
A simple one dimensional glassy Kac model

Andrea Montanari

Departments of Electrical Engineering and Statistics,

Stanford University, Stanford CA-9305 USA

Antoine Sinton
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We define a new family of random spin models with one-dimensional structure, finite-range

multi-spin interactions, and bounded average degree (number of interactions in which each

spin participates). Unfrustrated ground states can be described as solutions of a sparse,

band diagonal linear system, thus allowing for efficient numerical analysis.

In the limit of infinite interaction range, we recover the so-called XORSAT (diluted p-

spin) model, that is known to undergo a random first order phase transition as the average

degree is increased. Here we investigate the most important consequences of a large but finite

interaction range: (i) Fluctuation-induced corrections to thermodynamic quantities; (ii) The

need of an inhomogeneous (position dependent) order parameter; (iii) The emergence of a

finite mosaic length scale. In particular, we study the correlation length divergence at the

(mean-field) glass transition.

PACS numbers: 64.70.Pf (Glass transitions), 75.10.Nr (Spin-glass and other random models),

89.20.Ff (Computer science)

I. INTRODUCTION

A large class of disordered mean field spin models exhibit a behavior that is reminiscent of

the structural glass transition in fragile glasses [1–3]. As temperature is lowered, they undergo a

‘dynamical phase transition’ characterized by a diverging relaxation time at a critical temperature

Td. The reason for such a dynamical arrest can in turn be ascribed to ergodicity breaking: below Td

the Boltzmann measure decomposes into an exponential number of pure states. While equilibration

is fast within each state, it takes an exponentially large (in the system size) time to equilibrate

across states.

Below Td, the system can be meaningfully characterized through its complexity Σ, which gives

the exponential growth rate of the number of pure states (i.e. the number of such states is about

eNΣ, N being the size). The complexity decreases as temperature is further lowered, and vanishes



linearly at a second (static) transition temperature Ts. This corresponds to an actual thermody-

namic phase transition.

A strikingly similar scenario has been found to hold in a large array of random constraint

satisfaction [4–6] problems of interest in theoretical computer science1. The role of temperature is

played here by the number of constraints per variable γ, while Boltzmann distribution is replaced

by the uniform measure over solutions of the problems. As the constraint density crosses a critical

value γd, the set of solutions splits into ‘lumps’ analogous to pure states. Above a second threshold

γs the set of constraints becomes with high probability unsatisfiable.

In the last few years there has been a consistent effort in interpreting disordered mean field

models as a genuine mean field theory for the structural glass transition. This is highly non-trivial

since in any finite-dimensional model there cannot be coexistence of an exponentially large number

of pure states. Imagine trying to select one such state through appropriate boundary conditions

on a box of size ℓ. This will imply an energetic bias towards the selected state, which is of order

σℓθ, where 0 ≤ θ ≤ d− 1 is a surface tension exponent. On the other hand, the entropic advantage

of the other states is of order Σℓd, because of their number. Therefore, for ℓ & ℓs ≡ (βσ/Σ)
1

d−θ ,

pure states are no longer stable.

According to the ‘mosaic state’ scenario, below Td a typical configuration of the system can

be described as a patchwork [7–9]. Each patch corresponds to the configuration being close to a

particular pure state in a localized region whose length scale is ℓs. Since Σ ∼ (T −Ts) at the static

transition, the mosaic lengthscale diverges as ℓs ∼ (T − Ts)
−ν with ν = 1/(d − θ).

While the mosaic scenario is appealing, its consistency and implications, as well as its precise

meaning, are far from obvious. An important step forward was achieved in [10] where a concrete

“gedanken experiment” was introduced to define ℓs. This length scale was interpreted in [11] as

a point-to-set correlation length, and its divergence was rigorously proved to be equivalent to a

divergent correlation time. In [12], ℓs was actually shown to diverge at Ts in a class of disordered

Kac models with continuous scalar spins.

Unhappily the models considered in [12] can currently be treated only in the Kac limit, and

through somewhat formal techniques such as the replica method. As a consequence, many interest-

ing questions (such as the relevance of this limit for realistic interaction ranges, non-perturbative

fluctuation effects, a precise definition of states) cannot be addressed in this context. The present

1 In a typical constraint satisfaction problems, one seeks an assignment of values to L discrete variables in such a
way to satisfy M constraints.



paper aims at introducing a new class of models that share some features with the ones treated in

[12], while being tractable within alternative approaches (e.g. numerically).

We follow the route of generalizing one of the ensembles of random constraint satisfaction prob-

lems mentioned above, and referred to as k-XORSAT [13, 14]. We shall require constraints to have

finite range with respect to an underlying one-dimensional geometry. Our motivation is twofold:

(i) Because of its underlying linear structure, the k-XORSAT is very well understood. In particular

a wealth of informations regarding pure states and their geometry is accessible through rigorous

techniques [15–18]; (ii) The ensembles of random constraint satisfaction problems studied within

the computer science and statistical mechanics communities have lacked so far any geometrical

structure (in physics terms, they are mean field models). This is of course a poor cartoon of real

world instances, and it is surely instructive to explore alternative –structured– models.

Constraint satisfaction problems with finite interaction range were already considered in [19],

without however considering the interaction range as a parameter. Further, the most important

questions that we shall consider in this paper were not studied there. Several papers [20–22] investi-

gated the behavior of thermodynamic quantities and local order in Kac spin glasses. In particular,

Kac spin glasses with bounded average degree and multispin interactions where introduced and

studied in [24]. Finally, a one-dimensional Kac spin glass, with a different (continuous) phase

transition was recently studied numerically in [23].

The paper is organized as follows. In Section II we introduce our Kac-XORSAT model, and

its variants, and discuss some of their most basic properties in Section III. We investigate ther-

modynamic quantities (in particular the ground state entropy) in Section IV, and the correlation

length divergence in Section V. Finally a discussion of our results is presented in VI, and several

technical details are contained in the Appendices.

II. DEFINITION OF THE MODEL

Let us recall that an instance of the k-XORSAT problem is defined by an M ×L matrix binary

H, with row weight2 k and a binary vector b of length M . Solving such an instance requires

determining whether the linear system

Hx = b mod 2 , (1)

2 The row weight is the number of non-vanishing entries in each row of the matrix.



admits a solution x ∈ {0, 1}L. This question is equivalent to asking whether the ground state

energy of a certain Ising spin model, is zero or not. More precisely, let {i1(a), . . . , ik(a)} ⊆ [L]

denote the indices of the non-zero entries in the a-th row of H, and Ja = (−1)ba (here a ∈ [M ],

and [n] ≡ {1, . . . , n}). The relevant spin model is defined by letting the energy of configuration

σ ≡ (σ1, . . . , σL) ∈ {+1,−1}L be

E(σ) =
M∑

a=1

(
1 − Jaσi1(a) · · · σik(a)

)
. (2)

In the following we shall refer to a particular XORSAT instance as to a ‘formula’ or a ‘sample’.

The random k-XORSAT (rXOR) ensemble is defined by letting H be a uniformly random binary

matrix (with dimensions M ×L and row weight k) and b a uniformly random vector in {0, 1}L. It

is also useful to consider the unfrustrated random k-XORSAT ensemble, defined by setting b = 0

(the all 0’s vector) deterministically. Such an ensemble exhibits a particularly rich behavior in the

‘thermodynamic’ limit L→ ∞, M → ∞ with γ = M/L kept fixed.

The Kac k-XORSAT (KacXOR) ensembles add to the above features a one-dimensional (or,

in linear algebra terms, a band diagonal) structure. One such ensemble is characterized by the

parameters introduced so far, namely k, L, and γ, plus an ‘interaction range’ R. Unlike in the

rXOR ensemble, γ is required to be in [0, 1], although generalizations are not difficult. Further,

the interaction range is an integer such that 2R + 1 ≥ k. Given such parameters, the matrix H

is sampled as follows. Rows of H are indexed by a subset F of [L]: for each a = 1, . . . , L, a ∈ F

independently from the others with probability γ. In particular, the number of rows of H, M , is a

binomial random variable

P{M} =

(
L

M

)
γM (1 − γ)L−M . (3)

As L → ∞, the number of rows is with high probability3, close to Lγ. For each a ∈ F , the

corresponding row in H is sampled independently from the others by letting the indices of non-zero

entries (i1(a), . . . , ik(a)) be a uniformly random subset of {a−R, . . . , a+R} (i.e. each of the
(2R+1

k

)

subsets has the same probability). We shall refer to {a−R, . . . , a+R} as to the range of equation

a.

Finally, we let the entries of b be indexed by F as well, and iid random in {0, 1}. As in the case

of random XORSAT, some simplification is achieved by considering an unfrustrated ensemble in

which b = 0.

3 Following the use in probability theory, we say that something happens with high probability (w.h.p.) if its
probability approaches 1 in the thermodynamic limit.
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FIG. 1: Factor graph representation of a portion of a KacXOR formula with k = 3 and R = 3. Empty

circles correspond to variables (columns of H) and filled squares to equations (rows of H).

A XORSAT formula admits a natural representation as a factor graph G. This is a bipartite

graph including one ‘parity check node’ for each row in H (i.e. for each equation in the linear

system), and one ‘variable node’ for each column (i.e. for each variable in the linear system).

A parity check and a variable node are connected by an edge if the corresponding entry of H is

non-vanishing. An example of such representation is presented in Fig. 1.

There is still one point of the above definition to be clarified. When a ≤ R or a ≥ L− R, the

range for equation a is not included in the sets of variable indices, and it might be that il(a) ≤ 0 or

il(a) > L. We shall consider two types of boundary conditions. With periodic boundary conditions,

variable indices are interpreted modulo L. Therefore, if for some index we have il(a) > L, this is

identified with il(a) − L, while, if il(a) ≤ 0, this is identified with il(a) + L.

In the case of fixed boundary condition we will let the set potential indices of row of H be

{−R + 1, . . . , L+R}. Namely F includes each a in this set independently with probability γ. To

define a fixed boundary condition, we shall fix a doubly infinite reference configuration4 x(0) =

{x
(0)
i : i ∈ Z}. If in building row a we get an index il(a) 6∈ [L], the corresponding non-zero entry is

not included in H, but rather the value x
(0)
il(a) is added to ba. This corresponds to fixing x = x(0)

‘outside’ {1, . . . , L}. Finally, we shall agree that, whenever considering the unfrustrated ensemble,

the reference configuration will be the all 0’s sequence x(0) = 0.

4 Notice that the boundary condition depends on the reference configuration x(0) only through x
(0)
−2R+1, . . . , x

(0)
0 and

x
(0)
L+1, . . . , x

(0)
L+2R.



III. FRUSTRATED VERSUS UNFRUSTRATED ENSEMBLE

The most important feature of the rXOR ensemble in the large size limit is that it undergoes a

SAT-UNSAT phase transition at well defined constraint density γs(k). More precisely, a random

XORSAT formula of the type (1) is solvable (SAT) with high probability if γ < γs(k), while it is

not solvable (UNSAT) for γ > γs(k) [13–16].

It is a convenient feature of XORSAT that this phase transition can be studied by considering

uniquely the unfrustrated ensemble. This simplification can be explained through the well-known

identity

P{Hx = b is SAT} = E
{
2L−M/Z(H)

}
, (4)

where Z(H) denotes the number of solutions of the homogeneous linear system Hx = 0 mod 2.

The identity holds irrespective of distribution of H provided the right hand side of Eq. (1), i.e.

the vector b, is uniformly random. In order to prove it, it is sufficient to notice that Hx = b is

SAT if and only if b is in the image of H. Let ker(H) ≡ {x s.t. Hx = 0 mod 2} denote the null

space of H. Since the dimension of the image of H is rank(H) = L − dim ker(H), this happens

with probability 2L−dim ker(H)/2M . on the other hand, Z(H) = 2dimker(H). Equation (4) follows by

taking expectation with respect to H.

Within the rXOR ensemble, for γ < γs(k), Z(H) is tightly concentrated around 2L−M , implying

P{Hx = b is SAT} ≈ 1. Viceversa for γ > γs(k), typically Z(H)
.
= 2Lφ(γ) (here

.
= denotes

equality to leading exponential order), with φ(γ) > 1 − γ and therefore the formula is SAT with

exponentially small probability.

Furthermore, as long as the non-homogeneous solution has at least one solution, its number of

solution is independent of b, and is given by Z(H). Even more, the set of solutions is an affine space5

obtained by translating the linear space of solutions of the homogeneous system. In other words,

conditional to the problem being solvable (which happens with high probability for γ < γs(k)) the

frustrated and unfrustrated ensemble are essentially equivalent.

An important novelty within the KacXOR ensemble is that the linear system (1) is always

UNSAT with high probability if we let L→ ∞ with γ,R fixed. More precisely, we expect that

P{Hx = b is SAT}
.
= e−L Λ(γ,R) , (5)

5 Recall that a subset U ⊆ V of a vector space V is said to be an affine space if, whenever x1, x2 ∈ U then
(1 − λ)x1 + λx2 ∈ U for any scalar λ.



for some Λ(γ,R) strictly positive and non-decreasing in γ. This phenomenon was already oserved

in [19] for a related model. The basic reason for this behavior is that small subsets of nearby rows

of H have a fair chance of being linearly dependent. If this is the case, the corresponding linear

subsystem is unsolvable with finite probability. In the large L limit, the expected number of such

substructures is of order L, and the probability that none is present is exponentially small, thus

leading to the above behavior.

It is not difficult to prove the above statement, and indeed to prove lower bounds on the rate

Λ(γ,R) by combinatorial techniques. The basic idea is to select a particular type of substructure

that leads to unsatisfiability and estimate the probability that no such substructure is present. The

simple such substructure is obtained when two lines of H coincide but the corresponding entries of

b do not. Using Janson inequality (see [25] for an introduction to this tool), one can prove that

Λ(γ,R) ≥ K1γ
2 −K2γ

3(1 −K0γ
2)−1 , (6)

where

K0 ≡

(
2R+ 1 − 1

k

)(
2R + 1

k

)−2

, K1 ≡
1

2
(
2R+1

k

)2

2R+1−k∑

p=1

(
2R + 1 − p

k

)
, (7)

K2 ≡
3γ3

8
(
2R+1

k

)3

2R+1−k∑

p=2

(p− 1)

(
2R+ 1 − p

k

)
. (8)

Such a lower bound is easily seen to be strictly positive for γ small enough. We refer to Appendix

A for a derivation of this formula.

Notice that the lower bound in Eq. (6) vanishes as 1/Rk when R → ∞. We expect the same

behavior to hold for the actual exponent as long as γ is below the (mean-field) satisfiability threshold

γs(k). Explicitely

Λ(γ,R) = Λ1(γ)/R
k +O(1/Rk+1) , (9)

where Λ1(γ) ↑ +∞ as γ ↑ γs(k).

In the following we shall avoid dealing with the above phenomenon by focusing directly on the

unfrustrated ensemble: this will enable us to use efficient linear algebra techniques for numerical

computations. There are several justifications for doing this:

1. The two ensembles become equivalent in the Kac limit, which is our main concern here.

2. We are interested in the long distance properties of the model, rather than in the effect of

small substructures. We think that the two decouple for large R.
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FIG. 2: Ground state entropy density in the thermodynamic limit φR(γ) = limL→∞ φL,R(γ), cf. Eq. (10),

for the standard and improved ensembles. Here k = 3 and γ = 0.4. The horizontal line marks the R → ∞

limit φ(γ) = 0.6.

3. Even if the frustrated ensemble is with high probability unsatisfiable, one can always consider

‘almost satisfying’ configurations. Equivalently, one can study the Boltzmann measure for

the energy (2) at a small non-vanishing temperature T . We expect the effect of small

frustrated substructures on the thermodynamics to be small, and indeed vanishing as R−k

for large R.

In this perspective, we shall introduce an improved ensemble which reduces the effect of small

substructured, while keeping the large R behavior unchanged. This is particularly convenient in

numerical simulations.

Ideally, one would like to consider a uniform ensemble conditioned on some class of substructures

being absent. In practice it can be excedingly difficult to sample matrices H from such a conditional

ensemble. We shall define the improved ensemble by the following sequential procedure. First

generate the random set F ⊆ [L] by letting i ∈ F independently for each i = 1, . . . , L with

probability γ. The set F will index lines of H as above. Then we choose a uniformly random

ordering (i(1), . . . , i(M)) of the elements of F , and generate the corresponding lines of H following

such an order. For each t = 1, . . . ,M we try to generate the line of H indexed by i(t) by drawing

its k non-zero elements uniformly at random in {i(t) − R, . . . , i(t) + R}. If the newly generated

line has k − 1 or k non-vanishing entries in common with one of the previously generated lines

{i(1), . . . , i(t− 1)}, we reject it and re-sample it. We repeat the trial-rejection step for at most 100

times. If no valid line is generate within this round, the whole system generated so-far is rejected



and the procedure is re-initiated from scratch.

We shall refer to the first ensemble introduced above as to the standard, whenever it will be

necessary to distinguish it from the improved ensemble. In Fig. 2 we compare the R→ ∞ behavior

of the ground state entropy for the two ensembles. Although the limits clearly coincide, the

improved ensemble is close to it even for R = 5.

IV. GROUND STATE ENTROPY

The simplest thermodynamic quantity that is relevant for the study of the unfrustrated KacXOR

problem is the ground state entropy, i.e. the logarithm of the number of solutions of the linear

system. Let us denote by Z(H) the number of solutions of the linear system (1) for a random

binary matrix H. Then the average entropy density is defined as

φL,R(γ) =
1

L
E log2 Z(H) , (10)

In order to compare analytical predictions and numerical data it will be convenient to define the

‘subtracted’ entropy density φ̂L,R(γ) ≡ φL,R(γ) − φnaive(γ), where φnaive(γ) = 1 − γ. Notice that

φnaive(γ) is the naive prediction that would be obtained by assuming the lines of H to be linearly

independent.

Given a matrix H, the corresponding number of solutions takes the form of a partition function

Z(H) =
∑

x

L∏

a=1

ψa(xa−R, . . . , xa+R) , (11)

where (denoting by ⊕ the sum modulo 2)

ψa(xa−R, . . . , xa+R) =

∣∣∣∣∣∣
I(xi1(a) ⊕ . . . ⊕ xik(a) = 0) if a ∈ F ,

1 if a 6∈ F .
(12)

Due to the finite interaction range R, Z = Z(H) can be computed through a transfer matrix

algorithm which recursively computes left and right partition functions, respectively Z→i and Zi←.

These are indexed by ~z = (z1, . . . , z2R) ∈ {0, 1}2R, and defined as

Z→i(~z) ≡
∑

x1...xi

~xi
i−2R+1=~z

i−R∏

a=1

ψa(xa−R, . . . , a+R) , (13)

Zi←(~z) ≡
∑

xi...xi

~xi+2R−1
i =~z

L∏

a=i+R

ψa(xa−R, . . . , a+R) , (14)



where we used the notation ~xj+2R
j+1 = (xj+1, . . . , xj+2R). A recursion naturally follows

Z→(i+1)(z1, . . . , z2R) =
∑

z0∈{0,1}

ψi−R+1(z0, z1, . . . , z2R)Z→i(z0, . . . , z2R−1) , (15)

together for the analogous recursion for Zi←. It is clear that the total number of solutions can be

computed from the constrained partition functions.

The naive transfer matrix algorithm defined by the recursion (15) has complexity that of order

Θ(L22R). This severely limits the interaction ranges that can be treated with this method: in

practice we could deal at most with R = 10÷11, which is far too small to address issues concerning

the R → ∞ limit. In order to overcome this problem, we developed a transfer matrix algorithm

that, while computing exactly the constrained partition functions, exploits the linear structure of

the problem in such a way to reduce the complexity to Θ(LR3). Thanks to this approach, we were

able to treat systems with R = 100 or larger. For details on the algorithm we refer to Appendix B.

We are interested in the double limit R,L→ ∞. We shall consider two procedures to define the

limit. The first one corresponds to the classical Kac limit, and consists in taking the thermodynamic

limit upfront to define

φR(γ) ≡ lim
L→∞

φL,R(γ) . (16)

Next, we let R → ∞. In Appendix C we will show that φR(γ) can be expanded for large R as

follows

φR(γ) = φ(0)(γ) +
1

2R + 1
φ(1)(γ) +O

(
1

R2

)
. (17)

The leading term gives the mean-field limit and coincides with the ground state entropy density

within the rXOR ensemble [15, 16]. It can be expressed in the form φ(0)(γ) = maxϕ∈[0,1] φ
(0)(γ;ϕ),

where

φ(0)(γ;ϕ) = −γ(1 − ϕk) + kγϕk−1(1 − ϕ) + e−kγϕk−1
. (18)

It is easy to show that the max is achieved for a value of the order parameter ϕ that satisfies the

equation ϕ = 1− exp{−kϕk−1}. For γ < γs(k), the maximum is at ϕ = 0, yielding φ(0)(γ) = 1− γ.

In other words, the the rank of H is smaller than the maximum possible value by a fraction of

order 1/R. For γ ≥ γs(k), the maximum is at ϕ = ϕ∗ > 0 strictly, and φ(0)(γ) > 1 − γ: the rank

of H remains strictly smaller than its maximum possible value even as R → ∞. For instance we

have γs(k) ≈ 0.917935 for k = 3.
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(continuous line).

The first-order contribution φ(1)(γ) is related to fluctuation around the saddle point in an

appropriate path integral representation of Eq. (11). Its expression is given in Appendix C.

In Fig. 3 we plot the numerical estimates for the subtracted entropy density φ̂L,R(γ), as obtained

with our transfer matrix algorithm for R = 25 and several system sizes. Data points are the result

of averaging over 1000 realizations of H with k = 3. The same statistics and value of k will

be used in the other numerical experiments below: we shall omit mentioning it again. Further,

unless otherwise stated, we will keep using the improved ensemble. We also show the result of an

1/L extrapolation to L = ∞. The control of the thermodynamic limit is quite good (although

corrections at moderate values of L are large). It is clear that the L = ∞ extrapolation is not

compatible with the mean field prediction, and that 1/R corrections must be taken into account.

Figure 4 shows the result of such an L → ∞ extrapolation for several values of R. The data

seem to approach the mean field prediction φ(0)(γ) − 1 + γ as R → ∞, although the approach is

rather slow.

In order to better study the large-R limit, for 4 values of γ we computed the ground state

entropy for a wide range of R. The result is compared in Figure 5 with the asymptotic expression

(17). In this case we used the standard ensemble which presents larger 1/R corrections (computing

the first order correction φ(1) within the improved ensemble is technically much more difficult). It
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turns out from the analysis in Appendix C that φ(1)(γ) = 0 for γ < γs(k) while φ(1)(γ) 6= 0 for

γ ≥ γs(k). Our data confirm this behavior. Further, although O(R−2) contributions are rather

large, the leading 1/R correction to mean field does indeed match the analytical prediction.

The second limit we shall consider is L,R→ ∞ with ℓ ≡ L/R kept fixed. We thus define

φ∗ℓ(γ) ≡ lim
R→∞

φRℓ,R(γ) . (19)



This is the mean-field limit for a system of finite size. The limit can be computed exactly by

maximizing an appropriate action functional over a position-dependent order parameter. More

precisely we have φ∗ℓ (γ) = maxϕA[ϕ], where ϕ : [0, ℓ] → R is the order parameter, and

A[ϕ] =
1

ℓ

∫ ℓ

0

{
γ − kγϕ(z)k−1 + (k − 1)γϕ(z)k − exp

[
−
kγ

2

∫ 1

−1
ϕ(z + u)k−1du

]}
dz . (20)

By differentiating with respect to ϕ, we obtain the mean-field equation

ϕ(z) = 1 −
1

2

∫ +1

−1
exp

{
−
kγ

2

∫ +1

−1
ϕ(z + u+ v)k−1dv

}
du . (21)

We refer to Appendix C for a derivation of these formulae and limit ourselves to discuss their

consequences here.

In the case of a homogeneous order parameter ϕ(z) = ϕ independent of z, Eq. (21) is satisfied

if ϕ if a solution of the standard mean field equation, ϕ = 1 − exp{−kγϕk−1}. The action (20)

then reduces to the mean field free energy Eq. (18).

In the general case the order parameter ϕ(z) has a simple interpretation. Consider the linear

system Hx = 0 mod 2, and let i ∈ {1, . . . , L}. Then, one of the following must happen: either

xi = 0 in all of the solutions; or xi = 0 in half of the solutions and xi = 1 in the other half. We

shall call xi (or, sometimes, i) a frozen variable in the first case, and a free variable in the second

one. Given z ∈ [0, ℓ], the number of frozen variables with i ∈ [Rz,R(z + dz)] in a typical random

linear system from our ensemble, is about Rϕ(z) dz. Equivalently, the probability for xi, i = ⌊Rz⌋,

to be frozen converges to ϕ(z).

We shall come back to this interpretation in the next Section, while using it here to derive

the appropriate boundary conditions for Eq. (21). If the linear system is defined with periodic

boundary conditions, then we have to use periodic boundary conditions in Eq. (21) as well, namely

ϕ(z + ℓ) = ϕ(z). If on the other hand we adopt fixed boundary conditions with respect to the

reference solution x(0) = 0, then we have to impose ϕ(z) = 1 for z ≤ 0 and z ≥ ℓ in Eq. (21). As a

consequence, the homogeneous solution is no longer relevant in this case.

Once the boundary conditions have been estabilished, Eq. (21) can be solved numerically by

iteration (after discretizing z on a sufficiently fine mesh). In the regime in which multiple fixed

points exist, the relevant one is obtained by maximizing the action.

The result of such a computation is compared in Fig. 6 with the outcome of numerical simula-

tions. The agreement is good already at moderate interaction ranges. The main effect of a finite

size is a decrease in the number of solutions due to the fact that variables close to the boundary are

more highly constrained (and thus more likely to be frozen). This effect is accurately reproduced

by the analytical calculation.
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FIG. 6: Subtracted entropy density φ̂L,R(γ) = φL,R(γ)−1+γ as a function of γ for several at ℓ = L/R = 50

fixed. The continuous line corresponds to the analytical prediction φ∗ℓ (γ) − 1 + γ in the R → ∞ limit.

V. POINT-TO-SET CORRELATION FUNCTION

As we have seen in the previous Section, the thermodynamic behavior of the KacXOR ensemble

at finite R carries several traces of the mean field limit. Here we want to investigate some structural

features of the uniform measure over solutions of the linear system:

µ(x) =
1

Z
I(Hx = 0) ≡

1

Z

∏

a

ψa(xa−R, . . . , xa+R) . (22)

In particular, we want to understand whether the mean field ergodicity breaking transition shows

up in the long range correlations of this measure, as predicted within the mosaic state scenario.

Since the relevant length scale is predicted to diverge, within this scenario, as γ ↑ γs, we will focus

on the γ < γs.

It is expected that the long range order emerging at a glass transition cannot be probed through

ordinary point-to-point correlations functions, and that point-to-set correlation functions have to

be used instead [11]. These can be defined through the following “experiment” [10] (we refer here

to the one-dimensional case we are studying). Consider a large sample L ≫ R, let i be a node in

its bulk: i ≫ R, L − i ≫ R, and x∗ a ‘reference’ configuration sampled from the measure µ( · ).

Then fix some 1 ≤ L̃ ≪ L, and consider a second configuration that is forced to coincide with x∗

on sites j with |j − i| > L̃, and free otherwise, and compute the probability that xi 6= x∗i . The

expectation of this probability with respect to x∗ and the sample realization yields the desired



point-to-set correlation.

In order to express formally the same definition, denote µA( · ) the marginal distribution of

xA for a subset A of the variable nodes, and x distributed according to (22). Analogously, let

µA|B( · |xB) be the conditional distribution of xA given the assignment xB of the variables in B.

Finally, we let B(i, L̃) = {j : |i − j| ≤ L̃} be the box of size 2L̃ + 1 around i, and B(i, L̃) its

complement. We then define the point-to-set correlation function as

G̃(L̃, R, γ) ≡ E{1 − 2µ
i|B(i,eL)(xi 6= x∗i |x

∗
B(i,eL)

)} . (23)

Here the thermodynamic limit L→ ∞ is assumed to be taken at the outset, E denotes expectation

both with respect to the matrix H and the reference configuration x∗ (distributed according to µ),

and the redefinition 1 − 2(· · · ) is for future convenience.

The linear structure of our problem implies two simplifications. First, the conditional probability

appearing in Eq. (23) is indeed independent of x∗ (that can be ‘gauged away’). Therefore we can fix

x∗ = 0 and eliminate the expectation over the reference configuration x∗. The resulting conditional

measure is just the distribution of a system with fixed boundary conditions 0 as discussed in the

previous Section. This implies a second simplification (already noticed above). The conditional

probability µ
i|B(ieL)(xi 6= 0|x∗

B(ieL)
= 0) can take value 1/2 (if xi is ‘free’) or 0 (if it is ‘frozen’). We

thus get

G̃(L̃, R, γ) = PeL{xeL+1 is free } .

Here PeL denotes probability with respect to a matrix H with 2L̃+1 columns and fixed 0 boundary

conditions. In fact it is interesting to generalize the above definition and consider the correlation

between any point inside the box of size 2L̃ and its boundary

G̃(n; L̃, R, γ) ≡ PeL{xeL+1+n
is free } .

The original definition is recovered for n = 0.

We expect G̃(n; L̃, R, γ) to be close to 1 when n approaches the boundaries of the box (i.e.

n ≈ L̃ or n ≈ −L̃) and to decrease in the interior. If the box is large enough, it will approach

its thermodynamic value, independent of the boundary condition, near the center (for n ≈ 0). In

Figure 7 we show the outcomes of a numerical calculation of G̃(n; L̃, R, γ) for several values of its

parameters.

We are particularly interested in the mean field limit. This is obtained by defining

G(z; ℓ, γ) ≡ lim
R→∞

G̃(n = Rz; L̃ = Rℓ,R, γ) , (24)
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FIG. 7: Correlation G̃(n; L̃, R, γ) between the boundary of a box of size 2L̃+ 1 = 2ℓR+ 1 and a point in its

interior (at distance n = zR from the center). In the right frames: blow-up of the region near the boundary.

The continuous line (partially hidden by data points) corresponds to the analytic prediction obtained by

solving Eq. (21).

that is by measuring lengths in terms of the interaction range and letting R → ∞. In agrement

with the interpretation of the previous section, we expect G(z; ℓ, γ) = ϕ(z), where ϕ(z) solves

Eq. (21) with boundary condition ϕ(z) = 1 for z ≤ −ℓ, and for z ≥ ℓ. The comparison with

numerical data in Fig. 7 is satisfactory although the convergence to the R → ∞ limit gets slower

and slower as γs(3) ≈ 0.917935 is approached.

The point-to-set correlation function can be used to define a correlation length, namely the

smallest box size such that the correlation is below a pre-estabilished constant ε. Here we will
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FIG. 8: Point-to-set correlation length in units of the interaction range R. The continuous line corresponds

to the analytic prediction for R→ ∞ and diverges at the glass transition γs(k = 3) ≈ 0.917935.

choose6 ε = 1/2. In formulae

ℓs(γ,R) = min{ ℓ : G̃(L̃ = Rℓ,R, γ) ≤ 1/2 } . (25)

An analytical prediction in the R → ∞ limit can be obtained by solving Eq. (21) with boundary

conditions ϕ(z) = 1 for z 6∈ [−ℓ, ℓ]. The resulting length can be shown to diverge at γs as ℓs(γ,R =

∞) ∼ (γs − γ)−1, in agreement with the mosaic picture (indeed Σ(γ) ∼ (γs − γ) close to the

transition).

In Fig. 8 we compare this prediction with the estimates from numerical simulations at finite R.

These two are clearly consistent, although the convergence is rather slow in the critical regime.

VI. DISCUSSION

We defined a simple ensemble of constraint satisfaction problems (more precisely, an ensemble

of linear problems over integers modulo 2), with one-dimensional Kac structure. The model is

exactly soluble for infinite interaction range R→ ∞ and exhibits in this limit a glassy phase with

an exponential number of pure states and a SAT-UNSAT transition.

Mean field theory (as interpreted within the mosaic picture) seems to describe the behavior of

the system at moderately large R. Indeed we were able to get quantitative predictions by taking into

6 Any strictly positive constant below the Edwards-Anderson parameter (in this case given by the largest solution
of ϕ = 1 − exp{−kγϕk−1}) should provide an equivalent definition.



account the principal modifications of naive mean-field theory, namely a position-dependent order

parameter, and 1/R corrections. In particular we checked for the first time the divergence of the

mosaic length scale in a concrete model, by comparing the the result of a controlled approximation

(large R limit) with exact numerical calculations.

We think the KacXOR model can be a useful playground for many ideas developed in the

physics of glasses. Among several interesting research directions, one might consider: (i) Studying

the frustrated ensemble (corresponding to an inhomogeneous linear system); (ii) Introducing a

non-vanishing temperature and studying the corresponding Boltzmann distribution; (iii) Studying

the behavior of Glauber dynamics, and in particular the relation between relaxation time and

mosaic length scale.

On a different theme, ensembles of random constraint satisfaction problems have been recur-

rently used to test heuristic algorithms [13]. Such tests have limited scope because in practical

applications instances are often structured. It might be insightful therefore to consider ensembles

with some tunable ‘structure parameter’, such as the interaction range R in the present model.

APPENDIX A: COUNTING SMALL SUBSTRUCTURES

Consider the random linear system Hx = b defined in Section II. If two lines i, j ∈ F in H are

equal, while the corresponding entries in b (namely bi and bj) are different, then the system has no

solution. We call such a pair (i, j) a ‘bad pair,’ and will write Bij = 1 if (i, j) is bad, and Bij = 0

otherwise. Therefore

P {Hx = b is SAT} ≤ P{∩(i,j)[Bij = 0]} , (A1)

where the intersection ranges over i, j such that i < j ≤ i+ 2R + 1 − k. Let B =
∑

(ij)Bij be the

number of bad pairs. In order to bound the right hand side above, we use Janson’s inequality [25],

which implies

P {Hx = b is SAT} ≤ exp {−E[B] + ∆/2(1 − ǫ)} . (A2)

Here

ǫ = sup
(ij)

E[Bij ] , ∆ =
∑

(ij)∼(lm)

E[BijBlm] . (A3)

where the sum over (ij) ∼ (lm) runs over all the couples of distinct pairs (ij) and (lm) such that

Bij and Blm are not independent.



It is easy to realize that both E[B] and ∆ are of order Θ(L) since they are sums of Θ(L) positive

terms. Since we are only interested in the coefficient of the order L term, we shall always consider

pairs (ij) in the bulk. Then we have

E[Bij] =
γ2

2
(2R+1

k

)2

(
2R+ 1 − |i− j|

k

)
. (A4)

The factor γ2 has to be included for having i, j ∈ F (the two equations must present),
(2R+1−|i−j|

k

)
/
(2R+1

k

)2
is the probability that the two lines in H coincide, and 1/2 is the proba-

bility that bi 6= bj

Since the above expression is maximized for |i−j| = 1, we have ǫ = K0γ
2, with K0 as in Eq. (7).

Further, by summing over i, j we obtain E[B] = K1γ
2L+O(1) for L→ ∞.

As for the term ∆, the only non-vanishing contribution comes form the case in which there are

three distinct indices among {i, j, l,m}. If we denote by hn the line inedexed by n in H, we get

∆ =
3

4

∑

i<j<l

P{i, j, l ∈ F and hi = hj = hl} . (A5)

The factor 3 counts the number of different couples of pairs in {i, j, l} and 1/4 is the probability

that the corresponding entries in b are different. By computing the above probability and summing

over i, j, l we get ∆ = K2γ
3L+O(1), thus proving Eq. (6).

APPENDIX B: POLYNOMIAL TRANSFER MATRIX ALGORITHM

Consider the constrained partition function (13) and the corresponding transfer matrix recursion

(15). In this Appendix we shall consider only left-to-right iterations and drop the arrow → in

subscripts. We shall further set n = 2R and use the vector notation ~xj+n
j+1 = (xj+1, . . . , xj+n).

The constrained partition function Zi(~z) is just the number of solutions in an inhomogeneous

linear system, obtained by retaining the lines of H with index in {1, . . . , i−R} (and the correspond-

ing equations), and adding the n equations xi−n+1 = z1, . . . , xi = zn. As a consequence, for all

the choices of ~z such that this linear system has a solution, it has the same number of solutions as

corresponding homogeneous system. Further, the number of solutions of the homogeneous system

is a power of 2 (because it is the size of a linear space over Z2). Finally, the vectors ~z for which a

solution exists form a linear space. Therefore, there exists a binary matrix Ai and an integer Φi

such that

Zi(~z) =





2Φi if Ai~z = ~0,

0 otherwise.
(B1)



The matrix Ai can always be chosen as an n×nmatrix by eventually eliminating linearly dependent

lines.

We therefore reduced the memory requirements from Θ(2n) to Θ(n2). We have now to show

that the Ai and Φi can be computed recursively in polynomial time as well. Consider the recursion

(15) and let ai = (ai,1, . . . , ai,n+1) be the binary vector defined as follows. If i − R + 1 6∈ F (the

new equation added in the recursion is not present), then ai ≡ 0. Otherwise, ai,j ≡ Hi−R+1,i−2R+j

(ai encodes the newly added line of H, properly shifted). Then define the (n+ 1)× (n+ 1) matrix

Bi as follows

Bi =




0

Ai

...

0

ai,1 · · · · · · ai,n+1



. (B2)

Denote by bi the first column of Bi (i.e. a column vector) and by B̃i the (n+1)×n matrix formed

by its last n columns. By using Eq. (B1) the recursion (15) can be written as

Zi+1(~z) = 2Φi

∑

z0∈{0,1}

I
(
bi z0 + B̃i ~z = 0

)
. (B3)

Let us now consider two cases:

• If bi = 0, then we get immediately the form (B1) for Zi+1, by letting Φi+1 = Φi + 1, and

Ai+1 the matrix obtained by eliminating linear dependencies among rows of B̃i.

• If bi 6= 0, then there exists at least one vector b̂i of dimension (n + 1) such that b̂T
i bi = 1

mod 2. The only non-vanishing term in the sum (B3) is therefore obtained for z0 = −b̂T
i B̃i~z

mod 2. Substituting this value of z0, we obtain that Zi+1 can again be written in the

form (B1). The new matrix Ai+1 is obtained by eliminating linearly dependent rows from

(1 − bib̂
T
i )B̃i, while the number of solutions is updated by Φi+1 = Φi.

In practice we found more convenient to reduce Bi in upper triangular form by gaussian elimination

before computing Ai+1 and Φi+1 as just described.

The initialization of the above recursion depends on the choice of boundary conditions. When

using fixed boundary conditions with reference solution x(0) = 0, we set A0 = 1 and Φ0 = 0.

It is clear that the above procedure can be implemented in a time that is polynomial in the

interaction range. Indeed the most complex operation to be performed, consists in eliminating

linearly dependent lines from the matrix B̃i, or (1 − bib̂
T
i )B̃i. This can be done via gaussian

elimination in time O(R3). The total complexity is therefore O(LR3).



APPENDIX C: ANALYTICAL CALCULATIONS

1. Replicas

In order to compute the ground state entropy and the point-to-set correlation function, we

shall follow the replica approach, see [26]. Each site i ∈ {1, . . . , L} thus carries n binary variables

~xi = (x1
i , . . . , x

n
i ) corresponding to the n replicas.

Let us consider first a particularly simple instance consisting of a single equation labeled by

i ∈ F and 2R+ 1 variables on sites j ∈ {i−R, . . . , i+R}. Denote by ci(~x) the fraction of nodes j

such that ~xj = ~x. In formulae

ci(~x) =
1

2R+ 1

i+R∑

j=i−R

I(~xj = ~x) . (C1)

The probability that a randomly sampled equation at i (with range {1−R, . . . , i+R}) is satisfied

by all of the n replicas, is a function of ci, call it Fk,R(ci). For large R it is easy to show that

Fk,R(c) = Jk(c) +
1

2R + 1

(
k

2

)
[Jk(c) − Jk−2(c)] +O(R−2) , (C2)

where

Jl(c) ≡
∑

~x1...~xl

n∏

a=1

I(xa
1 ⊕ · · · ⊕ xa

l = 0) c(~x1) · · · c(~xl) . (C3)

Consider now the full linear system and the partition function (11). We shall implicitly assume

periodic boundary conditions in order to lighten the notations. Fixed boundary conditions can be

recovered by properly constraining the expressions that we will derive. It follows from the above

that

E{Zn} =
∑

{~xi}

L∏

i=1

[1 − γ + γFk,R(ci)] . (C4)

Next we introduce two variables λi(~x), ci(~x) indexed by ~x ∈ {0, 1}n for each i ∈ {1, . . . , L}, using

the identity

1 =

∫
dci(~x)

∫ +i∞

−i∞

dλi(~x)

2πi
exp{−λi(~x)(ci(~x) − ci(~x))} . (C5)

This allows to perform the sum over ~xi in Eq. (C4). If we expand the resulting expression for large

R we get, after some lengthy but straightforward calculations,

E{Zn} =

∫
dci(~x)

∫ +i∞

−i∞

dλi(~x)

2πi
exp

{
− (2R+ 1)S0[c, λ] − S1[ c ] +O(1/R)

}
, (C6)



where

S0[c, λ] =
1

2R + 1

L∑

i=1

{
− log[1 − γ + γJk(ci)] +

∑

~x

λi(~x)ci(~x) − log

[
∑

~x

e
P

j∈D(i)

λj (~x)

2R+1

]}
, (C7)

S1[ c ] =
1

2R + 1

L∑

i=1

γ

(
k

2

)
Jk−2(ci) − Jk(ci)

1 − γ + γJk(ci)
, (C8)

and we introduced the notation D(i) ≡ {j : |i− j| ≤ R}.

2. Mean field limit

In the R→ ∞ limit, the integral (C6) is dominated by the saddle points of S0[c, λ]. We neglect

for the moment the correction given by S1[c], and look for a saddle point of the type

ci(~x) = ϕi δ~x,~x0
+

1

2n
(1 − ϕi) , λi(~x) = ωi δ~x,~x0

+
1

2n
ω0

i , (C9)

where ~x0 ≡ (0, 0, . . . , 0) and δ~x,~y is the n-dimensional Kronecker delta function. There are several

reasons for this Ansatz: (i) The algebra of functions of the form f(x) = f0 + f1δ~x,~x0
is closed; (ii)

This ansatz is known to give the correct thermodynamic behavior for the rXOR ensemble (i.e. in

the mean-field limit); (iii) Although it is replica symmetric, it yields the correct one-step replica

symmetry breaking physics (it is a peculiarity of XORSAT that replica symmetry can be explicitely

broken).

By substituting in Eq. (C7) and letting n→ 0, we get S0[c, λ] = A0[ϕ,ω]n log 2 +O(n2) where

A0[ϕ,ω] =
1

2R+ 1

L∑

i=1

{
γ(1 − ϕk

i ) − ωi(1 − ϕi) − e−
P

j∈D(i)

ωj
2R+1

}
. (C10)

By differentiating with respect to ϕi and ωi we get the saddle point equations

ϕi = 1 −
1

2R+ 1

∑

j∈D(i)

e−
P

l∈D(j)
ωl

2R+1 , ωi = kγϕk−1
i . (C11)

The second of these equations can be used to eliminate ωi from the action.

If we finally assume that ϕi only depends on i on a scale of order R, we can set (with an abuse

of notation) ϕi = ϕ(i/R) and let R→ ∞ with L = ℓR, thus getting Eqs. (19) to (21).

3. 1/R corrections

In computing the 1/R corrections we shall assume the system to be homogeneous. For instance

we can think of imposing periodic boundary conditions, or letting L → ∞ at the outset. As a



consequence, in the leading order calculation we have ϕi = ϕ independent of i and thus A0[ϕ,ω] =

Lφ(0)(γ;ϕ) with φ(0)(γ;ϕ) as in Eq. (18). Hereafter ϕ will denote a solution of the mean field

equation ϕ = 1 − exp{−kγϕk−1}, and we let ω = kγϕk−1.

There are two contribution to order 1/R. The first one comes from the correction to the action

and is easy to compute. Substituting our Ansatz in Eq. (C8) and proceeding as in the previous

Section we get S1[c] = A1[ϕ]n log 2 +O(n2), where

A1[ϕ] =
L

2R+ 1
γ

(
k

2

)
ϕk−1(1 − ϕ2) . (C12)

The second term comes from gaussian fluctuations around the saddle point. Let c∗i (~x), λ∗i (~x)

denote the saddle point (C9) and define

ci(~x) = c∗i (~x) + νi(~x) , λi(~x) = λ∗i (~x) + ξi(~x) . (C13)

By expanding S0[c, λ] to second order around its saddle point, we get

S0[c, λ] = S0[c
∗, λ∗] +

1

2(2R + 1)

∑

i,j

∑

~x,~y

(C14)

{
A(~x, ~y)δijνi(~x)νj(~y) + δ~x,~yδi,j [νi(~x)ξi(~y) + ξi(~x)νj(~y)] −B(~x, ~y)κR(i− j)ξi(~x)ξj(~y)

}
,

where

κR(i) =





(2R + 1 − |i|)/(2R + 1)2 for |i| ≤ 2R+ 1,

0 otherwise.
(C15)

The coefficients appearing in Eq. (C14) have the form

A(~x, ~y) = A1 +A2δ~x,~y +A3[δ~x,~x0
+ δ~y,~x0

] +A4δ~x,~x0
δ~y,~x0

, (C16)

B(~x, ~y) = B1 +B2δ~x,~y +B3[δ~x,~x0
+ δ~y,~x0

] +B4δ~x,~x0
δ~y,~x0

, (C17)

where (defining z ≡ 1 − γ(1 − 2−n)(1 − ϕk))

A1 = −
1

z
k(k − 1)γ(1 − ϕk−2) +

1

z2
k2γ2 1

2n
(1 − ϕk−1)2 , (C18)

A2 = −
1

z
k(k − 1)γϕk−2 , (C19)

A3 =
1

z2
k2γ2 1

2n
(1 − ϕk−1)ϕk−1 , (C20)

A4 =
1

z2
k2γ2ϕ2(k−1) , (C21)

and (defining Λ0 = (eω − 1 + 2n)−1 and Λ = 1 − 2nΛ0)

B1 = −2nΛ2
0 , B2 = Λ0 , (C22)

B3 = −ΛΛ0 , B4 = Λ(1 − Λ) . (C23)



The quadratic form in Eq. (C14) can be diagonalized both in position space (by Fourier trans-

form) and in replica space (all the eigenvectors have the form ζ(~x) = ζ0δ~x,~x0
+ζ1). One can therefore

perform the gaussian integral, and let n → 0. Putting this contribution together with the action

correction, cf. Eq. (C12), we finally get the entropy correction

φ(1)(γ) = −

(
k

2

)
γϕk−2(1 − ϕ2) −

∫ +∞

−∞

{
log(1 − aw(q)) +

bw(q)

1 − aw(q)

}
dq

4π
, (C24)

where

a = k(k − 1)γϕk−2e−ω , (C25)

b = −k(k − 1)γϕk−2e−ω(1 − e−ω) + k2γ2ϕ2(k−2)e−ω . (C26)
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spin-glasses and other glassy system”, in Spin Glasses and Random Fields, A. P. Young ed., (World

Scientific, Singapore, 1997)

[4] Biroli G, Monasson R and Weigt M (2000) Eur. Phys. J. B 14, 551-568.
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