
n

)
.

Proof of Theorem 8. From the definition of the random matrices A
γ
n and Bn, we have we have

E[Aij ] = E[Bij], E[A2
ij ] = E[B2

ij ] and E[|Aγ
ij |3] ≤ (1+K)γ/n, E[|Bij |3] ≤ (1+K) (with K independent

of γ and n). Therefore using the estimate on L3(f) fro the previous proof, together with Theorem 1
we have

|E[f(γ−1/2Aγ
n)]− E[f(n−1/2Bn)]| ≤ 1

6
n2 β3

√
2 n

max
r,c∈[n]

{
E

[ |Aγ
rc|3

γ3/2

]
, E

[ |Brc|3
n3/2

]}
≤ K ′β3 max

{ 1√
γ

,
1√
n

}
.

Therefore, limγ→∞ limn→∞
{
E[f(γ−1/2A

γ
n)]− E[f(n−1/2Bn)]

}
= 0.

9



4.2 CDMA

For any m× n matrix An, the capacity (3) can be expressed as

Cn(An) = log 2− 1

2
α− 1

n

∑

xin∈{+1,−1}n

1

2n
EZ log

{ ∑

x∈{+1,−1}n

e−
1

2σ2
‖Z+An(xin−x)‖2

2

}
,

where Z is an m-dimensional random vector, whose entries are i.i.d. N(0, σ2). By a simple change
of variables in the sum over x, we get

Cn(An) = log 2− 1

2
α− 1

n

∑

xin∈{+1,−1}n

1

2n
EZ log

{ ∑

x∈{0,2}n

e−
1

2σ2
‖Z+Anxinx‖2

2

}
.

For a matrix An = {Ai,j}1≤i≤m,1≤j≤n, and a vector xin ∈ {+1,−1}n, define An(xin) by letting
[An(xin)]ij = Aijx

in

j . Further, define the Hamiltonian function H : {0, 2}n × R
m × R

m×n → R by

H(x,Z,An) =
1

2σ2
‖Z + Anx‖2

2 =
1

2σ2

m∑

i=1

(
Zi +

n∑

j=1

Aijxj

)2
.

Then we have

Cn(An) = log 2− 1

2
α− 1

2n

∑

xin∈{+1,−1}n

EZf(An(xin), Z) ,

f(An, Z) ≡ 1

n
log

{ ∑

x∈{0,2}n

e−H(x,Z,An)
}

.

If An is a random matrix of standard type, and xin ∈ {+1,−1}n, then An(xin) is also a random
matrix of standard type. In order to prove the universality results, theorems 3 and 4, it is therefore
sufficient to fix –say– xin = (+1, . . . ,+1), and prove universality of EZf(An, Z).

Analogously to the proof in the previous section, for a function (x,Z,An) 7→ g(x,Z,An), we let

〈g(x,Z,An)〉 ≡
∑

x∈{0,2}n g(x,Z,An)e−H(x,Z,An)

∑
x∈Xn e−H(x,Z,An)

. (16)

In order use Theorem 2 we need to estimate the third derivatives of f . Again, ∂k
rcf denote the k-th

derivative of f with respect to the Ar,c. The third derivative is then given by

∂3
rcf(An, Z) =

1

n(2σ2)3

(
− 〈(∂rcH(x,Z,An))3〉+ 3〈∂rcH(x,Z,An)〉〈(∂rcH(x,Z,An))2〉 − 2〈∂rcH(x,Z,An)〉3

)
.

(17)

Proof of Theorem 3. Let An and Bn be as defined in the theorem. Let Dn(r, c, s) denote the matrix
with entries

Dij =





1√
m

Aij , if i < r or i = r and j < c,

s, if i = r, and j = c,
1√
m

Bij , otherwise.

10



From now onwards we use H(x) to denote H(x,Z,Dn(r, c, s)) and let 〈 · 〉 denote the corresponding
average, as per Eq. (16). Further, for r ∈ [m], let Θr(x) ≡ (Zr +

∑n
j=1 Drjxj)/(

√
2σ) and H∼r(x) =

H(x)−Θr(x)2. Notice that

H(x) =
∑

i∈[m]

Θi(x)2 , H∼r(x) =
∑

i∈[m]\r
Θi(x)2 .

Accordingly, we let 〈 · 〉∼r denote the average as defined in (16) with the Hamiltonian H∼r(x).
The derivative of H(x) with respect to Arc is

∂rcH(x) =
1

2σ2

(
Zr +

n∑

j=1

Drjxj

)
2xc =

1√
2σ

2xcΘr(x).

Its fourth moment can then be bounded as

E〈(∂rcH)4〉s = E

{∑
x e−H(x)(∂rcH)4∑

x e−H(x)

}

≤ E

{∑
x e−H∼r(x)−Θr(x)2(64/σ4)Θr(x)4∑

x e−H∼r(x)−Θr(x)2

}
.

Since the random variables e−Θr(x)2 and Θr(x)4 are negatively correlated, we have

〈e−Θr(x)2Θr(x)4〉∼r ≤ 〈e−Θr(x)2〉∼r〈Θr(x)4〉∼r,

which implies

E〈(∂rcH)4〉s≤
64

σ4
E〈Θr(x)4〉∼r. (18)

Using the inequality (a+b+c)4 ≤ 27(a4+b4+c4) and the definition of {Aij} and {Bij} in Theorem 3,
we get

E〈(∂rcH)4〉 ≤ 27 · 64
4σ4

{
E[Z4

r ] + E[〈(Drcxc)
4〉∼r] + E[〈(

∑

i∈[n]\c
Drixi)

4〉∼r]
}

≤ K1 + K1 s4 + K1 E[〈(
∑

i∈[n]\c
Drixi)

4〉∼r ,

where K = K(σ) is a constant independent of m,n. If we use the subscript i 6= j 6= k 6= . . . to
denote all the tuples of distinct indices and we expand the power, we get

E[〈(
∑

i∈[n]\c
Drixi)

4〉∼r] =
∑

i,j,k,l∈[n]\c
E[DriDrjDrkDrl〈xixjxkxl〉∼r]

=
∑

i,j,k,l∈[n]\c
E[DriDrjDrkDrl]E[〈xixjxkxl〉∼r] =

=
∑

i∈[n]\c
E[D4

ri]E[〈x4
i 〉∼r] + +3

∑

i6=j∈[n]\c
E[D2

riD
2
rj ]E[〈x2

i x
2
j〉∼r] ,

11



Here we used the fact that {Dri}1≤i≤n are independent of H∼r(x), and therefore of 〈xixjxkxl〉∼r

Further all the terms with one of the indices i, j, k, l distinct from the all others vanish because
E{Dri} = 0 for all i 6= c by our assumption on An, Bn. Using xi ∈ {0, 2}, we then get

E[〈(
∑

i∈[n]\c
Drixi)

4〉∼r] ≤
∑

i∈[n]\c

(1 + K)2

m2
· 16 + 3

∑

i6=j∈[n]\c

1

m2
· 16 ≤ K2

where K2 = K2(α) is another constant. Putting everything together, we get

E〈(∂rcH)4〉 ≤ K3 (1 + s4) .

and therefore, by Jensen inequality, we get E〈|∂rcH|3〉 ≤ K3(1 + |s|3) (by eventually enlarging the
constant K3. Using Eq. (17), this finally implies that

E[|∂3
rcf(Dn(r, c, s), Z)|] ≤ K4

n
(1 + |s|3) .

We are now in position to apply Theorem 2. Since the means and variances of the entries of An

and Bn are equal, we have ai = bi = 0. We get therefore

|E[f(m−1/2An, Z)]− E[f(m−1/2Bn, Z)]| ≤ K4

n

m∑

r=1

n∑

c=1

(
EArc

∫ Arc/
√

m

0
(1 + |s|3)( Arc√

m
− s)2ds

+ EBrc

∫ Brc/
√

m

0
(1 + |s|3)( Brc√

m
− s)2ds

)

≤ mK ′
6∑

i=3

{
E

[( Arc√
m

)i]
+ E

[( Brc√
m

)i]}
= O

( 1√
n

)
.

The proof of Theorem 4 is very similar to the one above. We only stress the differences below.

Proof of Theorem 4. Let A
γ
n and Bn be as defined in the statement. We modify the definition of

Dn(r, c, s) used in the last proof, as follows

Dij =





1√
γ Aγ

ij , if i < r or i = r and j < c,

s, if i = r, and j = c,
1√
m

Bij , otherwise.

Now following the proof of Theorem 3, and assuming without loss of generality γ ≥ 1, we get again

E〈(∂rcH)4〉 ≤ K1

(
1 + s4

)
.

(The final step consists as in the previous proof, in bounding the sums
∑

i∈[n]\c E[D4
ri] and∑

i6=j∈[n]\c E[D2
riD

2
rj]E[〈x2

i x
2
j〉∼r].) This in turn implies E[|∂3

rcf(Dn(r, c, s), Z)|] ≤ (K ′
1/n)(1 + |s|3).

Since the means and variances of the entries of A
γ
n and Bn are equal, we have ai = bi = 0. Applying

Theorem 2, we get

|E[f(γ−1/2Aγ
n, Z)]− E[f(m−1/2Bn, Z)]| ≤ K ′

1

n

m∑

r=1

n∑

c=1

{
EAγ

rc

∫ Aγ
rc/

√
γ

0
(1 + |s|3)(A

γ
rc√
γ
− s)2ds

12



+ EBrc

∫ Brc/
√

m

0
(1 + |s|3)( Brc√

m
− s)2ds

}

≤ mK2

6∑

i=3

{
E

[(Aγ
rc√
γ

)i]
+ E

[( Brc√
m

)i]}

≤ K3

( 1√
γ

+
1√
n

)
.

Now taking the limit n →∞ first and then the limit γ →∞ gives the result.

4.3 LASSO

The proof of Theorem 5 repeats some arguments already present in the proof of Theorem 3 presented
in the previous section. We shall omit such repetitions and instead focus on the new ideas required.

Proof of Theorem 5. Without loss of generality, we will assume xmax = 1. Define X = [−1, 1] and,
for δ > 0, define Xδ = {kδ : k ∈ Z, |kδ| ≤ 1}. In words Xδ is a grid of points in the interval [−1, 1]
with spacing δ. Recall that x0 is a fixed deterministic signal with ||x0||∞ ≤ 1, and the resulting
measurements read Y = Anx0 + Z, where Z is noise vector with i.i.d. Gaussian component. Define
the Hamiltonian function H : R

n ×R
m × R

m×n → R by letting

H(x, z,An) = λ‖x‖1 +
1

2
‖y −Anx‖2

2

= λ‖x‖1 +
1

2
‖z −An(x− x0)‖2

2 .

With this definition, L(An) = 1
n minx∈Xn{H(x, z,An)}. Let Lδ(An) = 1

n minx∈Xn
δ
{H(x, z,An)}. Our

proof follows by first showing that there exists a constant C such that

∣∣E[Lδ(n
−1/2An)]− E[L(n−1/2An)]

∣∣ ≤ C δ,
∣∣E[Lδ(n

−1/2Bn)]− E[L(n−1/2Bn)]
∣∣ ≤ C δ .

Obviously Lδ(An) ≥ L(An). In order to prove the converse bound, let x̂ be a minimizer of H(x, z,An)
in X n, and denote by xδ its closest approximation in X n

δ . Obviously |xδ,i − x̂i| ≤ δ for all i ∈ [n].
We then have

1

n
|H(x̂, z, n−1/2An)−H(xδ, z, n−1/2An)| ≤ λδ +

1

2n

∣∣∣‖y − n−1/2Anx̂‖2
2 − ‖y − n−1/2Anxδ‖2

2

∣∣∣

= λδ +
1

2n

∣∣∣
( 1√

n
An(xδ − x̂)

)>
2z +

( 1√
n
An(x̂− xδ)

)> 1√
n
An(x̂ + xδ − 2x0)

∣∣∣

≤ λδ +
1

2n

∥∥∥ 1√
n
An(x̂− xδ)

∥∥∥
2
2‖z‖2 +

1

2n2
σmax(An)2‖x̂− xδ‖2‖x̂ + xδ − 2x0‖2

≤ λδ + σmax(n
−1/2An)

1√
n

δ ‖z‖2 + 2σmax(n
−1/2An)2δ , (19)

where we used ‖xδ‖2, ‖x̂‖2, ‖x0‖2 ≤
√

n and ‖x̂−xδ‖2 ≤ δ
√

n. Here σmax(An) is the largest singular
value of An. From [22] we know that E[σmax(n

−1/2An)2] < K, for some constant K < ∞. Combining
this with Eq. (19), and using the Cauchy-Schwartz inequality, we get

∣∣E[Lδ(n
−1/2An)]− E[L(n−1/2An)]

∣∣ ≤ Cδ .
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A similar result obviously holds for the matrix ensemble Bn as well. By triangular inequality, we
have

lim
n→∞

∣∣E[L(n−1/2An)]− E[L(n−1/2Bn)]
∣∣ ≤ Cδ + lim

n→∞

∣∣E[Lδ(n
−1/2An)]− E[Lδ(n

−1/2Bn)]
∣∣ .

Since this inequality holds for any δ > 0, the proof of the theorem reduces to showing that
limn→∞

∣∣E[Lδ(n
−1/2An)]− E[Lδ(n

−1/2Bn)]
∣∣ = 0.

In order to prove this, define

f(δ, β, z, An) = − 1

βn
log

{ ∑

x∈Xn
δ

e−βH(x,z,An)
}

.

It is easy to see that

lim
β→∞

f(δ, β, z, An) =
1

n
min
x∈Xn

δ

H(x, z,An) . (20)

Further, a straightforward calculation shows that

β2 ∂f

∂β
(δ, β, z, An) = H(pβ,An) ,

where H(p) denotes Shannon’s entropy of the probability distribution p and pβ,An(x) ∝ exp{−βH(x, z,An)}.
Of course 0 ≤ H(pβ,An) ≤ n log |Xδ| whence

− 1

β2
log

(2

δ

)
≤ ∂f

∂β
(δ, β, z, An) ≤ 0 . (21)

Therefore,

lim
n→∞

∣∣E[Lδ(n
−1/2An)]− E[Lδ(n

−1/2Bn)]
∣∣

= lim
n→∞

∣∣ lim
β→∞

E[f(δ, β, Z, n−1/2An)]− lim
β→∞

E[f(δ, β, Z, n−1/2Bn)]
∣∣

≤ lim
n→∞

∣∣E[f(δ, β, Z, n−1/2An)]− E[f(δ, β, Z, n−1/2Bn)]
∣∣ +

∫ ∞

β

1

s2
log

(2

δ

)
ds , (22)

where the first step follows from (20) and the second from (21). Notice the close resemblance between
the function f(δ, β, Z,An) defined here and the one used in the previous section. Using the same
arguments developed there for the proof of Theorem 3 it is immediate to show that

∣∣E[f(δ, β, Z, n−1/2An)]− E[f(δ, β, Z, n−1/2Bn)]
∣∣ ≤ O

( 1√
n

)
.

Combining this with Eq. (22), we get

lim
n→∞

∣∣E[Lδ(n
−1/2An)]− E[Lδ(n

−1/2Bn)]
∣∣ ≤ 1

β
log

(2

δ

)
.

The proof is completed by letting β →∞.
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4.4 Wishart Matrices

The proof is analogous the proof for universality of the Wigner’s semi-circle law developed in [23].

Proof of Theorem 6. By the analiticity of the Stieltjes transform, it is sufficient to prove the claim
for Im(z) large enough.

For an m× n matrix An and any z ∈ C\R, let

f(An) ≡ 1

n
Tr

(
(A>

n An + zIn)−1
)
.

In order to simplify the notation we drop the subscript n and denote the partial derivative with
respect to Aij by ∂ij . Define R = (A>A + zI)−1. Therefore (A>A + zI)R = I, which implies
∂ij((A

>A + zI)R) = 0. This yields

∂ijR = −R∂ij(A
>A)R .

Let 1ij denote the matrix with (ij)-th entry equal to 1 and the remaining entries equal to 0. Then

∂ij(A
>A) = 1jiA + A>1ij ,

∂2
ij(A

>A) = 21ii ,

∂3
ij(A

>A) = 0 .

Using the identity Tr(AB) = Tr(BA), we get

∂ijf = − 1

n
Tr

(
∂ij(A

>A)R2
)
,

∂2
ijf =

2

n
Tr

(
∂ij(A

>A)R∂ij(A
>A)R2

)
− 1

n
Tr

(
∂2

ij(A
>A)R2

)
,

∂3
ijf = − 6

n
Tr

(
∂ij(A

>A)R∂ij(A
>A)R∂ij(A

>A)R2
)

+
3

n
Tr

(
∂2

ij(A
>A)R∂ij(A

>A)R2
)

+
3

n
Tr

(
∂ij(A

>A)R∂2
ij(A

>A)R2
)
. (23)

Note that R is a symmetric matrix and therefore is diagonalizable. Moreover, note that the singular
values of R−1 are bounded by |v|−1, where v = Im(z). Let ‖A‖ and ‖A‖2 denote the Frobenius norm
and the spectral norm of A respectively. From Cauchy-Schwartz inequality we have |Tr(AB)| ≤
‖A‖ ‖B‖. Therefore, we can bound the first term as

|Tr(∂ij(A
>A)R∂ij(A

>A)R∂ij(A
>A)R2)|≤‖(∂ij(A

>A)R)2‖‖∂ij(A
>A)R2‖

(a)

≤ 1

|v| ‖∂ij(A
>A)R‖3

(b)

≤ 1

|v|4 ‖∂ij(A
>A)‖3 , (24)

where we have used ‖AB‖ ≤ ‖A‖‖B‖ in (a) and ‖AB‖ ≤ ‖A‖‖B‖2 in both (a) and (b).
Similarly one can bound the second and third terms of (23) as

|Tr(∂2
ij(A

>A)R∂ij(A
>A)R2)| ≤ ‖∂2

ij(A
>A)‖‖∂ij(A

>A)‖ 1

|v|3 = ‖∂ij(A
>A)‖ 2

|v|3 . (25)
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Finally, we can bound ‖∂ij(A
>A)‖ as follows

‖∂ij(A
>A)‖ ≤ ‖1jiA‖+ ‖A>1ij‖ = 2‖A>1ij‖ = 2

( m∑

k=1

A2
kj

)1/2
. (26)

Let us now consider the random matrices A
γ
n and Bn as defined in the theorem. Let Cn(r, c, s)

denote the matrix as defined in Section 4.2, i.e.,

Cij =





1√
γ Aγ

ij , if i < r or i = r and j < c,

s, if i = r, and j = c,
1√
m

Bij, otherwise.

Using the equations (23), (24), (25), and (26), we get

E
{
|∂3

rcf(Cn(r, c, s))|
}
≤ K0

n
E

{(
1 +

m∑

k=1

C2
kc

)3/2}

≤ K1

n
(1 + s3) .

The proof is finished as for Theorem 4.

4.5 Proof of Corollary 2

Throughout this proof we will assume σ = 1, for simplicity of notation (general σ > 0 follows exactly
the same argument).

Convergence of Stieltjes transform implies weak convergence of the expected distribution of eigen-
values [16, Theorem 2.4.4]. This means that for any continuous bounded function f 1

lim
γ→∞

lim
n→∞

1

n

n∑

i=1

E[f(λi(γ
−1(Aγ

n)>Aγ
n))] = lim

n→∞
1

n

n∑

i=1

E[f(λi(n
−1B>

n Bn))] . (27)

The limit on the right hand side exists because the expected distribution of eigenvalues of Wishart
matrices converges [2, 24]. Moreover, the limiting distribution function is continuous. Therefore, the
convergence of the distributions implies the convergence of expectations for any bounded measurable
function, not necessarily continuous (by the bounded convergence theorem). We are interested in
estabilishing a result of the form (27) for the function f(x) = log(1 + x), which is not bounded.
However, note that only the behavior of f in the region x ≥ 0 is relevant, because λi ≥ 0. In the
domain of interest the function f is bounded from below. In order to tackle the issue of boundedness
from above, we use a standard truncation trick. We define gM (x) = f(x)

�

{x≤M}, for some 0 < M <
∞. Note that the function gM is bounded on R+. Therefore

lim
γ→∞

lim
n→∞

1

n

n∑

i=1

E[gM (λi(γ
−1(Aγ

n)>Aγ
n))] = lim

n→∞
1

n

n∑

i=1

E[gM (λi(n
−1B>

n Bn))] . (28)

1Note that we have two limits on the left hand side. This can be taken care of by noticing that
limγ→∞ limn→∞ f(γ, n, x) = f(x) is equivalent to saying that limn→∞ f(γn, n, x) = f(x) along any sequence of {γn}s
satisfying limn→∞ γn = ∞.
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Note that

lim
γ→∞

lim
n→∞

1

n

n∑

i=1

E

{∣∣gM (λi(γ
−1(Aγ

n)>Aγ
n))− f(λi(γ

−1(Aγ
n)>Aγ

n))
∣∣
}

= lim
γ→∞

lim
n→∞

1

n

n∑

i=1

E

{
log(1 + λi(γ

−1(Aγ
n)>Aγ

n))
�

{λi>M}
}

≤ lim
γ→∞

lim
n→∞

1

n

n∑

i=1

E

{
λ2

i (γ
−1(Aγ

n)>Aγ
n))/M

}

= lim
γ→∞

lim
n→∞

1

Mnγ2
E Tr

{(
(Aγ

n)>Aγ
n

)2}

= lim
γ→∞

lim
n→∞

1

Mnγ2
E

{∑

i,j

( ∑

k

AkiAkj

)2}

= lim
γ→∞

lim
n→∞

1

Mnγ2

{∑

i6=j

∑

k

E
{
A2

ki

}
E

{
A2

kj

}
+

∑

i

∑

k1 6=k2

E
{
A2

k1i

}
E

{
A2

k2i

}
+

∑

i,k

E
{
A4

ki

}}

≤ K

M
, (29)

for a constant K independent of M , γ as long as γ ≥ 1. Using a similar argument we can show that

lim
n→∞

1

n

n∑

i=1

E
{
|gM (λi(n

−1B>
n Bn))]− f(λi(n

−1B>
n Bn))|} ≤ K ′

M
(30)

for a constant K ′ independent of M . From (28), (29), (30) we get

lim
γ→∞

lim
n→∞

∣∣E[Cn(γ−1/2Aγ
n)]− E[Cn(n−1/2Bn)]

∣∣ ≤ K + K ′

M
.

Now taking the limM→∞ gives the desired result.

References

[1] S. Chatterjee, “A generalization of the Lindeberg principle,” The Annals of Probability., vol. 34,
no. 6, pp. 2061–2076, 2006.
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