
Probability Theory: STAT310/MATH230

March 15, 2023

Amir Dembo

Email address: amir@math.stanford.edu

Department of Mathematics, Stanford University, Stanford, CA 94305.





Contents

Preface 5

Chapter 1. Probability, measure and integration 7
1.1. Probability spaces, measures and σ-algebras 7
1.2. Random variables and their distribution 17
1.3. Integration and the (mathematical) expectation 30
1.4. Independence and product measures 54

Chapter 2. Asymptotics: the law of large numbers 71
2.1. Weak laws of large numbers 71
2.2. The Borel-Cantelli lemmas 77
2.3. Strong law of large numbers 85

Chapter 3. Weak convergence, clt and Poisson approximation 95
3.1. The Central Limit Theorem 95
3.2. Weak convergence 103
3.3. Characteristic functions 117
3.4. Poisson approximation and the Poisson process 133
3.5. Random vectors and the multivariate clt 141

Chapter 4. Conditional expectations and probabilities 153
4.1. Conditional expectation: existence and uniqueness 153
4.2. Properties of the conditional expectation 159
4.3. The conditional expectation as an orthogonal projection 166
4.4. Regular conditional probability distributions 171

Chapter 5. Discrete time martingales and stopping times 177
5.1. Definitions and closure properties 177
5.2. Martingale representations and inequalities 186
5.3. The convergence of Martingales 193
5.4. The optional stopping theorem 207
5.5. Reversed MGs, likelihood ratios and branching processes 213

Chapter 6. Markov chains 229
6.1. Canonical construction and the strong Markov property 229
6.2. Markov chains with countable state space 237
6.3. General state space: Doeblin and Harris chains 260

Chapter 7. Ergodic theory 275
7.1. Measure preserving and ergodic maps 275
7.2. Birkhoff’s ergodic theorem 279

3



4 CONTENTS

7.3. Stationarity and recurrence 283
7.4. The subadditive ergodic theorem 286

Chapter 8. Continuous, Gaussian and stationary processes 293
8.1. Definition, canonical construction and law 293
8.2. Continuous and separable modifications 298
8.3. Gaussian and stationary processes 308

Chapter 9. Continuous time martingales and Markov processes 313
9.1. Continuous time filtrations and stopping times 313
9.2. Continuous time martingales 318
9.3. Markov and Strong Markov processes 342

Chapter 10. The Brownian motion 367
10.1. Brownian transformations, hitting times and maxima 367
10.2. Weak convergence and invariance principles 375
10.3. Brownian path: regularity, local maxima and level sets 392

Bibliography 399

Index 401
310b: Homework Sets 2023 408

310b: Homework Solutions 2023 411



Preface

These are the lecture notes for a year long, PhD level course in Probability Theory
that I taught at Stanford University in 2004, 2006 and 2009. The goal of this
course is to prepare incoming PhD students in Stanford’s mathematics and statistics
departments to do research in probability theory. More broadly, the goal of the text
is to help the reader master the mathematical foundations of probability theory
and the techniques most commonly used in proving theorems in this area. This is
then applied to the rigorous study of the most fundamental classes of stochastic
processes.

Towards this goal, we introduce in Chapter 1 the relevant elements from measure
and integration theory, namely, the probability space and the σ-algebras of events
in it, random variables viewed as measurable functions, their expectation as the
corresponding Lebesgue integral, and the important concept of independence.

Utilizing these elements, we study in Chapter 2 the various notions of convergence
of random variables and derive the weak and strong laws of large numbers.

Chapter 3 is devoted to the theory of weak convergence, the related concepts
of distribution and characteristic functions and two important special cases: the
Central Limit Theorem (in short clt) and the Poisson approximation.

Drawing upon the framework of Chapter 1, we devote Chapter 4 to the definition,
existence and properties of the conditional expectation and the associated regular
conditional probability distribution.

Chapter 5 deals with filtrations, the mathematical notion of information progres-
sion in time, and with the corresponding stopping times. Results about the latter
are obtained as a by product of the study of a collection of stochastic processes
called martingales. Martingale representations are explored, as well as maximal
inequalities, convergence theorems and various applications thereof. Aiming for a
clearer and easier presentation, we focus here on the discrete time settings deferring
the continuous time counterpart to Chapter 9.

Chapter 6 provides a brief introduction to the theory of Markov chains, a vast
subject at the core of probability theory, to which many text books are devoted.
We illustrate some of the interesting mathematical properties of such processes by
examining a few special cases of interest.

In Chapter 7 we provide a brief introduction to Ergodic Theory, limiting our
attention to its application for discrete time stochastic processes. We define the
notion of stationary and ergodic processes, derive the classical theorems of Birkhoff
and Kingman, and highlight few of the many useful applications that this theory
has.
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Chapter 8 sets the framework for studying right-continuous stochastic processes
indexed by a continuous time parameter, introduces the family of Gaussian pro-
cesses and rigorously constructs the Brownian motion as a Gaussian process of
continuous sample path and zero-mean, stationary independent increments.

Chapter 9 expands our earlier treatment of martingales and strong Markov pro-
cesses to the continuous time setting, emphasizing the role of right-continuous fil-
tration. The mathematical structure of such processes is then illustrated both in
the context of Brownian motion and that of Markov jump processes.

Building on this, in Chapter 10 we re-construct the Brownian motion via the
invariance principle as the limit of certain rescaled random walks. We further delve
into the rich properties of its sample path and the many applications of Brownian
motion to the clt and the Law of the Iterated Logarithm (in short, lil).

The intended audience for this course should have prior exposure to stochastic
processes, at an informal level. While students are assumed to have taken a real
analysis class dealing with Riemann integration, and mastered well this material,
prior knowledge of measure theory is not assumed.

It is quite clear that these notes are much influenced by the text books [Bil95,
Dur10, Wil91, KaS97] I have been using.

I thank my students out of whose work this text materialized and my teaching as-
sistants Su Chen, Kshitij Khare, Guoqiang Hu, Julia Salzman, Kevin Sun and Hua
Zhou for their help in the assembly of the notes of more than eighty students into
a coherent document. I am also much indebted to Kevin Ross, Andrea Montanari
and Oana Mocioalca for their feedback on earlier drafts of these notes, to Kevin
Ross for providing all the figures in this text, and to Andrea Montanari, David
Siegmund and Tze Lai for contributing some of the exercises in these notes.

Amir Dembo

Stanford, California
April 2010



CHAPTER 1

Probability, measure and integration

This chapter is devoted to the mathematical foundations of probability theory.
Section 1.1 introduces the basic measure theory framework, namely, the probability
space and the σ-algebras of events in it. The next building blocks are random
variables, introduced in Section 1.2 as measurable functions ω 7→ X(ω) and their
distribution.
This allows us to define in Section 1.3 the important concept of expectation as the

corresponding Lebesgue integral, extending the horizon of our discussion beyond
the special functions and variables with density to which elementary probability
theory is limited. Section 1.4 concludes the chapter by considering independence,
the most fundamental aspect that differentiates probability from (general) measure
theory, and the associated product measures.

1.1. Probability spaces, measures and σ-algebras

We shall define here the probability space (Ω,F ,P) using the terminology of mea-
sure theory.
The sample space Ω is a set of all possible outcomes ω ∈ Ω of some random exper-

iment. Probabilities are assigned by A 7→ P(A) to A in a subset F of all possible
sets of outcomes. The event space F represents both the amount of information
available as a result of the experiment conducted and the collection of all subsets
of possible interest to us, where we denote elements of F as events. A pleasant
mathematical framework results by imposing on F the structural conditions of a
σ-algebra, as done in Subsection 1.1.1. The most common and useful choices for
this σ-algebra are then explored in Subsection 1.1.2. Subsection 1.1.3 provides fun-
damental supplements from measure theory, namely Dynkin’s and Carathéodory’s
theorems and their application to the construction of Lebesgue measure.

1.1.1. The probability space (Ω,F , P). We use 2Ω to denote the set of all
possible subsets of Ω. The event space is thus a subset F of 2Ω, consisting of all
allowed events, that is, those subsets of Ω to which we shall assign probabilities.
We next define the structural conditions imposed on F .

Definition 1.1.1. We say that F ⊆ 2Ω is a σ-algebra (or a σ-field), if
(a) Ω ∈ F ,
(b) If A ∈ F then Ac ∈ F as well (where Ac = Ω \A).
(c) If Ai ∈ F for i = 1, 2, 3, . . . then also

⋃
iAi ∈ F .

Remark. Using DeMorgan’s law, we know that (
⋃
iA

c
i )
c =

⋂
iAi. Thus the

following is equivalent to property (c) of Definition 1.1.1:
(c’) If Ai ∈ F for i = 1, 2, 3, . . . then also

⋂
iAi ∈ F .
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8 1. PROBABILITY, MEASURE AND INTEGRATION

Definition 1.1.2. A pair (Ω,F) with F a σ-algebra of subsets of Ω is called a
measurable space. Given a measurable space (Ω,F), a measure µ is any countably
additive non-negative set function on this space. That is, µ : F → [0,∞], having
the properties:
(a) µ(A) ≥ µ(∅) = 0 for all A ∈ F .
(b) µ(

⋃
nAn) =

∑
n µ(An) for any countable collection of disjoint sets An ∈ F .

When in addition µ(Ω) = 1, we call the measure µ a probability measure, and
often label it by P (it is also easy to see that then P(A) ≤ 1 for all A ∈ F).

Remark. When (b) of Definition 1.1.2 is relaxed to involve only finite collections
of disjoint sets An, we say that µ is a finitely additive non-negative set-function.
In measure theory we sometimes consider signed measures, whereby µ is no longer
non-negative, hence its range is [−∞,∞], and say that such measure is finite when
its range is R (i.e. no set in F is assigned an infinite measure).

Definition 1.1.3. A measure space is a triplet (Ω,F , µ), with µ a measure on the
measurable space (Ω,F). A measure space (Ω,F , P) with P a probability measure
is called a probability space.

The next exercise collects some of the fundamental properties shared by all prob-
ability measures.

Exercise 1.1.4. Let (Ω,F ,P) be a probability space and A,B,Ai events in F .
Prove the following properties of every probability measure.

(a) Monotonicity. If A ⊆ B then P(A) ≤ P(B).
(b) Sub-additivity. If A ⊆ ∪iAi then P(A) ≤

∑
i P(Ai).

(c) Continuity from below: If Ai ↑ A, that is, A1 ⊆ A2 ⊆ . . . and ∪iAi = A,
then P(Ai) ↑ P(A).

(d) Continuity from above: If Ai ↓ A, that is, A1 ⊇ A2 ⊇ . . . and ∩iAi = A,
then P(Ai) ↓ P(A).

Remark. In the more general context of measure theory, note that properties
(a)-(c) of Exercise 1.1.4 hold for any measure µ, whereas the continuity from above
holds whenever µ(Ai) <∞ for all i sufficiently large. Here is more on this:

Exercise 1.1.5. Prove that a finitely additive non-negative set function µ on a
measurable space (Ω,F) with the “continuity” property

Bn ∈ F , Bn ↓ ∅, µ(Bn) <∞ =⇒ µ(Bn)→ 0

must be countably additive if µ(Ω) <∞. Give an example that it is not necessarily
so when µ(Ω) =∞.

The σ-algebra F always contains at least the set Ω and its complement, the empty
set ∅. Necessarily, P(Ω) = 1 and P(∅) = 0. So, if we take F0 = {∅,Ω} as our σ-
algebra, then we are left with no degrees of freedom in choice of P. For this reason
we call F0 the trivial σ-algebra. Fixing Ω, we may expect that the larger the σ-
algebra we consider, the more freedom we have in choosing the probability measure.
This indeed holds to some extent, that is, as long as we have no problem satisfying
the requirements in the definition of a probability measure. A natural question is
when should we expect the maximal possible σ-algebra F = 2Ω to be useful?

Example 1.1.6. When the sample space Ω is countable we can and typically shall
take F = 2Ω. Indeed, in such situations we assign a probability pω > 0 to each ω ∈ Ω
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making sure that
∑
ω∈Ω pω = 1. Then, it is easy to see that taking P(A) =

∑
ω∈A pω

for any A ⊆ Ω results with a probability measure on (Ω, 2Ω). For instance, when
Ω is finite, we can take pω = 1

|Ω| , the uniform measure on Ω, whereby computing

probabilities is the same as counting. Concrete examples are a single coin toss, for
which we have Ω1 = {H,T} (ω = H if the coin lands on its head and ω = T if it
lands on its tail), and F1 = {∅,Ω,H,T}, or when we consider a finite number of
coin tosses, say n, in which case Ωn = {(ω1, . . . , ωn) : ωi ∈ {H,T}, i = 1, . . . , n}
is the set of all possible n-tuples of coin tosses, while Fn = 2Ωn is the collection
of all possible sets of n-tuples of coin tosses. Another example pertains to the
set of all non-negative integers Ω = {0, 1, 2, . . .} and F = 2Ω, where we get the

Poisson probability measure of parameter λ > 0 when starting from pk = λk

k! e
−λ for

k = 0, 1, 2, . . ..

When Ω is uncountable such a strategy as in Example 1.1.6 will no longer work.
The problem is that if we take pω = P({ω}) > 0 for uncountably many values of
ω, we shall end up with P(Ω) =∞. Of course we may define everything as before

on a countable subset Ω̂ of Ω and demand that P(A) = P(A ∩ Ω̂) for each A ⊆ Ω.
Excluding such trivial cases, to genuinely use an uncountable sample space Ω we
need to restrict our σ-algebra F to a strict subset of 2Ω.

Definition 1.1.7. We say that a probability space (Ω,F ,P) is non-atomic, or
alternatively call P non-atomic if P(A) > 0 implies the existence of B ∈ F , B ⊂ A
with 0 < P(B) < P(A).

Indeed, in contrast to the case of countable Ω, the generic uncountable sample
space results with a non-atomic probability space (c.f. Exercise 1.1.27). Here is an
interesting property of such spaces (see also [Bil95, Problem 2.19]).

Exercise 1.1.8. Suppose P is non-atomic and A ∈ F with P(A) > 0.

(a) Show that for every ε > 0, we have B ⊆ A such that 0 < P(B) < ε.
(b) Prove that if 0 < a < P(A) then there exists B ⊂ A with P(B) = a.

Hint: Fix εn ↓ 0 and define inductively numbers xn and sets Gn ∈ F with H0 = ∅,
Hn = ∪k<nGk, xn = sup{P(G) : G ⊆ A\Hn, P(Hn ∪ G) ≤ a} and Gn ⊆ A\Hn

such that P(Hn

⋃
Gn) ≤ a and P(Gn) ≥ (1− εn)xn. Consider B = ∪kGk.

As you show next, the collection of all measures on a given space is a convex cone.

Exercise 1.1.9. Given any measures {µn, n ≥ 1} on (Ω,F), verify that µ =∑∞
n=1 cnµn is also a measure on this space, for any finite constants cn ≥ 0.

Here are few properties of probability measures for which the conclusions of Ex-
ercise 1.1.4 are useful.

Exercise 1.1.10. A function d : X × X → [0,∞) is called a semi-metric on
the set X if d(x, x) = 0, d(x, y) = d(y, x) and the triangle inequality d(x, z) ≤
d(x, y) + d(y, z) holds. With A∆B = (A ∩ Bc) ∪ (Ac ∩ B) denoting the symmetric
difference of subsets A and B of Ω, show that for any probability space (Ω,F ,P),
the function d(A,B) = P(A∆B) is a semi-metric on F .

Exercise 1.1.11. Consider events {An} in a probability space (Ω,F ,P) that are
almost disjoint in the sense that P(An ∩ Am) = 0 for all n 6= m. Show that then
P(∪∞n=1An) =

∑∞
n=1 P(An).
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Exercise 1.1.12. Suppose a random outcome N follows the Poisson probability
measure of parameter λ > 0. Find a simple expression for the probability that N is
an even integer.

1.1.2. Generated and Borel σ-algebras. Enumerating the sets in the σ-
algebra F is not a realistic option for uncountable Ω. Instead, as we see next, the
most common construction of σ-algebras is then by implicit means. That is, we
demand that certain sets (called the generators) be in our σ-algebra, and take the
smallest possible collection for which this holds.

Exercise 1.1.13.

(a) Check that the intersection of (possibly uncountably many) σ-algebras is
also a σ-algebra.

(b) Verify that for any σ-algebras H ⊆ G and any H ∈ H, the collection
HH = {A ∈ G : A ∩H ∈ H} is a σ-algebra.

(c) Show that H 7→ HH is non-increasing with respect to set inclusions, with

HΩ = H and H∅ = G. Deduce that HH∪H′ = HH ∩ HH′ for any pair
H,H ′ ∈ H.

In view of part (a) of this exercise we have the following definition.

Definition 1.1.14. Given a collection of subsets Aα ⊆ Ω (not necessarily count-
able), we denote the smallest σ-algebra F such that Aα ∈ F for all α ∈ Γ either by
σ({Aα}) or by σ(Aα, α ∈ Γ), and call σ({Aα}) the σ-algebra generated by the sets
Aα. That is,
σ({Aα}) =

⋂
{G : G ⊆ 2Ω is a σ − algebra, Aα ∈ G ∀α ∈ Γ}.

Example 1.1.15. Suppose Ω = S is a topological space (that is, S is equipped with
a notion of open subsets, or topology). An example of a generated σ-algebra is the
Borel σ-algebra on S defined as σ({O ⊆ S open }) and denoted by BS. Of special
importance is BR which we also denote by B.

Different sets of generators may result with the same σ-algebra. For example, tak-
ing Ω = {1, 2, 3} it is easy to see that σ({1}) = σ({2, 3}) = {∅, {1}, {2, 3}, {1, 2, 3}}.
A σ-algebra F is countably generated if there exists a countable collection of sets

that generates it. Exercise 1.1.17 shows that BR is countably generated, but as you
show next, there exist non countably generated σ-algebras even on Ω = R.

Exercise 1.1.16. Let F consist of all A ⊆ Ω such that either A is a countable set
or Ac is a countable set.

(a) Verify that F is a σ-algebra.
(b) Show that F is countably generated if and only if Ω is a countable set.

Recall that if a collection of sets A is a subset of a σ-algebra G, then also σ(A) ⊆ G.
Consequently, to show that σ({Aα}) = σ({Bβ}) for two different sets of generators
{Aα} and {Bβ}, we only need to show that Aα ∈ σ({Bβ}) for each α and that
Bβ ∈ σ({Aα}) for each β. For instance, considering BQ = σ({(a, b) : a < b ∈ Q}),
we have by this approach that BQ = σ({(a, b) : a < b ∈ R}), as soon as we
show that any interval (a, b) is in BQ. To see this fact, note that for any real
a < b there are rational numbers qn < rn such that qn ↓ a and rn ↑ b, hence
(a, b) = ∪n(qn, rn) ∈ BQ. Expanding on this, the next exercise provides useful
alternative definitions of B.



1.1. PROBABILITY SPACES, MEASURES AND σ-ALGEBRAS 11

Exercise 1.1.17. Verify the alternative definitions of the Borel σ-algebra B:

σ({(a, b) : a < b ∈ R}) = σ({[a, b] : a < b ∈ R}) = σ({(−∞, b] : b ∈ R})
= σ({(−∞, b] : b ∈ Q}) = σ({O ⊆ R open })

If A ⊆ R is in B of Example 1.1.15, we say that A is a Borel set. In particular, all
open (closed) subsets of R are Borel sets, as are many other sets. However,

Proposition 1.1.18. There exists a subset of R that is not in B. That is, not all
subsets of R are Borel sets.

Proof. See [Wil91, A.1.1] or [Bil95, page 45]. �

Example 1.1.19. Another classical example of an uncountable Ω is relevant for
studying the experiment with an infinite number of coin tosses, that is, Ω∞ = ΩN

1

for Ω1 = {H,T} (indeed, setting H = 1 and T = 0, each infinite sequence ω ∈ Ω∞
is in correspondence with a unique real number x ∈ [0, 1] with ω being the binary
expansion of x, see Exercise 1.2.13). The σ-algebra should at least allow us to
consider any possible outcome of a finite number of coin tosses. The natural σ-
algebra in this case is the minimal σ-algebra having this property, or put more
formally Fc = σ({Aθ,k, θ ∈ Ωk1 , k = 1, 2, . . .}), where Aθ,k = {ω ∈ Ω∞ : ωi = θi, i =
1 . . . , k} for θ = (θ1, . . . , θk).

The preceding example is a special case of the construction of a product of mea-
surable spaces, which we detail now.

Example 1.1.20. The product of the measurable spaces (Ωi,Fi), i = 1, . . . , n is
the set Ω = Ω1×· · ·×Ωn with the σ-algebra generated by {A1×· · ·×An : Ai ∈ Fi},
denoted by F1 × · · · Fn.

You are now to check that the Borel σ-algebra of Rd is the product of d-copies of
that of R. As we see later, this helps simplifying the study of random vectors.

Exercise 1.1.21. Show that for any d <∞,

BRd = B × · · · × B = σ({(a1, b1)× · · · × (ad, bd) : ai < bi ∈ R, i = 1, . . . , d})

(you need to prove both identities, with the middle term defined as in Example
1.1.20).

Exercise 1.1.22. Let F = σ(Aα, α ∈ Γ) where the collection of sets Aα, α ∈ Γ is
uncountable (i.e., Γ is uncountable). Prove that for each B ∈ F there exists a count-
able sub-collection {Aαj , j = 1, 2, . . .} ⊂ {Aα, α ∈ Γ}, such that B ∈ σ({Aαj , j =
1, 2, . . .}).

Often there is no explicit enumerative description of the σ-algebra generated by
an infinite collection of subsets, but a notable exception is

Exercise 1.1.23. Show that the sets in G = σ({[a, b] : a, b ∈ Z}) are all possible
unions of elements from the countable collection {{b}, (b, b+ 1), b ∈ Z}, and deduce
that B 6= G.

Probability measures on the Borel σ-algebra of R are examples of regular measures,
namely:



12 1. PROBABILITY, MEASURE AND INTEGRATION

Exercise 1.1.24. Show that if P is a probability measure on (R,B) then for any
A ∈ B and ε > 0, there exists an open set G containing A such that P(A) + ε >
P(G).

Here is more information about BRd .

Exercise 1.1.25. Show that if µ is a finitely additive non-negative set function
on (Rd,BRd) such that µ(Rd) = 1 and for any Borel set A,

µ(A) = sup{µ(K) : K ⊆ A, K compact },
then µ must be a probability measure.
Hint: Argue by contradiction using the conclusion of Exercise 1.1.5. To this end,
recall the finite intersection property (if compact Ki ⊂ Rd are such that

⋂n
i=1Ki are

non-empty for finite n, then the countable intersection
⋂∞
i=1Ki is also non-empty).

1.1.3. Lebesgue measure and Carathéodory’s theorem. Perhaps the
most important measure on (R,B) is the Lebesgue measure, λ. It is the unique
measure that satisfies λ(F ) =

∑r
k=1(bk − ak) whenever F =

⋃r
k=1(ak, bk] for some

r < ∞ and a1 < b1 < a2 < b2 · · · < br. Since λ(R) = ∞, this is not a probability
measure. However, when we restrict Ω to be the interval (0, 1] we get

Example 1.1.26. The uniform probability measure on (0, 1], is denoted U and
defined as above, now with added restrictions that 0 ≤ a1 and br ≤ 1. Alternatively,
U is the restriction of the measure λ to the sub-σ-algebra B(0,1] of B.

Exercise 1.1.27. Show that ((0, 1],B(0,1], U) is a non-atomic probability space and
deduce that (R,B, λ) is a non-atomic measure space.

Note that any countable union of sets of probability zero has probability zero, but
this is not the case for an uncountable union. For example, U({x}) = 0 for every
x ∈ R, but U(R) = 1.
As we have seen in Example 1.1.26 it is often impossible to explicitly specify the

value of a measure on all sets of the σ-algebra F . Instead, we wish to specify its
values on a much smaller and better behaved collection of generators A of F and
use Carathéodory’s theorem to guarantee the existence of a unique measure on F
that coincides with our specified values. To this end, we require that A be an
algebra, that is,

Definition 1.1.28. A collection A of subsets of Ω is an algebra (or a field) if

(a) Ω ∈ A,
(b) If A ∈ A then Ac ∈ A as well,
(c) If A,B ∈ A then also A ∪B ∈ A.

Remark. In view of the closure of algebra with respect to complements, we could
have replaced the requirement that Ω ∈ A with the (more standard) requirement
that ∅ ∈ A. As part (c) of Definition 1.1.28 amounts to closure of an algebra
under finite unions (and by DeMorgan’s law also finite intersections), the difference
between an algebra and a σ-algebra is that a σ-algebra is also closed under countable
unions.

We sometimes make use of the fact that unlike generated σ-algebras, the algebra
generated by a collection of sets A can be explicitly presented.

Exercise 1.1.29. The algebra generated by a given collection of subsets A, denoted
f(A), is the intersection of all algebras of subsets of Ω containing A.
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(a) Verify that f(A) is indeed an algebra and that f(A) is minimal in the
sense that if G is an algebra and A ⊆ G, then f(A) ⊆ G.

(b) Show that f(A) is the collection of all finite disjoint unions of sets of the
form

⋂ni
j=1Aij, where for each i and j either Aij or Acij are in A.

We next state Carathéodory’s extension theorem, a key result from measure the-
ory, and demonstrate how it applies in the context of Example 1.1.26.

Theorem 1.1.30 (Carathéodory’s extension theorem). If µ0 : A 7→ [0,∞]
is a countably additive set function on an algebra A then there exists a measure
µ on (Ω, σ(A)) such that µ = µ0 on A. Furthermore, if µ0(Ω) < ∞ then such a
measure µ is unique.

To construct the measure U on B(0,1] let Ω = (0, 1] and

A = {(a1, b1] ∪ · · · ∪ (ar, br] : 0 ≤ a1 < b1 < · · · < ar < br ≤ 1 , r <∞}
be a collection of subsets of (0, 1]. It is not hard to verify that A is an algebra, and
further that σ(A) = B(0,1] (c.f. Exercise 1.1.17, for a similar issue, just with (0, 1]
replaced by R). With U0 denoting the non-negative set function on A such that

(1.1.1) U0

( r⋃
k=1

(ak, bk]
)

=

r∑
k=1

(bk − ak) ,

note that U0((0, 1]) = 1, hence the existence of a unique probability measure U on
((0, 1],B(0,1]) such that U(A) = U0(A) for sets A ∈ A follows by Carathéodory’s
extension theorem, as soon as we verify that

Lemma 1.1.31. The set function U0 is countably additive on A. That is, if Ak is a
sequence of disjoint sets in A such that ∪kAk = A ∈ A, then U0(A) =

∑
k U0(Ak).

The proof of Lemma 1.1.31 is based on

Exercise 1.1.32. Show that U0 is finitely additive on A. That is, U0(
⋃n
k=1Ak) =∑n

k=1 U0(Ak) for any finite collection of disjoint sets A1, . . . , An ∈ A.

Proof. Let Gn =
⋃n
k=1Ak and Hn = A \ Gn. Then, Hn ↓ ∅ and since

Ak, A ∈ A which is an algebra it follows that Gn and hence Hn are also in A. By
definition, U0 is finitely additive on A, so

U0(A) = U0(Hn) + U0(Gn) = U0(Hn) +

n∑
k=1

U0(Ak) .

To prove that U0 is countably additive, it suffices to show that U0(Hn) ↓ 0, for then

U0(A) = lim
n→∞

U0(Gn) = lim
n→∞

n∑
k=1

U0(Ak) =

∞∑
k=1

U0(Ak) .

To complete the proof, we argue by contradiction, assuming that U0(Hn) ≥ 2ε for
some ε > 0 and all n, where Hn ↓ ∅ are elements of A. By the definition of A
and U0, we can find for each ` a set J` ∈ A whose closure J` is a subset of H` and
U0(H` \ J`) ≤ ε2−` (for example, add to each ak in the representation of H` the
minimum of ε2−`/r and (bk − ak)/2). With U0 finitely additive on the algebra A
this implies that for each n,

U0

( n⋃
`=1

(H` \ J`)
)
≤

n∑
`=1

U0(H` \ J`) ≤ ε .
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As Hn ⊆ H` for all ` ≤ n, we have that

Hn \
⋂
`≤n

J` =
⋃
`≤n

(Hn \ J`) ⊆
⋃
`≤n

(H` \ J`) .

Hence, by finite additivity of U0 and our assumption that U0(Hn) ≥ 2ε, also

U0(
⋂
`≤n

J`) = U0(Hn)− U0(Hn \
⋂
`≤n

J`) ≥ U0(Hn)− U0(
⋃
`≤n

(H` \ J`)) ≥ ε .

In particular, for every n, the set
⋂
`≤n J` is non-empty and therefore so are the

decreasing sets Kn =
⋂
`≤n J`. Since Kn are compact sets (by Heine-Borel theo-

rem), the set ∩`J` is then non-empty as well, and since J` is a subset of H` for all
` we arrive at ∩`H` non-empty, contradicting our assumption that Hn ↓ ∅. �

Remark. The proof of Lemma 1.1.31 is generic (for finite measures). Namely,
any non-negative finitely additive set function µ0 on an algebra A is countably
additive if µ0(Hn) ↓ 0 whenever Hn ∈ A and Hn ↓ ∅. Further, as this proof shows,
when Ω is a topological space it suffices for countable additivity of µ0 to have for
any H ∈ A a sequence Jk ∈ A such that Jk ⊆ H are compact and µ0(H \ Jk)→ 0
as k →∞.

Exercise 1.1.33. Show the necessity of the assumption that A be an algebra in
Carathéodory’s extension theorem, by giving an example of two probability measures
µ 6= ν on a measurable space (Ω,F) such that µ(A) = ν(A) for all A ∈ A and
F = σ(A).
Hint: This can be done with Ω = {1, 2, 3, 4} and F = 2Ω.

It is often useful to assume that the probability space we have is complete, in the
sense we make precise now.

Definition 1.1.34. We say that a measure space (Ω,F , µ) is complete if any
subset N of any B ∈ F with µ(B) = 0 is also in F . If further µ = P is a probability
measure, we say that the probability space (Ω,F ,P) is a complete probability space.

Our next theorem states that any measure space can be completed by adding to
its σ-algebra all subsets of sets of zero measure (a procedure that depends on the
measure in use).

Theorem 1.1.35. Given a measure space (Ω,F , µ), let N = {N : N ⊆ A for
some A ∈ F with µ(A) = 0} denote the collection of µ-null sets. Then, there
exists a complete measure space (Ω,F , µ), called the completion of the measure
space (Ω,F , µ), such that F = {F ∪N : F ∈ F , N ∈ N} and µ = µ on F .

Proof. This is beyond our scope, but see detailed proof in [Dur10, Theorem
A.2.3]. In particular, F = σ(F ,N ) and µ(A ∪ N) = µ(A) for any N ∈ N and
A ∈ F (c.f. [Bil95, Problems 3.10 and 10.5]). �

The following collections of sets play an important role in proving the easy part
of Carathéodory’s theorem, the uniqueness of the extension µ.

Definition 1.1.36. A π-system is a collection P of sets closed under finite inter-
sections (i.e. if I ∈ P and J ∈ P then I ∩ J ∈ P).
A λ-system is a collection L of sets containing Ω and B\A for any A ⊆ B A,B ∈ L,
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which is also closed under monotone increasing limits (i.e. if Ai ∈ L and Ai ↑ A,
then A ∈ L as well).

Remark. One may equivalently define λ-system with Ac ∈ L whenever A ∈ L,
instead of requiring that B \A ∈ L whenever A ⊆ B, A,B ∈ L.

Obviously, an algebra is a π-system. Though an algebra may not be a λ-system,

Proposition 1.1.37. A collection F of sets is a σ-algebra if and only if it is both
a π-system and a λ-system.

Proof. The fact that a σ-algebra is a λ-system is a trivial consequence of
Definition 1.1.1. To prove the converse direction, suppose that F is both a π-
system and a λ-system. Then Ω is in the λ-system F and so is Ac = Ω \A for any
A ∈ F . Further, with F also a π-system we have that

A ∪B = Ω \ (Ac ∩Bc) ∈ F ,

for any A,B ∈ F . Consequently, if Ai ∈ F then so are also Gn = A1∪· · ·∪An ∈ F .
Since F is a λ-system and Gn ↑

⋃
iAi, it follows that

⋃
iAi ∈ F as well, completing

the verification that F is a σ-algebra. �

The main tool in proving the uniqueness of the extension is Dynkin’s π−λ theorem,
stated next.

Theorem 1.1.38 (Dynkin’s π − λ theorem). If P ⊆ L with P a π-system and
L a λ-system then σ(P) ⊆ L.

Proof. A short though dense exercise in set manipulations shows that the
smallest λ-system containing P is a π-system (for details see [Wil91, Section A.1.3]
or the proof of [Bil95, Theorem 3.2]). By Proposition 1.1.37 it is a σ-algebra, hence
contains σ(P). Further, it is contained in the λ-system L, as L also contains P. �

As we show next, the uniqueness part of Carathéodory’s theorem, is an immediate
consequence of the π − λ theorem.

Proposition 1.1.39. If two measures µ1 and µ2 on (Ω, σ(P)) agree on the π-
system P and are such that µ1(Ω) = µ2(Ω) <∞, then µ1 = µ2.

Proof. Let L = {A ∈ σ(P) : µ1(A) = µ2(A)}. Our assumptions imply that
P ⊆ L and that Ω ∈ L. Further, σ(P) is a λ-system (by Proposition 1.1.37), and
if A ⊆ B, A,B ∈ L, then by additivity of the finite measures µ1 and µ2,

µ1(B \A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \A),

that is, B \ A ∈ L. Similarly, if Ai ↑ A and Ai ∈ L, then by the continuity from
below of µ1 and µ2 (see remark following Exercise 1.1.4),

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A) ,

so that A ∈ L. We conclude that L is a λ-system, hence by Dynkin’s π−λ theorem,
σ(P) ⊆ L, that is, µ1 = µ2. �

Remark. With a somewhat more involved proof one can relax the condition
µ1(Ω) = µ2(Ω) <∞ to the existence of An ∈ P such that An ↑ Ω and µ1(An) <∞
(c.f. [Bil95, Theorem 10.3] for details). Accordingly, in Carathéodory’s extension
theorem we can relax µ0(Ω) <∞ to the assumption that µ0 is a σ-finite measure,
that is µ0(An) < ∞ for some An ∈ A such that An ↑ Ω, as is the case with
Lebesgue’s measure λ on R.
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We conclude this subsection with an outline the proof of Carathéodory’s extension
theorem, noting that since an algebra A is a π-system and Ω ∈ A, the uniqueness of
the extension to σ(A) follows from Proposition 1.1.39. Our outline of the existence
of an extension follows [Wil91, Section A.1.8] (or see [Bil95, Theorem 11.3] for
the proof of a somewhat stronger result). This outline centers on the construction
of the appropriate outer measure, a relaxation of the concept of measure, which we
now define.

Definition 1.1.40. An increasing, countably sub-additive, non-negative set func-
tion µ∗ on a measurable space (Ω,F) is called an outer measure. That is, µ∗ : F 7→
[0,∞], having the properties:
(a) µ∗(∅) = 0 and µ∗(A1) ≤ µ∗(A2) for any A1, A2 ∈ F with A1 ⊆ A2.
(b) µ∗(

⋃
nAn) ≤

∑
n µ
∗(An) for any countable collection of sets An ∈ F .

In the first step of the proof we define the increasing, non-negative set function

µ∗(E) = inf{
∞∑
n=1

µ0(An) : E ⊆
⋃
n

An, An ∈ A},

for E ∈ F = 2Ω, and prove that it is countably sub-additive, hence an outer measure
on F .
By definition, µ∗(A) ≤ µ0(A) for any A ∈ A. In the second step we prove that

if in addition A ⊆
⋃
nAn for An ∈ A, then the countable additivity of µ0 on A

results with µ0(A) ≤
∑
n µ0(An). Consequently, µ∗ = µ0 on the algebra A.

The third step uses the countable additivity of µ0 on A to show that for any A ∈ A
the outer measure µ∗ is additive when splitting subsets of Ω by intersections with A
and Ac. That is, we show that any element of A is a µ∗-measurable set, as defined
next.

Definition 1.1.41. Let λ be a non-negative set function on a measurable space
(Ω,F), with λ(∅) = 0. We say that A ∈ F is a λ-measurable set if λ(F ) =
λ(F ∩A) + λ(F ∩Ac) for all F ∈ F .

The fourth step consists of proving the following general lemma.

Lemma 1.1.42 (Carathéodory’s lemma). Let µ∗ be an outer measure on a
measurable space (Ω,F). Then the µ∗-measurable sets in F form a σ-algebra G on
which µ∗ is countably additive, so that (Ω,G, µ∗) is a measure space.

In the current setting, with A contained in the σ-algebra G, it follows that σ(A) ⊆
G on which µ∗ is a measure. Thus, the restriction µ of µ∗ to σ(A) is the stated
measure that coincides with µ0 on A.

Remark. In the setting of Carathéodory’s extension theorem for finite measures,
we have that the σ-algebra G of all µ∗-measurable sets is the completion of σ(A)
with respect to µ (c.f. [Bil95, Page 45]). In the context of Lebesgue’s measure U
on B(0,1], this is the σ-algebra B(0,1] of all Lebesgue measurable subsets of (0, 1].
Associated with it are the Lebesgue measurable functions f : (0, 1] 7→ R for which
f−1(B) ∈ B(0,1] for all B ∈ B. However, as noted for example in [Dur10, Theorem
A.2.4], the non Borel set constructed in the proof of Proposition 1.1.18 is also non
Lebesgue measurable.

The following concept of a monotone class of sets is a considerable relaxation of
that of a λ-system (hence also of a σ-algebra, see Proposition 1.1.37).
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Definition 1.1.43. A monotone class is a collection M of sets closed under both
monotone increasing and monotone decreasing limits (i.e. if Ai ∈ M and either
Ai ↑ A or Ai ↓ A, then A ∈M).

When starting from an algebra instead of a π-system, one may save effort by
applying Halmos’s monotone class theorem instead of Dynkin’s π − λ theorem.

Theorem 1.1.44 (Halmos’s monotone class theorem). If A ⊆ M with A
an algebra and M a monotone class then σ(A) ⊆M.

Proof. Clearly, any algebra which is a monotone class must be a σ-algebra.
Another short though dense exercise in set manipulations shows that the intersec-
tion m(A) of all monotone classes containing an algebra A is both an algebra and
a monotone class (see the proof of [Bil95, Theorem 3.4]). Consequently, m(A) is
a σ-algebra. Since A ⊆ m(A) this implies that σ(A) ⊆ m(A) and we complete the
proof upon noting that m(A) ⊆M. �

Exercise 1.1.45. We say that a subset V of {1, 2, 3, · · · } has Cesáro density γ(V )
and write V ∈ CES if the limit

γ(V ) = lim
n→∞

n−1|V ∩ {1, 2, 3, · · · , n}| ,

exists. Give an example of sets V1 ∈ CES and V2 ∈ CES for which V1 ∩ V2 /∈ CES.
Thus, CES is not an algebra.

Here is an alternative specification of the concept of algebra.

Exercise 1.1.46.

(a) Suppose that Ω ∈ A and that A∩Bc ∈ A whenever A,B ∈ A. Show that
A is an algebra.

(b) Give an example of a collection C of subsets of Ω such that Ω ∈ C, if
A ∈ C then Ac ∈ C and if A,B ∈ C are disjoint then also A ∪ B ∈ C,
while C is not an algebra.

As we already saw, the σ-algebra structure is preserved under intersections. How-
ever, whereas the increasing union of algebras is an algebra, it is not necessarily
the case for σ-algebras.

Exercise 1.1.47. Suppose that An are classes of sets such that An ⊆ An+1.

(a) Show that if An are algebras then so is
⋃∞
n=1An.

(b) Provide an example of σ-algebras An for which
⋃∞
n=1An is not a σ-

algebra.

1.2. Random variables and their distribution

Random variables are numerical functions ω 7→ X(ω) of the outcome of our ran-
dom experiment. However, in order to have a successful mathematical theory, we
limit our interest to the subset of measurable functions (or more generally, measur-
able mappings), as defined in Subsection 1.2.1 and study the closure properties of
this collection in Subsection 1.2.2. Subsection 1.2.3 is devoted to the characteriza-
tion of the collection of distribution functions induced by random variables.
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1.2.1. Indicators, simple functions and random variables. We start
with the definition of random variables, first in the general case, and then restricted
to R-valued variables.

Definition 1.2.1. A mapping X : Ω 7→ S between two measurable spaces (Ω,F)
and (S,S) is called an (S,S)-valued Random Variable (R.V.) if

X−1(B) := {ω : X(ω) ∈ B} ∈ F ∀B ∈ S.
Such a mapping is also called a measurable mapping.

Definition 1.2.2. When we say that X is a random variable, or a measurable
function, we mean an (R,B)-valued random variable which is the most common type
of R.V. we shall encounter. We let mF denote the collection of all (R,B)-valued
measurable mappings, so X is a R.V. if and only if X ∈ mF . If in addition Ω is a
topological space and F = σ({O ⊆ Ω open }) is the corresponding Borel σ-algebra,
we say that X : Ω 7→ R is a Borel (measurable) function. More generally, a random
vector is an (Rd,BRd)-valued R.V. for some d <∞.

The next exercise shows that a random vector is merely a finite collection of R.V.
on the same probability space.

Exercise 1.2.3. Relying on Exercise 1.1.21 and Theorem 1.2.9, show that X :
Ω 7→ Rd is a random vector if and only if X(ω) = (X1(ω), . . . , Xd(ω)) with each
Xi : Ω 7→ R a R.V.

Hint: Note that X−1(B1 × . . .×Bd) =
d⋂
i=1

X−1
i (Bi).

We now provide two important generic examples of random variables.

Example 1.2.4. For any A ∈ F the function IA(ω) =

{
1, ω ∈ A
0, ω /∈ A

is a R.V.

Indeed, {ω : IA(ω) ∈ B} is for any B ⊆ R one of the four sets ∅, A, Ac or Ω
(depending on whether 0 ∈ B or not and whether 1 ∈ B or not), all of whom are
in F . We call such R.V. also an indicator function.

Exercise 1.2.5. By the same reasoning check that X(ω) =
∑N
n=1 cnIAn(ω) is a

R.V. for any finite N , non-random cn ∈ R and sets An ∈ F . We call any such X
a simple function, denoted by X ∈ SF.

Our next proposition explains why simple functions are quite useful in probability
theory.

Proposition 1.2.6. For every R.V. X(ω) there exists a sequence of simple func-
tions Xn(ω) such that Xn(ω)→ X(ω) as n→∞, for each fixed ω ∈ Ω.

Proof. Let

fn(x) = n1x>n +

n2n−1∑
k=0

k2−n1(k2−n,(k+1)2−n](x) ,

noting that for R.V. X ≥ 0, we have that Xn = fn(X) are simple functions. Since
X ≥ Xn+1 ≥ Xn and X(ω) − Xn(ω) ≤ 2−n whenever X(ω) ≤ n, it follows that
Xn(ω)→ X(ω) as n→∞, for each ω.
We write a general R.V. as X(ω) = X+(ω)−X−(ω) where X+(ω) = max(X(ω), 0)

and X−(ω) = −min(X(ω), 0) are non-negative R.V.-s. By the above argument
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the simple functions Xn = fn(X+) − fn(X−) have the convergence property we
claimed. �

Note that in case F = 2Ω, every mapping X : Ω 7→ S is measurable (and therefore
is an (S,S)-valued R.V.). The choice of the σ-algebra F is very important in
determining the class of all (S,S)-valued R.V. For example, there are non-trivial
σ-algebras G and F on Ω = R such that X(ω) = ω is a measurable function for
(Ω,F), but is non-measurable for (Ω,G). Indeed, one such example is when F is the
Borel σ-algebra B and G = σ({[a, b] : a, b ∈ Z}) (for example, the set {ω : ω ≤ α}
is not in G whenever α /∈ Z).

Building on Proposition 1.2.6 we have the following analog of Halmos’s monotone
class theorem. It allows us to deduce in the sequel general properties of (bounded)
measurable functions upon verifying them only for indicators of elements of π-
systems.

Theorem 1.2.7 (Monotone class theorem). Suppose H is a collection of
R-valued functions on Ω such that:

(a) The constant function 1 is an element of H.
(b) H is a vector space over R. That is, if h1, h2 ∈ H and c1, c2 ∈ R then

c1h1 + c2h2 is in H.
(c) If hn ∈ H are non-negative and hn ↑ h where h is a (bounded) real-valued

function on Ω, then h ∈ H.

If P is a π-system and IA ∈ H for all A ∈ P, then H contains all (bounded)
functions on Ω that are measurable with respect to σ(P).

Remark. We stated here two versions of the monotone class theorem, with the
less restrictive assumption that (c) holds only for bounded h yielding the weaker
conclusion about bounded elements of mσ(P). In the sequel we use both versions,
which as we see next, are derived by essentially the same proof. Adapting this
proof you can also show that any collection H of non-negative functions on Ω
satisfying the conditions of Theorem 1.2.7 apart from requiring (b) to hold only
when c1h1 + c2h2 ≥ 0, must contain all non-negative elements of mσ(P).

Proof. Let L = {A ⊆ Ω : IA ∈ H}. From (a) we have that Ω ∈ L, while (b)
implies that B \ A is in L whenever A ⊆ B are both in L. Further, in view of (c)
the collection L is closed under monotone increasing limits. Consequently, L is a
λ-system, so by Dynkin’s π-λ theorem, our assumption that L contains P results
with σ(P) ⊆ L. With H a vector space over R, this in turn implies that H contains
all simple functions with respect to the measurable space (Ω, σ(P)). In the proof of
Proposition 1.2.6 we saw that any (bounded) measurable function is a difference of
two (bounded) non-negative functions each of which is a monotone increasing limit
of certain non-negative simple functions. Thus, from (b) and (c) we conclude that
H contains all (bounded) measurable functions with respect to (Ω, σ(P)). �

The concept of almost sure prevails throughout probability theory.

Definition 1.2.8. We say that two (S,S)-valued R.V. X and Y defined on the
same probability space (Ω,F ,P) are almost surely the same if P({ω : X(ω) 6=
Y (ω)}) = 0. This shall be denoted by X

a.s.
= Y . More generally, same notation

applies to any property of R.V. For example, X(ω) ≥ 0 a.s. means that P({ω :
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X(ω) < 0}) = 0. Hereafter, we shall consider X and Y such that X
a.s.
= Y to be the

same S-valued R.V. hence often omit the qualifier “a.s.” when stating properties
of R.V. We also use the terms almost surely (a.s.), almost everywhere (a.e.), and
with probability 1 (w.p.1) interchangeably.

Since the σ-algebra S might be huge, it is very important to note that we may
verify that a given mapping is measurable without the need to check that the pre-
image X−1(B) is in F for every B ∈ S. Indeed, as shown next, it suffices to do
this only for a collection (of our choice) of generators of S.

Theorem 1.2.9. If S = σ(A) and X : Ω 7→ S is such that X−1(A) ∈ F for all
A ∈ A, then X is an (S,S)-valued R.V.

Proof. We first check that Ŝ = {B ∈ S : X−1(B) ∈ F} is a σ-algebra.
Indeed,

a). ∅ ∈ Ŝ since X−1(∅) = ∅.
b). If A ∈ Ŝ then X−1(A) ∈ F . With F a σ-algebra, X−1(Ac) =

(
X−1(A)

)c ∈ F .

Consequently, Ac ∈ Ŝ.

c). If An ∈ Ŝ for all n then X−1(An) ∈ F for all n. With F a σ-algebra, then also

X−1(
⋃
nAn) =

⋃
nX

−1(An) ∈ F . Consequently,
⋃
nAn ∈ Ŝ.

Our assumption that A ⊆ Ŝ, then translates to S = σ(A) ⊆ Ŝ, as claimed. �

The most important σ-algebras are those generated by ((S,S)-valued) random
variables, as defined next.

Exercise 1.2.10. Adapting the proof of Theorem 1.2.9, show that for any mapping
X : Ω 7→ S and any σ-algebra S of subsets of S, the collection {X−1(B) : B ∈ S} is
a σ-algebra. Verify that X is an (S,S)-valued R.V. if and only if {X−1(B) : B ∈
S} ⊆ F , in which case we denote {X−1(B) : B ∈ S} either by σ(X) or by FX and
call it the σ-algebra generated by X.

To practice your understanding of generated σ-algebras, solve the next exercise,
providing a convenient collection of generators for σ(X).

Exercise 1.2.11. If X is an (S,S)-valued R.V. and S = σ(A) then σ(X) is
generated by the collection of sets X−1(A) := {X−1(A) : A ∈ A}.

An important example of use of Exercise 1.2.11 corresponds to (R,B)-valued ran-
dom variables and A = {(−∞, x] : x ∈ R} (or even A = {(−∞, x] : x ∈ Q}) which
generates B (see Exercise 1.1.17), leading to the following alternative definition of
the σ-algebra generated by such R.V. X.

Definition 1.2.12. Given a function X : Ω 7→ R we denote by σ(X) or by FX
the smallest σ-algebra F such that X(ω) is a measurable mapping from (Ω,F) to
(R,B). Alternatively,

σ(X) = σ({ω : X(ω) ≤ α}, α ∈ R) = σ({ω : X(ω) ≤ q}, q ∈ Q) .

More generally, given a random vector X = (X1, . . . , Xn), that is, random variables
X1, . . . , Xn on the same probability space, let σ(Xk, k ≤ n) (or FX

n ), denote the
smallest σ-algebra F such that Xk(ω), k = 1, . . . , n are measurable on (Ω,F).
Alternatively,

σ(Xk, k ≤ n) = σ({ω : Xk(ω) ≤ α}, α ∈ R, k ≤ n) .
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Finally, given a possibly uncountable collection of functions Xγ : Ω 7→ R, indexed
by γ ∈ Γ, we denote by σ(Xγ , γ ∈ Γ) (or simply by FX), the smallest σ-algebra F
such that Xγ(ω), γ ∈ Γ are measurable on (Ω,F).

The concept of σ-algebra is needed in order to produce a rigorous mathematical
theory. It further has the crucial role of quantifying the amount of information
we have. For example, σ(X) contains exactly those events A for which we can say
whether ω ∈ A or not, based on the value of X(ω). Interpreting Example 1.1.19 as
corresponding to sequentially tossing coins, the R.V. Xn(ω) = ωn gives the result
of the n-th coin toss in our experiment Ω∞ of infinitely many such tosses. The σ-
algebra Fn = 2Ωn of Example 1.1.6 then contains exactly the information we have
upon observing the outcome of the first n coin tosses, whereas the larger σ-algebra
Fc allows us to also study the limiting properties of this sequence (and as you show
next, Fc is isomorphic, in the sense of Definition 1.4.24, to B[0,1]).

Exercise 1.2.13. Let Fc denote the cylindrical σ-algebra for the set Ω∞ = {0, 1}N
of infinite binary sequences, as in Example 1.1.19.

(a) Show that X(ω) =
∑∞
n=1 ωn2−n is a measurable map from (Ω∞,Fc) to

([0, 1],B[0,1]).
(b) Conversely, let Y (x) = (ω1, . . . , ωn, . . .) where for each n ≥ 1, ωn(1) = 1

while ωn(x) = I(b2nxc is an odd number) when x ∈ [0, 1). Show that
Y = X−1 is a measurable map from ([0, 1],B[0,1]) to (Ω∞,Fc).

Here are some alternatives for Definition 1.2.12.

Exercise 1.2.14. Verify the following relations and show that each generating
collection of sets on the right hand side is a π-system.

(a) σ(X) = σ({ω : X(ω) ≤ α}, α ∈ R)
(b) σ(Xk, k ≤ n) = σ({ω : Xk(ω) ≤ αk, 1 ≤ k ≤ n}, α1, . . . , αn ∈ R)
(c) σ(X1, X2, . . .) = σ({ω : Xk(ω) ≤ αk, 1 ≤ k ≤ m}, α1, . . . , αm ∈ R,m ∈

N)
(d) σ(X1, X2, . . .) = σ(

⋃
n σ(Xk, k ≤ n))

As you next show, when approximating a random variable by a simple function,
one may also specify the latter to be based on sets in any generating algebra.

Exercise 1.2.15. Suppose (Ω,F ,P) is a probability space, with F = σ(A) for an
algebra A.

(a) Show that inf{P(A∆B) : A ∈ A} = 0 for any B ∈ F (recall that A∆B =
(A ∩Bc) ∪ (Ac ∩B)).

(b) Show that for any bounded random variable X and ε > 0 there exists a

simple function Y =
∑N
n=1 cnIAn with An ∈ A such that P(|X − Y | >

ε) < ε.

Exercise 1.2.16. Let F = σ(Aα, α ∈ Γ) and suppose there exist ω1 6= ω2 ∈ Ω
such that for any α ∈ Γ, either {ω1, ω2} ⊆ Aα or {ω1, ω2} ⊆ Acα.

(a) Show that if mapping X is measurable on (Ω,F) then X(ω1) = X(ω2).
(b) Provide an explicit σ-algebra F of subsets of Ω = {1, 2, 3} and a mapping

X : Ω 7→ R which is not a random variable on (Ω,F).

We conclude with a glimpse of the canonical measurable space associated with a
stochastic process (Xt, t ∈ T) (for more on this, see Lemma 8.1.7).
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Exercise 1.2.17. Fixing a possibly uncountable collection of random variables Xt,
indexed by t ∈ T, let FX

C = σ(Xt, t ∈ C) for each C ⊆ T. Show that

FX
T =

⋃
C countable

FX
C

and that any R.V. Z on (Ω,FX
T ) is measurable on FX

C for some countable C ⊆ T.

1.2.2. Closure properties of random variables. For the typical measur-
able space with uncountable Ω it is impractical to list all possible R.V. Instead,
we state a few useful closure properties that often help us in showing that a given
mapping X(ω) is indeed a R.V.
We start with closure with respect to the composition of a R.V. and a measurable

mapping.

Proposition 1.2.18. If X : Ω 7→ S is an (S,S)-valued R.V. and f is a measurable
mapping from (S,S) to (T, T ), then the composition f(X) : Ω 7→ T is a (T, T )-
valued R.V.

Proof. Considering an arbitrary B ∈ T , we know that f−1(B) ∈ S since f is
a measurable mapping. Thus, as X is an (S,S)-valued R.V. it follows that

[f(X)]−1(B) = X−1(f−1(B)) ∈ F .

This holds for any B ∈ T , thus concluding the proof. �

In view of Exercise 1.2.3 we have the following special case of Proposition 1.2.18,
corresponding to S = Rn and T = R equipped with the respective Borel σ-algebras.

Corollary 1.2.19. Let Xi, i = 1, . . . , n be R.V. on the same measurable space
(Ω,F) and f : Rn 7→ R a Borel function. Then, f(X1, . . . , Xn) is also a R.V. on
the same space.

To appreciate the power of Corollary 1.2.19, consider the following exercise, in
which you show that every continuous function is also a Borel function.

Exercise 1.2.20. Suppose (S, ρ) is a metric space (for example, S = Rn). A func-
tion g : S 7→ [−∞,∞] is called lower semi-continuous (l.s.c.) if lim infρ(y,x)↓0 g(y) ≥
g(x), for all x ∈ S. A function g is said to be upper semi-continuous(u.s.c.) if −g
is l.s.c.

(a) Show that if g is l.s.c. then {x : g(x) ≤ b} is closed for each b ∈ R.
(b) Conclude that semi-continuous functions are Borel measurable.
(c) Conclude that continuous functions are Borel measurable.

A concrete application of Corollary 1.2.19 shows that any linear combination of
finitely many R.V.-s is a R.V.

Example 1.2.21. Suppose Xi are R.V.-s on the same measurable space and ci ∈ R.
Then, Wn(ω) =

∑n
i=1 ciXi(ω) are also R.V.-s. To see this, apply Corollary 1.2.19

for f(x1, . . . , xn) =
∑n
i=1 cixi a continuous, hence Borel (measurable) function (by

Exercise 1.2.20).

We turn to explore the closure properties of mF with respect to operations of a
limiting nature, starting with the following key theorem.
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Theorem 1.2.22. Let R = [−∞,∞] equipped with its Borel σ-algebra

BR = σ ([−∞, b) : b ∈ R) .

If Xi are R-valued R.V.-s on the same measurable space, then

inf
n
Xn, sup

n
Xn, lim inf

n→∞
Xn, lim sup

n→∞
Xn ,

are also R-valued random variables.

Proof. Pick an arbitrary b ∈ R. Then,

{ω : inf
n
Xn(ω) < b} =

∞⋃
n=1

{ω : Xn(ω) < b} =

∞⋃
n=1

X−1
n ([−∞, b)) ∈ F .

Since BR is generated by {[−∞, b) : b ∈ R}, it follows by Theorem 1.2.9 that infnXn

is an R-valued R.V.
Observing that supnXn = − infn(−Xn), we deduce from the above and Corollary

1.2.19 (for f(x) = −x), that supnXn is also an R-valued R.V.
Next, recall that

W = lim inf
n→∞

Xn = sup
n

[
inf
l≥n

Xl

]
.

By the preceding proof we have that Yn = inf l≥nXl are R-valued R.V.-s and hence
so is W = supn Yn.
Similarly to the arguments already used, we conclude the proof either by observing

that

Z = lim sup
n→∞

Xn = inf
n

[
sup
l≥n

Xl

]
,

or by observing that lim supnXn = − lim infn(−Xn). �

Remark. Since infnXn, supnXn, lim supnXn and lim infnXn may result in val-
ues ±∞ even when every Xn is R-valued, hereafter we let mF also denote the
collection of R-valued R.V.

An important corollary of this theorem deals with the existence of limits of se-
quences of R.V.

Corollary 1.2.23. For any sequence Xn ∈ mF , both

Ω0 = {ω ∈ Ω : lim inf
n→∞

Xn(ω) = lim sup
n→∞

Xn(ω)}

and

Ω1 = {ω ∈ Ω : lim inf
n→∞

Xn(ω) = lim sup
n→∞

Xn(ω) ∈ R}

are measurable sets, that is, Ω0 ∈ F and Ω1 ∈ F .

Proof. By Theorem 1.2.22 we have that Z = lim supnXn andW = lim infnXn

are two R-valued variables on the same space, with Z(ω) ≥W (ω) for all ω. Hence,
Ω1 = {ω : Z(ω)−W (ω) = 0, Z(ω) ∈ R,W (ω) ∈ R} is measurable (apply Corollary
1.2.19 for f(z, w) = z − w), as is Ω0 = W−1({∞}) ∪ Z−1({−∞}) ∪ Ω1. �

The following structural result is yet another consequence of Theorem 1.2.22.
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Corollary 1.2.24. For any d <∞ and R.V.-s Y1, . . . , Yd on the same measurable
space (Ω,F) the collection H = {h(Y1, . . . , Yd);h : Rd 7→ R Borel function} is a
vector space over R containing the constant functions, such that if Xn ∈ H are
non-negative and Xn ↑ X, an R-valued function on Ω, then X ∈ H.

Proof. By Example 1.2.21 the collection of all Borel functions is a vector
space over R which evidently contains the constant functions. Consequently, the
same applies for H. Next, suppose Xn = hn(Y1, . . . , Yd) for Borel functions hn such
that 0 ≤ Xn(ω) ↑ X(ω) for all ω ∈ Ω. Then, h(y) = supn hn(y) is by Theorem
1.2.22 an R-valued Borel function on Rd, such that X = h(Y1, . . . , Yd). Setting
h(y) = h(y) when h(y) ∈ R and h(y) = 0 otherwise, it is easy to check that h is a
real-valued Borel function. Moreover, with X : Ω 7→ R (finite valued), necessarily
X = h(Y1, . . . , Yd) as well, so X ∈ H. �

The point-wise convergence of R.V., that is Xn(ω) → X(ω), for every ω ∈ Ω is
often too strong of a requirement, as it may fail to hold as a result of the R.V. being
ill-defined for a negligible set of values of ω (that is, a set of zero measure). We
thus define the more useful, weaker notion of almost sure convergence of random
variables.

Definition 1.2.25. We say that a sequence of random variables Xn on the same
probability space (Ω,F ,P) converges almost surely if P(Ω0) = 1. We then set
X∞ = lim supn→∞Xn, and say that Xn converges almost surely to X∞, or use the

notation Xn
a.s.→ X∞.

Remark. Note that in Definition 1.2.25 we allow the limit X∞(ω) to take the
values ±∞ with positive probability. So, we say that Xn converges almost surely
to a finite limit if P(Ω1) = 1, or alternatively, if X∞ ∈ R with probability one.

We proceed with an explicit characterization of the functions measurable with
respect to a σ-algebra of the form σ(Yk, k ≤ n).

Theorem 1.2.26. Let G = σ(Yk, k ≤ n) for some n < ∞ and R.V.-s Y1, . . . , Yn
on the same measurable space (Ω,F). Then, mG = {g(Y1, . . . , Yn) : g : Rn 7→
R is a Borel function}.

Proof. From Corollary 1.2.19 we know that Z = g(Y1, . . . , Yn) is in mG for
each Borel function g : Rn 7→ R. Turning to prove the converse result, recall
part (b) of Exercise 1.2.14 that the σ-algebra G is generated by the π-system P =
{Aα : α = (α1, . . . , αn) ∈ Rn} where IAα = hα(Y1, . . . , Yn) for the Borel function

hα(y1, . . . , yn) =
∏n
k=1 1yk≤αk . Thus, in view of Corollary 1.2.24, we have by the

monotone class theorem that H = {g(Y1, . . . , Yn) : g : Rn 7→ R is a Borel function}
contains all elements of mG. �

We conclude this sub-section with a few exercises, starting with Borel measura-
bility of monotone functions (regardless of their continuity properties).

Exercise 1.2.27. Show that any monotone function g : R 7→ R is Borel measur-
able.

Next, Exercise 1.2.20 implies that the set of points at which a given function g is
discontinuous, is a Borel set.

Exercise 1.2.28. Fix an arbitrary function g : S 7→ R.
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(a) Show that for any δ > 0 the function g∗(x, δ) = inf{g(y) : ρ(x, y) < δ} is
u.s.c. and the function g∗(x, δ) = sup{g(y) : ρ(x, y) < δ} is l.s.c.

(b) Show that Dg = {x : supk g∗(x, k
−1) < infk g

∗(x, k−1)} is exactly the set
of points at which g is discontinuous.

(c) Deduce that the set Dg of points of discontinuity of g is a Borel set.

Here is an alternative characterization of B that complements Exercise 1.2.20.

Exercise 1.2.29. Show that if F is a σ-algebra of subsets of R then B ⊆ F if
and only if every continuous function f : R 7→ R is in mF (i.e. B is the smallest
σ-algebra on R with respect to which all continuous functions are measurable).

Exercise 1.2.30. Suppose Xn and X∞ are real-valued random variables and

P({ω : lim sup
n→∞

Xn(ω) ≤ X∞(ω)}) = 1 .

Show that for any ε > 0, there exists an event A with P(A) < ε and a non-random
N = N(ε), sufficiently large such that Xn(ω) < X∞(ω)+ε for all n ≥ N and every
ω ∈ Ac.
Equipped with Theorem 1.2.22 you can also strengthen Proposition 1.2.6.

Exercise 1.2.31. Show that the class mF of R-valued measurable functions, is
the smallest class containing SF and closed under point-wise limits.

Your next exercise also relies on Theorem 1.2.22.

Exercise 1.2.32. Given a measurable space (Ω,F) and Γ ⊆ Ω (not necessarily in
F), let FΓ = {A ∩ Γ : A ∈ F}.

(a) Check that (Γ,FΓ) is a measurable space.
(b) Show that any bounded, FΓ-measurable function (on Γ), is the restriction

to Γ of some bounded, F-measurable f : Ω→ R.

Finally, relying on Theorem 1.2.26 it is easy to show that a Borel function can
only reduce the amount of information quantified by the corresponding generated
σ-algebras, whereas such information content is invariant under invertible Borel
transformations, that is

Exercise 1.2.33. Show that σ(g(Y1, . . . , Yn)) ⊆ σ(Yk, k ≤ n) for any Borel func-
tion g : Rn 7→ R. Further, if Y1, . . . , Yn and Z1, . . . , Zm defined on the same proba-
bility space are such that Zk = gk(Y1, . . . , Yn), k = 1, . . . ,m and Yi = hi(Z1, . . . , Zm),
i = 1, . . . , n for some Borel functions gk : Rn 7→ R and hi : Rm 7→ R, then
σ(Y1, . . . , Yn) = σ(Z1, . . . , Zm).

1.2.3. Distribution, density and law. As defined next, every random vari-
able X induces a probability measure on its range which is called the law of X.

Definition 1.2.34. The law of a real-valued R.V. X, denoted PX , is the proba-
bility measure on (R,B) such that PX(B) = P({ω : X(ω) ∈ B}) for any Borel set
B.

Remark. Since X is a R.V., it follows that PX(B) is well defined for all B ∈ B.
Further, the non-negativity of P implies that PX is a non-negative set function on
(R,B), and since X−1(R) = Ω, also PX(R) = 1. Consider next disjoint Borel sets
Bi, observing that X−1(Bi) ∈ F are disjoint subsets of Ω such that

X−1(
⋃
i

Bi) =
⋃
i

X−1(Bi) .
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Thus, by the countable additivity of P we have that

PX(
⋃
i

Bi) = P(
⋃
i

X−1(Bi)) =
∑
i

P(X−1(Bi)) =
∑
i

PX(Bi) .

This shows that PX is also countably additive, hence a probability measure, as
claimed in Definition 1.2.34.

Note that the law PX of a R.V. X : Ω −→ R, determines the values of the
probability measure P on σ(X).

Definition 1.2.35. We write X
D
= Y and say that X equals Y in law (or in

distribution), if and only if PX = PY .

A good way to practice your understanding of the Definitions 1.2.34 and 1.2.35 is

by verifying that if X
a.s.
= Y , then also X

D
= Y (that is, any two random variables

we consider to be the same would indeed have the same law).
The next concept we define, the distribution function, is closely associated with

the law PX of the R.V.

Definition 1.2.36. The distribution function FX of a real-valued R.V. X is

FX(α) = P({ω : X(ω) ≤ α}) = PX((−∞, α]) ∀α ∈ R

Our next result characterizes the set of all functions F : R 7→ [0, 1] that are
distribution functions of some R.V.

Theorem 1.2.37. A function F : R 7→ [0, 1] is a distribution function of some
R.V. if and only if

(a) F is non-decreasing
(b) limx→∞ F (x) = 1 and limx→−∞ F (x) = 0
(c) F is right-continuous, i.e. limy↓x F (y) = F (x)

Proof. First, assuming that F = FX is a distribution function, we show that
it must have the stated properties (a)-(c). Indeed, if x ≤ y then (−∞, x] ⊆ (−∞, y],
and by the monotonicity of the probability measure PX (see part (a) of Exercise
1.1.4), we have that FX(x) ≤ FX(y), proving that FX is non-decreasing. Further,
(−∞, x] ↑ R as x ↑ ∞, while (−∞, x] ↓ ∅ as x ↓ −∞, resulting with property (b)
of the theorem by the continuity from below and the continuity from above of the
probability measure PX on R. Similarly, since (−∞, y] ↓ (−∞, x] as y ↓ x we get
the right continuity of FX by yet another application of continuity from above of
PX .
We proceed to prove the converse result, that is, assuming F has the stated prop-

erties (a)-(c), we consider the random variable X−(ω) = sup{y : F (y) < ω} on
the probability space ((0, 1],B(0,1], U) and show that FX− = F . With F having
property (b), we see that for any ω > 0 the set {y : F (y) < ω} is non-empty and
further if ω < 1 then X−(ω) <∞, so X− : (0, 1) 7→ R is well defined. The identity

(1.2.1) {ω : X−(ω) ≤ x} = {ω : ω ≤ F (x)} ,
implies that FX−(x) = U((0, F (x)]) = F (x) for all x ∈ R, and further, the sets
(0, F (x)] are all in B(0,1], implying that X− is a measurable function (i.e. a R.V.).
Turning to prove (1.2.1) note that if ω ≤ F (x) then x 6∈ {y : F (y) < ω} and so by

definition (and the monotonicity of F ), X−(ω) ≤ x. Now suppose that ω > F (x).
Since F is right continuous, this implies that F (x + ε) < ω for some ε > 0, hence
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by definition of X− also X−(ω) ≥ x + ε > x, completing the proof of (1.2.1) and
with it the proof of the theorem. �

Check your understanding of the preceding proof by showing that the collection
of distribution functions for R-valued random variables consist of all F : R 7→ [0, 1]
that are non-decreasing and right-continuous.

Remark. The construction of the random variable X−(ω) in Theorem 1.2.37 is
called Skorokhod’s representation. You can, and should, verify that the random
variable X+(ω) = sup{y : F (y) ≤ ω} would have worked equally well for that
purpose, since X+(ω) 6= X−(ω) only if X+(ω) > q ≥ X−(ω) for some rational q,
in which case by definition ω ≥ F (q) ≥ ω, so there are most countably many such
values of ω (hence P(X+ 6= X−) = 0). We shall return to this construction when
dealing with convergence in distribution in Section 3.2. An alternative approach to
Theorem 1.2.37 is to adapt the construction of the probability measure of Example
1.1.26, taking here Ω = R with the corresponding change to A and replacing the
right side of (1.1.1) with

∑r
k=1(F (bk) − F (ak)), yielding a probability measure P

on (R,B) such that P((−∞, α]) = F (α) for all α ∈ R (c.f. [Bil95, Theorem 12.4]).

Our next example highlights the possible shape of the distribution function.

Example 1.2.38. Consider Example 1.1.6 of n coin tosses, with σ-algebra Fn =
2Ωn , sample space Ωn = {H,T}n, and the probability measure Pn(A) =

∑
ω∈A pω,

where pω = 2−n for each ω ∈ Ωn (that is, ω = {ω1, ω2, · · · , ωn} for ωi ∈ {H,T}),
corresponding to independent, fair, coin tosses. Let Y (ω) = I{ω1=H} measure the
outcome of the first toss. The law of this random variable is,

PY (B) =
1

2
1{0∈B} +

1

2
1{1∈B}

and its distribution function is

FY (α) = PY ((−∞, α]) = Pn(Y (ω) ≤ α) =


1, α ≥ 1
1
2 , 0 ≤ α < 1

0, α < 0

.(1.2.2)

Note that in general σ(X) is a strict subset of the σ-algebra F (in Example 1.2.38
we have that σ(Y ) determines the probability measure for the first coin toss, but
tells us nothing about the probability measure assigned to the remaining n − 1
tosses). Consequently, though the law PX determines the probability measure P
on σ(X) it usually does not completely determine P.

Example 1.2.38 is somewhat generic. That is, if the R.V. X is a simple function (or
more generally, when the set {X(ω) : ω ∈ Ω} is countable and has no accumulation
points), then its distribution function FX is piecewise constant with jumps at the
possible values that X takes and jump sizes that are the corresponding probabilities.
Indeed, note that (−∞, y] ↑ (−∞, x) as y ↑ x, so by the continuity from below of
PX it follows that

FX(x−) := lim
y↑x

FX(y) = P({ω : X(ω) < x}) = FX(x)−P({ω : X(ω) = x}) ,

for any R.V. X.
A direct corollary of Theorem 1.2.37 shows that any distribution function has a

collection of continuity points that is dense in R.
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Exercise 1.2.39. Show that a distribution function F has at most countably many
points of discontinuity and consequently, that for any x ∈ R there exist yk and zk
at which F is continuous such that zk ↓ x and yk ↑ x.

In contrast with Example 1.2.38 the distribution function of a R.V. with a density
is continuous and almost everywhere differentiable, that is,

Definition 1.2.40. We say that a R.V. X(ω) has a probability density function
fX if and only if its distribution function FX can be expressed as

(1.2.3) FX(α) =

∫ α

−∞
fX(x)dx , ∀α ∈ R .

By Theorem 1.2.37 a probability density function fX must be an integrable, Lebesgue
almost everywhere non-negative function, with

∫
R fX(x)dx = 1. Such FX is contin-

uous with dFX
dx (x) = fX(x) except possibly on a set of values of x of zero Lebesgue

measure.

Remark. To make Definition 1.2.40 precise we temporarily assume that probabil-
ity density functions fX are Riemann integrable and interpret the integral in (1.2.3)
in this sense. In Section 1.3 we construct Lebesgue’s integral and extend the scope
of Definition 1.2.40 to Lebesgue integrable density functions fX ≥ 0 (in particular,
accommodating Borel functions fX). This is the setting we assume thereafter, with
the right-hand-side of (1.2.3) interpreted as the integral λ(fX ; (−∞, α]) of fX with
respect to the restriction on (−∞, α] of the completion λ of the Lebesgue measure on
R (c.f. Definition 1.3.59 and Example 1.3.60). Further, the function fX is uniquely
defined only as a representative of an equivalence class. That is, in this context we
consider f and g to be the same function when λ({x : f(x) 6= g(x)}) = 0.

Building on Example 1.1.26 we next detail a few classical examples of R.V. that
have densities.

Example 1.2.41. The distribution function FU of the R.V. of Example 1.1.26 is

FU (α) = P(U ≤ α) = P(U ∈ [0, α]) =


1, α > 1

α, 0 ≤ α ≤ 1

0, α < 0

(1.2.4)

and its density is fU (u) =

{
1, 0 ≤ u ≤ 1

0, otherwise
.

The exponential distribution function is

F (x) =

{
0, x ≤ 0

1− e−x, x ≥ 0
,

corresponding to the density f(x) =

{
0, x ≤ 0

e−x, x > 0
, whereas the standard normal

distribution has the density

φ(x) = (2π)−1/2e−
x2

2 ,

with no closed form expression for the corresponding distribution function Φ(x) =∫ x
φ(u)du in terms of elementary functions.
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Every real-valued R.V. X has a distribution function but not necessarily a density.
For example X = 0 w.p.1 has distribution function FX(α) = 1α≥0. Since FX is
discontinuous at 0, the R.V. X does not have a density.

Definition 1.2.42. We say that a function F is a Lebesgue singular function if
it has a zero derivative except on a set of zero Lebesgue measure.

Since the distribution function of any R.V. is non-decreasing, from real analysis
we know that it is almost everywhere differentiable. However, perhaps somewhat
surprisingly, there are continuous distribution functions that are Lebesgue singular
functions. Consequently, there are non-discrete random variables that do not have
a density. We next provide one such example.

Example 1.2.43. The Cantor set C is defined by removing (1/3, 2/3) from [0, 1]
and then iteratively removing the middle third of each interval that remains. The
uniform distribution on the (closed) set C corresponds to the distribution function
obtained by setting F (x) = 0 for x ≤ 0, F (x) = 1 for x ≥ 1, F (x) = 1/2 for
x ∈ [1/3, 2/3], then F (x) = 1/4 for x ∈ [1/9, 2/9], F (x) = 3/4 for x ∈ [7/9, 8/9],
and so on (which as you should check, satisfies the properties (a)-(c) of Theorem
1.2.37). From the definition, we see that dF/dx = 0 for almost every x /∈ C and
that the corresponding probability measure has P(Cc) = 0. As the Lebesgue measure
of C is zero, we see that the derivative of F is zero except on a set of zero Lebesgue
measure, and consequently, there is no function f for which F (x) =

∫ x
−∞ f(y)dy

holds. Though it is somewhat more involved, you may want to check that F is
everywhere continuous (c.f. [Bil95, Problem 31.2]).

Even discrete distribution functions can be quite complex. As the next example
shows, the points of discontinuity of such a function might form a (countable) dense
subset of R (which in a sense is extreme, per Exercise 1.2.39).

Example 1.2.44. Let q1, q2, . . . be an enumeration of the rational numbers and set

F (x) =

∞∑
i=1

2−i1[qi,∞)(x)

(where 1[qi,∞)(x) = 1 if x ≥ qi and zero otherwise). Clearly, such F is non-
decreasing, with limits 0 and 1 as x→ −∞ and x→∞, respectively. It is not hard
to check that F is also right continuous, hence a distribution function, whereas by
construction F is discontinuous at each rational number.

As we have that P({ω : X(ω) ≤ α}) = FX(α) for the generators {ω : X(ω) ≤ α}
of σ(X), we are not at all surprised by the following proposition.

Proposition 1.2.45. The distribution function FX uniquely determines the law
PX of X.

Proof. Consider the collection π(R) = {(−∞, b] : b ∈ R} of subsets of R. It
is easy to see that π(R) is a π-system, which generates B (see Exercise 1.1.17).
Hence, by Proposition 1.1.39, any two probability measures on (R,B) that coincide
on π(R) are the same. Since the distribution function FX specifies the restriction
of such a probability measure PX on π(R) it thus uniquely determines the values
of PX(B) for all B ∈ B. �

Different probability measures P on the measurable space (Ω,F) may “trivialize”
different σ-algebras. That is,
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Definition 1.2.46. If a σ-algebra H ⊆ F and measure µ on (Ω,F) are such that
either µ(H) = 0 or µ(Hc) = 0 for all H ∈ H, we call H a µ-trivial σ-algebra. For
probability measure µ = P this is equivalent to requiring that P(H) ∈ {0, 1} for
all H ∈ H. Similarly, a random variable X is called P-trivial or P-degenerate, if
there exists a non-random constant c such that P(X 6= c) = 0.

Using distribution functions we show next that all random variables on a P-trivial
σ-algebra are P-trivial.

Proposition 1.2.47. If a random variable X ∈ mH for a P-trivial σ-algebra H,
then X is P-trivial.

Proof. By definition, the sets {ω : X(ω) ≤ α} are in H for all α ∈ R. Since H
is P-trivial this implies that FX(α) ∈ {0, 1} for all α ∈ R. In view of Theorem 1.2.37
this is possible only if FX(α) = 1α≥c for some non-random c ∈ R (for example, set
c = inf{α : FX(α) = 1}). That is, P(X 6= c) = 0, as claimed. �

We conclude with few exercises about the support of measures on (R,B).

Exercise 1.2.48. Let µ be a measure on (R,B). A point x is said to be in the
support of µ if µ(O) > 0 for every open neighborhood O of x. Prove that the support
is a closed set whose complement is the maximal open set on which µ vanishes.

Exercise 1.2.49. Given an arbitrary closed set C ⊆ R, construct a probability
measure on (R,B) whose support is C.
Hint: Try a measure consisting of a countable collection of atoms (i.e. points of

positive probability).

As you are to check next, the discontinuity points of a distribution function are
closely related to the support of the corresponding law.

Exercise 1.2.50. The support of a distribution function F is the set SF = {x ∈ R
such that F (x+ ε)− F (x− ε) > 0 for all ε > 0}.

(a) Show that all points of discontinuity of F (·) belong to SF , and that any
isolated point of SF (that is, x ∈ SF such that (x− δ, x+ δ) ∩ SF = {x}
for some δ > 0) must be a point of discontinuity of F (·).

(b) Show that the support of the law PX of a random variable X, as defined
in Exercise 1.2.48, is the same as the support of its distribution function
FX .

1.3. Integration and the (mathematical) expectation

A key concept in probability theory is the mathematical expectation of ran-
dom variables. In Subsection 1.3.1 we provide its definition via the framework
of Lebesgue integration with respect to a measure and study properties such as
monotonicity and linearity. In Subsection 1.3.2 we consider fundamental inequal-
ities associated with the expectation. Subsection 1.3.3 is about the exchange of
integration and limit operations, complemented by uniform integrability and its
consequences in Subsection 1.3.4. Subsection 1.3.5 considers densities relative to
arbitrary measures and relates our treatment of integration and expectation to
Riemann’s integral and the classical definition of the expectation for a R.V. with
probability density. We conclude with Subsection 1.3.6 about moments of random
variables, including their values for a few well known distributions.
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1.3.1. Lebesgue integral, linearity and monotonicity. Let SF+ denote
the collection of non-negative simple functions with respect to the given measurable
space (S,F) and mF+ denote the collection of [0,∞]-valued measurable functions
on this space. We next define Lebesgue’s integral with respect to any measure µ
on (S,F), first for ϕ ∈ SF+, then extending it to all f ∈ mF+. With the notation
µ(f) :=

∫
S f(s)dµ(s) for this integral, we also denote by µ0(·) the more restrictive

integral, defined only on SF+, so as to clarify the role each of these plays in some of
our proofs. We call an R-valued measurable function f ∈ mF for which µ(|f |) <∞,
a µ-integrable function, and denote the collection of all µ-integrable functions by
L1(S,F , µ), extending the definition of the integral µ(f) to all f ∈ L1(S,F , µ).

Definition 1.3.1. Fix a measure space (S,F , µ) and define µ(f) by the following
four step procedure:

Step 1. Define µ0(IA) := µ(A) for each A ∈ F .

Step 2. Any ϕ ∈ SF+ has a representation ϕ =
n∑
l=1

clIAl for some finite n < ∞,

non-random cl ∈ [0,∞] and sets Al ∈ F , yielding the definition of the integral via

µ0(ϕ) :=

n∑
l=1

clµ(Al) ,

where we adopt hereafter the convention that ∞× 0 = 0×∞ = 0.

Step 3. For f ∈ mF+ we define

µ(f) := sup{µ0(ϕ) : ϕ ∈ SF+, ϕ ≤ f}.

Step 4. For f ∈ mF let f+ = max(f, 0) ∈ mF+ and f− = −min(f, 0) ∈ mF+.
We then set µ(f) = µ(f+) − µ(f−) provided either µ(f+) < ∞ or µ(f−) < ∞. In
particular, this applies whenever f ∈ L1(S,F , µ), for then µ(f+) + µ(f−) = µ(|f |)
is finite, hence µ(f) is well defined and finite valued.
We use the notation

∫
S f(s)dµ(s) for µ(f) which we call Lebesgue integral of f

with respect to the measure µ.

The expectation E[X] of a random variable X on a probability space (Ω,F ,P) is
merely Lebesgue’s integral

∫
X(ω)dP(ω) of X with respect to P. That is,

Step 1. E [IA] = P(A) for any A ∈ F .

Step 2. Any ϕ ∈ SF+ has a representation ϕ =
n∑
l=1

clIAl for some non-random

n <∞, cl ≥ 0 and sets Al ∈ F , to which corresponds

E[ϕ] =

n∑
l=1

clE[IAl ] =

n∑
l=1

clP(Al) .

Step 3. For X ∈ mF+ define

EX = sup{EY : Y ∈ SF+, Y ≤ X}.

Step 4. Represent X ∈ mF as X = X+ −X−, where X+ = max(X, 0) ∈ mF+ and
X− = −min(X, 0) ∈ mF+, with the corresponding definition

EX = EX+ −EX− ,

provided either EX+ <∞ or EX− <∞.
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Remark. Note that we may have EX = ∞ while X(ω) < ∞ for all ω. For
instance, take the random variable X(ω) = ω for Ω = {1, 2, . . .} and F = 2Ω. If
P(ω = k) = ck−2 with c = [

∑∞
k=1 k

−2]−1 a positive, finite normalization constant,
then EX = c

∑∞
k=1 k

−1 =∞.

Similar to the notation of µ-integrable functions introduced in the last step of
the definition of Lebesgue’s integral, we have the following definition for random
variables.

Definition 1.3.2. We say that a random variable X is (absolutely) integrable,
or X has finite expectation, if E|X| <∞, that is, both EX+ <∞ and EX− <∞.
Fixing 1 ≤ q < ∞ we denote by Lq(Ω,F ,P) the collection of random variables X
on (Ω,F) for which ||X||q = [E|X|q]1/q < ∞. For example, L1(Ω,F ,P) denotes
the space of all (absolutely) integrable random-variables. We use the short notation
Lq when the probability space (Ω,F ,P) is clear from the context.

We next verify that Lebesgue’s integral of each function f is assigned a unique
value in Definition 1.3.1. To this end, we focus on µ0 : SF+ 7→ [0,∞] of Step 2 of
our definition and derive its structural properties, such as monotonicity, linearity
and invariance to a change of argument on a µ-negligible set.

Lemma 1.3.3. µ0(ϕ) assigns a unique value to each ϕ ∈ SF+. Further,
a). µ0(ϕ) = µ0(ψ) if ϕ,ψ ∈ SF+ are such that µ({s : ϕ(s) 6= ψ(s)}) = 0.
b). µ0 is linear, that is

µ0(ϕ+ ψ) = µ0(ϕ) + µ0(ψ) , µ0(cϕ) = cµ0(ϕ) ,

for any ϕ,ψ ∈ SF+ and c ≥ 0.
c). µ0 is monotone, that is µ0(ϕ) ≤ µ0(ψ) if ϕ(s) ≤ ψ(s) for all s ∈ S.

Proof. Note that a non-negative simple function ϕ ∈ SF+ has many different
representations as weighted sums of indicator functions. Suppose for example that

(1.3.1)

n∑
l=1

clIAl(s) =

m∑
k=1

dkIBk(s) ,

for some cl ≥ 0, dk ≥ 0, Al ∈ F , Bk ∈ F and all s ∈ S. There exists a finite
partition of S to at most 2n+m disjoint sets Ci such that each of the sets Al and
Bk is a union of some Ci, i = 1, . . . , 2n+m. Expressing both sides of (1.3.1) as finite
weighted sums of ICi , we necessarily have for each i the same weight on both sides.
Due to the (finite) additivity of µ over unions of disjoint sets Ci, we thus get after
some algebra that

(1.3.2)

n∑
l=1

clµ(Al) =

m∑
k=1

dkµ(Bk) .

Consequently, µ0(ϕ) is well-defined and independent of the chosen representation
for ϕ. Further, the conclusion (1.3.2) applies also when the two sides of (1.3.1)
differ for s ∈ C as long as µ(C) = 0, hence proving the first stated property of the
lemma.
Choosing the representation of ϕ + ψ based on the representations of ϕ and ψ

immediately results with the stated linearity of µ0. Given this, if ϕ(s) ≤ ψ(s) for all
s, then ψ = ϕ+ ξ for some ξ ∈ SF+, implying that µ0(ψ) = µ0(ϕ) +µ0(ξ) ≥ µ0(ϕ),
as claimed. �
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Remark. The stated monotonicity of µ0 implies that µ(·) coincides with µ0(·) on
SF+. As µ0 is uniquely defined for each f ∈ SF+ and f = f+ when f ∈ mF+, it
follows that µ(f) is uniquely defined for each f ∈ mF+ ∪ L1(S,F , µ).

All three properties of µ0 (hence µ) stated in Lemma 1.3.3 for functions in SF+

extend to all of mF+ ∪L1. Indeed, the facts that µ(cf) = cµ(f), that µ(f) ≤ µ(g)
whenever 0 ≤ f ≤ g, and that µ(f) = µ(g) whenever µ({s : f(s) 6= g(s)}) = 0 are
immediate consequences of our definition (once we have these for f, g ∈ SF+). Since
f ≤ g implies f+ ≤ g+ and f− ≥ g−, the monotonicity of µ(·) extends to functions
in L1 (by Step 4 of our definition). To prove that µ(h + g) = µ(h) + µ(g) for all
h, g ∈ mF+ ∪ L1 requires an application of the monotone convergence theorem (in
short MON), which we now state, while deferring its proof to Subsection 1.3.3.

Theorem 1.3.4 (Monotone convergence theorem). If 0 ≤ hn(s) ↑ h(s) for
all s ∈ S and hn ∈ mF+, then µ(hn) ↑ µ(h) ≤ ∞.

Indeed, recall that while proving Proposition 1.2.6 we constructed the sequence
fn such that for every g ∈ mF+ we have fn(g) ∈ SF+ and fn(g) ↑ g. Specifying
g, h ∈ mF+ we have that fn(h) + fn(g) ∈ SF+. So, by Lemma 1.3.3,

µ(fn(h)+fn(g)) = µ0(fn(h)+fn(g)) = µ0(fn(h))+µ0(fn(g)) = µ(fn(h))+µ(fn(g)) .

Since fn(h) ↑ h and fn(h) + fn(g) ↑ h+ g, by monotone convergence,

µ(h+ g) = lim
n→∞

µ(fn(h) + fn(g)) = lim
n→∞

µ(fn(h)) + lim
n→∞

µ(fn(g)) = µ(h) + µ(g) .

To extend this result to g, h ∈ mF+∪L1, note that h−+ g− = f + (h+ g)− ≥ f for
some f ∈ mF+ such that h++g+ = f+(h+g)+. Since µ(h−) <∞ and µ(g−) <∞,
by linearity and monotonicity of µ(·) on mF+ necessarily also µ(f) < ∞ and the
linearity of µ(h+ g) on mF+ ∪L1 follows by elementary algebra. In conclusion, we
have just proved that

Proposition 1.3.5. The integral µ(f) assigns a unique value to each f ∈ mF+ ∪
L1(S,F , µ). Further,
a). µ(f) = µ(g) whenever µ({s : f(s) 6= g(s)}) = 0.
b). µ is linear, that is for any f, h, g ∈ mF+ ∪ L1 and c ≥ 0,

µ(h+ g) = µ(h) + µ(g) , µ(cf) = cµ(f) .

c). µ is monotone, that is µ(f) ≤ µ(g) if f(s) ≤ g(s) for all s ∈ S.

Our proof of the identity µ(h + g) = µ(h) + µ(g) is an example of the following
general approach to proving that certain properties hold for all h ∈ L1.

Definition 1.3.6 (Standard Machine). To prove the validity of a certain property
for all h ∈ L1(S,F , µ), break your proof to four easier steps, following those of
Definition 1.3.1.
Step 1. Prove the property for h which is an indicator function.
Step 2. Using linearity, extend the property to all SF+.
Step 3. Using MON extend the property to all h ∈ mF+.
Step 4. Extend the property in question to h ∈ L1 by writing h = h+ − h− and
using linearity.

Here is another application of the standard machine.
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Exercise 1.3.7. Suppose that a probability measure P on (R,B) is such that
P(B) = λ(fIB) for the Lebesgue measure λ on R, some non-negative Borel function
f(·) and all B ∈ B. Using the standard machine, prove that then P(h) = λ(fh) for
any Borel function h such that either h ≥ 0 or λ(f |h|) <∞.
Hint: See the proof of Proposition 1.3.56.

We shall see more applications of the standard machine later (for example, when
proving Proposition 1.3.56 and Theorem 1.3.61).
We next strengthen the non-negativity and monotonicity properties of Lebesgue’s

integral µ(·) by showing that

Lemma 1.3.8. If µ(h) = 0 for h ∈ mF+, then µ({s : h(s) > 0}) = 0. Conse-
quently, if for f, g ∈ L1(S,F , µ) both µ(f) = µ(g) and µ({s : f(s) > g(s)}) = 0,
then µ({s : f(s) 6= g(s)}) = 0.

Proof. By continuity below of the measure µ we have that

µ({s : h(s) > 0}) = lim
n→∞

µ({s : h(s) > n−1})

(see Exercise 1.1.4). Hence, if µ({s : h(s) > 0}) > 0, then for some n <∞,

0 < n−1µ({s : h(s) > n−1}) = µ0(n−1Ih>n−1) ≤ µ(h) ,

where the right most inequality is a consequence of the definition of µ(h) and the
fact that h ≥ n−1Ih>n−1 ∈ SF+. Thus, our assumption that µ(h) = 0 must imply
that µ({s : h(s) > 0}) = 0.

To prove the second part of the lemma, consider h̃ = g − f which is non-negative
outside a set N ∈ F such that µ(N) = 0. Hence, h = (g − f)INc ∈ mF+ and

0 = µ(g) − µ(f) = µ(h̃) = µ(h) by Proposition 1.3.5, implying that µ({s : h(s) >

0}) = 0 by the preceding proof. The same applies for h̃ and the statement of the
lemma follows. �

We conclude this subsection by stating the results of Proposition 1.3.5 and Lemma
1.3.8 in terms of the expectation on a probability space (Ω,F ,P).

Theorem 1.3.9. The mathematical expectation E[X] is well defined for every R.V.
X on (Ω,F ,P) provided either X ≥ 0 almost surely, or X ∈ L1(Ω,F ,P). Further,

(a) EX = EY whenever X
a.s.
= Y .

(b) The expectation is a linear operation, for if Y and Z are integrable R.V. then
for any constants α, β the R.V. αY +βZ is integrable and E(αY +βZ) = α(EY )+
β(EZ). The same applies when Y, Z ≥ 0 almost surely and α, β ≥ 0.
(c) The expectation is monotone. That is, if Y and Z are either integrable or
non-negative and Y ≥ Z almost surely, then EY ≥ EZ. Further, if Y and Z are

integrable with Y ≥ Z a.s. and EY = EZ, then Y
a.s.
= Z.

(d) Constants are invariant under the expectation. That is, if X
a.s.
= c for non-

random c ∈ (−∞,∞], then EX = c.

Remark. Part (d) of the theorem relies on the fact that P is a probability mea-
sure, namely P(Ω) = 1. Indeed, it is obtained by considering the expectation of
the simple function cIΩ to which X equals with probability one.

The linearity of the expectation (i.e. part (b) of the preceding theorem), is often
extremely helpful when looking for an explicit formula for it. We next provide a
few examples of this.
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Exercise 1.3.10. Write (Ω,F ,P) for a random experiment whose outcome is a
recording of the results of n independent rolls of a balanced six-sided dice (including
their order). Compute the expectation of the random variable D(ω) which counts
the number of different faces of the dice recorded in these n rolls.

Exercise 1.3.11 (Matching). In a random matching experiment, we apply a
random permutation π to the integers {1, 2, . . . , n}, where each of the possible n!
permutations is equally likely. Let Zi = I{π(i)=i} be the random variable indicating
whether i = 1, 2, . . . , n is a fixed point of the random permutation, and Xn =∑n
i=1 Zi count the number of fixed points of the random permutation (i.e. the

number of self-matchings). Show that E[Xn(Xn − 1) · · · (Xn − k + 1)] = 1 for
k = 1, 2, . . . , n.

Similarly, here is an elementary application of the monotonicity of the expectation
(i.e. part (c) of the preceding theorem).

Exercise 1.3.12. Suppose an integrable random variable X is such that E(XIA) =
0 for each A ∈ σ(X). Show that necessarily X = 0 almost surely.

1.3.2. Inequalities. The linearity of the expectation often allows us to com-
pute EX even when we cannot compute the distribution function FX . In such cases
the expectation can be used to bound tail probabilities, based on the following clas-
sical inequality.

Theorem 1.3.13 (Markov’s inequality). Suppose ψ : R 7→ [0,∞] is a Borel
function and let ψ∗(A) = inf{ψ(y) : y ∈ A} for any A ∈ B. Then for any R.V. X,

ψ∗(A)P(X ∈ A) ≤ E(ψ(X)IX∈A) ≤ Eψ(X).

Proof. By the definition of ψ∗(A) and non-negativity of ψ we have that

ψ∗(A)Ix∈A ≤ ψ(x)Ix∈A ≤ ψ(x) ,

for all x ∈ R. Therefore, ψ∗(A)IX∈A ≤ ψ(X)IX∈A ≤ ψ(X) for every ω ∈ Ω.
We deduce the stated inequality by the monotonicity of the expectation and the
identity E(ψ∗(A)IX∈A) = ψ∗(A)P(X ∈ A) (due to Step 2 of Definition 1.3.1). �

We next specify three common instances of Markov’s inequality.

Example 1.3.14. (a). Taking ψ(x) = x+ and A = [a,∞) for some a > 0 we have
that ψ∗(A) = a. Markov’s inequality is then

P(X ≥ a) ≤ EX+

a
,

which is particularly appealing when X ≥ 0, so EX+ = EX.
(b). Taking ψ(x) = |x|q and A = (−∞,−a] ∪ [a,∞) for some a > 0, we get that
ψ∗(A) = aq. Markov’s inequality is then aqP(|X| ≥ a) ≤ E|X|q. Considering q = 2
and X = Y −EY for Y ∈ L2, this amounts to

P(|Y −EY | ≥ a) ≤ Var(Y )

a2
,

which we call Chebyshev’s inequality (c.f. Definition 1.3.67 for the variance and
moments of random variable Y ).
(c). Taking ψ(x) = eθx for some θ > 0 and A = [a,∞) for some a ∈ R we have
that ψ∗(A) = eθa. Markov’s inequality is then

P(X ≥ a) ≤ e−θaEeθX .
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This bound provides an exponential decay in a, at the cost of requiring X to have
finite exponential moments.

In general, we cannot compute EX explicitly from the Definition 1.3.1 except
for discrete R.V.s and for R.V.s having a probability density function. We thus
appeal to the properties of the expectation listed in Theorem 1.3.9, or use various
inequalities to bound one expectation by another. To this end, we start with
Jensen’s inequality, dealing with the effect that a convex function makes on the
expectation.

Proposition 1.3.15 (Jensen’s inequality). Suppose g(·) is a convex function
on an open interval G of R, that is,

λg(x) + (1− λ)g(y) ≥ g(λx+ (1− λ)y) ∀ x, y ∈ G, 0 ≤ λ ≤ 1.

If X is an integrable R.V. with P(X ∈ G) = 1 and g(X) is also integrable, then
E(g(X)) ≥ g(EX).

Proof. The convexity of g(·) on G implies that g(·) is continuous on G (hence
g(X) is a random variable) and the existence for each c ∈ G of b = b(c) ∈ R such
that

(1.3.3) g(x) ≥ g(c) + b(x− c), ∀x ∈ G .

Since G is an open interval of R with P(X ∈ G) = 1 and X is integrable, it follows
that EX ∈ G. Assuming (1.3.3) holds for c = EX, that X ∈ G a.s., and that both
X and g(X) are integrable, we have by Theorem 1.3.9 that

E(g(X)) = E(g(X)IX∈G) ≥ E[(g(c)+b(X−c))IX∈G] = g(c)+b(EX−c) = g(EX) ,

as stated. To derive (1.3.3) note that if (c− h2, c+ h1) ⊆ G for positive h1 and h2,
then by convexity of g(·),

h2

h1 + h2
g(c+ h1) +

h1

h1 + h2
g(c− h2) ≥ g(c) ,

which amounts to [g(c + h1) − g(c)]/h1 ≥ [g(c) − g(c − h2)]/h2. Considering the
infimum over h1 > 0 and the supremum over h2 > 0 we deduce that

inf
h>0,c+h∈G

g(c+ h)− g(c)

h
:= (D+g)(c) ≥ (D−g)(c) := sup

h>0,c−h∈G

g(c)− g(c− h)

h
.

With G an open set, obviously (D−g)(x) > −∞ and (D+g)(x) <∞ for any x ∈ G
(in particular, g(·) is continuous on G). Now for any b ∈ [(D−g)(c), (D+g)(c)] ⊂ R
we get (1.3.3) out of the definition of D+g and D−g. �

Remark. Since g(·) is convex if and only if −g(·) is concave, we may as well state
Jensen’s inequality for concave functions, just reversing the sign of the inequality in
this case. A trivial instance of Jensen’s inequality happens when X(ω) = xIA(ω) +
yIAc(ω) for some x, y ∈ R and A ∈ F such that P(A) = λ. Then,

EX = xP(A) + yP(Ac) = xλ+ y(1− λ) ,

whereas g(X(ω)) = g(x)IA(ω) + g(y)IAc(ω). So,

Eg(X) = g(x)λ+ g(y)(1− λ) ≥ g(xλ+ y(1− λ)) = g(EX) ,

as g is convex.
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Applying Jensen’s inequality, we show that the spaces Lq(Ω,F ,P) of Definition
1.3.2 are nested in terms of the parameter q ≥ 1.

Lemma 1.3.16. Fixing Y ∈ mF , the mapping q 7→ ||Y ||q = [E|Y |q]1/q is non-
decreasing for q > 0. Hence, the space Lq(Ω,F ,P) is contained in Lr(Ω,F ,P) for
any r ≤ q.

Proof. Fix q > r > 0 and consider the sequence of bounded R.V. Xn(ω) =

{min(|Y (ω)|, n)}r. Obviously, Xn and X
q/r
n are both in L1. Apply Jensen’s In-

equality for the convex function g(x) = |x|q/r and the non-negative R.V. Xn, to
get that

(EXn)
q
r ≤ E(X

q
r
n ) = E[{min(|Y |, n)}q] ≤ E(|Y |q) .

For n ↑ ∞ we have that Xn ↑ |Y |r, so by monotone convergence E (|Y |r)
q
r ≤

(E|Y |q). Taking the 1/q-th power yields the stated result ||Y ||r ≤ ||Y ||q ≤ ∞. �

We next bound the expectation of the product of two R.V. while assuming nothing
about the relation between them.

Proposition 1.3.17 (Hölder’s inequality). Let X,Y be two random variables
on the same probability space. If p, q > 1 with 1

p + 1
q = 1, then

(1.3.4) E|XY | ≤ ||X||p||Y ||q .

Remark. Recall that if XY is integrable then E|XY | is by itself an upper bound
on |[EXY ]|. The special case of p = q = 2 in Hölder’s inequality

E|XY | ≤
√

EX2
√

EY 2 ,

is called the Cauchy-Schwarz inequality.

Proof. Fixing p > 1 and q = p/(p− 1) let λ = ||X||p and ξ = ||Y ||q. If λ = 0

then |X|p a.s.
= 0 (see Theorem 1.3.9). Likewise, if ξ = 0 then |Y |q a.s.= 0. In either

case, the inequality (1.3.4) trivially holds. As this inequality also trivially holds
when either λ =∞ or ξ =∞, we may and shall assume hereafter that both λ and
ξ are finite and strictly positive. Recall that

xp

p
+
yq

q
− xy ≥ 0, ∀x, y ≥ 0

(c.f. [Dur10, Page 21] where it is proved by considering the first two derivatives
in x). Taking x = |X|/λ and y = |Y |/ξ, we have by linearity and monotonicity of
the expectation that

1 =
1

p
+

1

q
=

E|X|p

λpp
+

E|Y |q

ξqq
≥ E|XY |

λξ
,

yielding the stated inequality (1.3.4). �

A direct consequence of Hölder’s inequality is the triangle inequality for the norm
||X||p in Lp(Ω,F ,P), that is,

Proposition 1.3.18 (Minkowski’s inequality). If X,Y ∈ Lp(Ω,F ,P), p ≥ 1,
then ||X + Y ||p ≤ ||X||p + ||Y ||p.
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Proof. With |X+Y | ≤ |X|+ |Y |, by monotonicity of the expectation we have
the stated inequality in case p = 1. Considering hereafter p > 1, it follows from
Hölder’s inequality (Proposition 1.3.17) that

E|X + Y |p = E(|X + Y ||X + Y |p−1)

≤ E(|X||X + Y |p−1) + E(|Y ||X + Y |p−1)

≤ (E|X|p)
1
p (E|X + Y |(p−1)q)

1
q + (E|Y |p)

1
p (E|X + Y |(p−1)q)

1
q

= (||X||p + ||Y ||p) (E|X + Y |p)
1
q

(recall that (p− 1)q = p). Since X,Y ∈ Lp and

|x+ y|p ≤ (|x|+ |y|)p ≤ 2p−1(|x|p + |y|p), ∀x, y ∈ R, p > 1,

if follows that ap = E|X + Y |p < ∞. There is nothing to prove unless ap > 0, in

which case dividing by (ap)
1/q we get that

(E|X + Y |p)1− 1
q ≤ ||X||p + ||Y ||p ,

giving the stated inequality (since 1− 1
q = 1

p ). �

Remark. Jensen’s inequality applies only for probability measures, while both
Hölder’s inequality µ(|fg|) ≤ µ(|f |p)1/pµ(|g|q)1/q and Minkowski’s inequality ap-
ply for any measure µ, with exactly the same proof we provided for probability
measures.

To practice your understanding of Markov’s inequality, solve the following exercise.

Exercise 1.3.19. Let X be a non-negative random variable with Var(X) ≤ 1/2.
Show that then P(−1 + EX ≤ X ≤ 2EX) ≥ 1/2.

To practice your understanding of the proof of Jensen’s inequality, try to prove
its extension to convex functions on Rn.

Exercise 1.3.20. Suppose g : Rn → R is a convex function and X1, X2, . . . , Xn

are integrable random variables, defined on the same probability space and such that
g(X1, . . . , Xn) is integrable. Show that then Eg(X1, . . . , Xn) ≥ g(EX1, . . . ,EXn).
Hint: Use convex analysis to show that g(·) is continuous and further that for any
c ∈ Rn there exists b ∈ Rn such that g(x) ≥ g(c) + 〈b, x − c〉 for all x ∈ Rn (with
〈·, ·〉 denoting the inner product of two vectors in Rn).

Exercise 1.3.21. Let Y ≥ 0 with v = E(Y 2) <∞.

(a) Show that for any 0 ≤ a < EY ,

P(Y > a) ≥ (EY − a)2

E(Y 2)

Hint: Apply the Cauchy-Schwarz inequality to Y IY >a.
(b) Show that (E|Y 2 − v|)2 ≤ 4v(v − (EY )2).
(c) Derive the second Bonferroni inequality,

P(

n⋃
i=1

Ai) ≥
n∑
i=1

P(Ai)−
∑

1≤j<i≤n

P(Ai ∩Aj) .

How does it compare with the bound of part (a) for Y =
∑n
i=1 IAi?
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1.3.3. Convergence, limits and expectation. Asymptotic behavior is a
key issue in probability theory. We thus explore here various notions of convergence
of random variables and the relations among them, focusing on the integrability
conditions needed for exchanging the order of limit and expectation operations.
Unless explicitly stated otherwise, throughout this section we assume that all R.V.
are defined on the same probability space (Ω,F ,P).
In Definition 1.2.25 we have encountered the convergence almost surely of R.V. A

weaker notion of convergence is convergence in probability as defined next.

Definition 1.3.22. We say that R.V. Xn converge to a given R.V. X∞ in prob-

ability, denoted Xn
p→ X∞, if P({ω : |Xn(ω) −X∞(ω)| > ε}) → 0 as n → ∞, for

any fixed ε > 0. This is equivalent to |Xn −X∞|
p→ 0, and is a special case of the

convergence in µ-measure of fn ∈ mF to f∞ ∈ mF , that is µ({s : |fn(s)−f∞(s)| >
ε})→ 0 as n→∞, for any fixed ε > 0.

Our next exercise and example clarify the relationship between convergence almost
surely and convergence in probability.

Exercise 1.3.23. Verify that convergence almost surely to a finite limit implies

convergence in probability, that is if Xn
a.s.→ X∞ ∈ R then Xn

p→ X∞.

Remark 1.3.24. Generalizing Definition 1.3.22, for a separable metric space (S, ρ)
we say that (S,BS)-valued random variablesXn converge toX∞ in probability if and
only if for every ε > 0, P(ρ(Xn, X∞) > ε) → 0 as n → ∞ (see [Dud89, Section
9.2] for more details). Equipping S = R with a suitable metric (for example,
ρ(x, y) = |ϕ(x) − ϕ(y)| with ϕ(x) = x/(1 + |x|) : R 7→ [−1, 1]), this definition
removes the restriction to X∞ finite in Exercise 1.3.23.

In general, Xn
p→ X∞ does not imply that Xn

a.s.→ X∞.

Example 1.3.25. Consider the probability space ((0, 1],B(0,1], U) and Xn(ω) =
1[tn,tn+sn](ω) with sn ↓ 0 as n → ∞ slowly enough and tn ∈ [0, 1 − sn] are such
that any ω ∈ (0, 1] is in infinitely many intervals [tn, tn + sn]. The latter property
applies if tn = (i− 1)/k and sn = 1/k when n = k(k − 1)/2 + i, i = 1, 2, . . . , k and

k = 1, 2, . . . (plot the intervals [tn, tn + sn] to convince yourself). Then, Xn
p→ 0

(since sn = U(Xn 6= 0)→ 0), whereas fixing each ω ∈ (0, 1], we have that Xn(ω) =
1 for infinitely many values of n, hence Xn does not converge a.s. to zero.

Associated with each space Lq(Ω,F ,P) is the notion of Lq convergence which we
now define.

Definition 1.3.26. We say that Xn converges in Lq to X∞, denoted Xn
Lq→ X∞,

if Xn, X∞ ∈ Lq and ||Xn − X∞||q → 0 as n → ∞ (i.e., E (|Xn −X∞|q) → 0 as
n→∞.

Remark. For q = 2 we have the explicit formula

||Xn −X||22 = E(X2
n)− 2E(XnX) + E(X2).

Thus, it is often easiest to check convergence in L2.

The following immediate corollary of Lemma 1.3.16 provides an ordering of Lq

convergence in terms of the parameter q.

Corollary 1.3.27. If Xn
Lq→ X∞ and q ≥ r, then Xn

Lr→ X∞.
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Next note that the Lq convergence implies the convergence of the expectation of
|Xn|q.

Exercise 1.3.28. Fixing q ≥ 1, use Minkowski’s inequality (Proposition 1.3.18),

to show that if Xn
Lq→ X∞, then E|Xn|q→E|X∞|q and for q = 1, 2, 3, . . . also

EXq
n → EXq

∞.

Further, it follows from Markov’s inequality that the convergence in Lq implies
convergence in probability (for any value of q).

Proposition 1.3.29. If Xn
Lq→ X∞, then Xn

p→ X∞.

Proof. Fixing q > 0 recall that Markov’s inequality results with

P(|Y | > ε) ≤ ε−qE[|Y |q] ,

for any R.V. Y and any ε > 0 (c.f part (b) of Example 1.3.14). The assumed
convergence in Lq means that E[|Xn −X∞|q]→ 0 as n→∞, so taking Y = Yn =
Xn −X∞, we necessarily have also P(|Xn −X∞| > ε)→ 0 as n→∞. Since ε > 0

is arbitrary, we see that Xn
p→ X∞ as claimed. �

The converse of Proposition 1.3.29 does not hold in general. As we next demon-
strate, even the stronger almost surely convergence (see Exercise 1.3.23), and having
a non-random constant limit are not enough to guarantee the Lq convergence, for
any q > 0.

Example 1.3.30. Fixing q > 0, consider the probability space ((0, 1],B(0,1], U)

and the R.V. Yn(ω) = n1/qI[0,n−1](ω). Since Yn(ω) = 0 for all n ≥ n0 and some

finite n0 = n0(ω), it follows that Yn(ω)
a.s.→ 0 as n → ∞. However, E[|Yn|q] =

nU([0, n−1]) = 1 for all n, so Yn does not converge to zero in Lq (see Exercise
1.3.28).

Considering Example 1.3.25, where Xn
Lq→ 0 while Xn does not converge a.s. to

zero, and Example 1.3.30 which exhibits the converse phenomenon, we conclude
that the convergence in Lq and the a.s. convergence are in general non comparable,
and neither one is a consequence of convergence in probability.
Nevertheless, a sequence Xn can have at most one limit, regardless of which con-

vergence mode is considered.

Exercise 1.3.31. Check that if Xn
Lq→ X and Xn

a.s.→ Y then X
a.s.
= Y .

Though we have just seen that in general the order of the limit and expectation
operations is non-interchangeable, we examine for the remainder of this subsection
various conditions which do allow for such an interchange. Note in passing that
upon proving any such result under certain point-wise convergence conditions, we
may with no extra effort relax these to the corresponding almost sure convergence
(and the same applies for integrals with respect to measures, see part (a) of Theorem
1.3.9, or that of Proposition 1.3.5).

Turning to do just that, we first outline the results which apply in the more
general measure theory setting, starting with the proof of the monotone convergence
theorem.



1.3. INTEGRATION AND THE (MATHEMATICAL) EXPECTATION 41

Proof of Theorem 1.3.4. By part (c) of Proposition 1.3.5, the proof of
which did not use Theorem 1.3.4, we know that µ(hn) is a non-decreasing sequence
that is bounded above by µ(h). It therefore suffices to show that

lim
n→∞

µ(hn) = sup
n
{µ0(ψ) : ψ ∈ SF+, ψ ≤ hn}

≥ sup{µ0(ϕ) : ϕ ∈ SF+, ϕ ≤ h} = µ(h)(1.3.5)

(see Step 3 of Definition 1.3.1). That is, it suffices to find for each non-negative
simple function ϕ ≤ h a sequence of non-negative simple functions ψn ≤ hn such
that µ0(ψn) → µ0(ϕ) as n → ∞. To this end, fixing ϕ, we may and shall choose

without loss of generality a representation ϕ =
m∑
l=1

clIAl such that Al ∈ F are

disjoint and further clµ(Al) > 0 for l = 1, . . . ,m (see proof of Lemma 1.3.3). Using
hereafter the notation f∗(A) = inf{f(s) : s ∈ A} for f ∈ mF+ and A ∈ F , the
condition ϕ(s) ≤ h(s) for all s ∈ S is equivalent to cl ≤ h∗(Al) for all l, so

µ0(ϕ) ≤
m∑
l=1

h∗(Al)µ(Al) = V .

Suppose first that V <∞, that is 0 < h∗(Al)µ(Al) <∞ for all l. In this case, fixing
λ < 1, consider for each n the disjoint sets Al,λ,n = {s ∈ Al : hn(s) ≥ λh∗(Al)} ∈ F
and the corresponding

ψλ,n(s) =

m∑
l=1

λh∗(Al)IAl,λ,n(s) ∈ SF+ ,

where ψλ,n(s) ≤ hn(s) for all s ∈ S. If s ∈ Al then h(s) > λh∗(Al). Thus, hn ↑ h
implies that Al,λ,n ↑ Al as n→∞, for each l. Consequently, by definition of µ(hn)
and the continuity from below of µ,

lim
n→∞

µ(hn) ≥ lim
n→∞

µ0(ψλ,n) = λV .

Taking λ ↑ 1 we deduce that limn µ(hn) ≥ V ≥ µ0(ϕ). Next suppose that V =∞,
so without loss of generality we may and shall assume that h∗(A1)µ(A1) = ∞.
Fixing x ∈ (0, h∗(A1)) let A1,x,n = {s ∈ A1 : hn(s) ≥ x} ∈ F noting that A1,x,n ↑
A1 as n → ∞ and ψx,n(s) = xIA1,x,n(s) ≤ hn(s) for all n and s ∈ S, is a non-
negative simple function. Thus, again by continuity from below of µ we have that

lim
n→∞

µ(hn) ≥ lim
n→∞

µ0(ψx,n) = xµ(A1) .

Taking x ↑ h∗(A1) we deduce that limn µ(hn) ≥ h∗(A1)µ(A1) =∞, completing the
proof of (1.3.5) and that of the theorem. �

Considering probability spaces, Theorem 1.3.4 tells us that we can exchange the
order of the limit and the expectation in case of monotone upward a.s. convergence
of non-negative R.V. (with the limit possibly infinite). That is,

Theorem 1.3.32 (Monotone convergence theorem). If Xn ≥ 0 and Xn(ω) ↑
X∞(ω) for almost every ω, then EXn ↑ EX∞.

In Example 1.3.30 we have a point-wise convergent sequence of R.V. whose ex-
pectations exceed that of their limit. In a sense this is always the case, as stated
next in Fatou’s lemma (which is a direct consequence of the monotone convergence
theorem).
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Lemma 1.3.33 (Fatou’s lemma). For any measure space (S,F , µ) and any fn ∈
mF , if fn(s) ≥ g(s) for some µ-integrable function g, all n and µ-almost-every
s ∈ S, then

(1.3.6) lim inf
n→∞

µ(fn) ≥ µ(lim inf
n→∞

fn) .

Alternatively, if fn(s) ≤ g(s) for all n and a.e. s, then

(1.3.7) lim sup
n→∞

µ(fn) ≤ µ(lim sup
n→∞

fn) .

Proof. Assume first that fn ∈ mF+ and let hn(s) = infk≥n fk(s), noting
that hn ∈ mF+ is a non-decreasing sequence, whose point-wise limit is h(s) :=
lim infn→∞ fn(s). By the monotone convergence theorem, µ(hn) ↑ µ(h). Since
fn(s) ≥ hn(s) for all s ∈ S, the monotonicity of the integral (see Proposition 1.3.5)
implies that µ(fn) ≥ µ(hn) for all n. Considering the lim inf as n → ∞ we arrive
at (1.3.6).
Turning to extend this inequality to the more general setting of the lemma, note

that our conditions imply that fn
a.e.
= g + (fn − g)+ for each n. Considering the

countable union of the µ-negligible sets in which one of these identities is violated,
we thus have that

h := lim inf
n→∞

fn
a.e.
= g + lim inf

n→∞
(fn − g)+ .

Further, µ(fn) = µ(g) + µ((fn − g)+) by the linearity of the integral in mF+ ∪L1.
Taking n→∞ and applying (1.3.6) for (fn − g)+ ∈ mF+ we deduce that

lim inf
n→∞

µ(fn) ≥ µ(g) + µ(lim inf
n→∞

(fn − g)+) = µ(g) + µ(h− g) = µ(h)

(where for the right most identity we used the linearity of the integral, as well as
the fact that −g is µ-integrable).
Finally, we get (1.3.7) for fn by considering (1.3.6) for −fn. �

Remark. In terms of the expectation, Fatou’s lemma is the statement that if
R.V. Xn ≥ X, almost surely, for some X ∈ L1 and all n, then

(1.3.8) lim inf
n→∞

E(Xn) ≥ E(lim inf
n→∞

Xn) ,

whereas if Xn ≤ X, almost surely, for some X ∈ L1 and all n, then

(1.3.9) lim sup
n→∞

E(Xn) ≤ E(lim sup
n→∞

Xn) .

Some text books call (1.3.9) and (1.3.7) the Reverse Fatou Lemma (e.g. [Wil91,
Section 5.4]).

Using Fatou’s lemma, we can easily prove Lebesgue’s dominated convergence the-
orem (in short DOM).

Theorem 1.3.34 (Dominated convergence theorem). For any measure space
(S,F , µ) and any fn ∈ mF , if for some µ-integrable function g and µ-almost-every
s ∈ S both fn(s) → f∞(s) as n → ∞, and |fn(s)| ≤ g(s) for all n, then f∞ is
µ-integrable and further µ(|fn − f∞|)→ 0 as n→∞.

Proof. Up to a µ-negligible subset of S, our assumption that |fn| ≤ g and
fn → f∞, implies that |f∞| ≤ g, hence f∞ is µ-integrable. Applying Fatou’s lemma
(1.3.7) for |fn − f∞| ≤ 2g such that lim supn |fn − f∞| = 0, we conclude that

0 ≤ lim sup
n→∞

µ(|fn − f∞|) ≤ µ(lim sup
n→∞

|fn − f∞|) = µ(0) = 0 ,
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as claimed. �

By Minkowski’s inequality, µ(|fn− f∞|)→ 0 implies that µ(|fn|)→ µ(|f∞|). The
dominated convergence theorem provides us with a simple sufficient condition for
the converse implication in case also fn → f∞ a.e.

Lemma 1.3.35 (Scheffé’s lemma). If fn ∈ mF converges a.e. to f∞ ∈ mF and
µ(|fn|)→ µ(|f∞|) <∞ then µ(|fn − f∞|)→ 0 as n→∞.

Remark. In terms of expectation, Scheffé’s lemma states that if Xn
a.s.→ X∞ and

E|Xn| → E|X∞| <∞, then Xn
L1

→ X∞ as well.

Proof. As already noted, we may assume without loss of generality that
fn(s) → f∞(s) for all s ∈ S, that is gn(s) = fn(s) − f∞(s) → 0 as n → ∞,
for all s ∈ S. Further, since µ(|fn|)→ µ(|f∞|) <∞, we may and shall assume also
that fn are R-valued and µ-integrable for all n ≤ ∞, hence gn ∈ L1(S,F , µ) as well.
Suppose first that fn ∈ mF+ for all n ≤ ∞. In this case, 0 ≤ (gn)− ≤ f∞ for all
n and s. As (gn)−(s) → 0 for every s ∈ S, applying the dominated convergence
theorem we deduce that µ((gn)−) → 0. From the assumptions of the lemma (and
the linearity of the integral on L1), we get that µ(gn) = µ(fn) − µ(f∞) → 0 as
n → ∞. Since |x| = x + 2x− for any x ∈ R, it thus follows by linearity of the
integral on L1 that µ(|gn|) = µ(gn) + 2µ((gn)−)→ 0 for n→∞, as claimed.
In the general case of fn ∈ mF , we know that both 0 ≤ (fn)+(s)→ (f∞)+(s) and

0 ≤ (fn)−(s)→ (f∞)−(s) for every s, so by (1.3.6) of Fatou’s lemma, we have that

µ(|f∞|) = µ((f∞)+) + µ((f∞)−) ≤ lim inf
n→∞

µ((fn)−) + lim inf
n→∞

µ((fn)+)

≤ lim inf
n→∞

[µ((fn)−) + µ((fn)+)] = lim
n→∞

µ(|fn|) = µ(|f∞|) .

Hence, necessarily both µ((fn)+) → µ((f∞)+) and µ((fn)−) → µ((f∞)−). Since
|x− y| ≤ |x+ − y+|+ |x− − y−| for all x, y ∈ R and we already proved the lemma
for the non-negative (fn)− and (fn)+, we see that

lim
n→∞

µ(|fn − f∞|) ≤ lim
n→∞

µ(|(fn)+ − (f∞)+|) + lim
n→∞

µ(|(fn)− − (f∞)−|) = 0 ,

concluding the proof of the lemma. �

We conclude this sub-section with quite a few exercises, starting with an alterna-
tive characterization of convergence almost surely.

Exercise 1.3.36. Show that Xn
a.s.→ 0 if and only if for each ε > 0 there is n

so that for each random integer M with M(ω) ≥ n for all ω ∈ Ω we have that
P({ω : |XM(ω)(ω)| > ε}) < ε.

Exercise 1.3.37. Let Yn be (real-valued) random variables on (Ω,F ,P), and Nk
positive integer valued random variables on the same probability space.

(a) Show that YNk(ω) = YNk(ω)(ω) are random variables on (Ω,F).

(b) Show that if Yn
a.s→ Y∞ and Nk

a.s.→ ∞ then YNk
a.s.→ Y∞.

(c) Provide an example of Yn
p→ 0 and Nk

a.s.→ ∞ such that almost surely
YNk = 1 for all k.

(d) Show that if Yn
a.s.→ Y∞ and P(Nk > r) → 1 as k → ∞, for every fixed

r <∞, then YNk
p→ Y∞.
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In the following four exercises you find some of the many applications of the
monotone convergence theorem.

Exercise 1.3.38. You are now to relax the non-negativity assumption in the mono-
tone convergence theorem.

(a) Show that if E[(X1)−] <∞ and Xn(ω) ↑ X(ω) for almost every ω, then
EXn ↑ EX.

(b) Show that if in addition supn E[(Xn)+] <∞, then X ∈ L1(Ω,F ,P).

Exercise 1.3.39. In this exercise you are to show that for any R.V. X ≥ 0,

(1.3.10) EX = lim
δ↓0

EδX for EδX =

∞∑
j=0

jδP({ω : jδ < X(ω) ≤ (j + 1)δ}) .

First use monotone convergence to show that EδkX converges to EX along the
sequence δk = 2−k. Then, check that EδX ≤ EηX + η for any δ, η > 0 and deduce
from it the identity (1.3.10).
Applying (1.3.10) verify that if X takes at most countably many values {x1, x2, . . .},

then EX =
∑
i xiP({ω : X(ω) = xi}) (this applies to every R.V. X ≥ 0 on a

countable Ω). More generally, verify that such formula applies whenever the series
is absolutely convergent (which amounts to X ∈ L1).

Exercise 1.3.40. Use monotone convergence to show that for any sequence of
non-negative R.V. Yn,

E(

∞∑
n=1

Yn) =

∞∑
n=1

EYn .

Exercise 1.3.41. Suppose Xn, X ∈ L1(Ω,F ,P) are such that

(a) Xn ≥ 0 almost surely, E[Xn] = 1, E[Xn logXn] ≤ 1, and
(b) E[XnY ] → E[XY ] as n → ∞, for each bounded random variable Y on

(Ω,F).

Show that then X ≥ 0 almost surely, E[X] = 1 and E[X logX] ≤ 1.
Hint: Jensen’s inequality is handy for showing that E[X logX] ≤ 1.

Next come few direct applications of the dominated convergence theorem.

Exercise 1.3.42.

(a) Show that for any random variable X, the function t 7→ E[e−|t−X|] is con-
tinuous on R (this function is sometimes called the bilateral exponential
transform).

(b) Suppose X ≥ 0 is such that EXq < ∞ for some q > 0. Show that then
q−1(EXq − 1) → E logX as q ↓ 0 and deduce that also q−1 log EXq →
E logX as q ↓ 0.

Hint: Fixing x ≥ 0 deduce from convexity of q 7→ xq that q−1(xq − 1) ↓ log x as
q ↓ 0.

Exercise 1.3.43. Suppose X is an integrable random variable.

(a) Show that E(|X|I{X>n})→ 0 as n→∞.
(b) Deduce that for any ε > 0 there exists δ > 0 such that

sup{E[|X|IA] : P(A) ≤ δ} ≤ ε .
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(c) Provide an example of X ≥ 0 with EX =∞ for which the preceding fails,
that is, P(Ak)→ 0 as k →∞ while E[XIAk ] is bounded away from zero.

The following generalization of the dominated convergence theorem is also left as
an exercise.

Exercise 1.3.44. Suppose gn(·) ≤ fn(·) ≤ hn(·) are µ-integrable functions in the
same measure space (S,F , µ) such that for µ-almost-every s ∈ S both gn(s) →
g∞(s), fn(s)→ f∞(s) and hn(s)→ h∞(s) as n→∞. Show that if further g∞ and
h∞ are µ-integrable functions such that µ(gn)→ µ(g∞) and µ(hn)→ µ(h∞), then
f∞ is µ-integrable and µ(fn)→ µ(f∞).

Finally, here is a demonstration of one of the many issues that are particularly
easy to resolve with respect to the L2(Ω,F ,P) norm.

Exercise 1.3.45. Let X = (X(t))t∈R be a mapping from R into L2(Ω,F ,P).
Show that t 7→ X(t) is a continuous mapping (with respect to the norm ‖ · ‖2 on
L2(Ω,F ,P)), if and only if both

µ(t) = E[X(t)] and r(s, t) = E[X(s)X(t)]− µ(s)µ(t)

are continuous real-valued functions (r(s, t) is continuous as a map from R2 to R).

1.3.4. L1-convergence and uniform integrability. For probability theory,

the dominated convergence theorem states that if random variables Xn
a.s.→ X∞ are

such that |Xn| ≤ Y for all n and some random variable Y such that EY <∞, then

X∞ ∈ L1 and Xn
L1

→ X∞. Since constants have finite expectation (see part (d) of
Theorem 1.3.9), we have as its corollary the bounded convergence theorem, that is,

Corollary 1.3.46 (Bounded Convergence). Suppose that a.s. |Xn(ω)| ≤ K for

some finite non-random constant K and all n. If Xn
a.s.→ X∞, then X∞ ∈ L1 and

Xn
L1

→ X∞.

We next state a uniform integrability condition that together with convergence in
probability implies the convergence in L1.

Definition 1.3.47. A possibly uncountable collection of R.V.-s {Xα, α ∈ I} is
called uniformly integrable (U.I.) if

(1.3.11) lim
M→∞

sup
α

E[|Xα|I|Xα|>M ] = 0 .

Our next lemma shows that U.I. is a relaxation of the condition of dominated
convergence, and that U.I. still implies the boundedness in L1 of {Xα, α ∈ I}.

Lemma 1.3.48. If |Xα| ≤ Y for all α and some R.V. Y such that EY <∞, then
the collection {Xα} is U.I. In particular, any finite collection of integrable R.V. is
U.I.
Further, if {Xα} is U.I. then supα E|Xα| <∞.

Proof. By monotone convergence, E[Y IY≤M ] ↑ EY as M ↑ ∞, for any R.V.
Y ≥ 0. Hence, if in addition EY < ∞, then by linearity of the expectation,
E[Y IY >M ] ↓ 0 as M ↑ ∞. Now, if |Xα| ≤ Y then |Xα|I|Xα|>M ≤ Y IY >M ,

hence E[|Xα|I|Xα|>M ] ≤ E[Y IY >M ], which does not depend on α, and for Y ∈ L1

converges to zero when M → ∞. We thus proved that if |Xα| ≤ Y for all α and
some Y such that EY <∞, then {Xα} is a U.I. collection of R.V.-s
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For a finite collection of R.V.-s Xi ∈ L1, i = 1, . . . , k, take Y = |X1|+ |X2|+ · · ·+
|Xk| ∈ L1 such that |Xi| ≤ Y for i = 1, . . . , k, to see that any finite collection of
integrable R.V.-s is U.I.
Finally, since

E|Xα| = E[|Xα|I|Xα|≤M ] + E[|Xα|I|Xα|>M ] ≤M + sup
α

E[|Xα|I|Xα|>M ] ,

we see that if {Xα, α ∈ I} is U.I. then supα E|Xα| <∞. �

We next state and prove Vitali’s convergence theorem for probability measures,
deferring the general case to Exercise 1.3.53.

Theorem 1.3.49 (Vitali’s convergence theorem). Suppose Xn
p→ X∞. Then,

the collection {Xn} is U.I. if and only if Xn
L1

→ X∞ which in turn is equivalent to
Xn being integrable for all n ≤ ∞ and E|Xn| → E|X∞|.

Remark. In view of Lemma 1.3.48, Vitali’s theorem relaxes the assumed a.s.
convergence Xn → X∞ of the dominated (or bounded) convergence theorem, and
of Scheffé’s lemma, to that of convergence in probability.

Proof. Suppose first that |Xn| ≤ M for some non-random finite constant M
and all n. For each ε > 0 let Bn,ε = {ω : |Xn(ω) − X∞(ω)| > ε}. The assumed
convergence in probability means that P(Bn,ε) → 0 as n → ∞ (see Definition
1.3.22). Since P(|X∞| ≥ M + ε) ≤ P(Bn,ε), taking n → ∞ and considering
ε = εk ↓ 0, we get by continuity from below of P that almost surely |X∞| ≤ M .
So, |Xn−X∞| ≤ 2M and by linearity and monotonicity of the expectation, for any
n and ε > 0,

E|Xn −X∞| = E[|Xn −X∞|IBcn,ε ] + E[|Xn −X∞|IBn,ε ]
≤ E[εIBcn,ε ] + E[2MIBn,ε ] ≤ ε+ 2MP(Bn,ε) .

Since P(Bn,ε)→ 0 as n→∞, it follows that lim supn→∞E|Xn−X∞| ≤ ε. Taking
ε ↓ 0 we deduce that E|Xn −X∞| → 0 in this case.
Moving to deal now with the general case of a collection {Xn} that is U.I., let
ϕM (x) = max(min(x,M),−M). As |ϕM (x)−ϕM (y)| ≤ |x−y| for any x, y ∈ R, our

assumption Xn
p→ X∞ implies that ϕM (Xn)

p→ ϕM (X∞) for any fixed M < ∞.
With |ϕM (·)| ≤ M , we then have by the preceding proof of bounded convergence

that ϕM (Xn)
L1

→ ϕM (X∞). Further, by Minkowski’s inequality, also E|ϕM (Xn)| →
E|ϕM (X∞)|. By Lemma 1.3.48, our assumption that {Xn} are U.I. implies their
L1 boundedness, and since |ϕM (x)| ≤ |x| for all x, we deduce that for any M ,

(1.3.12) ∞ > c := sup
n

E|Xn| ≥ lim
n→∞

E|ϕM (Xn)| = E|ϕM (X∞)| .

With |ϕM (X∞)| ↑ |X∞| as M ↑ ∞, it follows from monotone convergence that
E|ϕM (X∞)| ↑ E|X∞|, hence E|X∞| ≤ c < ∞ in view of (1.3.12). Fixing ε >
0, choose M = M(ε) < ∞ large enough for E[|X∞|I|X∞|>M ] < ε, and further
increasing M if needed, by the U.I. condition also E[|Xn|I|Xn|>M ] < ε for all n.
Considering the expectation of the inequality |x−ϕM (x)| ≤ |x|I|x|>M (which holds
for all x ∈ R), with x = Xn and x = X∞, we obtain that

E|Xn −X∞| ≤ E|Xn − ϕM (Xn)|+ E|ϕM (Xn)− ϕM (X∞)|+ E|X∞ − ϕM (X∞)|
≤ 2ε+ E|ϕM (Xn)− ϕM (X∞)| .
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Recall that ϕM (Xn)
L1

→ ϕM (X∞), hence lim supn E|Xn −X∞| ≤ 2ε. Taking ε→ 0
completes the proof of L1 convergence of Xn to X∞.

Suppose now that Xn
L1

→ X∞. Then, by Jensen’s inequality (for the convex
function g(x) = |x|),

|E|Xn| −E|X∞|| ≤ E[| |Xn| − |X∞| |] ≤ E|Xn −X∞| → 0.

That is, E|Xn| → E|X∞| and Xn, n ≤ ∞ are integrable.

It thus remains only to show that if Xn
p→ X∞, all of which are integrable and

E|Xn| → E|X∞| then the collection {Xn} is U.I. To the end, for any M > 1, let

ψM (x) = |x|I|x|≤M−1 + (M − 1)(M − |x|)I(M−1,M ](|x|) ,

a piecewise-linear, continuous, bounded function, such that ψM (x) = |x| for |x| ≤
M−1 and ψM (x) = 0 for |x| ≥M . Fixing ε > 0, with X∞ integrable, by dominated
convergence E|X∞|−Eψm(X∞) ≤ ε for some finite m = m(ε). Further, as |ψm(x)−
ψm(y)| ≤ (m− 1)|x− y| for any x, y ∈ R, our assumption Xn

p→ X∞ implies that

ψm(Xn)
p→ ψm(X∞). Hence, by the preceding proof of bounded convergence,

followed by Minkowski’s inequality, we deduce that Eψm(Xn) → Eψm(X∞) as
n → ∞. Since |x|I|x|>m ≤ |x| − ψm(x) for all x ∈ R, our assumption E|Xn| →
E|X∞| thus implies that for some n0 = n0(ε) finite and all n ≥ n0 and M ≥ m(ε),

E[|Xn|I|Xn|>M ] ≤ E[|Xn|I|Xn|>m] ≤ E|Xn| −Eψm(Xn)

≤ E|X∞| −Eψm(X∞) + ε ≤ 2ε .

As each Xn is integrable, E[|Xn|I|Xn|>M ] ≤ 2ε for some M ≥ m finite and all n
(including also n < n0(ε)). The fact that such finite M = M(ε) exists for any ε > 0
amounts to the collection {Xn} being U.I. �

The following exercise builds upon the bounded convergence theorem.

Exercise 1.3.50. Show that for any X ≥ 0 (do not assume E(1/X) <∞), both

(a) lim
y→∞

yE[X−1IX>y] = 0 and

(b) lim
y↓0

yE[X−1IX>y] = 0.

Next is an example of the advantage of Vitali’s convergence theorem over the
dominated convergence theorem.

Exercise 1.3.51. On ((0, 1],B(0,1], U), let Xn(ω) = (n/ log n)I(0,n−1)(ω) for n ≥
2. Show that the collection {Xn} is U.I. such that Xn

a.s.→ 0 and EXn → 0, but
there is no random variable Y with finite expectation such that Y ≥ Xn for all
n ≥ 2 and almost all ω ∈ (0, 1].

By a simple application of Vitali’s convergence theorem you can derive a classical
result of analysis, dealing with the convergence of Cesáro averages.

Exercise 1.3.52. Let Un denote a random variable whose law is the uniform
probability measure on (0, n], namely, Lebesgue measure restricted to the interval

(0, n] and normalized by n−1 to a probability measure. Show that g(Un)
p→ 0 as

n → ∞, for any Borel function g(·) such that |g(y)| → 0 as y → ∞. Further,
assuming that also supy |g(y)| < ∞, deduce that E|g(Un)| = n−1

∫ n
0
|g(y)|dy → 0

as n→∞.
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Here is Vitali’s convergence theorem for a general measure space.

Exercise 1.3.53. Given a measure space (S,F , µ), suppose fn, f∞ ∈ mF with
µ(|fn|) finite and µ(|fn − f∞| > ε) → 0 as n → ∞, for each fixed ε > 0. Show
that µ(|fn − f∞|) → 0 as n → ∞ if and only if both supn µ(|fn|I|fn|>k) → 0 and
supn µ(|fn|IAk)→ 0 for k →∞ and some {Ak} ⊆ F such that µ(Ack) <∞.

We conclude this subsection with a useful sufficient criterion for uniform integra-
bility and few of its consequences.

Exercise 1.3.54. Let f ≥ 0 be a Borel function such that f(r)/r →∞ as r →∞.
Suppose Ef(|Xα|) ≤ C for some finite non-random constant C and all α ∈ I. Show
that then {Xα : α ∈ I} is a uniformly integrable collection of R.V.

Exercise 1.3.55.

(a) Construct random variables Xn such that supn E(|Xn|) < ∞, but the
collection {Xn} is not uniformly integrable.

(b) Show that if {Xn} is a U.I. collection and {Yn} is a U.I. collection, then
{Xn + Yn} is also U.I.

(c) Show that if Xn
p→ X∞ and the collection {Xn} is uniformly integrable,

then E(XnIA)→ E(X∞IA) as n→∞, for any measurable set A.

1.3.5. Expectation, density and Riemann integral. Applying the stan-
dard machine we now show that fixing a measure space (S,F , µ), each non-negative
measurable function f induces a measure fµ on (S,F), with f being the natural
generalization of the concept of probability density function.

Proposition 1.3.56. Fix a measure space (S,F , µ). Every f ∈ mF+ induces
a measure fµ on (S,F) via (fµ)(A) = µ(fIA) for all A ∈ F . These measures
satisfy the composition relation h(fµ) = (hf)µ for all f, h ∈ mF+. Further, h ∈
L1(S,F , fµ) if and only if fh ∈ L1(S,F , µ) and then (fµ)(h) = µ(fh).

Proof. Fixing f ∈ mF+, obviously fµ is a non-negative set function on (S,F)
with (fµ)(∅) = µ(fI∅) = µ(0) = 0. To check that fµ is countably additive, hence
a measure, let A = ∪kAk for a countable collection of disjoint sets Ak ∈ F . Since∑n
k=1 fIAk ↑ fIA, it follows by monotone convergence and linearity of the integral

that,

µ(fIA) = lim
n→∞

µ(

n∑
k=1

fIAk) = lim
n→∞

n∑
k=1

µ(fIAk) =
∑
k

µ(fIAk)

Thus, (fµ)(A) =
∑
k(fµ)(Ak) verifying that fµ is a measure.

Fixing f ∈ mF+, we turn to prove that the identity

(1.3.13) (fµ)(hIA) = µ(fhIA) ∀A ∈ F ,
holds for any h ∈ mF+. Since the left side of (1.3.13) is the value assigned to A
by the measure h(fµ) and the right side of this identity is the value assigned to
the same set by the measure (hf)µ, this would verify the stated composition rule
h(fµ) = (hf)µ. The proof of (1.3.13) proceeds by applying the standard machine:
Step 1. If h = IB for B ∈ F we have by the definition of the integral of an indicator
function that

(fµ)(IBIA) = (fµ)(IA∩B) = (fµ)(A ∩B) = µ(fIA∩B) = µ(fIBIA) ,

which is (1.3.13).
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Step 2. Take h ∈ SF+ represented as h =
∑n
l=1 clIBl with cl ≥ 0 and Bl ∈ F .

Then, by Step 1 and the linearity of the integrals with respect to fµ and with
respect to µ, we see that

(fµ)(hIA) =

n∑
l=1

cl(fµ)(IBlIA) =

n∑
l=1

clµ(fIBlIA) = µ(f

n∑
l=1

clIBlIA) = µ(fhIA) ,

again yielding (1.3.13).
Step 3. For any h ∈ mF+ there exist hn ∈ SF+ such that hn ↑ h. By Step 2 we
know that (fµ)(hnIA) = µ(fhnIA) for any A ∈ F and all n. Further, hnIA ↑ hIA
and fhnIA ↑ fhIA, so by monotone convergence (for both integrals with respect to
fµ and µ),

(fµ)(hIA) = lim
n→∞

(fµ)(hnIA) = lim
n→∞

µ(fhnIA) = µ(fhIA) ,

completing the proof of (1.3.13) for all h ∈ mF+.
Writing h ∈ mF as h = h+ − h− with h+ = max(h, 0) ∈ mF+ and h− =
−min(h, 0) ∈ mF+, it follows from the composition rule that∫

h±d(fµ) = (fµ)(h±IS) = h±(fµ)(S) = ((h±f)µ)(S) = µ(fh±IS) =

∫
fh±dµ .

Observing that fh± = (fh)± when f ∈ mF+, we thus deduce that h is fµ-
integrable if and only if fh is µ-integrable in which case

∫
hd(fµ) =

∫
fhdµ, as

stated. �

Fixing a measure space (S,F , µ), every set D ∈ F induces a σ-algebra FD =
{A ∈ F : A ⊆ D}. Let µD denote the restriction of µ to (D,FD). As a corollary
of Proposition 1.3.56 we express the integral with respect to µD in terms of the
original measure µ.

Corollary 1.3.57. Fixing D ∈ F let hD denote the restriction of h ∈ mF to
(D,FD). Then, µD(hD) = µ(hID) for any h ∈ mF+. Further, hD ∈ L1(D,FD, µD)
if and only if hID ∈ L1(S,F , µ), in which case also µD(hD) = µ(hID).

Proof. Note that the measure IDµ of Proposition 1.3.56 coincides with µD
on the σ-algebra FD and assigns to any set A ∈ F the same value it assigns to
A ∩ D ∈ FD. By Definition 1.3.1 this implies that (IDµ)(h) = µD(hD) for any
h ∈ mF+. The corollary is thus a re-statement of the composition and integrability
relations of Proposition 1.3.56 for f = ID. �

Remark 1.3.58. Corollary 1.3.57 justifies using hereafter the notation
∫
A
fdµ or

µ(f ;A) for µ(fIA), or writing E(X;A) =
∫
A
X(ω)dP (ω) for E(XIA). With this

notation in place, Proposition 1.3.56 states that each Z ≥ 0 such that EZ = 1
induces a probability measure Q = ZP such that Q(A) =

∫
A
ZdP for all A ∈ F ,

and then EQ(W ) :=
∫
WdQ = E(ZW ) whenever W ≥ 0 or ZW ∈ L1(Ω,F ,P)

(the assumption EZ = 1 translates to Q(Ω) = 1).

Proposition 1.3.56 is closely related to the probability density function of Definition
1.2.40. En-route to showing this, we first define the collection of Lebesgue integrable
functions.
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Definition 1.3.59. Consider Lebesgue’s measure λ on (R,B) as in Section 1.1.3,
and its completion λ on (R,B) (see Theorem 1.1.35). A set B ∈ B is called
Lebesgue measurable and f : R 7→ R is called Lebesgue integrable function if
f ∈ mB, and λ(|f |) < ∞. As we show in Proposition 1.3.64, any non-negative
Riemann integrable function is also Lebesgue integrable, and the integral values
coincide, justifying the notation

∫
B
f(x)dx for λ(f ;B), where the function f and

the set B are both Lebesgue measurable.

Example 1.3.60. Suppose f is a non-negative Lebesgue integrable function such
that

∫
R f(x)dx = 1. Then, P = fλ of Proposition 1.3.56 is a probability measure

on (R,B) such that P(B) = λ(f ;B) =
∫
B
f(x)dx for any Lebesgue measurable set

B. By Theorem 1.2.37 it is easy to verify that F (α) = P((−∞, α]) is a distribution
function, such that F (α) =

∫ α
−∞ f(x)dx. That is, P is the law of a R.V. X : R 7→

R whose probability density function is f (c.f. Definition 1.2.40 and Proposition
1.2.45).

Our next theorem allows us to compute expectations of functions of a R.V. X
in the space (R,B,PX), using the law of X (c.f. Definition 1.2.34) and calculus,
instead of working on the original general probability space. One of its immediate

consequences is the “obvious” fact that if X
D
= Y then Eh(X) = Eh(Y ) for any

non-negative Borel function h.

Theorem 1.3.61 (Change of variables formula). Let X : Ω 7→ R be a ran-
dom variable on (Ω,F ,P) and h a Borel measurable function such that Eh+(X) <
∞ or Eh−(X) <∞. Then,

(1.3.14)

∫
Ω

h(X(ω))dP(ω) =

∫
R
h(x)dPX(x).

Proof. Apply the standard machine with respect to h ∈ mB:
Step 1. Taking h = IB for B ∈ B, note that by the definition of expectation of
indicators

Eh(X) = E[IB(X(ω))] = P({ω : X(ω) ∈ B}) = PX(B) =

∫
h(x)dPX(x).

Step 2. Representing h ∈ SF+ as h =
∑m
l=1 clIBl for cl ≥ 0, the identity (1.3.14)

follows from Step 1 by the linearity of the expectation in both spaces.
Step 3. For h ∈ mB+, consider hn ∈ SF+ such that hn ↑ h. Since hn(X(ω)) ↑
h(X(ω)) for all ω, we get by monotone convergence on (Ω,F ,P), followed by ap-
plying Step 2 for hn, and finally monotone convergence on (R,B,PX), that∫

Ω

h(X(ω))dP(ω) = lim
n→∞

∫
Ω

hn(X(ω))dP(ω)

= lim
n→∞

∫
R
hn(x)dPX(x) =

∫
R
h(x)dPX(x),

as claimed.
Step 4. Write a Borel function h(x) as h+(x) − h−(x). Then, by Step 3, (1.3.14)
applies for both non-negative functions h+ and h−. Further, at least one of these
two identities involves finite quantities. So, taking their difference and using the
linearity of the expectation (in both probability spaces), lead to the same result for
h. �
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Combining Theorem 1.3.61 with Example 1.3.60, we show that the expectation of
a Borel function of a R.V. X having a density fX can be computed by performing
calculus type integration on the real line.

Corollary 1.3.62. Suppose that the distribution function of a R.V. X is of
the form (1.2.3) for some Lebesgue integrable function fX(x). Then, for any
Borel measurable function h : R 7→ R, the R.V. h(X) is integrable if and only if∫
|h(x)|fX(x)dx <∞, in which case Eh(X) =

∫
h(x)fX(x)dx. The latter formula

applies also for any non-negative Borel function h(·).

Proof. Recall Example 1.3.60 that the law PX of X equals to the probability
measure fXλ. For h ≥ 0 we thus deduce from Theorem 1.3.61 that Eh(X) =
fXλ(h), which by the composition rule of Proposition 1.3.56 is given by λ(fXh) =∫
h(x)fX(x)dx. The decomposition h = h+ − h− then completes the proof of the

general case. �

Our next task is to compare Lebesgue’s integral (of Definition 1.3.1) with Rie-
mann’s integral. To this end recall,

Definition 1.3.63. A function f : (a, b] 7→ [0,∞] is Riemann integrable with inte-
gral R(f) <∞ if for any ε > 0 there exists δ = δ(ε) > 0 such that |

∑
l f(xl)λ(Jl)−

R(f)| < ε, for any xl ∈ Jl and {Jl} a finite partition of (a, b] into disjoint sub-
intervals whose length λ(Jl) < δ.

Lebesgue’s integral of a function f is based on splitting its range to small intervals
and approximating f(s) by a constant on the subset of S for which f(·) falls into
each such interval. As such, it accommodates an arbitrary domain S of the function,
in contrast to Riemann’s integral where the domain of integration is split into small
rectangles – hence limited to Rd. As we next show, even for S = (a, b], if f ≥ 0
(or more generally, f bounded), is Riemann integrable, then it is also Lebesgue
integrable, with the integrals coinciding in value.

Proposition 1.3.64. If f(x) is a non-negative Riemann integrable function on
an interval (a, b], then it is also Lebesgue integrable on (a, b] and λ(f) = R(f).

Proof. Let f∗(J) = inf{f(x) : x ∈ J} and f∗(J) = sup{f(x) : x ∈ J}.
Varying xl over Jl we see that

(1.3.15) R(f)− ε ≤
∑
l

f∗(Jl)λ(Jl) ≤
∑
l

f∗(Jl)λ(Jl) ≤ R(f) + ε ,

for any finite partition Π of (a, b] into disjoint sub-intervals Jl such that supl λ(Jl) ≤
δ. For any such partition, the non-negative simple functions `(Π) =

∑
l f∗(Jl)IJl

and u(Π) =
∑
l f
∗(Jl)IJl are such that `(Π) ≤ f ≤ u(Π), whereas R(f) − ε ≤

λ(`(Π)) ≤ λ(u(Π)) ≤ R(f) + ε, by (1.3.15). Consider the dyadic partitions Πn

of (a, b] to 2n intervals of length (b − a)2−n each, such that Πn+1 is a refinement
of Πn for each n = 1, 2, . . .. Note that u(Πn)(x) ≥ u(Πn+1)(x) for all x ∈ (a, b]
and any n, hence u(Πn))(x) ↓ u∞(x) a Borel measurable R-valued function (see
Exercise 1.2.31). Similarly, `(Πn)(x) ↑ `∞(x) for all x ∈ (a, b], with `∞ also Borel
measurable, and by the monotonicity of Lebesgue’s integral,

R(f) ≤ lim
n∞

λ(`(Πn)) ≤ λ(`∞) ≤ λ(u∞) ≤ lim
n→∞

λ(u(Πn)) ≤ R(f) .

We deduce that λ(u∞) = λ(`∞) = R(f) for u∞ ≥ f ≥ `∞. The set {x ∈ (a, b] :
f(x) 6= `∞(x)} is a subset of the Borel set {x ∈ (a, b] : u∞(x) > `∞(x)} whose
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Lebesgue measure is zero (see Lemma 1.3.8). Consequently, f is Lebesgue measur-
able on (a, b] with λ(f) = λ(`∞) = R(f) as stated. �

Here is an alternative, direct proof of the fact that Q in Remark 1.3.58 is a
probability measure.

Exercise 1.3.65. Suppose E|X| < ∞ and A =
⋃
nAn for some disjoint sets

An ∈ F .

(a) Show that then

∞∑
n=0

E(X;An) = E(X;A) ,

that is, the sum converges absolutely and has the value on the right.
(b) Deduce from this that for Z ≥ 0 with EZ positive and finite, Q(A) :=

EZIA/EZ is a probability measure.
(c) Suppose that X and Y are non-negative random variables on the same

probability space (Ω,F ,P) such that EX = EY < ∞. Deduce from the
preceding that if EXIA = EY IA for any A in a π-system A such that

F = σ(A), then X
a.s.
= Y .

Exercise 1.3.66. Suppose P is a probability measure on (R,B) and f ≥ 0 is a
Borel function such that P(B) =

∫
B
f(x)dx for B = (−∞, b], b ∈ R. Using the

π−λ theorem show that this identity applies for all B ∈ B. Building on this result,
use the standard machine to directly prove Corollary 1.3.62 (without Proposition
1.3.56).

1.3.6. Mean, variance and moments. We start with the definition of mo-
ments of a random variable.

Definition 1.3.67. If k is a positive integer then EXk is called the kth moment
of X. When it is well defined, the first moment mX = EX is called the mean. If
EX2 <∞, then the variance of X is defined to be

(1.3.16) Var(X) = E(X −mX)2 = EX2 −m2
X ≤ EX2 .

Since E(aX + b) = aEX + b (linearity of the expectation), it follows from the
definition that

(1.3.17) Var(aX + b) = E(aX + b−E(aX + b))2 = a2E(X −mX)2 = a2 Var(X)

We turn to some examples, starting with R.V. having a density.

Example 1.3.68. If X has the exponential distribution then

EXk =

∫ ∞
0

xke−xdx = k!

for any k (see Example 1.2.41 for its density). The mean of X is mX = 1 and
its variance is EX2 − (EX)2 = 1. For any λ > 0, it is easy to see that T = X/λ
has density fT (t) = λe−λt1t>0, called the exponential density of parameter λ. By
(1.3.17) it follows that mT = 1/λ and Var(T ) = 1/λ2.
Similarly, if X has a standard normal distribution, then by symmetry, for k odd,

EXk =
1√
2π

∫ ∞
−∞

xke−x
2/2dx = 0 ,
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whereas by integration by parts, the even moments satisfy the relation

(1.3.18) EX2` =
1√
2π

∫ ∞
−∞

x2`−1xe−x
2/2dx = (2`− 1)EX2`−2 ,

for ` = 1, 2, . . .. In particular,

Var(X) = EX2 = 1 .

Consider G = σX + µ, where σ > 0 and µ ∈ R, whose density is

fG(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 .

We call the law of G the normal distribution of mean µ and variance σ2 (as EG = µ
and Var(G) = σ2).

Next are some examples of R.V. with finite or countable set of possible values.

Example 1.3.69. We say that B has a Bernoulli distribution of parameter p ∈
[0, 1] if P(B = 1) = 1−P(B = 0) = p. Clearly,

EB = p · 1 + (1− p) · 0 = p .

Further, B2 = B so EB2 = EB = p and

Var(B) = EB2 − (EB)2 = p− p2 = p(1− p) .
Recall that N has a Poisson distribution with parameter λ ≥ 0 if

P(N = k) =
λk

k!
e−λ for k = 0, 1, 2, . . .

(where in case λ = 0, P(N = 0) = 1). Observe that for k = 1, 2, . . .,

E(N(N − 1) · · · (N − k + 1)) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)
λn

n!
e−λ

= λk
∞∑
n=k

λn−k

(n− k)!
e−λ = λk .

Using this formula, it follows that EN = λ while

Var(N) = EN2 − (EN)2 = λ .

The random variable Z is said to have a Geometric distribution of success proba-
bility p ∈ (0, 1) if

P(Z = k) = p(1− p)k−1 for k = 1, 2, . . .

This is the distribution of the number of independent coin tosses needed till the first
appearance of a Head, or more generally, the number of independent trials till the
first occurrence in this sequence of a specific event whose probability is p. Then,

EZ =

∞∑
k=1

kp(1− p)k−1 =
1

p

EZ(Z − 1) =

∞∑
k=2

k(k − 1)p(1− p)k−1 =
2(1− p)
p2

Var(Z) = EZ(Z − 1) + EZ − (EZ)2 =
1− p
p2

.
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Exercise 1.3.70. Consider a counting random variable Nn =
∑n
i=1 IAi .

(a) Provide a formula for Var(Nn) in terms of P(Ai) and P(Ai ∩ Aj) for
i 6= j.

(b) Using your formula, find the variance of the number Nn of empty boxes
when distributing at random r distinct balls among n distinct boxes, where
each of the possible nr assignments of balls to boxes is equally likely.

Exercise 1.3.71. Show that if P(X ∈ [a, b]) = 1, then Var(X) ≤ (b− a)2/4.

1.4. Independence and product measures

In Subsection 1.4.1 we build-up the notion of independence, from events to random
variables via σ-algebras, relating it to the structure of the joint distribution func-
tion. Subsection 1.4.2 considers finite product measures associated with the joint
law of independent R.V.-s. This is followed by Kolmogorov’s extension theorem
which we use in order to construct infinitely many independent R.V.-s. Subsection
1.4.3 is about Fubini’s theorem and its applications for computing the expectation
of functions of independent R.V.

1.4.1. Definition and conditions for independence. Recall the classical
definition that two events A,B ∈ F are independent if P(A ∩B) = P(A)P(B).

For example, suppose two fair dice are thrown (i.e. Ω = {1, 2, 3, 4, 5, 6}2 with
F = 2Ω and the uniform probability measure). Let E1 = {Sum of two is 6} and
E2 = {first die is 4} then E1 and E2 are not independent since

P(E1) = P({(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)}) =
5

36
, P(E2) = P({ω : ω1 = 4}) =

1

6

and

P(E1 ∩ E2) = P({(4, 2)}) =
1

36
6= P(E1)P(E2).

However one can check that E2 and E3 = {sum of dice is 7} are independent.

In analogy with the independence of events we define the independence of two
random vectors and more generally, that of two σ-algebras.

Definition 1.4.1. Two σ-algebras H,G ⊆ F are independent (also denoted P-
independent), if

P(G ∩H) = P(G)P(H), ∀G ∈ G, ∀H ∈ H ,

that is, two σ-algebras are independent if every event in one of them is independent
of every event in the other.
The random vectors X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) on the same prob-

ability space are independent if the corresponding σ-algebras σ(X1, . . . , Xn) and
σ(Y1, . . . , Ym) are independent.

Remark. Our definition of independence of random variables is consistent with
that of independence of events. For example, if the events A,B ∈ F are indepen-
dent, then so are IA and IB . Indeed, we need to show that σ(IA) = {∅,Ω, A,Ac}
and σ(IB) = {∅,Ω, B,Bc} are independent. Since P(∅) = 0 and ∅ is invariant under
intersections, whereas P(Ω) = 1 and all events are invariant under intersection with
Ω, it suffices to consider G ∈ {A,Ac} and H ∈ {B,Bc}. We check independence
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first for G = A and H = Bc. Noting that A is the union of the disjoint events
A ∩B and A ∩Bc we have that

P(A ∩Bc) = P(A)−P(A ∩B) = P(A)[1−P(B)] = P(A)P(Bc) ,

where the middle equality is due to the assumed independence of A and B. The
proof for all other choices of G and H is very similar.

More generally we define the mutual independence of events as follows.

Definition 1.4.2. Events Ai ∈ F are P-mutually independent if for any L <∞
and distinct indices i1, i2, . . . , iL,

P(Ai1 ∩Ai2 ∩ · · · ∩AiL) =

L∏
k=1

P(Aik).

We next generalize the definition of mutual independence to σ-algebras, random
variables and beyond. This definition applies to the mutual independence of both
finite and infinite number of such objects.

Definition 1.4.3. We say that the collections of events Aα ⊆ F with α ∈ I
(possibly an infinite index set) are P-mutually independent if for any L < ∞ and
distinct α1, α2, . . . , αL ∈ I,

P(A1 ∩A2 ∩ · · · ∩AL) =

L∏
k=1

P(Ak), ∀Ak ∈ Aαk , k = 1, . . . , L .

We say that random variables Xα, α ∈ I are P-mutually independent if the σ-
algebras σ(Xα), α ∈ I are P-mutually independent.
When the probability measure P in consideration is clear from the context, we say

that random variables, or collections of events, are mutually independent.

Our next theorem gives a sufficient condition for the mutual independence of
a collection of σ-algebras which as we later show, greatly simplifies the task of
checking independence.

Theorem 1.4.4. Suppose Gi = σ(Ai) ⊆ F for i = 1, 2, · · · , n where Ai are π-
systems. Then, a sufficient condition for the mutual independence of Gi is that Ai,
i = 1, . . . , n are mutually independent.

Proof. Let H = Ai1 ∩Ai2 ∩· · ·∩AiL , where i1, i2, . . . , iL are distinct elements
from {1, 2, . . . , n − 1} and Ai ∈ Ai for i = 1, . . . , n − 1. Consider the two finite
measures µ1(A) = P(A ∩ H) and µ2(A) = P(H)P(A) on the measurable space
(Ω,Gn). Note that

µ1(Ω) = P(Ω ∩H) = P(H) = P(H)P(Ω) = µ2(Ω) .

If A ∈ An, then by the mutual independence of Ai, i = 1, . . . , n, it follows that

µ1(A) = P(Ai1 ∩Ai2 ∩Ai3 ∩ · · · ∩AiL ∩A) = (

L∏
k=1

P(Aik))P(A)

= P(Ai1 ∩Ai2 ∩ · · · ∩AiL)P(A) = µ2(A) .

Since the finite measures µ1(·) and µ2(·) agree on the π-system An and on Ω, it
follows that µ1 = µ2 on Gn = σ(An) (see Proposition 1.1.39). That is, P(G∩H) =
P(G)P(H) for any G ∈ Gn.
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Since this applies for arbitrary Ai ∈ Ai, i = 1, . . . , n − 1, in view of Definition
1.4.3 we have just proved that if A1,A2, . . . ,An are mutually independent, then
A1,A2, . . . ,Gn are mutually independent.
Applying the latter relation for Gn,A1, . . . ,An−1 (which are mutually independent

since Definition 1.4.3 is invariant to a permutation of the order of the collections) we
get that Gn,A1, . . . ,An−2,Gn−1 are mutually independent. After n such iterations
we have the stated result. �

Because the mutual independence of the collections of events Aα, α ∈ I amounts
to the mutual independence of any finite number of these collections, we have the
immediate consequence:

Corollary 1.4.5. If π-systems of events Aα, α ∈ I, are mutually independent,
then σ(Aα), α ∈ I, are also mutually independent.

Another immediate consequence deals with the closure of mutual independence
under projections.

Corollary 1.4.6. If the π-systems of events Hα,β, (α, β) ∈ J are mutually
independent, then the σ-algebras Gα = σ (∪βHα,β), are also mutually independent.

Proof. Let Aα be the collection of sets of the form A = ∩mj=1Hj where Hj ∈
Hα,βj for some m <∞ and distinct β1, . . . , βm. Since Hα,β are π-systems, it follows
that so is Aα for each α. Since a finite intersection of sets Ak ∈ Aαk , k = 1, . . . , L is
merely a finite intersection of sets from distinct collections Hαk,βj(k), the assumed
mutual independence ofHα,β implies the mutual independence of Aα. By Corollary
1.4.5, this in turn implies the mutual independence of σ(Aα). To complete the proof,
simply note that for any β, each H ∈ Hα,β is also an element of Aα, implying that
Gα ⊆ σ(Aα). �

Relying on the preceding corollary you can now establish the following character-
ization of independence (which is key to proving Kolmogorov’s 0-1 law).

Exercise 1.4.7. Show that if for each n ≥ 1 the σ-algebras FX
n = σ(X1, . . . , Xn)

and σ(Xn+1) are P-mutually independent then the random variables X1, X2, X3, . . .
are P-mutually independent. Conversely, show that if X1, X2, X3, . . . are indepen-
dent, then for each n ≥ 1 the σ-algebras FX

n and T X
n = σ(Xr, r > n) are indepen-

dent.

It is easy to check that a P-trivial σ-algebra H is P-independent of any other
σ-algebra G ⊆ F . Conversely, as we show next, independence is a great tool for
proving that a σ-algebra is P-trivial.

Lemma 1.4.8. If each of the σ-algebras Gk ⊆ Gk+1 is P-independent of a σ-algebra
H ⊆ σ(

⋃
k≥1 Gk) then H is P-trivial.

Remark. In particular, if H is P-independent of itself, then H is P-trivial.

Proof. Since Gk ⊆ Gk+1 for all k and Gk are σ-algebras, it follows that A =⋃
k≥1 Gk is a π-system. The assumed P-independence of H and Gk for each k

yields the P-independence of H and A. Thus, by Theorem 1.4.4 we have that
H and σ(A) are P-independent. Since H ⊆ σ(A) it follows that in particular
P(H) = P(H ∩H) = P(H) P(H) for each H ∈ H. So, necessarily P(H) ∈ {0, 1}
for all H ∈ H. That is, H is P-trivial. �
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We next define the tail σ-algebra of a stochastic process.

Definition 1.4.9. For a stochastic process {Xk} we set T X
n = σ(Xr, r > n) and

call T X = ∩nT X
n the tail σ-algebra of the process {Xk}.

As we next see, the P-triviality of the tail σ-algebra of independent random vari-
ables is an immediate consequence of Lemma 1.4.8. This result, due to Kolmogorov,
is just one of the many 0-1 laws that exist in probability theory.

Corollary 1.4.10 (Kolmogorov’s 0-1 law). If {Xk} are P-mutually indepen-
dent then the corresponding tail σ-algebra T X is P-trivial.

Proof. Note that FX
k ⊆ FX

k+1 and T X ⊆ FX = σ(Xk, k ≥ 1) = σ(
⋃
k≥1 FX

k )

(see Exercise 1.2.14 for the latter identity). Further, recall Exercise 1.4.7 that for
any n ≥ 1, the σ-algebras T X

n and FX
n are P-mutually independent. Hence, each of

the σ-algebras FX
k is also P-mutually independent of the tail σ-algebra T X, which

by Lemma 1.4.8 is thus P-trivial. �

Out of Corollary 1.4.6 we deduce that functions of disjoint collections of mutually
independent random variables are mutually independent.

Corollary 1.4.11. If R.V. Xk,j, 1 ≤ k ≤ m, 1 ≤ j ≤ l(k) are mutually indepen-

dent and fk : Rl(k) 7→ R are Borel functions, then Yk = fk(Xk,1, . . . , Xk,l(k)) are
mutually independent random variables for k = 1, . . . ,m.

Proof. We apply Corollary 1.4.6 for the index set J = {(k, j) : 1 ≤ k ≤
m, 1 ≤ j ≤ l(k)}, and mutually independent π-systems Hk,j = σ(Xk,j), to deduce
the mutual independence of Gk = σ(∪jHk,j). Recall that Gk = σ(Xk,j , 1 ≤ j ≤ l(k))
and σ(Yk) ⊆ Gk (see Definition 1.2.12 and Exercise 1.2.33). We complete the proof
by noting that Yk are mutually independent if and only if σ(Yk) are mutually
independent. �

Our next result is an application of Theorem 1.4.4 to the independence of random
variables.

Corollary 1.4.12. Real-valued random variables X1, X2, . . . , Xm on the same
probability space (Ω,F ,P) are mutually independent if and only if

(1.4.1) P(X1 ≤ x1, . . . , Xm ≤ xm) =

m∏
i=1

P(Xi ≤ xi) , ∀x1, . . . , xm ∈ R.

Proof. Let Ai denote the collection of subsets of Ω of the form X−1
i ((−∞, b])

for b ∈ R. Recall that Ai generates σ(Xi) (see Exercise 1.2.11), whereas (1.4.1)
states that the π-systems Ai are mutually independent (by continuity from below
of P, taking xi ↑ ∞ for i 6= i1, i 6= i2, . . . , i 6= iL, has the same effect as taking a
subset of distinct indices i1, . . . , iL from {1, . . . ,m}). So, just apply Theorem 1.4.4
to conclude the proof. �

The condition (1.4.1) for mutual independence of R.V.-s is further simplified when
these variables are either discrete valued, or having a density.

Exercise 1.4.13. Suppose (X1, . . . , Xm) are random variables and (S1, . . . ,Sm)
are countable sets such that P(Xi ∈ Si) = 1 for i = 1, . . . ,m. Show that if

P(X1 = x1, . . . , Xm = xm) =

m∏
i=1

P(Xi = xi)
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whenever xi ∈ Si, i = 1, . . . ,m, then X1, . . . , Xm are mutually independent.

Exercise 1.4.14. Suppose the random vector X = (X1, . . . , Xm) has a joint prob-
ability density function fX(x) = g1(x1) · · · gm(xm). That is,

P((X1, . . . , Xm) ∈ A) =

∫
A

g1(x1) · · · gm(xm)dx1 . . . dxm , ∀A ∈ BRm ,

where gi are non-negative, Lebesgue integrable functions. Show that then X1, . . . , Xm

are mutually independent.

Beware that pairwise independence (of each pair Ak, Aj for k 6= j), does not imply
mutual independence of all the events in question and the same applies to three or
more random variables. Here is an illustrating example.

Exercise 1.4.15. Consider the sample space Ω = {0, 1, 2}2 with probability mea-
sure on (Ω, 2Ω) that assigns equal probability (i.e. 1/9) to each possible value of
ω = (ω1, ω2) ∈ Ω. Then, X(ω) = ω1 and Y (ω) = ω2 are independent R.V.
each taking the values {0, 1, 2} with equal (i.e. 1/3) probability. Define Z0 = X,
Z1 = (X + Y )mod3 and Z2 = (X + 2Y )mod3.

(a) Show that Z0 is independent of Z1, Z0 is independent of Z2, Z1 is inde-
pendent of Z2, but if we know the value of Z0 and Z1, then we also know
Z2.

(b) Construct four {−1, 1}-valued random variables such that any three of
them are independent but all four are not.
Hint: Consider products of independent random variables.

Here is a somewhat counter intuitive example about tail σ-algebras, followed by
an elaboration on the theme of Corollary 1.4.11.

Exercise 1.4.16. Let σ(A,A′) denote the smallest σ-algebra G such that any
function measurable on A or on A′ is also measurable on G. Let W0,W1,W2, . . .
be independent random variables with P(Wn = +1) = P(Wn = −1) = 1/2 for all
n. For each n ≥ 1, define Xn := W0W1. . .Wn.
(a) Prove that the variables X1, X2, . . . are independent.
(b) Show that S = σ(TW

0 , T X) is a strict subset of the σ-algebra F = ∩nσ(TW
0 , T X

n ).
Hint: Show that W0 ∈ mF is independent of S.

Exercise 1.4.17. Consider random variables (Xi,j , 1 ≤ i, j ≤ n) on the same
probability space. Suppose that the σ-algebras R1, . . . ,Rn are P-mutually indepen-
dent, where Ri = σ(Xi,j , 1 ≤ j ≤ n) for i = 1, . . . , n. Suppose further that the
σ-algebras C1, . . . , Cn are P-mutually independent, where Cj = σ(Xi,j , 1 ≤ i ≤ n).
Prove that the random variables (Xi,j , 1 ≤ i, j ≤ n) must then be P-mutually inde-
pendent.

We conclude this subsection with an application in number theory.

Exercise 1.4.18. Recall Euler’s zeta-function which for real s > 1 is given by
ζ(s) =

∑∞
k=1 k

−s. Fixing such s, let X and Y be independent random variables
with P(X = k) = P(Y = k) = k−s/ζ(s) for k = 1, 2, . . ..

(a) Show that the events Dp = {X is divisible by p}, with p a prime number,
are P-mutually independent.

(b) By considering the event {X = 1}, provide a probabilistic explanation of
Euler’s formula 1/ζ(s) =

∏
p(1− 1/ps).



1.4. INDEPENDENCE AND PRODUCT MEASURES 59

(c) Show that the probability that no perfect square other than 1 divides X is
precisely 1/ζ(2s).

(d) Show that P(G = k) = k−2s/ζ(2s), where G is the greatest common
divisor of X and Y .

1.4.2. Product measures and Kolmogorov’s theorem. Recall Example
1.1.20 that given two measurable spaces (Ω1,F1) and (Ω2,F2) the product (mea-
surable) space (Ω,F) consists of Ω = Ω1×Ω2 and F = F1×F2, which is the same
as F = σ(A) for

A =
{ m⊎
j=1

Aj ×Bj : Aj ∈ F1, Bj ∈ F2,m <∞
}
,

where throughout,
⊎

denotes the union of disjoint subsets of Ω.
We now construct product measures on such product spaces, first for two, then

for finitely many, probability (or even σ-finite) measures. As we show thereafter,
these product measures are associated with the joint law of independent R.V.-s.

Theorem 1.4.19. Given two σ-finite measures νi on (Ωi,Fi), i = 1, 2, there exists
a unique σ-finite measure µ2 on the product space (Ω,F) such that

µ2(

m⊎
j=1

Aj ×Bj) =

m∑
j=1

ν1(Aj)ν2(Bj), ∀Aj ∈ F1, Bj ∈ F2,m <∞ .

We denote µ2 = ν1 × ν2 and call it the product of the measures ν1 and ν2.

Proof. By Carathéodory’s extension theorem, it suffices to show that A is an
algebra on which µ2 is countably additive (see Theorem 1.1.30 for the case of finite
measures). To this end, note that Ω = Ω1 × Ω2 ∈ A. Further, A is closed under
intersections, since

(

m⊎
j=1

Aj ×Bj)
⋂

(

n⊎
i=1

Ci ×Di) =
⊎
i,j

[(Aj ×Bj) ∩ (Ci ×Di)]

=
⊎
i,j

(Aj ∩ Ci)× (Bj ∩Di) .

It is also closed under complementation, for

(

m⊎
j=1

Aj ×Bj)c =

m⋂
j=1

[(Acj ×Bj) ∪ (Aj ×Bcj ) ∪ (Acj ×Bcj )] .

By DeMorgan’s law, A is an algebra.
Note that countable unions of disjoint elements of A are also countable unions of

disjoint elements of the collection R = {A × B : A ∈ F1, B ∈ F2} of measurable
rectangles. Hence, if we show that

(1.4.2)

m∑
j=1

ν1(Aj)ν2(Bj) =
∑
i

ν1(Ci)ν2(Di) ,

whenever
⊎m
j=1Aj ×Bj =

⊎
i(Ci×Di) for some m <∞, Aj , Ci ∈ F1 and Bj , Di ∈

F2, then we deduce that the value of µ2(E) is independent of the representation
we choose for E ∈ A in terms of measurable rectangles, and further that µ2 is
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countably additive on A. To this end, note that the preceding set identity amounts
to

m∑
j=1

IAj (x)IBj (y) =
∑
i

ICi(x)IDi(y) ∀x ∈ Ω1, y ∈ Ω2 .

Hence, fixing x ∈ Ω1, we have that ϕ(y) =
∑m
j=1 IAj (x)IBj (y) ∈ SF+ is the mono-

tone increasing limit of ψn(y) =
∑n
i=1 ICi(x)IDi(y) ∈ SF+ as n → ∞. Thus, by

linearity of the integral with respect to ν2 and monotone convergence,

g(x) :=

m∑
j=1

ν2(Bj)IAj (x) = ν2(ϕ) = lim
n→∞

ν2(ψn) = lim
n→∞

n∑
i=1

ICi(x)ν2(Di) .

We deduce that the non-negative g(x) ∈ mF1 is the monotone increasing limit of
the non-negative measurable functions hn(x) =

∑n
i=1 ν2(Di)ICi(x). Hence, by the

same reasoning,
m∑
j=1

ν2(Bj)ν1(Aj) = ν1(g) = lim
n→∞

ν1(hn) =
∑
i

ν2(Di)ν1(Ci) ,

proving (1.4.2) and the theorem. �

It follows from Theorem 1.4.19 by induction on n that given any finite collection
of σ-finite measure spaces (Ωi,Fi, νi), i = 1, . . . , n, there exists a unique product
measure µn = ν1 × · · · × νn on the product space (Ω,F) (i.e., Ω = Ω1 × · · · × Ωn
and F = σ(A1 × · · · ×An;Ai ∈ Fi, i = 1, . . . , n)), such that

(1.4.3) µn(A1 × · · · ×An) =

n∏
i=1

νi(Ai) ∀Ai ∈ Fi, i = 1, . . . , n.

Remark 1.4.20. A notable special case of this construction is when Ωi = R with
the Borel σ-algebra and Lebesgue measure λ of Section 1.1.3. The product space
is then Rn with its Borel σ-algebra and the product measure is λn, the Lebesgue
measure on Rn.

The notion of the law PX of a real-valued random variable X as in Definition
1.2.34, naturally extends to the joint law PX of a random vector X = (X1, . . . , Xn)

which is the probability measure PX = P ◦X−1 on (Rn,BRn).
We next characterize the joint law of independent random variables X1, . . . , Xn

as the product of the laws of Xi for i = 1, . . . , n.

Proposition 1.4.21. Random variables X1, . . . , Xn on the same probability space,
having laws νi = PXi , are mutually independent if and only if their joint law is
µn = ν1 × · · · × νn.

Proof. By Definition 1.4.3 and the identity (1.4.3), if X1, . . . , Xn are mutually
independent then for Bi ∈ B,

PX(B1 × · · · ×Bn) = P(X1 ∈ B1, . . . , Xn ∈ Bn)

=

n∏
i=1

P(Xi ∈ Bi) =

n∏
i=1

νi(Bi) = ν1 × · · · × νn(B1 × · · · ×Bn) .

This shows that the law of (X1, . . . , Xn) and the product measure µn agree on the
collection of all measurable rectangles B1×· · ·×Bn, a π-system that generates BRn
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(see Exercise 1.1.21). Consequently, these two probability measures agree on BRn
(c.f. Proposition 1.1.39).
Conversely, if PX = ν1 × · · · × νn, then by same reasoning, for Borel sets Bi,

P(

n⋂
i=1

{ω : Xi(ω) ∈ Bi}) = PX(B1 × · · · ×Bn) = ν1 × · · · × νn(B1 × · · · ×Bn)

=

n∏
i=1

νi(Bi) =

n∏
i=1

P({ω : Xi(ω) ∈ Bi}) ,

which amounts to the mutual independence of X1, . . . , Xn. �

We wish to extend the construction of product measures to that of an infinite col-
lection of independent random variables. To this end, let N = {1, 2, . . .} denote the
set of natural numbers and RN = {x = (x1, x2, . . .) : xi ∈ R} denote the collection
of all infinite sequences of real numbers. We equip RN with the product σ-algebra
Bc = σ(R) generated by the collectionR of all finite dimensional measurable rectan-
gles (also called cylinder sets), that is sets of the form {x : x1 ∈ B1, . . . , xn ∈ Bn},
where Bi ∈ B, i = 1, . . . , n ∈ N (e.g. see Example 1.1.19).
Kolmogorov’s extension theorem provides the existence of a unique probability

measure P on (RN,Bc) whose projections coincide with a given consistent sequence
of probability measures µn on (Rn,BRn).

Theorem 1.4.22 (Kolmogorov’s extension theorem). Suppose we are given
probability measures µn on (Rn,BRn) that are consistent, that is,

µn+1(B1 × · · · ×Bn × R) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i = 1, . . . , n <∞
Then, there is a unique probability measure P on (RN,Bc) such that

(1.4.4) P({ω : ωi ∈ Bi, i = 1, . . . , n}) = µn(B1 × · · · ×Bn) ∀Bi ∈ B, i ≤ n <∞

Proof. (sketch only) We take a similar approach as in the proof of Theorem
1.4.19. That is, we use (1.4.4) to define the non-negative set function P0 on the
collection R of all finite dimensional measurable rectangles, where by the consis-
tency of {µn} the value of P0 is independent of the specific representation chosen
for a set in R. Then, we extend P0 to a finitely additive set function on the algebra

A =
{ m⊎
j=1

Ej : Ej ∈ R,m <∞
}
,

in the same linear manner we used when proving Theorem 1.4.19. Since A generates
Bc and P0(RN) = µn(Rn) = 1, by Carathéodory’s extension theorem it suffices to
check that P0 is countably additive on A. The countable additivity of P0 is verified
by the method we already employed when dealing with Lebesgue’s measure. That
is, by the remark after Lemma 1.1.31, it suffices to prove that P0(Hn) ↓ 0 whenever
Hn ∈ A and Hn ↓ ∅. The proof by contradiction of the latter, adapting the
argument of Lemma 1.1.31, is based on approximating each H ∈ A by a finite
union Jk ⊆ H of compact rectangles, such that P0(H \ Jk)→ 0 as k →∞. This is
done for example in [Bil95, Page 490]. �

Example 1.4.23. To systematically construct an infinite sequence of independent
random variables {Xi} of prescribed laws PXi = νi, we apply Kolmogorov’s exten-
sion theorem for the product measures µn = ν1 × · · · × νn constructed following
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Theorem 1.4.19 (where it is by definition that the sequence µn is consistent). Al-
ternatively, for infinite product measures one can take arbitrary probability spaces
(Ωi,Fi, νi) and directly show by contradiction that P0(Hn) ↓ 0 whenever Hn ∈ A
and Hn ↓ ∅ (for more details, see [Str93, Exercise 1.1.14]).

Remark. As we shall find in Sections 6.1 and 8.1, Kolmogorov’s extension the-
orem is the key to the study of stochastic processes, where it relates the law of
the process to its finite dimensional distributions. Certain properties of R are key
to the proof of Kolmogorov’s extension theorem which indeed is false if (R,B) is
replaced with an arbitrary measurable space (S,S) (see the discussions in [Dur10,
Subsection 2.1.4] and [Dud89, notes for Section 12.1]). Nevertheless, as you show
next, the conclusion of this theorem applies for any B-isomorphic measurable space
(S,S).

Definition 1.4.24. Two measurable spaces (S,S) and (T, T ) are isomorphic if
there exists a one to one and onto measurable mapping between them whose inverse
is also a measurable mapping. A measurable space (S,S) is B-isomorphic if it is
isomorphic to a Borel subset T of R equipped with the induced Borel σ-algebra
T = {B ∩ T : B ∈ B}.
Here is our generalized version of Kolmogorov’s extension theorem.

Corollary 1.4.25. Given a measurable space (S,S) let SN denote the collection
of all infinite sequences of elements in S equipped the product σ-algebra Sc generated
by the collection of all cylinder sets of the form {s : s1 ∈ A1, . . . , sn ∈ An}, where
Ai ∈ S for i = 1, . . . , n. If (S,S) is B-isomorphic then for any consistent sequence
of probability measures νn on (Sn,Sn) (that is, νn+1(A1× · · · ×An× S) = νn(A1×
· · · × An) for all n and Ai ∈ S), there exists a unique probability measure Q on
(SN,Sc) such that for all n and Ai ∈ S,

(1.4.5) Q({s : si ∈ Ai, i = 1, . . . , n}) = νn(A1 × · · · ×An) .

Next comes a guided proof of Corollary 1.4.25 out of Theorem 1.4.22.

Exercise 1.4.26.

(a) Verify that our proof of Theorem 1.4.22 applies in case (R,B) is replaced
by T ∈ B equipped with the induced Borel σ-algebra T (with RN and Bc
replaced by TN and Tc, respectively).

(b) Fixing such (T, T ) and (S,S) isomorphic to it, let g : S 7→ T be one to
one and onto such that both g and g−1 are measurable. Check that the
one to one and onto mappings gn(s) = (g(s1), . . . , g(sn)) are measurable
and deduce that µn(B) = νn(g−1

n (B)) are consistent probability measures
on (Tn, T n).

(c) Consider the one to one and onto mapping g∞(s) = (g(s1), . . . , g(sn), . . .)
from SN to TN and the unique probability measure P on (TN, Tc) for
which (1.4.4) holds. Verify that Sc is contained in the σ-algebra of subsets
A of SN for which g∞(A) is in Tc and deduce that Q(A) = P(g∞(A)) is
a probability measure on (SN,Sc).

(d) Conclude your proof of Corollary 1.4.25 by showing that this Q is the
unique probability measure for which (1.4.5) holds.

Equipped with Corollary 1.4.25, you can now extend the scope of Example 1.4.23
to handle the joint law of infinitely many independent (S,S)-valued random vari-
ables.
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Exercise 1.4.27. The P-mutual independence of Xα, α ∈ I as in Definition
1.4.3, extends to (S,S)-valued variables, whereas for any n ∈ N, the joint law
PX = P◦X−1 for X = (X1, . . . , Xn), is a probability measure on the product space
(Sn,Sn) (see Definition 1.2.34 for the special case of (R,B) and n = 1).

(a) Verify that Proposition 1.4.21 extends as well. Namely, (S,S)-valued
variables X1, . . . , Xn on the same probability space and laws νi = PXi
are mutually independent if and only if PX = ν1 × · · · × νn.

(b) Assuming that (S,S) is B-isomorphic, construct the unique probability
measure Q on (SN,Sc) under which the coordinates Xk(s) = sk are in-
dependent (S,S)-valued variables of the prescribed laws {PXk}.

Remark. Recall that Carathéodory’s extension theorem applies for any σ-finite
measure. It follows that, by the same proof as in the preceding exercise, any
consistent sequence of σ-finite measures νn uniquely determines a σ-finite measure
Q on (SN,Sc) for which (1.4.5) holds, a fact which we use in later parts of this text
(for example, in the study of Markov chains in Section 6.1).

Our next proposition shows that in most applications one encounters B-isomorphic
measurable spaces (for which Kolmogorov’s theorem applies).

Proposition 1.4.28. If S ∈ BM for a complete separable metric space M and S
is the restriction of BM to S then (S,S) is B-isomorphic.

Remark. While we do not provide the proof of this proposition, we note in passing
that it is an immediate consequence of [Dud89, Theorem 13.1.1].

1.4.3. Fubini’s theorem and its application. Returning to (Ω,F , µ) which
is the product of two σ-finite measure spaces, as in Theorem 1.4.19, we now prove
that:

Theorem 1.4.29 (Fubini’s theorem). Suppose µ = µ1 × µ2 is the product of
the σ-finite measures µ1 on (X,X) and µ2 on (Y,Y). If h ∈ mF for F = X× Y is
such that h ≥ 0 or

∫
|h| dµ <∞, then,∫
X×Y

h dµ =

∫
X

[∫
Y
h(x, y) dµ2(y)

]
dµ1(x)(1.4.6)

=

∫
Y

[∫
X
h(x, y) dµ1(x)

]
dµ2(y)

Remark. The iterated integrals on the right side of (1.4.6) are finite and well
defined whenever

∫
|h|dµ < ∞. However, for h /∈ mF+ the inner integrals might

be well defined only in the almost everywhere sense.

Proof of Fubini’s theorem. Clearly, it suffices to prove the first identity
of (1.4.6), as the second immediately follows by exchanging the roles of the two
measure spaces. We thus prove Fubini’s theorem by showing that

(1.4.7) y 7→ h(x, y) ∈ mY, ∀x ∈ X,

(1.4.8) x 7→ fh(x) :=

∫
Y
h(x, y) dµ2(y) ∈ mX,

so the double integral on the right side of (1.4.6) is well defined and

(1.4.9)

∫
X×Y

h dµ =

∫
X
fh(x)dµ1(x) .
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We do so in three steps, first proving (1.4.7)-(1.4.9) for finite measures and bounded
h, proceeding to extend these results to non-negative h and σ-finite measures, and
then showing that (1.4.6) holds whenever h ∈ mF and

∫
|h|dµ is finite.

Step 1. LetH denote the collection of bounded functions on X×Y for which (1.4.7)–
(1.4.9) hold. Assuming that both µ1(X) and µ2(Y) are finite, we deduce that H
contains all bounded h ∈ mF by verifying the assumptions of the monotone class
theorem (i.e. Theorem 1.2.7) for H and the π-system R = {A×B : A ∈ X, B ∈ Y}
of measurable rectangles (which generates F).
To this end, note that if h = IE and E = A×B ∈ R, then either h(x, ·) = IB(·) (in

case x ∈ A), or h(x, ·) is identically zero (when x 6∈ A). With IB ∈ mY we thus have
(1.4.7) for any such h. Further, in this case the simple function fh(x) = µ2(B)IA(x)
on (X,X) is in mX and∫

X×Y
IEdµ = µ1 × µ2(E) = µ2(B)µ1(A) =

∫
X
fh(x)dµ1(x) .

Consequently, IE ∈ H for all E ∈ R; in particular, the constant functions are in H.
Next, with both mY and mX vector spaces over R, by the linearity of h 7→ fh

over the vector space of bounded functions satisfying (1.4.7) and the linearity of
fh 7→ µ1(fh) and h 7→ µ(h) over the vector spaces of bounded measurable fh and
h, respectively, we deduce that H is also a vector space over R.
Finally, if non-negative hn ∈ H are such that hn ↑ h, then for each x ∈ X the

mapping y 7→ h(x, y) = supn hn(x, y) is in mY+ (by Theorem 1.2.22). Further,
fhn ∈ mX+ and by monotone convergence fhn ↑ fh (for all x ∈ X), so by the same
reasoning fh ∈ mX+. Applying monotone convergence twice more, it thus follows
that

µ(h) = sup
n
µ(hn) = sup

n
µ1(fhn) = µ1(fh) ,

so h satisfies (1.4.7)–(1.4.9). In particular, if h is bounded then also h ∈ H .
Step 2. Suppose now that h ∈ mF+. If µ1 and µ2 are finite measures, then
we have shown in Step 1 that (1.4.7)–(1.4.9) hold for the bounded non-negative
functions hn = h ∧ n. With hn ↑ h we have further seen that (1.4.7)-(1.4.9) hold
also for the possibly unbounded h. Further, the closure of (1.4.8) and (1.4.9) with
respect to monotone increasing limits of non-negative functions has been shown
by monotone convergence, and as such it extends to σ-finite measures µ1 and µ2.
Turning now to σ-finite µ1 and µ2, recall that there exist En = An × Bn ∈ R
such that An ↑ X, Bn ↑ Y, µ1(An) < ∞ and µ2(Bn) < ∞. As h is the monotone
increasing limit of hn = hIEn ∈ mF+ it thus suffices to verify that for each n
the non-negative fn(x) =

∫
Y hn(x, y)dµ2(y) is measurable with µ(hn) = µ1(fn).

Fixing n and simplifying our notations to E = En, A = An and B = Bn, recall
Corollary 1.3.57 that µ(hn) = µE(hE) for the restrictions hE and µE of h and µ to
the measurable space (E,FE). Also, as E = A × B we have that FE = XA × YB
and µE = (µ1)A × (µ2)B for the finite measures (µ1)A and (µ2)B . Finally, as
fn(x) = fhE (x) :=

∫
B
hE(x, y)d(µ2)B(y) when x ∈ A and zero otherwise, it follows

that µ1(fn) = (µ1)A(fhE ). We have thus reduced our problem (for hn), to the case
of finite measures µE = (µ1)A× (µ2)B which we have already successfully resolved.
Step 3. Write h ∈ mF as h = h+ − h−, with h± ∈ mF+. By Step 2 we know that
y 7→ h±(x, y) ∈ mY for each x ∈ X, hence the same applies for y 7→ h(x, y). Let
X0 denote the subset of X for which

∫
Y |h(x, y)|dµ2(y) < ∞. By linearity of the
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integral with respect to µ2 we have that for all x ∈ X0

(1.4.10) fh(x) = fh+(x)− fh−(x)

is finite. By Step 2 we know that fh± ∈ mX, hence X0 = {x : fh+
(x) + fh−(x) <

∞} is in X. From Step 2 we further have that µ1(fh±) = µ(h±) whereby our
assumption that

∫
|h| dµ = µ1(fh+ + fh−) < ∞ implies that µ1(Xc0) = 0. Let

f̃h(x) = fh+
(x) − fh−(x) on X0 and f̃h(x) = 0 for all x /∈ X0. Clearly, f̃h ∈ mX

is µ1-almost-everywhere the same as the inner integral on the right side of (1.4.6).
Moreover, in view of (1.4.10) and linearity of the integrals with respect to µ1 and
µ we deduce that

µ(h) = µ(h+)− µ(h−) = µ1(fh+)− µ1(fh−) = µ1(f̃h) ,

which is exactly the identity (1.4.6). �

Equipped with Fubini’s theorem, we have the following simpler formula for the
expectation of a Borel function h of two independent R.V.

Theorem 1.4.30. Suppose that X and Y are independent random variables of
laws µ1 = PX and µ2 = PY . If h : R2 7→ R is a Borel measurable function such
that h ≥ 0 or E|h(X,Y )| <∞, then,

(1.4.11) Eh(X,Y ) =

∫ [ ∫
h(x, y) dµ1(x)

]
dµ2(y)

In particular, for Borel functions f, g : R 7→ R such that f, g ≥ 0 or E|f(X)| <∞
and E|g(Y )| <∞,

(1.4.12) E(f(X)g(Y )) = Ef(X) Eg(Y )

Proof. Subject to minor changes of notations, the proof of Theorem 1.3.61
applies to any (S,S)-valued R.V. Considering this theorem for the random vector
(X,Y ) whose joint law is µ1 × µ2 (c.f. Proposition 1.4.21), together with Fubini’s
theorem, we see that

Eh(X,Y ) =

∫
R2

h(x, y) d(µ1 × µ2)(x, y) =

∫ [ ∫
h(x, y) dµ1(x)

]
dµ2(y) ,

which is (1.4.11). Take now h(x, y) = f(x)g(y) for non-negative Borel functions
f(x) and g(y). In this case, the iterated integral on the right side of (1.4.11) can
be further simplified to,

E(f(X)g(Y )) =

∫ [∫
f(x)g(y) dµ1(x)

]
dµ2(y) =

∫
g(y)[

∫
f(x) dµ1(x)] dµ2(y)

=

∫
[Ef(X)]g(y) dµ2(y) = Ef(X) Eg(Y )

(with Theorem 1.3.61 applied twice here), which is the stated identity (1.4.12).
To deal with Borel functions f and g that are not necessarily non-negative, first

apply (1.4.12) for the non-negative functions |f | and |g| to get that E(|f(X)g(Y )|) =
E|f(X)|E|g(Y )| <∞. Thus, the assumed integrability of f(X) and of g(Y ) allows
us to apply again (1.4.11) for h(x, y) = f(x)g(y). Now repeat the argument we
used for deriving (1.4.12) in case of non-negative Borel functions. �

Another consequence of Fubini’s theorem is the following integration by parts for-
mula.
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Lemma 1.4.31 (integration by parts). Suppose H(x) =
∫ x
−∞ h(y)dy for a

non-negative Borel function h and all x ∈ R. Then, for any random variable X,

(1.4.13) EH(X) =

∫
R
h(y)P(X > y)dy .

Proof. Combining the change of variables formula (Theorem 1.3.61), with our
assumption about H(·), we have that

EH(X) =

∫
R
H(x)dPX(x) =

∫
R

[ ∫
R
h(y)Ix>y dλ(y)

]
dPX(x) ,

where λ denotes Lebesgue’s measure on (R,B). For each y ∈ R, the expectation of
the simple function x 7→ h(x, y) = h(y)Ix>y with respect to (R,B,PX) is merely
h(y)P(X > y). Thus, applying Fubini’s theorem for the non-negative measurable
function h(x, y) on the product space R×R equipped with its Borel σ-algebra BR2 ,
and the σ-finite measures µ1 = PX and µ2 = λ, we have that

EH(X) =

∫
R

[ ∫
R
h(y)Ix>y dPX(x)

]
dλ(y) =

∫
R
h(y)P(X > y)dy ,

as claimed. �

Indeed, as we see next, by combining the integration by parts formula with Hölder’s
inequality we can convert bounds on tail probabilities to bounds on the moments
of the corresponding random variables.

Lemma 1.4.32.

(a) For any r > p > 0 and any random variable Y ≥ 0,

EY p =

∫ ∞
0

pyp−1P(Y > y)dy =

∫ ∞
0

pyp−1P(Y ≥ y)dy

= (1− p

r
)

∫ ∞
0

pyp−1E[min(Y/y, 1)r]dy .

(b) If X,Y ≥ 0 are such that P(Y ≥ y) ≤ y−1E[XIY≥y] for all y > 0, then
‖Y ‖p ≤ q‖X‖p for any p > 1 and q = p/(p− 1).

(c) Under the same hypothesis also EY ≤ 1 + E[X(log Y )+].

Proof. (a) The first identity is merely the integration by parts formula for
hp(y) = pyp−11y>0 and Hp(x) = xp1x≥0 and the second identity follows by the
fact that P(Y = y) = 0 up to a (countable) set of zero Lebesgue measure. Finally,
it is easy to check that Hp(x) =

∫
R hp,r(x, y)dy for the non-negative Borel function

hp,r(x, y) = (1 − p/r)pyp−1 min(x/y, 1)r1x≥01y>0 and any r > p > 0. Hence,
replacing h(y)Ix>y throughout the proof of Lemma 1.4.31 by hp,r(x, y) we find that
E[Hp(X)] =

∫∞
0

E[hp,r(X, y)]dy, which is exactly our third identity.
(b) In a similar manner it follows from Fubini’s theorem that for p > 1 and any
non-negative random variables X and Y

E[XY p−1] = E[XHp−1(Y )] = E[

∫
R
hp−1(y)XIY≥ydy] =

∫
R
hp−1(y)E[XIY≥y]dy .

Thus, with y−1hp(y) = qhp−1(y) our hypothesis implies that

EY p =

∫
R
hp(y)P(Y ≥ y)dy ≤

∫
R
qhp−1(y)E[XIY≥y]dy = qE[XY p−1] .
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Applying Hölder’s inequality we deduce that

EY p ≤ qE[XY p−1] ≤ q‖X‖p‖Y p−1‖q = q‖X‖p[EY p]1/q

where the right-most equality is due to the fact that (p − 1)q = p. In case Y
is bounded, dividing both sides of the preceding bound by [EY p]1/q implies that
‖Y ‖p ≤ q‖X‖p. To deal with the general case, let Yn = Y ∧ n, n = 1, 2, . . . and
note that either {Yn ≥ y} is empty (for n < y) or {Yn ≥ y} = {Y ≥ y}. Thus, our
assumption implies that P(Yn ≥ y) ≤ y−1E[XIYn≥y] for all y > 0 and n ≥ 1. By
the preceding argument ‖Yn‖p ≤ q‖X‖p for any n. Taking n → ∞ it follows by
monotone convergence that ‖Y ‖p ≤ q‖X‖p.
(c) Considering part (a) with p = 1, we bound P(Y ≥ y) by one for y ∈ [0, 1] and
by y−1E[XIY≥y] for y > 1, to get by Fubini’s theorem that

EY =

∫ ∞
0

P(Y ≥ y)dy ≤ 1 +

∫ ∞
1

y−1E[XIY≥y]dy

= 1 + E[X

∫ ∞
1

y−1IY≥ydy] = 1 + E[X(log Y )+] .

�

We further have the following corollary of (1.4.12), dealing with the expectation
of a product of mutually independent R.V.

Corollary 1.4.33. Suppose that X1, . . . , Xn are P-mutually independent random
variables such that either Xi ≥ 0 for all i, or E|Xi| <∞ for all i. Then,

(1.4.14) E
( n∏
i=1

Xi

)
=

n∏
i=1

EXi ,

that is, the expectation on the left exists and has the value given on the right.

Proof. By Corollary 1.4.11 we know that X = X1 and Y = X2 · · ·Xn are
independent. Taking f(x) = |x| and g(y) = |y| in Theorem 1.4.30, we thus have
that E|X1 · · ·Xn| = E|X1|E|X2 · · ·Xn| for any n ≥ 2. Applying this identity
iteratively for Xl, . . . , Xn, starting with l = m, then l = m + 1,m + 2, . . . , n − 1
leads to

(1.4.15) E|Xm · · ·Xn| =
n∏

k=m

E|Xk| ,

holding for any 1 ≤ m ≤ n. If Xi ≥ 0 for all i, then |Xi| = Xi and we have (1.4.14)
as the special case m = 1.
To deal with the proof in case Xi ∈ L1 for all i, note that for m = 2 the identity

(1.4.15) tells us that E|Y | = E|X2 · · ·Xn| < ∞, so using Theorem 1.4.30 with
f(x) = x and g(y) = y we have that E(X1 · · ·Xn) = (EX1)E(X2 · · ·Xn). Iterating
this identity for Xl, . . . , Xn, starting with l = 1, then l = 2, 3, . . . , n − 1 leads to
the desired result (1.4.14). �

Another application of Theorem 1.4.30 provides us with the familiar formula for
the probability density function of the sum X+Y of independent random variables
X and Y , having densities fX and fY respectively.
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Corollary 1.4.34. Suppose that R.V. X with a Borel measurable probability
density function fX and R.V. Y with a Borel measurable probability density function
fY are independent. Then, the random variable Z = X + Y has the probability
density function

fZ(z) =

∫
R
fX(z − y)fY (y)dy .

Proof. Fixing z ∈ R, apply Theorem 1.4.30 for h(x, y) = 1(x+y≤z), to get
that

FZ(z) = P(X + Y ≤ z) = Eh(X,Y ) =

∫
R

[ ∫
R
h(x, y)dPX(x)

]
dPY (y) .

Considering the inner integral for a fixed value of y, we have that∫
R
h(x, y)dPX(x) =

∫
R
I(−∞,z−y](x)dPX(x) = PX((−∞, z − y]) =

∫ z−y

−∞
fX(x)dx ,

where the right most equality is by the existence of a density fX(x) for X (c.f.

Definition 1.2.40). Clearly,
∫ z−y
−∞ fX(x)dx =

∫ z
−∞ fX(x − y)dx. Thus, applying

Fubini’s theorem for the Borel measurable function g(x, y) = fX(x − y) ≥ 0 and
the product of the σ-finite Lebesgue’s measure on (−∞, z] and the probability
measure PY , we see that

FZ(z) =

∫
R

[ ∫ z

−∞
fX(x− y)dx

]
dPY (y) =

∫ z

−∞

[ ∫
R
fX(x− y)dPY (y)

]
dx

(in this application of Fubini’s theorem we replace one iterated integral by another,
exchanging the order of integration). Since this applies for any z ∈ R, it follows by
definition that Z has the probability density

fZ(z) =

∫
R
fX(z − y)dPY (y) = EfX(z − Y ) .

With Y having density fY , the stated formula for fZ is a consequence of Corollary
1.3.62. �

Definition 1.4.35. The expression
∫
f(z − y)g(y)dy is called the convolution of

the non-negative Borel functions f and g, denoted by f ∗ g(z). The convolution of
measures µ and ν on (R,B) is the measure µ ∗ ν on (R,B) such that µ ∗ ν(B) =∫
µ(B − x)dν(x) for any B ∈ B (where B − x = {y : x+ y ∈ B}).

Corollary 1.4.34 states that if two independent random variables X and Y have
densities, then so does Z = X+Y , whose density is the convolution of the densities
of X and Y . Without assuming the existence of densities, one can show by a similar
argument that the law of X + Y is the convolution of the law of X and the law of
Y (c.f. [Dur10, Theorem 2.1.10] or [Bil95, Page 266]).
Convolution is often used in analysis to provide a more regular approximation to

a given function. Here are few of the reasons for doing so.

Exercise 1.4.36. Suppose Borel functions f, g are such that g is a probability
density and

∫
|f(x)|dx is finite. Consider the scaled densities gn(·) = ng(n·), n ≥ 1.

(a) Show that f ∗ g(y) is a Borel function with
∫
|f ∗ g(y)|dy ≤

∫
|f(x)|dx

and if g is uniformly continuous, then so is f ∗ g.
(b) Show that if g(x) = 0 whenever |x| ≥ 1, then f ∗gn(y)→ f(y) as n→∞,

for any continuous f and each y ∈ R.
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Next you find two of the many applications of Fubini’s theorem in real analysis.

Exercise 1.4.37. Show that the set Gf = {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)} of points
under the graph of a non-negative Borel function f : R 7→ [0,∞) is in BR2 and
deduce the well-known formula λ× λ(Gf ) =

∫
f(x)dλ(x), for its area.

Exercise 1.4.38. For n ≥ 2, consider the unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1}
equipped with the topology induced by Rn. Let the surface measure of A ∈ BSn−1 be
ν(A) = nλn(C0,1(A)), for Ca,b(A) = {rx : r ∈ (a, b], x ∈ A} and the n-fold product
Lebesgue measure λn (as in Remark 1.4.20).

(a) Check that Ca,b(A) ∈ BRn and deduce that ν(·) is a finite measure on
Sn−1 (which is further invariant under orthogonal transformations).

(b) Verify that λn(Ca,b(A)) = bn−an
n ν(A) and deduce that for any B ∈ BRn

λn(B) =

∫ ∞
0

[ ∫
Sn−1

Irx∈B dν(x)
]
rn−1 dλ(r) .

Hint: Recall that λn(γB) = γnλn(B) for any γ ≥ 0 and B ∈ BRn .

Combining (1.4.12) with Theorem 1.2.26 leads to the following characterization of
the independence between two random vectors (compare with Definition 1.4.1).

Exercise 1.4.39. Show that the Rn-valued random variable (X1, . . . , Xn) and the
Rm-valued random variable (Y1, . . . , Ym) are independent if and only if

E(h(X1, . . . , Xn)g(Y1, . . . , Ym)) = E(h(X1, . . . , Xn))E(g(Y1, . . . , Ym)),

for all bounded, Borel measurable functions g : Rm 7→ R and h : Rn 7→ R.
Then show that the assumption of h(·) and g(·) bounded can be relaxed to both
h(X1, . . . , Xn) and g(Y1, . . . , Ym) being in L1(Ω,F ,P).

Here is another application of (1.4.12):

Exercise 1.4.40. Show that E(f(X)g(X)) ≥ (Ef(X))(Eg(X)) for every random
variable X and any bounded non-decreasing functions f, g : R 7→ R.

In the following exercise you bound the exponential moments of certain random
variables.

Exercise 1.4.41. Suppose Y is an integrable random variable such that E[eY ] is
finite and E[Y ] = 0.

(a) Show that if |Y | ≤ κ then

log E[eY ] ≤ κ−2(eκ − κ− 1)E[Y 2] .

Hint: Use the Taylor expansion of eY − Y − 1.
(b) Show that if E[Y 2euY ] ≤ κ2E[euY ] for all u ∈ [0, 1], then

log E[eY ] ≤ log cosh(κ) .

Hint: Note that ϕ(u) = log E[euY ] is convex, non-negative and finite on
[0, 1] with ϕ(0) = 0 and ϕ′(0) = 0. Verify that ϕ′′(u) +ϕ′(u)2 ≤ κ2 while
φ(u) = log cosh(κu) satisfies the differential equation φ′′(u)+φ′(u)2 = κ2.

As demonstrated next, Fubini’s theorem is also handy in proving the impossibility
of certain constructions.
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Exercise 1.4.42. Explain why it is impossible to have P-mutually independent
random variables Ut(ω), t ∈ [0, 1], on the same probability space (Ω,F ,P), having
each the uniform probability measure on [−1/2, 1/2], such that t 7→ Ut(ω) is a Borel
function for almost every ω ∈ Ω.
Hint: Show that E[(

∫ r
0
Ut(ω)dt)2] = 0 for all r ∈ [0, 1].

Random variables X and Y such that E(X2) < ∞ and E(Y 2) < ∞ are called
uncorrelated if E(XY ) = E(X)E(Y ). It follows from (1.4.12) that independent
random variables X, Y with finite second moment are uncorrelated. While the
converse is not necessarily true, it does apply for pairs of random variables that
take only two different values each.

Exercise 1.4.43. Suppose X and Y are uncorrelated random variables.

(a) Show that if X = IA and Y = IB for some A,B ∈ F then X and Y are
also independent.

(b) Using this, show that if {a, b}-valued R.V. X and {c, d}-valued R.V. Y
are uncorrelated, then they are also independent.

(c) Give an example of a pair of R.V. X and Y that are uncorrelated but not
independent.

Next come a pair of exercises utilizing Corollary 1.4.33.

Exercise 1.4.44. Suppose X and Y are random variables on the same probability
space, X has a Poisson distribution with parameter λ > 0, and Y has a Poisson
distribution with parameter µ > λ (see Example 1.3.69).

(a) Show that if X and Y are independent then P(X ≥ Y ) ≤ exp(−(
√
µ −√

λ)2).
(b) Taking µ = γλ for γ > 1, find I(γ) > 0 such that P(X ≥ Y ) ≤

2 exp(−λI(γ)) even when X and Y are not independent.

Exercise 1.4.45. Suppose X and Y are independent random variables of identical
distribution such that X > 0 and E[X] <∞.

(a) Show that E[X−1Y ] > 1 unless X(ω) = c for some non-random c and
almost every ω ∈ Ω.

(b) Provide an example in which E[X−1Y ] =∞.

We conclude this section with a concrete application of Corollary 1.4.34, comput-
ing the density of the sum of mutually independent R.V., each having the same
exponential density. To this end, recall

Definition 1.4.46. The gamma density with parameters α > 0 and λ > 0 is given
by

fΓ(s) = Γ(α)−1λαsα−1e−λs1s>0 ,

where Γ(α) =
∫∞

0
sα−1e−sds is finite and positive. In particular, α = 1 corresponds

to the exponential density fT of Example 1.3.68.

Exercise 1.4.47. Suppose X has a gamma density of parameters α1 and λ and Y
has a gamma density of parameters α2 and λ. Show that if X and Y are indepen-
dent then X + Y has a gamma density of parameters α1 + α2 and λ. Deduce that
if T1, . . . , Tn are mutually independent R.V. each having the exponential density of
parameter λ, then Wn =

∑n
i=1 Ti has the gamma density of parameters α = n and

λ.



CHAPTER 2

Asymptotics: the law of large numbers

Building upon the foundations of Chapter 1 we turn to deal with asymptotic
theory. To this end, this chapter is devoted to degenerate limit laws, that is,
situations in which a sequence of random variables converges to a non-random
(constant) limit. Though not exclusively dealing with it, our focus here is on the
sequence of empirical averages n−1

∑n
i=1Xi as n→∞.

Section 2.1 deals with the weak law of large numbers, where convergence in prob-
ability (or in Lq for some q > 1) is considered. This is strengthened in Section 2.3
to a strong law of large numbers, namely, to convergence almost surely. The key
tools for this improvement are the Borel-Cantelli lemmas, to which Section 2.2 is
devoted.

2.1. Weak laws of large numbers

A weak law of large numbers corresponds to the situation where the normalized
sums of large number of random variables converge in probability to a non-random
constant. Usually, the derivation of a weak low involves the computation of vari-
ances, on which we focus in Subsection 2.1.1. However, the L2 convergence we
obtain there is of a somewhat limited scope of applicability. To remedy this, we
introduce the method of truncation in Subsection 2.1.2 and illustrate its power in
a few representative examples.

2.1.1. L2 limits for sums of uncorrelated variables. The key to our
derivation of weak laws of large numbers is the computation of variances. As a
preliminary step we define the covariance of two R.V. and extend the notion of a
pair of uncorrelated random variables, to a (possibly infinite) family of R.V.

Definition 2.1.1. The covariance of two random variables X,Y ∈ L2(Ω,F ,P) is

Cov(X,Y ) = E[(X −EX)(Y −EY )] = EXY −EXEY ,

so in particular, Cov(X,X) = Var(X).
We say that random variables Xα ∈ L2(Ω,F ,P) are uncorrelated if

E(XαXβ) = E(Xα)E(Xβ) ∀α 6= β ,

or equivalently, if
Cov(Xα, Xβ) = 0 ∀α 6= β .

As we next show, the variance of the sum of finitely many uncorrelated random
variables is the sum of the variances of the variables.

Lemma 2.1.2. Suppose X1, . . . , Xn are uncorrelated random variables (which nec-
essarily are defined on the same probability space). Then,

(2.1.1) Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn) .

71



72 2. ASYMPTOTICS: THE LAW OF LARGE NUMBERS

Proof. Let Sn =
n∑
i=1

Xi. By Definition 1.3.67 of the variance and linearity of

the expectation we have that

Var(Sn) = E([Sn −ESn]2) = E
(
[

n∑
i=1

Xi −
n∑
i=1

EXi]
2
)

= E
(
[

n∑
i=1

(Xi −EXi)]
2
)
.

Writing the square of the sum as the sum of all possible cross-products, we get that

Var(Sn) =

n∑
i,j=1

E[(Xi −EXi)(Xj −EXj)]

=

n∑
i,j=1

Cov(Xi, Xj) =

n∑
i=1

Cov(Xi, Xi) =

n∑
i=1

Var(Xi) ,

where we use the fact that Cov(Xi, Xj) = 0 for each i 6= j since Xi and Xj are
uncorrelated. �

Equipped with this lemma we have our

Theorem 2.1.3 (L2 weak law of large numbers). Consider Sn =
n∑
i=1

Xi

for uncorrelated random variables X1, . . . , Xn, . . .. Suppose that Var(Xi) ≤ C and

EXi = x for some finite constants C, x, and all i = 1, 2, . . .. Then, n−1Sn
L2

→ x as

n→∞, and hence also n−1Sn
p→ x.

Proof. Our assumptions imply that E(n−1Sn) = x, and further by Lemma
2.1.2 we have the bound Var(Sn) ≤ nC. Recall the scaling property (1.3.17) of the
variance, implying that

E
[
(n−1Sn − x)2

]
= Var

(
n−1Sn

)
=

1

n2
Var(Sn) ≤ C

n
→ 0

as n→∞. Thus, n−1Sn
L2

→ x (recall Definition 1.3.26). By Proposition 1.3.29 this

implies that also n−1Sn
p→ x. �

The most important special case of Theorem 2.1.3 is,

Example 2.1.4. Suppose that X1, . . . , Xn are independent and identically dis-
tributed (or in short, i.i.d.), with EX2

1 <∞. Then, EX2
i = C and EXi = mX are

both finite and independent of i. So, the L2 weak law of large numbers tells us that

n−1Sn
L2

→ mX , and hence also n−1Sn
p→ mX .

Remark. As we shall see, the weaker condition E|Xi| <∞ suffices for the conver-
gence in probability of n−1Sn to mX . In Section 2.3 we show that it even suffices
for the convergence almost surely of n−1Sn to mX , a statement called the strong
law of large numbers.

Exercise 2.1.5. Show that the conclusion of the L2 weak law of large numbers
holds even for correlated Xi, provided EXi = x and Cov(Xi, Xj) ≤ r(|i− j|) for all
i, j, and some bounded sequence r(k)→ 0 as k →∞.

With an eye on generalizing the L2 weak law of large numbers we observe that

Lemma 2.1.6. If the random variables Zn ∈ L2(Ω,F ,P) and the non-random bn

are such that b−2
n Var(Zn)→ 0 as n→∞, then b−1

n (Zn −EZn)
L2

→ 0.



2.1. WEAK LAWS OF LARGE NUMBERS 73

Proof. We have E[(b−1
n (Zn −EZn))2] = b−2

n Var(Zn)→ 0. �

Example 2.1.7. Let Zn =
∑n
k=1Xk for uncorrelated random variables {Xk}. If

Var(Xk)/k → 0 as k → ∞, then Lemma 2.1.6 applies for Zn and bn = n, hence
n−1(Zn−EZn)→ 0 in L2 (and in probability). Alternatively, if also Var(Xk)→ 0,
then Lemma 2.1.6 applies even for Zn and bn = n−1/2.

Many limit theorems involve random variables of the form Sn =
n∑
k=1

Xn,k, that is,

the row sums of triangular arrays of random variables {Xn,k : k = 1, . . . , n}. Here
are two such examples, both relying on Lemma 2.1.6.

Example 2.1.8 (Coupon collector’s problem). Consider i.i.d. random vari-
ables U1, U2, . . ., each distributed uniformly on {1, 2, . . . , n}. Let |{U1, . . . , Ul}| de-
note the number of distinct elements among the first l variables, and τnk = inf{l :
|{U1, . . . , Ul}| = k} be the first time one has k distinct values. We are interested
in the asymptotic behavior as n→∞ of Tn = τnn , the time it takes to have at least
one representative of each of the n possible values.
To motivate the name assigned to this example, think of collecting a set of n

different coupons, where independently of all previous choices, each item is chosen
at random in such a way that each of the possible n outcomes is equally likely.
Then, Tn is the number of items one has to collect till having the complete set.
Setting τn0 = 0, let Xn,k = τnk − τnk−1 denote the additional time it takes to get

an item different from the first k − 1 distinct items collected. Note that Xn,k has

a geometric distribution of success probability qn,k = 1− k−1
n , hence EXn,k = q−1

n,k

and Var(Xn,k) ≤ q−2
n,k (see Example 1.3.69). Since

Tn = τnn − τn0 =

n∑
k=1

(τnk − τnk−1) =

n∑
k=1

Xn,k ,

we have by linearity of the expectation that

ETn =

n∑
k=1

(
1− k − 1

n

)−1

= n

n∑
`=1

`−1 = n(log n+ γn) ,

where γn =
n∑̀
=1

`−1 −
∫ n

1
x−1dx is between zero and one (by monotonicity of x 7→

x−1). Further, Xn,k is independent of each earlier waiting time Xn,j, j = 1, . . . , k−
1, hence we have by Lemma 2.1.2 that

Var(Tn) =

n∑
k=1

Var(Xn,k) ≤
n∑
k=1

(
1− k − 1

n

)−2

≤ n2
∞∑
`=1

`−2 = Cn2 ,

for some C <∞. Applying Lemma 2.1.6 with bn = n log n, we deduce that

Tn − n(log n+ γn)

n log n

L2

→ 0 .

Since γn/ log n→ 0, it follows that

Tn
n log n

L2

→ 1 ,

and Tn/(n log n)→ 1 in probability as well.
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One possible extension of Example 2.1.8 concerns infinitely many possible coupons.
That is,

Exercise 2.1.9. Suppose {ξk} are i.i.d. positive integer valued random variables,
with P(ξ1 = i) = pi > 0 for i = 1, 2, . . .. Let Dl = |{ξ1, . . . , ξl}| denote the number
of distinct elements among the first l variables.

(a) Show that Dn
a.s.→ ∞ as n→∞.

(b) Show that n−1EDn → 0 as n→∞ and deduce that n−1Dn
p→ 0.

Hint: Recall that (1− p)n ≥ 1− np for any p ∈ [0, 1] and n ≥ 0.

Example 2.1.10 (An occupancy problem). Suppose we distribute at random
r distinct balls among n distinct boxes, where each of the possible nr assignments
of balls to boxes is equally likely. We are interested in the asymptotic behavior of
the number Nn of empty boxes when r/n → α ∈ [0,∞], while n → ∞. To this

end, let Ai denote the event that the i-th box is empty, so Nn =
n∑
i=1

IAi . Since

P(Ai) = (1 − 1/n)r for each i, it follows that E(n−1Nn) = (1 − 1/n)r → e−α.

Further, EN2
n =

n∑
i,j=1

P(Ai ∩ Aj) and P(Ai ∩ Aj) = (1 − 2/n)r for each i 6= j.

Hence, splitting the sum according to i = j or i 6= j, we see that

Var(n−1Nn) =
1

n2
EN2

n − (1− 1

n
)2r =

1

n
(1− 1

n
)r + (1− 1

n
)(1− 2

n
)r − (1− 1

n
)2r .

As n→∞, the first term on the right side goes to zero, and with r/n→ α, each of
the other two terms converges to e−2α. Consequently, Var(n−1Nn)→ 0, so applying
Lemma 2.1.6 for bn = n we deduce that

Nn
n
→ e−α

in L2 and in probability.

2.1.2. Weak laws and truncation. Our next order of business is to extend
the weak law of large numbers for row sums Sn in triangular arrays of independent
Xn,k which lack a finite second moment. Of course, with Sn no longer in L2, there
is no way to establish convergence in L2. So, we aim to retain only the convergence
in probability, using truncation. That is, we consider the row sums Sn for the
truncated array Xn,k = Xn,kI|Xn,k|≤bn , with bn →∞ slowly enough to control the

variance of Sn and fast enough for P(Sn 6= Sn) → 0. As we next show, this gives
the convergence in probability for Sn which translates to same convergence result
for Sn.

Theorem 2.1.11 (Weak law for triangular arrays). Suppose that for each
n, the random variables Xn,k, k = 1, . . . , n are pairwise independent. Let Xn,k =
Xn,kI|Xn,k|≤bn for non-random bn > 0 such that as n→∞ both

(a)
n∑
k=1

P(|Xn,k| > bn)→ 0,

and

(b) b−2
n

n∑
k=1

Var(Xn,k)→ 0.

Then, b−1
n (Sn − an)

p→ 0 as n→∞, where Sn =
n∑
k=1

Xn,k and an =
n∑
k=1

EXn,k.
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Proof. Let Sn =
∑n
k=1Xn,k. Clearly, for any ε > 0,{∣∣Sn − an

bn

∣∣ > ε

}
⊆
{
Sn 6= Sn

}⋃{∣∣Sn − an
bn

∣∣ > ε

}
.

Consequently,

(2.1.2) P
(∣∣Sn − an

bn

∣∣ > ε
)
≤ P(Sn 6= Sn) + P

(∣∣Sn − an
bn

∣∣ > ε
)
.

To bound the first term, note that our condition (a) implies that as n→∞,

P(Sn 6= Sn) ≤ P
( n⋃
k=1

{Xn,k 6= Xn,k}
)

≤
n∑
k=1

P(Xn,k 6= Xn,k) =

n∑
k=1

P(|Xn,k| > bn)→ 0 .

Turning to bound the second term in (2.1.2), recall that pairwise independence
is preserved under truncation, hence Xn,k, k = 1, . . . , n are uncorrelated random
variables (to convince yourself, apply (1.4.12) for the appropriate functions). Thus,
an application of Lemma 2.1.2 yields that as n→∞,

Var(b−1
n Sn) = b−2

n

n∑
k=1

Var(Xn,k)→ 0 ,

by our condition (b). Since an = ESn, from Chebyshev’s inequality we deduce that
for any fixed ε > 0,

P
(∣∣Sn − an

bn

∣∣ > ε
)
≤ ε−2 Var(b−1

n Sn)→ 0 ,

as n→∞. In view of (2.1.2), this completes the proof of the theorem. �

Specializing the weak law of Theorem 2.1.11 to a single sequence yields the fol-
lowing.

Proposition 2.1.12 (Weak law of large numbers). Consider i.i.d. random

variables {Xi}, such that xP(|X1| > x) → 0 as x → ∞. Then, n−1Sn − µn
p→ 0,

where Sn =
n∑
i=1

Xi and µn = E[X1I{|X1|≤n}].

Proof. We get the result as an application of Theorem 2.1.11 for Xn,k = Xk

and bn = n, in which case an = nµn. Turning to verify condition (a) of this
theorem, note that

n∑
k=1

P(|Xn,k| > n) = nP(|X1| > n)→ 0

as n → ∞, by our assumption. Thus, all that remains to do is to verify that
condition (b) of Theorem 2.1.11 holds here. This amounts to showing that as
n→∞,

∆n = n−2
n∑
k=1

Var(Xn,k) = n−1 Var(Xn,1)→ 0 .
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Recall that for any R.V. Z,

Var(Z) = EZ2 − (EZ)2 ≤ E|Z|2 =

∫ ∞
0

2yP(|Z| > y)dy

(see part (a) of Lemma 1.4.32 for the right identity). Considering Z = Xn,1 =
X1I{|X1|≤n} for which P(|Z| > y) = P(|X1| > y) − P(|X1| > n) ≤ P(|X1| > y)
when 0 < y < n and P(|Z| > y) = 0 when y ≥ n, we deduce that

∆n = n−1 Var(Z) ≤ n−1

∫ n

0

g(y)dy ,

where by our assumption, g(y) = 2yP(|X1| > y) → 0 for y → ∞. Further, the
non-negative Borel function g(y) ≤ 2y is then uniformly bounded on [0,∞), hence
n−1

∫ n
0
g(y)dy → 0 as n → ∞ (c.f. Exercise 1.3.52). Verifying that ∆n → 0, we

established condition (b) of Theorem 2.1.11 and thus completed the proof of the
proposition. �

Remark. The condition xP(|X1| > x)→ 0 for x→∞ is indeed necessary for the

existence of non-random µn such that n−1Sn − µn
p→ 0 (c.f. [Fel71, Page 234-236]

for a proof).

Exercise 2.1.13. Let {Xi} be i.i.d. with P(X1 = (−1)kk) = 1/(ck2 log k) for
integers k ≥ 2 and a normalization constant c =

∑
k 1/(k2 log k). Show that

E|X1| =∞, but there is a non-random µ <∞ such that n−1Sn
p→ µ.

As a corollary to Proposition 2.1.12 we next show that n−1Sn
p→ mX as soon as

the i.i.d. random variables Xi are in L1.

Corollary 2.1.14. Consider Sn =
n∑
k=1

Xk for i.i.d. random variables {Xi} such

that E|X1| <∞. Then, n−1Sn
p→ EX1 as n→∞.

Proof. In view of Proposition 2.1.12, it suffices to show that if E|X1| < ∞,
then both nP(|X1| > n) → 0 and EX1 − µn = E[X1I{|X1|>n}] → 0 as n → ∞.
To this end, recall that E|X1| < ∞ implies that P(|X1| < ∞) = 1 and hence
the sequence X1I{|X1|>n} converges to zero a.s. and is bounded by the integrable
|X1|. Thus, by dominated convergence E[X1I{|X1|>n}] → 0 as n → ∞. Applying
dominated convergence for the sequence nI{|X1|>n} (which also converges a.s. to
zero and is bounded by the integrable |X1|), we deduce that nP(|X1| > n) =
E[nI{|X1|>n}]→ 0 when n→∞, thus completing the proof of the corollary. �

We conclude this section by considering an example for which E|X1| = ∞ and
Proposition 2.1.12 does not apply, but nevertheless, Theorem 2.1.11 allows us to

deduce that c−1
n Sn

p→ 1 for some cn such that cn/n→∞.

Example 2.1.15. Let {Xi} be i.i.d. random variables such that P(X1 = 2j) =
2−j for j = 1, 2, . . .. This has the interpretation of a game, where in each of its
independent rounds you win 2j dollars if it takes exactly j tosses of a fair coin
to get the first Head. This example is called the St. Petersburg paradox, since
though EX1 = ∞, you clearly would not pay an infinite amount just in order to
play this game. Applying Theorem 2.1.11 we find that one should be willing to pay

roughly n log2 n dollars for playing n rounds of this game, since Sn/(n log2 n)
p→ 1

as n → ∞. Indeed, the conditions of Theorem 2.1.11 apply for bn = 2mn provided
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the integers mn are such that mn− log2 n→∞. Taking mn ≤ log2 n+ log2(log2 n)
implies that bn ≤ n log2 n and an/(n log2 n) = mn/ log2 n→ 1 as n→∞, with the

consequence of Sn/(n log2 n)
p→ 1 (for details see [Dur10, Example 2.2.7]).

2.2. The Borel-Cantelli lemmas

When dealing with asymptotic theory, we often wish to understand the relation
between countably many events An in the same probability space. The two Borel-
Cantelli lemmas of Subsection 2.2.1 provide information on the probability of the set
of outcomes that are in infinitely many of these events, based only on P(An). There
are numerous applications to these lemmas, few of which are given in Subsection
2.2.2 while many more appear in later sections of these notes.

2.2.1. Limit superior and the Borel-Cantelli lemmas. We are often in-
terested in the limits superior and limits inferior of a sequence of events An on
the same measurable space (Ω,F).

Definition 2.2.1. For a sequence of subsets An ⊆ Ω, define

A∞ := lim supAn =

∞⋂
m=1

∞⋃
`=m

A`

= {ω : ω ∈ An for infinitely many n’s }
= {ω : ω ∈ An infinitely often } = {An i.o. }

Similarly,

lim inf An =

∞⋃
m=1

∞⋂
`=m

A`

= {ω : ω ∈ An for all but finitely many n’s }
= {ω : ω ∈ An eventually } = {An ev. }

Remark. Note that if An ∈ F are measurable, then so are lim supAn and
lim inf An. By DeMorgan’s law, we have that {An ev. } = {Acn i.o. }c, that is,
ω ∈ An for all n large enough if and only if ω ∈ Acn for finitely many n’s.
Also, if ω ∈ An eventually, then certainly ω ∈ An infinitely often, that is

lim inf An ⊆ lim supAn .

The notations lim supAn and lim inf An are due to the intimate connection of
these sets to the lim sup and lim inf of the indicator functions on the sets An. For
example,

lim sup
n→∞

IAn(ω) = Ilim supAn(ω),

since for a given ω ∈ Ω, the lim sup on the left side equals 1 if and only if the
sequence n 7→ IAn(ω) contains an infinite subsequence of ones. In other words, if
and only if the given ω is in infinitely many of the sets An. Similarly,

lim inf
n→∞

IAn(ω) = Ilim inf An(ω),

since for a given ω ∈ Ω, the lim inf on the left side equals 1 if and only if there
are only finitely many zeros in the sequence n 7→ IAn(ω) (for otherwise, their limit
inferior is zero). In other words, if and only if the given ω is in An for all n large
enough.
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In view of the preceding remark, Fatou’s lemma yields the following relations.

Exercise 2.2.2. Prove that for any sequence An ∈ F ,

P(lim supAn) ≥ lim sup
n→∞

P(An) ≥ lim inf
n→∞

P(An) ≥ P(lim inf An) .

Show that the right most inequality holds even when the probability measure is re-
placed by an arbitrary measure µ(·), but the left most inequality may then fail unless
µ(
⋃
k≥nAk) <∞ for some n.

Practice your understanding of the concepts of lim sup and lim inf of sets by solving
the following exercise.

Exercise 2.2.3. Assume that P(lim supAn) = 1 and P(lim inf Bn) = 1. Prove
that P(lim sup(An ∩Bn)) = 1. What happens if the condition on {Bn} is weakened
to P(lim supBn) = 1?

Our next result, called the first Borel-Cantelli lemma, states that if the probabil-
ities P(An) of the individual events An converge to zero fast enough, then almost
surely, An occurs for only finitely many values of n, that is, P(An i.o.) = 0. This
lemma is extremely useful, as the possibly complex relation between the different
events An is irrelevant for its conclusion.

Lemma 2.2.4 (Borel-Cantelli I). Suppose An ∈ F and
∞∑
n=1

P(An) <∞. Then,

P(An i.o.) = 0.

Proof. Define N(ω) =
∑∞
k=1 IAk(ω). By the monotone convergence theorem

and our assumption,

E[N(ω)] = E
[ ∞∑
k=1

IAk(ω)
]

=

∞∑
k=1

P(Ak) <∞.

Since the expectation of N is finite, certainly P({ω : N(ω) = ∞}) = 0. Noting
that the set {ω : N(ω) =∞} is merely {ω : An i.o.}, the conclusion P(An i.o.) = 0
of the lemma follows. �

Our next result, left for the reader to prove, relaxes somewhat the conditions of
Lemma 2.2.4.

Exercise 2.2.5. Suppose An ∈ F are such that
∞∑
n=1

P(An ∩ Acn+1) < ∞ and

P(An)→ 0. Show that then P(An i.o.) = 0.

The first Borel-Cantelli lemma states that if the series
∑
n P(An) converges then

almost every ω is in finitely many sets An. If P(An)→ 0, but the series
∑
n P(An)

diverges, then the event {An i.o.} might or might not have positive probability. In
this sense, the Borel-Cantelli I is not tight, as the following example demonstrates.

Example 2.2.6. Consider the uniform probability measure U on ((0, 1],B(0,1]),
and the events An = (0, 1/n]. Then An ↓ ∅, so {An i.o.} = ∅, but U(An) = 1/n,
so
∑
n U(An) =∞ and the Borel-Cantelli I does not apply.

Recall also Example 1.3.25 showing the existence of An = (tn, tn + 1/n] such that
U(An) = 1/n while {An i.o.} = (0, 1]. Thus, in general the probability of {An i.o.}
depends on the relation between the different events An.
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As seen in the preceding example, the divergence of the series
∑
n P(An) is not

sufficient for the occurrence of a set of positive probability of ω values, each of
which is in infinitely many events An. However, upon adding the assumption that
the events An are mutually independent (flagrantly not the case in Example 2.2.6),
we conclude that almost all ω must be in infinitely many of the events An:

Lemma 2.2.7 (Borel-Cantelli II). Suppose An ∈ F are mutually independent

and
∞∑
n=1

P(An) =∞. Then, necessarily P(An i.o.) = 1.

Proof. Fix 0 < m < n < ∞. Use the mutual independence of the events A`
and the inequality 1− x ≤ e−x for x ≥ 0, to deduce that

P
( n⋂
`=m

Ac`

)
=

n∏
`=m

P(Ac`) =

n∏
`=m

(1−P(A`))

≤
n∏

`=m

e−P(A`) = exp(−
n∑

`=m

P(A`)) .

As n → ∞, the set
n⋂

`=m

Ac` shrinks. With the series in the exponent diverging, by

continuity from above of the probability measure P(·) we see that for any m,

P
( ∞⋂
`=m

Ac`

)
≤ exp(−

∞∑
`=m

P(A`)) = 0 .

Take the complement to see that P(Bm) = 1 for Bm =
⋃∞
`=mA` and all m. Since

Bm ↓ {An i.o. } when m ↑ ∞, it follows by continuity from above of P(·) that

P(An i.o.) = lim
m→∞

P(Bm) = 1 ,

as stated. �

As an immediate corollary of the two Borel-Cantelli lemmas, we observe yet an-
other 0-1 law.

Corollary 2.2.8. If An ∈ F are P-mutually independent then P(An i.o.) is
either 0 or 1. In other words, for any given sequence of mutually independent
events, either almost all outcomes are in infinitely many of these events, or almost
all outcomes are in finitely many of them.

The Kochen-Stone lemma, left as an exercise, generalizes Borel-Cantelli II to sit-
uations lacking independence.

Exercise 2.2.9. Suppose Ak are events on the same probability space such that∑
k P(Ak) =∞ and

lim sup
n→∞

( n∑
k=1

P(Ak)
)2

/
( ∑

1≤j,k≤n

P(Aj ∩Ak)
)

= α > 0 .

Prove that then P(An i.o. ) ≥ α.
Hint: Consider part (a) of Exercise 1.3.21 for Yn =

∑
k≤n IAk and an = λEYn.
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2.2.2. Applications. In the sequel we explore various applications of the two
Borel-Cantelli lemmas. In doing so, unless explicitly stated otherwise, all events
and random variables are defined on the same probability space.
We know that the convergence a.s. of Xn to X∞ implies the convergence in prob-

ability of Xn to X∞, but not vice verse (see Exercise 1.3.23 and Example 1.3.25).
As our first application of Borel-Cantelli I, we refine the relation between these
two modes of convergence, showing that convergence in probability is equivalent to
convergence almost surely along sub-sequences.

Theorem 2.2.10. Xn
p→ X∞ if and only if for every subsequence m 7→ Xn(m)

there exists a further sub-subsequence Xn(mk) such that Xn(mk)
a.s.→ X∞ as k →∞.

We start the proof of this theorem with a simple analysis lemma.

Lemma 2.2.11. Let yn be a sequence in a topological space. If every subsequence
yn(m) has a further sub-subsequence yn(mk) that converges to y, then yn → y.

Proof. If yn does not converge to y, then there exists an open set G containing
y and a subsequence yn(m) such that yn(m) /∈ G for all m. But clearly, then we
cannot find a further subsequence of yn(m) that converges to y. �

Remark. Applying Lemma 2.2.11 to yn = E|Xn−X∞| we deduce that Xn
L1

→ X∞
if and only if any subsequence n(m) has a further sub-subsequence n(mk) such that

Xn(mk)
L1

→ X∞ as k →∞.

Proof of Theorem 2.2.10. First, we show sufficiency, assuming Xn
p→ X∞.

Fix a subsequence n(m) and εk ↓ 0. By the definition of convergence in probability,
there exists a sub-subsequence n(mk) ↑ ∞ such that P

(
|Xn(mk) −X∞| > εk

)
≤

2−k. Call this sequence of events Ak =
{
ω : |Xn(mk)(ω)−X∞(ω)| > εk

}
. Then

the series
∑
k P(Ak) converges. Therefore, by Borel-Cantelli I, P(lim supAk) =

0. For any ω /∈ lim supAk there are only finitely many values of k such that
|Xn(mk) −X∞| > εk, or alternatively, |Xn(mk) −X∞| ≤ εk for all k large enough.
Since εk ↓ 0, it follows that Xn(mk)(ω) → X∞(ω) when ω /∈ lim supAk, that is,
with probability one.
Conversely, fix δ > 0. Let yn = P(|Xn−X∞| > δ). By assumption, for every sub-

sequence n(m) there exists a further subsequence n(mk) so that Xn(mk) converges
to X∞ almost surely, hence in probability, and in particular, yn(mk) → 0. Applying
Lemma 2.2.11 we deduce that yn → 0, and since δ > 0 is arbitrary it follows that

Xn
p→ X∞. �

It is not hard to check that convergence almost surely is invariant under application
of an a.s. continuous mapping.

Exercise 2.2.12. Let g : R 7→ R be a Borel function and denote by Dg its set of

discontinuities. Show that if Xn
a.s.→ X∞ finite valued, and P(X∞ ∈ Dg) = 0, then

g(Xn)
a.s.→ g(X∞) as well (recall Exercise 1.2.28 that Dg ∈ B). This applies for a

continuous function g in which case Dg = ∅.

A direct consequence of Theorem 2.2.10 is that convergence in probability is also
preserved under an a.s. continuous mapping (and if the mapping is also bounded,
we even get L1 convergence).
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Corollary 2.2.13. Suppose Xn
p→ X∞, g is a Borel function and P(X∞ ∈ Dg) =

0. Then, g(Xn)
p→ g(X∞). If in addition g is bounded, then g(Xn)

L1

→ g(X∞) (and
Eg(Xn)→ Eg(X∞)).

Proof. Fix a subsequence Xn(m). By Theorem 2.2.10 there exists a subse-
quence Xn(mk) such that P(A) = 1 for A = {ω : Xn(mk)(ω)→ X∞(ω) as k →∞}.
Let B = {ω : X∞(ω) /∈ Dg}, noting that by assumption P(B) = 1. For any
ω ∈ A ∩ B we have g(Xn(mk)(ω)) → g(X∞(ω)) by the continuity of g outside Dg.

Therefore, g(Xn(mk))
a.s.→ g(X∞). Now apply Theorem 2.2.10 in the reverse direc-

tion: For any subsequence, we have just constructed a further subsequence with

convergence a.s., hence g(Xn)
p→ g(X∞).

Finally, if g is bounded, then the collection {g(Xn)} is U.I. yielding, by Vitali’s
convergence theorem, its convergence in L1 (and hence that Eg(Xn)→ Eg(X∞)).

�

You are next to extend the scope of Theorem 2.2.10 and the continuous mapping
of Corollary 2.2.13 to random variables taking values in a separable metric space.

Exercise 2.2.14. Recall the definition of convergence in probability in a separable
metric space (S, ρ) as in Remark 1.3.24.

(a) Extend the proof of Theorem 2.2.10 to apply for any (S,BS)-valued ran-
dom variables {Xn, n ≤ ∞} (and in particular for R-valued variables).

(b) Denote by Dg the set of discontinuities of a Borel measurable g : S 7→
R (defined similarly to Exercise 1.2.28, where real-valued functions are

considered). Suppose Xn
p→ X∞ and P(X∞ ∈ Dg) = 0. Show that then

g(Xn)
p→ g(X∞) and if in addition g is bounded, then also g(Xn)

L1

→
g(X∞).

The following result in analysis is obtained by combining the continuous mapping
of Corollary 2.2.13 with the weak law of large numbers.

Exercise 2.2.15 (Inverting Laplace transforms). The Laplace transform of
a bounded, continuous function h(x) on [0,∞) is the function Lh(s) =

∫∞
0
e−sxh(x)dx

on (0,∞).

(a) Show that for any s > 0 and positive integer k,

(−1)k−1 s
kL

(k−1)
h (s)

(k − 1)!
=

∫ ∞
0

e−sx
skxk−1

(k − 1)!
h(x)dx = E[h(Wk)] ,

where L
(k−1)
h (·) denotes the (k−1)-th derivative of the function Lh(·) and

Wk has the gamma density with parameters k and s.
(b) Recall Exercise 1.4.47 that for s = n/y the law of Wn coincides with the

law of n−1
∑n
i=1 Ti where Ti ≥ 0 are i.i.d. random variables, each having

the exponential distribution of parameter 1/y (with ET1 = y and finite
moments of all order, c.f. Example 1.3.68). Deduce that the inversion
formula

h(y) = lim
n→∞

(−1)n−1 (n/y)n

(n− 1)!
L

(n−1)
h (n/y) ,

holds for any y > 0.



82 2. ASYMPTOTICS: THE LAW OF LARGE NUMBERS

The next application of Borel-Cantelli I provides our first strong law of large
numbers.

Proposition 2.2.16. Suppose E[Z2
n] ≤ C for some C < ∞ and all n. Then,

n−1Zn
a.s.→ 0 as n→∞.

Proof. Fixing δ > 0 let Ak = {ω : |k−1Zk(ω)| > δ} for k = 1, 2, . . .. Then, by
Chebyshev’s inequality and our assumption,

P(Ak) = P({ω : |Zk(ω)| ≥ kδ}) ≤ E(Z2
k)

(kδ)2
≤ C

δ2
k−2 .

Since
∑
k k
−2 < ∞, it follows by Borel Cantelli I that P(A∞) = 0, where A∞ =

{ω : |k−1Zk(ω)| > δ for infinitely many values of k}. Hence, for any fixed
δ > 0, with probability one k−1|Zk(ω)| ≤ δ for all large enough k, that is,
lim supn→∞ n−1|Zn(ω)| ≤ δ a.s. Considering a sequence δm ↓ 0 we conclude that
n−1Zn → 0 for n→∞ and a.e. ω. �

Exercise 2.2.17. Let Sn =
n∑
l=1

Xl, where {Xi} are i.i.d. random variables with

EX1 = 0 and EX4
1 <∞.

(a) Show that n−1Sn
a.s.→ 0.

Hint: Verify that Proposition 2.2.16 applies for Zn = n−1S2
n.

(b) Show that n−1Dn
a.s.→ 0 where Dn denotes the number of distinct integers

among {ξk, k ≤ n} and {ξk} are i.i.d. integer valued random variables.
Hint: Dn ≤ 2M +

∑n
k=1 I|ξk|≥M .

In contrast, here is an example where the empirical averages of integrable, zero
mean independent variables do not converge to zero. Of course, the trick is to have
non-identical distributions, with the bulk of the probability drifting to negative one.

Exercise 2.2.18. Suppose Xi are mutually independent random variables such
that P(Xn = n2 − 1) = 1 − P(Xn = −1) = n−2 for n = 1, 2, . . .. Show that

EXn = 0, for all n, while n−1
∑n
i=1Xi

a.s.→ −1 for n→∞.

Next we have few other applications of Borel-Cantelli I, starting with some addi-
tional properties of convergence a.s.

Exercise 2.2.19. Show that for any R.V. Xn

(a) Xn
a.s.→ 0 if and only if P(|Xn| > ε i.o. ) = 0 for each ε > 0.

(b) There exist non-random constants bn ↑ ∞ such that Xn/bn
a.s.→ 0.

Exercise 2.2.20. Show that if Wn > 0 and EWn ≤ 1 for every n, then almost
surely,

lim sup
n→∞

n−1 logWn ≤ 0 .

Our next example demonstrates how Borel-Cantelli I is typically applied in the
study of the asymptotic growth of running maxima of random variables.

Example 2.2.21 (Head runs). Let {Xk, k ∈ Z} be a two-sided sequence of i.i.d.
{0, 1}-valued random variables, with P(X1 = 1) = P(X1 = 0) = 1/2. With `m =
max{i : Xm−i+1 = · · · = Xm = 1} denoting the length of the run of 1’s going
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backwards from time m, we are interested in the asymptotics of the longest such
run during 1, 2, . . . , n, that is,

Ln = max{`m : m = 1, . . . , n}
= max{m− k : Xk+1 = · · · = Xm = 1 for some m = 1, . . . , n} .

Noting that `m + 1 has a geometric distribution of success probability p = 1/2, we
deduce by an application of Borel-Cantelli I that for each ε > 0, with probability
one, `n ≤ (1+ε) log2 n for all n large enough. Hence, on the same set of probability
one, we have N = N(ω) finite such that Ln ≤ max(LN , (1+ε) log2 n) for all n ≥ N .
Dividing by log2 n and considering n→∞ followed by εk ↓ 0, this implies that

lim sup
n→∞

Ln
log2 n

a.s.
≤ 1 .

For each fixed ε > 0 let An = {Ln < kn} for kn = [(1− ε) log2 n]. Noting that

An ⊆
mn⋂
i=1

Bci ,

for mn = [n/kn] and the independent events Bi = {X(i−1)kn+1 = · · · = Xikn = 1},
yields a bound of the form P(An) ≤ exp(−nε/(2 log2 n)) for all n large enough (c.f.
[Dur10, Example 2.3.3] for details). Since

∑
n P(An) <∞, we have that

lim inf
n→∞

Ln
log2 n

a.s.
≥ 1

by yet another application of Borel-Cantelli I, followed by εk ↓ 0. We thus conclude
that

Ln
log2 n

a.s.→ 1 .

The next exercise combines both Borel-Cantelli lemmas to provide the 0-1 law for
another problem about head runs.

Exercise 2.2.22. Let {Xk} be a sequence of i.i.d. {0, 1}-valued random variables,
with P(X1 = 1) = p and P(X1 = 0) = 1− p. Let Ak be the event that Xm = · · · =
Xm+k−1 = 1 for some 2k ≤ m ≤ 2k+1 − k. Show that P(Ak i.o. ) = 1 if p ≥ 1/2
and P(Ak i.o. ) = 0 if p < 1/2.
Hint: When p ≥ 1/2 consider only m = 2k + (i− 1)k for i = 0, . . . , [2k/k].

Here are a few direct applications of the second Borel-Cantelli lemma.

Exercise 2.2.23. Suppose that {Zk} are i.i.d. random variables such that P(Z1 =
z) < 1 for any z ∈ R.

(a) Show that P(Zk converges for k →∞) = 0.
(b) Determine the values of lim supn→∞(Zn/ log n) and lim infn→∞(Zn/ log n)

in case Zk has the exponential distribution (of parameter λ = 1).

After deriving the classical bounds on the tail of the normal distribution, you
use both Borel-Cantelli lemmas in bounding the fluctuations of the sums of i.i.d.
standard normal variables.

Exercise 2.2.24. Let {Gi} be i.i.d. standard normal random variables.
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(a) Show that for any x > 0,

(x−1 − x−3)e−x
2/2 ≤

∫ ∞
x

e−y
2/2dy ≤ x−1e−x

2/2 .

Many texts prove these estimates, for example see [Dur10, Theorem
1.2.3].

(b) Show that, with probability one,

lim sup
n→∞

Gn√
2 log n

= 1 .

(c) Let Sn = G1 + · · · + Gn. Recall that n−1/2Sn has the standard normal
distribution. Show that

P(|Sn| < 2
√
n log n, ev. ) = 1 .

Remark. Ignoring the dependence between the elements of the sequence Sk, the
bound in part (c) of the preceding exercise is not tight. The definite result here is
the law of the iterated logarithm (in short lil), which states that when the i.i.d.
summands are of zero mean and variance one,

(2.2.1) P(lim sup
n→∞

Sn√
2n log log n

= 1) = 1 .

We defer the derivation of (2.2.1) to Theorem 10.2.29, building on a similar lil for
the Brownian motion (but, see [Bil95, Theorem 9.5] for a direct proof of (2.2.1),
using both Borel-Cantelli lemmas).

The next exercise relates explicit integrability conditions for i.i.d. random vari-
ables to the asymptotics of their running maxima.

Exercise 2.2.25. Consider possibly R-valued, i.i.d. random variables {Yi} and
their running maxima Mn = maxk≤n Yk.

(a) Using (2.3.4) if needed, show that P(|Yn| > n i.o. ) = 0 if and only if
E[|Y1|] <∞.

(b) Show that n−1Yn
a.s.→ 0 if and only if E[|Y1|] <∞.

(c) Show that n−1Mn
a.s.→ 0 if and only if E[(Y1)+] <∞ and P(Y1 > −∞) >

0.
(d) Show that n−1Mn

p→ 0 if and only if nP(Y1 > n) → 0 and P(Y1 >
−∞) > 0.

(e) Show that n−1Yn
p→ 0 if and only if P(|Y1| <∞) = 1.

In the following exercise, you combine Borel Cantelli I and the variance computa-
tion of Lemma 2.1.2 to improve upon Borel Cantelli II.

Exercise 2.2.26. Suppose
∑∞
n=1 P(An) = ∞ for pairwise independent events

{Ai}. Let Sn =
∑n
i=1 IAi be the number of events occurring among the first n.

(a) Prove that Var(Sn) ≤ E(Sn) and deduce from it that Sn/E(Sn)
p→ 1.

(b) Applying Borel-Cantelli I show that Snk/E(Snk)
a.s.→ 1 as k → ∞, where

nk = inf{n : E(Sn) ≥ k2}.
(c) Show that E(Snk+1

)/E(Snk) → 1 and since n 7→ Sn is non-decreasing,

deduce that Sn/E(Sn)
a.s.→ 1.
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Remark. Borel-Cantelli II is the a.s. convergence Sn →∞ for n→∞, which is
a consequence of part (c) of the preceding exercise (since ESn →∞).

We conclude this section with an example in which the asymptotic rate of growth
of random variables of interest is obtained by an application of Exercise 2.2.26.

Example 2.2.27 (Record values). Let {Xi} be a sequence of i.i.d. random
variables with a continuous distribution function FX(x). The event Ak = {Xk >
Xj , j = 1, . . . , k − 1} represents the occurrence of a record at the k instance (for
example, think of Xk as an athlete’s kth distance jump). We are interested in the

asymptotics of the count Rn =
n∑
i=1

IAi of record events during the first n instances.

Because of the continuity of FX we know that a.s. the values of Xi, i = 1, 2, . . . are
distinct. Further, rearranging the random variables X1, X2, . . . , Xn in a decreasing
order induces a random permutation πn on {1, 2, . . . , n}, where all n! possible per-
mutations are equally likely. From this it follows that P(Ak) = P(πk(k) = 1) = 1/k,
and though definitely not obvious at first sight, the events Ak are mutually indepen-
dent (see [Dur10, Example 2.3.2] for details). So, ERn = log n + γn where γn is

between zero and one, and from Exercise 2.2.26 we deduce that (log n)−1Rn
a.s.→ 1

as n → ∞. Note that this result is independent of the law of X, as long as the
distribution function FX is continuous.

2.3. Strong law of large numbers

In Corollary 2.1.14 we got the classical weak law of large numbers, namely, the
convergence in probability of the empirical averages n−1

∑n
i=1Xi of i.i.d. integrable

random variables Xi to the mean EX1. Assuming in addition that EX4
1 <∞, you

used Borel-Cantelli I in Exercise 2.2.17 en-route to the corresponding strong law of
large numbers, that is, replacing the convergence in probability with the stronger
notion of convergence almost surely.
We provide here two approaches to the strong law of large numbers, both of which

get rid of the unnecessary finite moment assumptions. Subsection 2.3.1 follows
Etemadi’s (1981) direct proof of this result via the subsequence method. Subsection
2.3.2 deals in a more systematic way with the convergence of random series, yielding
the strong law of large numbers as one of its consequences.

2.3.1. The subsequence method. Etemadi’s key observation is that it es-
sentially suffices to consider non-negative Xi, for which upon proving the a.s. con-
vergence along a not too sparse subsequence nl, the interpolation to the whole
sequence can be done by the monotonicity of n 7→

∑n
Xi. This is an example of

a general approach to a.s. convergence, called the subsequence method, which you
have already encountered in Exercise 2.2.26.
We thus start with the strong law for integrable, non-negative variables.

Proposition 2.3.1. Let Sn =
∑n
i=1Xi for non-negative, pairwise independent

and identically distributed, integrable random variables {Xi}. Then, n−1Sn
a.s.→

EX1 as n→∞.

Proof. The proof progresses along the themes of Section 2.1, starting with
the truncation Xk = XkI|Xk|≤k and its corresponding sums Sn =

∑n
i=1Xi.
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Since {Xi} are identically distributed and x 7→ P(|X1| > x) is non-increasing, we
have that

∞∑
k=1

P(Xk 6= Xk) =

∞∑
k=1

P(|X1| > k) ≤
∫ ∞

0

P(|X1| > x)dx = E|X1| <∞

(see part (a) of Lemma 1.4.32 for the rightmost identity and recall our assumption
that X1 is integrable). Thus, by Borel-Cantelli I, with probability one, Xk(ω) =
Xk(ω) for all but finitely many k’s, in which case necessarily supn |Sn(ω)− Sn(ω)|
is finite. This shows that n−1(Sn − Sn)

a.s.→ 0, whereby it suffices to prove that

n−1Sn
a.s.→ EX1.

To this end, we next show that it suffices to prove the following lemma about
almost sure convergence of Sn along suitably chosen subsequences.

Lemma 2.3.2. Fixing α > 1 let nl = [αl]. Under the conditions of the proposition,

n−1
l (Snl −ESnl)

a.s.→ 0 as l→∞.

By dominated convergence, E[X1I|X1|≤k]→ EX1 as k →∞, and consequently, as
n→∞,

1

n
ESn =

1

n

n∑
k=1

EXk =
1

n

n∑
k=1

E[X1I|X1|≤k]→ EX1

(we have used here the consistency of Cesáro averages, c.f. Exercise 1.3.52 for an

integral version). Thus, assuming that Lemma 2.3.2 holds, we have that n−1
l Snl

a.s.→
EX1 when l→∞, for each α > 1.
We complete the proof of the proposition by interpolating from the subsequences
nl = [αl] to the whole sequence. To this end, fix α > 1. Since n 7→ Sn is non-
decreasing, we have for all ω ∈ Ω and any n ∈ [nl, nl+1],

nl
nl+1

Snl(ω)

nl
≤ Sn(ω)

n
≤ nl+1

nl

Snl+1
(ω)

nl+1

With nl/nl+1 → 1/α for l → ∞, the a.s. convergence of m−1Sm along the subse-
quence m = nl implies that the event

Aα := {ω :
1

α
EX1 ≤ lim inf

n→∞

Sn(ω)

n
≤ lim sup

n→∞

Sn(ω)

n
≤ αEX1} ,

has probability one. Consequently, taking αm ↓ 1, we deduce that the event B :=⋂
mAαm also has probability one, and further, n−1Sn(ω) → EX1 for each ω ∈ B.

We thus deduce that n−1Sn
a.s.→ EX1, as needed to complete the proof of the

proposition. �

Remark. The monotonicity of certain random variables (here n 7→ Sn), is crucial
to the successful application of the subsequence method. The subsequence nl for
which we need a direct proof of convergence is completely determined by the scaling
function b−1

n applied to this monotone sequence (here bn = n); we need bnl+1
/bnl →

α, which should be arbitrarily close to 1. For example, same subsequences nl = [αl]
are to be used whenever bn is roughly of a polynomial growth in n, while even
nl = (l!)c would work in case bn = log n.
Likewise, the truncation level is determined by the highest moment of the basic

variables which is assumed to be finite. For example, we can take Xk = XkI|Xk|≤kp

for any p > 0 such that E|X1|1/p <∞.
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Proof of Lemma 2.3.2. Note that E[X
2

k] is non-decreasing in k. Further,
Xk are pairwise independent, hence uncorrelated, so by Lemma 2.1.2,

Var(Sn) =

n∑
k=1

Var(Xk) ≤
n∑
k=1

E[X
2

k] ≤ nE[X
2

n] = nE[X2
1I|X1|≤n] .

Combining this with Chebychev’s inequality yield the bound

P(|Sn −ESn| ≥ εn) ≤ (εn)−2 Var(Sn) ≤ ε−2n−1E[X2
1I|X1|≤n] ,

for any ε > 0. Applying Borel-Cantelli I for the events Al = {|Snl −ESnl | ≥ εnl},
followed by εm ↓ 0, we get the a.s. convergence to zero of n−1|Sn−ESn| along any
subsequence nl for which

∞∑
l=1

n−1
l E[X2

1I|X1|≤nl ] = E[X2
1

∞∑
l=1

n−1
l I|X1|≤nl ] <∞

(the latter identity is a special case of Exercise 1.3.40). Since E|X1| < ∞, it thus
suffices to show that for nl = [αl] and any x > 0,

(2.3.1) u(x) :=

∞∑
l=1

n−1
l Ix≤nl ≤ cx−1 ,

where c = 2α/(α − 1) < ∞. To establish (2.3.1) fix α > 1 and x > 0, setting
L = min{l ≥ 1 : nl ≥ x}. Then, αL ≥ x, and since [y] ≥ y/2 for all y ≥ 1,

u(x) =

∞∑
l=L

n−1
l ≤ 2

∞∑
l=L

α−l = cα−L ≤ cx−1 .

So, we have established (2.3.1) and hence completed the proof of the lemma. �

As already promised, it is not hard to extend the scope of the strong law of large
numbers beyond integrable and non-negative random variables.

Theorem 2.3.3 (Strong law of large numbers). Let Sn =
∑n
i=1Xi for

pairwise independent and identically distributed random variables {Xi}, such that

either E[(X1)+] is finite or E[(X1)−] is finite. Then, n−1Sn
a.s.→ EX1 as n→∞.

Proof. First consider non-negative Xi. The case of EX1 < ∞ has already

been dealt with in Proposition 2.3.1. In case EX1 =∞, consider S
(m)
n =

∑n
i=1X

(m)
i

for the bounded, non-negative, pairwise independent and identically distributed

random variables X
(m)
i = min(Xi,m) ≤ Xi. Since Proposition 2.3.1 applies for

{X(m)
i }, it follows that a.s. for any fixed m <∞,

(2.3.2) lim inf
n→∞

n−1Sn ≥ lim inf
n→∞

n−1S(m)
n = EX

(m)
1 = E min(X1,m) .

Taking m ↑ ∞, by monotone convergence E min(X1,m) ↑ EX1 = ∞, so (2.3.2)
results with n−1Sn →∞ a.s.
Turning to the general case, we have the decomposition Xi = (Xi)+ − (Xi)− of

each random variable to its positive and negative parts, with

(2.3.3) n−1Sn = n−1
n∑
i=1

(Xi)+ − n−1
n∑
i=1

(Xi)−

Since (Xi)+ are non-negative, pairwise independent and identically distributed,

it follows that n−1
∑n
i=1(Xi)+

a.s.→ E[(X1)+] as n → ∞. For the same reason,
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also n−1
∑n
i=1(Xi)−

a.s.→ E[(X1)−]. Our assumption that either E[(X1)+] < ∞ or
E[(X1)−] < ∞ implies that EX1 = E[(X1)+] − E[(X1)−] is well defined, and in
view of (2.3.3) we have the stated a.s. convergence of n−1Sn to EX1. �

Exercise 2.3.4. You are to prove now a converse to the strong law of large num-
bers (for a more general result, due to Feller (1946), see [Dur10, Theorem 2.5.9]).

(a) Let Y denote the integer part of a random variable Z ≥ 0. Show that
Y =

∑∞
n=1 I{Z≥n}, and deduce that

(2.3.4)

∞∑
n=1

P(Z ≥ n) ≤ EZ ≤ 1 +

∞∑
n=1

P(Z ≥ n) .

(b) Suppose {Xi} are i.i.d R.V.s with E[|X1|α] = ∞ for some α > 0. Show
that for any k > 0,

∞∑
n=1

P(|Xn| > kn1/α) =∞ ,

and deduce that a.s. lim supn→∞ n−1/α|Xn| =∞.
(c) Conclude that if Sn = X1 +X2 + · · ·+Xn, then

lim sup
n→∞

n−1/α|Sn| =∞, a.s.

We provide next two classical applications of the strong law of large numbers, the
first of which deals with the large sample asymptotics of the empirical distribution
function.

Example 2.3.5 (Empirical distribution function). Let

Fn(x) = n−1
n∑
i=1

I(−∞,x](Xi) ,

denote the observed fraction of values among the first n variables of the sequence
{Xi} which do not exceed x. The functions Fn(·) are thus called the empirical
distribution functions of this sequence.
For i.i.d. {Xi} with distribution function FX our next result improves the strong

law of large numbers by showing that Fn converges uniformly to FX as n→∞.

Theorem 2.3.6 (Glivenko-Cantelli). For i.i.d. {Xi} with arbitrary distribu-
tion function FX , as n→∞,

Dn = sup
x∈R
|Fn(x)− FX(x)| a.s.→ 0 .

Remark. While outside our scope, we note in passing the Dvoretzky-Kiefer-
Wolfowitz inequality that P(Dn > ε) ≤ 2 exp(−2nε2) for any n and all ε > 0,
quantifying the rate of convergence of Dn to zero (see [DKW56], or [Mas90] for
the optimal pre-exponential constant).

Proof. By the right continuity of both x 7→ Fn(x) and x 7→ FX(x) (c.f.
Theorem 1.2.37), the value of Dn is unchanged when the supremum over x ∈ R is
replaced by the one over x ∈ Q (the rational numbers). In particular, this shows
that each Dn is a random variable (c.f. Theorem 1.2.22).
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Applying the strong law of large numbers for the i.i.d. non-negative I(−∞,x](Xi)

whose expectation is FX(x), we deduce that Fn(x)
a.s.→ FX(x) for each fixed non-

random x ∈ R. Similarly, considering the strong law of large numbers for the i.i.d.

non-negative I(−∞,x)(Xi) whose expectation is FX(x−), we have that Fn(x−)
a.s.→

FX(x−) for each fixed non-random x ∈ R. Consequently, for any fixed l < ∞ and
x1,l, . . . , xl,l we have that

Dn,l = max(
l

max
k=1
|Fn(xk,l)− FX(xk,l)|,

l
max
k=1
|Fn(x−k,l)− FX(x−k,l)|)

a.s.→ 0 ,

as n → ∞. Choosing xk,l = inf{x : FX(x) ≥ k/(l + 1)}, we get out of the
monotonicity of x 7→ Fn(x) and x 7→ FX(x) that Dn ≤ Dn,l + l−1 (c.f. [Bil95,
Proof of Theorem 20.6]). Therefore, taking n → ∞ followed by l → ∞ completes
the proof of the theorem. �

We turn to our second example, which is about counting processes.

Example 2.3.7 (Renewal theory). Let {τi} be i.i.d. positive, finite random
variables and Tn =

∑n
k=1 τk. Here Tn is interpreted as the time of the n-th occur-

rence of a given event, with τk representing the length of the time interval between
the (k − 1) occurrence and that of the k-th such occurrence. Associated with Tn is
the dual process Nt = sup{n : Tn ≤ t} counting the number of occurrences during
the time interval [0, t]. In the next exercise you are to derive the strong law for the
large t asymptotics of t−1Nt.

Exercise 2.3.8. Consider the setting of Example 2.3.7.

(a) By the strong law of large numbers argue that n−1Tn
a.s.→ Eτ1. Then,

adopting the convention 1
∞ = 0, deduce that t−1Nt

a.s.→ 1/Eτ1 for t→∞.
Hint: From the definition of Nt it follows that TNt ≤ t < TNt+1 for all
t ≥ 0.

(b) Show that t−1Nt
a.s.→ 1/Eτ2 as t → ∞, even if the law of τ1 is different

from that of the i.i.d. {τi, i ≥ 2}.

Here is a strengthening of the preceding result to convergence in L1.

Exercise 2.3.9. In the context of Example 2.3.7 fix δ > 0 such that P(τ1 > δ) > δ

and let T̃n =
∑n
k=1 τ̃k for the i.i.d. random variables τ̃i = δI{τi>δ}. Note that

T̃n ≤ Tn and consequently Nt ≤ Ñt = sup{n : T̃n ≤ t}.
(a) Show that lim supt→∞ t−2EÑ2

t <∞.
(b) Deduce that {t−1Nt : t ≥ 1} is uniformly integrable (see Exercise 1.3.54),

and conclude that t−1ENt → 1/Eτ1 when t→∞.

The next exercise deals with an elaboration over Example 2.3.7.

Exercise 2.3.10. For i = 1, 2, . . . the ith light bulb burns for an amount of time τi
and then remains burned out for time si before being replaced by the (i+ 1)th bulb.
Let Rt denote the fraction of time during [0, t] in which we have a working light.
Assuming that the two sequences {τi} and {si} are independent, each consisting of

i.i.d. positive and integrable random variables, show that Rt
a.s.→ Eτ1/(Eτ1 + Es1).

Here is another exercise, dealing with sampling “at times of heads” in independent
fair coin tosses, from a non-random bounded sequence of weights v(l), the averages
of which converge.



90 2. ASYMPTOTICS: THE LAW OF LARGE NUMBERS

Exercise 2.3.11. For a sequence {Bi} of i.i.d. Bernoulli random variables of
parameter p = 1/2, let Tn be the time that the corresponding partial sums reach

level n. That is, Tn = inf{k :
∑k
i=1Bi ≥ n}, for n = 1, 2, . . ..

(a) Show that n−1Tn
a.s.→ 2 as n→∞.

(b) Given non-negative, non-random {v(k)} show that k−1
∑k
i=1 v(Ti)

a.s.→ s

as k →∞, for some non-random s, if and only if n−1
∑n
l=1 v(l)Bl

a.s.→ s/2
as n→∞.

(c) Deduce that if n−1
∑n
l=1 v(l)2 is bounded and n−1

∑n
l=1 v(l)→ s as n→

∞, then k−1
∑k
i=1 v(Ti)

a.s.→ s as k →∞.

Hint: For part (c) consider first the limit of n−1
∑n
l=1 v(l)(Bl − 0.5) as n→∞.

We proceed with a few additional applications of the strong law of large numbers,
first to a problem of universal hypothesis testing, then an application involving
stochastic geometry, and finally one motivated by investment science.

Exercise 2.3.12. Consider i.i.d. [0, 1]-valued random variables {Xk}.
(a) Find Borel measurable functions fn : [0, 1]n 7→ {0, 1}, which are inde-

pendent of the law of Xk, such that fn(X1, X2, . . . , Xn)
a.s.→ 0 whenever

EX1 < 1/2 and fn(X1, X2, . . . , Xn)
a.s.→ 1 whenever EX1 > 1/2.

(b) Modify your answer to assure that fn(X1, X2, . . . , Xn)
a.s.→ 1 also in case

EX1 = 1/2.

Exercise 2.3.13. Let {Un} be i.i.d. random vectors, each uniformly distributed
on the unit ball {u ∈ R2 : |u| ≤ 1}. Consider the R2-valued random vectors
Xn = |Xn−1|Un, n = 1, 2, . . . starting at a non-random, non-zero vector X0 (that is,
each point is uniformly chosen in a ball centered at the origin and whose radius is the

distance from the origin to the previously chosen point). Show that n−1 log |Xn|
a.s.→

−1/2 as n→∞.

Exercise 2.3.14. Let {Vn} be i.i.d. non-negative random variables. Fixing r > 0
and q ∈ (0, 1], consider the sequence W0 = 1 and Wn = (qr + (1 − q)Vn)Wn−1,
n = 1, 2, . . .. A motivating example is of Wn recording the relative growth of a
portfolio where a constant fraction q of one’s wealth is re-invested each year in a
risk-less asset that grows by r per year, with the remainder re-invested in a risky
asset whose annual growth factors are the random Vn.

(a) Show that n−1 logWn
a.s.→ w(q), for w(q) = E log(qr + (1− q)V1).

(b) Show that q 7→ w(q) is concave on (0, 1].
(c) Using Jensen’s inequality show that w(q) ≤ w(1) in case EV1 ≤ r. Fur-

ther, show that if EV −1
1 ≤ r−1, then the almost sure convergence applies

also for q = 0 and that w(q) ≤ w(0).
(d) Assuming that EV 2

1 <∞ and EV −2
1 <∞ show that sup{w(q) : q ∈ [0, 1]}

is finite, and further that the maximum of w(q) is obtained at some q∗ ∈
(0, 1) when EV1 > r > 1/EV −1

1 . Interpret your results in terms of the
preceding investment example.

Hint: Consider small q > 0 and small 1−q > 0 and recall that log(1+x) ≥ x−x2/2
for any x ≥ 0.

We conclude this subsection with another example where an almost sure conver-
gence is derived by the subsequence method.
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Exercise 2.3.15. Show that almost surely lim supn→∞ logZn/ log EZn ≤ 1 for

any positive, non-decreasing random variables Zn such that Zn
a.s.−→∞.

2.3.2. Convergence of random series. A second approach to the strong
law of large numbers is based on studying the convergence of random series. The
key tool in this approach is Kolmogorov’s maximal inequality, which we prove next.

Proposition 2.3.16 (Kolmogorov’s maximal inequality). The random vari-
ables Y1, . . . , Yn are mutually independent, with EY 2

l < ∞ and EYl = 0 for l =
1, . . . , n. Then, for Zk = Y1 + · · ·+ Yk and any z > 0,

(2.3.5) z2P( max
1≤k≤n

|Zk| ≥ z) ≤ Var(Zn) .

Remark. Chebyshev’s inequality gives only z2P(|Zn| ≥ z) ≤ Var(Zn) which is
significantly weaker and insufficient for our current goals.

Proof. Fixing z > 0 we decompose the event A = {max1≤k≤n |Zk| ≥ z}
according to the minimal index k for which |Zk| ≥ z. That is, A is the union of the
disjoint events Ak = {|Zk| ≥ z > |Zj |, j = 1, . . . , k− 1} over 1 ≤ k ≤ n. Obviously,

(2.3.6) z2P(A) =

n∑
k=1

z2P(Ak) ≤
n∑
k=1

E[Z2
k ;Ak] ,

since Z2
k ≥ z2 on Ak. Further, EZn = 0 and Ak are disjoint, so

(2.3.7) Var(Zn) = EZ2
n ≥

n∑
k=1

E[Z2
n;Ak] .

It suffices to show that E[(Zn − Zk)Zk;Ak] = 0 for any 1 ≤ k ≤ n, since then

E[Z2
n;Ak]−E[Z2

k ;Ak] = E[(Zn − Zk)2;Ak] + 2E[(Zn − Zk)Zk;Ak]

= E[(Zn − Zk)2;Ak] ≥ 0 ,

and (2.3.5) follows by comparing (2.3.6) and (2.3.7). Since ZkIAk can be represented
as a non-random Borel function of (Y1, . . . , Yk), it follows that ZkIAk is measurable
on σ(Y1, . . . , Yk). Consequently, for fixed k and l > k the variables Yl and ZkIAk
are independent, hence uncorrelated. Further EYl = 0, so

E[(Zn − Zk)Zk;Ak] =

n∑
l=k+1

E[YlZkIAk ] =

n∑
l=k+1

E(Yl)E(ZkIAk) = 0 ,

completing the proof of Kolmogorov’s inequality. �

Equipped with Kolmogorov’s inequality, we provide an easy to check sufficient
condition for the convergence of random series of independent R.V.

Theorem 2.3.17. Suppose {Xi} are independent random variables with Var(Xi) <
∞ and EXi = 0. If

∑
n Var(Xn) < ∞ then w.p.1. the random series

∑
nXn(ω)

converges (that is, the sequence Sn(ω) =
∑n
k=1Xk(ω) has a finite limit S∞(ω)).

Proof. Applying Kolmogorov’s maximal inequality for the independent vari-
ables Yl = Xl+r, we have that for any ε > 0 and positive integers r and n,

P( max
r≤k≤r+n

|Sk − Sr| ≥ ε) ≤ ε−2 Var(Sr+n − Sr) = ε−2
r+n∑
l=r+1

Var(Xl) .
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Taking n→∞, we get by continuity from below of P that

P(sup
k≥r
|Sk − Sr| ≥ ε) ≤ ε−2

∞∑
l=r+1

Var(Xl)

By our assumption that
∑
n Var(Xn) is finite, it follows that

∑
l>r Var(Xl)→ 0 as

r →∞. Hence, if we let Tr = supn,m≥r |Sn − Sm|, then for any ε > 0,

P(Tr ≥ 2ε) ≤ P(sup
k≥r
|Sk − Sr| ≥ ε)→ 0

as r →∞. Further, r 7→ Tr(ω) is non-increasing, hence,

P(lim sup
M→∞

TM ≥ 2ε) = P(inf
M
TM ≥ 2ε) ≤ P(Tr ≥ 2ε)→ 0 .

That is, TM (ω)
a.s.→ 0 for M →∞. By definition, the convergence to zero of TM (ω)

is the statement that Sn(ω) is a Cauchy sequence. Since every Cauchy sequence in
R converges to a finite limit, we have the stated a.s. convergence of Sn(ω). �

We next provide some applications of Theorem 2.3.17.

Example 2.3.18. Considering non-random an such that
∑
n a

2
n < ∞ and inde-

pendent Bernoulli variables Bn of parameter p = 1/2, Theorem 2.3.17 tells us that∑
n(−1)Bnan converges with probability one. That is, when the signs in

∑
n±an

are chosen on the toss of a fair coin, the series almost always converges (though
quite possibly

∑
n |an| =∞).

Exercise 2.3.19. Consider the record events Ak of Example 2.2.27.

(a) Verify that the events Ak are mutually independent with P(Ak) = 1/k.
(b) Show that the random series

∑
n≥2(IAn − 1/n)/ log n converges almost

surely and deduce that (log n)−1Rn
a.s.→ 1 as n→∞.

(c) Provide a counterexample to the preceding in case the distribution func-
tion FX(x) is not continuous.

The link between convergence of random series and the strong law of large numbers
is the following classical analysis lemma.

Lemma 2.3.20 (Kronecker’s lemma). Consider two sequences of real numbers
{xn} and {bn} where bn > 0 and bn ↑ ∞. If

∑
n xn/bn converges, then sn/bn → 0

for sn = x1 + · · ·+ xn.

Proof. Let un =
∑n
k=1(xk/bk) which by assumption converges to a finite

limit denoted u∞. Setting u0 = b0 = 0, “summation by parts” yields the identity,

sn =

n∑
k=1

bk(uk − uk−1) = bnun −
n∑
k=1

(bk − bk−1)uk−1 .

Since un → u∞ and bn ↑ ∞, the Cesáro averages b−1
n

∑n
k=1(bk − bk−1)uk−1 also

converge to u∞. Consequently, sn/bn → u∞ − u∞ = 0. �

Theorem 2.3.17 provides an alternative proof for the strong law of large numbers
of Theorem 2.3.3 in case {Xi} are i.i.d. (that is, replacing pairwise independence
by mutual independence). Indeed, applying the same truncation scheme as in the
proof of Proposition 2.3.1, it suffices to prove the following alternative to Lemma
2.3.2.



2.3. STRONG LAW OF LARGE NUMBERS 93

Lemma 2.3.21. For integrable i.i.d. random variables {Xk}, let Sm =
∑m
k=1Xk

and Xk = XkI|Xk|≤k. Then, n−1(Sn −ESn)
a.s.→ 0 as n→∞.

Lemma 2.3.21, in contrast to Lemma 2.3.2, does not require the restriction to a
subsequence nl. Consequently, in this proof of the strong law there is no need for
an interpolation argument so it is carried directly for Xk, with no need to split each
variable to its positive and negative parts.

Proof of Lemma 2.3.21. We will shortly show that

(2.3.8)

∞∑
k=1

k−2 Var(Xk) ≤ 2E|X1| .

With X1 integrable, applying Theorem 2.3.17 for the independent variables Yk =
k−1(Xk − EXk) this implies that for some A with P(A) = 1, the random series∑
n Yn(ω) converges for all ω ∈ A. Using Kronecker’s lemma for bn = n and

xn = Xn(ω) − EXn we get that n−1
∑n
k=1(Xk − EXk) → 0 as n → ∞, for every

ω ∈ A, as stated.
The proof of (2.3.8) is similar to the computation employed in the proof of Lemma

2.3.2. That is, Var(Xk) ≤ EX
2

k = EX2
1I|X1|≤k and k−2 ≤ 2/(k(k + 1)), yielding

that
∞∑
k=1

k−2 Var(Xk) ≤
∞∑
k=1

2

k(k + 1)
EX2

1I|X1|≤k = EX2
1v(|X1|) ,

where for any x > 0,

v(x) = 2

∞∑
k=dxe

1

k(k + 1)
= 2

∞∑
k=dxe

[1

k
− 1

k + 1

]
=

2

dxe
≤ 2x−1 .

Consequently, EX2
1v(|X1|) ≤ 2E|X1|, and (2.3.8) follows. �

Many of the ingredients of this proof of the strong law of large numbers are also
relevant for solving the following exercise.

Exercise 2.3.22. Let cn be a bounded sequence of non-random constants, and

{Xi} i.i.d. integrable R.V.-s of zero mean. Show that n−1
∑n
k=1 ckXk

a.s.→ 0 for
n→∞.

Next you find few exercises that illustrate how useful Kronecker’s lemma is when
proving the strong law of large numbers in case of independent but not identically
distributed summands.

Exercise 2.3.23. Let Sn =
∑n
k=1 Yk for independent random variables {Yi} such

that Var(Yk) < B <∞ and EYk = 0 for all k. Show that [n(log n)1+ε]−1/2Sn
a.s.→ 0

as n→∞ and ε > 0 is fixed (this falls short of the law of the iterated logarithm of
(2.2.1), but each Yk is allowed here to have a different distribution).

Exercise 2.3.24. Suppose the independent random variables {Xi} are such that
Var(Xk) ≤ pk <∞ and EXk = 0 for k = 1, 2, . . ..

(a) Show that if
∑
k pk <∞ then n−1

∑n
k=1 kXk

a.s.→ 0.
(b) Conversely, assuming

∑
k pk = ∞, give an example of independent ran-

dom variables {Xi}, such that Var(Xk) ≤ pk, EXk = 0, for which almost
surely lim supnXn(ω) = 1.
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(c) Show that the example you just gave is such that with probability one, the
sequence n−1

∑n
k=1 kXk(ω) does not converge to a finite limit.

Exercise 2.3.25. Consider independent, non-negative random variables Xn.

(a) Show that if

(2.3.9)

∞∑
n=1

[P(Xn ≥ 1) + E(XnIXn<1)] <∞

then the random series
∑
nXn(ω) converges w.p.1.

(b) Prove the converse, namely, that if
∑
nXn(ω) converges w.p.1. then

(2.3.9) holds.
(c) Suppose Gn are mutually independent random variables, with Gn having

the normal distribution N (µn, vn). Show that w.p.1. the random series∑
nG

2
n(ω) converges if and only if e =

∑
n(µ2

n + vn) is finite.
(d) Suppose τn are mutually independent random variables, with τn having

the exponential distribution of parameter λn > 0. Show that w.p.1. the
random series

∑
n τn(ω) converges if and only if

∑
n 1/λn is finite.

Hint: For part (b) recall that for any an ∈ [0, 1), the series
∑
n an is finite if and

only if
∏
n(1 − an) > 0. For part (c) let f(y) =

∑
n min((µn +

√
vny)2, 1) and

observe that if e =∞ then f(y) + f(−y) =∞ for all y 6= 0.

You can now also show that for such strong law of large numbers (that is, with
independent but not identically distributed summands), it suffices to strengthen
the corresponding weak law (only) along the subsequence nr = 2r.

Exercise 2.3.26. Let Zk =
∑k
j=1 Yj where Yj are mutually independent R.V.-s.

(a) Fixing ε > 0 show that if 2−rZ2r
a.s.→ 0 then

∑
r P(|Z2r+1 − Z2r | > 2rε)

is finite and if m−1Zm
p→ 0 then maxm<k≤2m P(|Z2m − Zk| ≥ εm)→ 0.

(b) Adapting the proof of Kolmogorov’s maximal inequality show that for any
n and z > 0,

P( max
1≤k≤n

|Zk| ≥ 2z) min
1≤k≤n

P(|Zn − Zk| < z) ≤ P(|Zn| > z) .

(c) Deduce that if both m−1Zm
p→ 0 and 2−rZ2r

a.s.→ 0 then also n−1Zn
a.s.→ 0.

Hint: For part (c) combine parts (a) and (b) with z = nε, n = 2r and the mutually
independent Yj+n, 1 ≤ j ≤ n, to show that

∑
r P(2−rDr ≥ 2ε) is finite for Dr =

max2r<k≤2r+1 |Zk − Z2r | and any fixed ε > 0.

Finally, here is an interesting property of non-negative random variables, regard-
less of their level of dependence.

Exercise 2.3.27. Suppose random variables Yk ≥ 0 are such that n−1
∑n
k=1 Yk

p→
1. Show that then n−1 maxnk=1 Yk

p→ 0, and conclude that n−r
∑n
k=1 Y

r
k

p→ 0, for
any fixed r > 1.



CHAPTER 3

Weak convergence, clt and Poisson approximation

After dealing in Chapter 2 with examples in which random variables converge
to non-random constants, we focus here on the more general theory of weak con-
vergence, that is situations in which the laws of random variables converge to a
limiting law, typically of a non-constant random variable. To motivate this theory,
we start with Section 3.1 where we derive the celebrated Central Limit Theorem (in
short clt), the most widely used example of weak convergence. This is followed by
the exposition of the theory, to which Section 3.2 is devoted. Section 3.3 is about
the key tool of characteristic functions and their role in establishing convergence
results such as the clt. This tool is used in Section 3.4 to derive the Poisson ap-
proximation and provide an introduction to the Poisson process. In Section 3.5 we
generalize the characteristic function to the setting of random vectors and study
their properties while deriving the multivariate clt.

3.1. The Central Limit Theorem

We start this section with the property of the normal distribution that makes it
the likely limit for properly scaled sums of independent random variables. This is
followed by a bare-hands proof of the clt for triangular arrays in Subsection 3.1.1.
We then present in Subsection 3.1.2 some of the many examples and applications
of the clt.

Recall the normal distribution of mean µ ∈ R and variance v > 0, denoted here-
after N (µ, v), the density of which is

(3.1.1) f(y) =
1√
2πv

exp(− (y − µ)2

2v
) .

As we show next, the normal distribution is preserved when the sum of independent
variables is considered (which is the main reason for its role as the limiting law for
the clt).

Lemma 3.1.1. Let Yn,k be mutually independent random variables, each having
the normal distribution N (µn,k, vn,k). Then, Gn =

∑n
k=1 Yn,k has the normal

distribution N (µn, vn), with µn =
∑n
k=1 µn,k and vn =

∑n
k=1 vn,k.

Proof. Recall that Y has a N (µ, v) distribution if and only if Y − µ has the
N (0, v) distribution. Therefore, we may and shall assume without loss of generality
that µn,k = 0 for all k and n. Further, it suffices to prove the lemma for n = 2, as
the general case immediately follows by an induction argument. With n = 2 fixed,
we simplify our notations by omitting it everywhere. Next recall the formula of
Corollary 1.4.34 for the probability density function of G = Y1 + Y2, which for Yi

95
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of N (0, vi) distribution, i = 1, 2, is

fG(z) =

∫ ∞
−∞

1√
2πv1

exp(− (z − y)2

2v1
)

1√
2πv2

exp(− y2

2v2
)dy .

Comparing this with the formula of (3.1.1) for v = v1 + v2, it just remains to show
that for any z ∈ R,

(3.1.2) 1 =

∫ ∞
−∞

1√
2πu

exp(
z2

2v
− (z − y)2

2v1
− y2

2v2
)dy ,

where u = v1v2/(v1 + v2). It is not hard to check that the argument of the expo-
nential function in (3.1.2) is −(y − cz)2/(2u) for c = v2/(v1 + v2). Consequently,
(3.1.2) is merely the obvious fact that the N (cz, u) density function integrates to
one (as any density function should), no matter what the value of z is. �

Considering Lemma 3.1.1 for Yn,k = (nv)−1/2(Yk −µ) and i.i.d. random variables
Yk, each having a normal distribution of mean µ and variance v, we see that µn,k =

0 and vn,k = 1/n, so Gn = (nv)−1/2(
∑n
k=1 Yk − nµ) has the standard N (0, 1)

distribution, regardless of n.

3.1.1. Lindeberg’s clt for triangular arrays. Our next proposition, the

celebrated clt, states that the distribution of Ŝn = (nv)−1/2(
∑n
k=1Xk − nµ) ap-

proaches the standard normal distribution in the limit n → ∞, even though Xk

may well be non-normal random variables.

Proposition 3.1.2 (Central Limit Theorem). Let

Ŝn =
1√
nv

( n∑
k=1

Xk − nµ
)
,

where {Xk} are i.i.d with v = Var(X1) ∈ (0,∞) and µ = E(X1). Then,

(3.1.3) lim
n→∞

P(Ŝn ≤ b) =
1√
2π

∫ b

−∞
exp(−y

2

2
)dy for every b ∈ R .

As we have seen in the context of the weak law of large numbers, it pays to extend
the scope of consideration to triangular arrays in which the random variables Xn,k

are independent within each row, but not necessarily of identical distribution. This
is the context of Lindeberg’s clt, which we state next.

Theorem 3.1.3 (Lindeberg’s clt). Let Ŝn =
∑n
k=1Xn,k for P-mutually in-

dependent random variables Xn,k, k = 1, . . . , n, such that EXn,k = 0 for all k
and

vn =

n∑
k=1

EX2
n,k → 1 as n→∞ .

Then, the conclusion (3.1.3) applies if for each ε > 0,

(3.1.4) gn(ε) =

n∑
k=1

E[X2
n,k; |Xn,k| ≥ ε]→ 0 as n→∞ .

Note that the variables in different rows need not be independent of each other
and could even be defined on different probability spaces.
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Remark 3.1.4. Under the assumptions of Proposition 3.1.2 the variables Xn,k =

(nv)−1/2(Xk − µ) are mutually independent and such that

EXn,k = (nv)−1/2(EXk − µ) = 0, vn =

n∑
k=1

EX2
n,k =

1

nv

n∑
k=1

Var(Xk) = 1 .

Further, per fixed n these Xn,k are identically distributed, so

gn(ε) = nE[X2
n,1 ; |Xn,1| ≥ ε] = v−1E[(X1 − µ)2I|X1−µ|≥

√
nvε] .

For each ε > 0 the sequence (X1 − µ)2I|X1−µ|≥
√
nvε converges a.s. to zero for

n → ∞ and is dominated by the integrable random variable (X1 − µ)2. Thus, by
dominated convergence, gn(ε) → 0 as n → ∞. We conclude that all assumptions
of Theorem 3.1.3 are satisfied for this choice of Xn,k, hence Proposition 3.1.2 is a
special instance of Lindeberg’s clt, to which we turn our attention next.

Let rn = max{√vn,k : k = 1, . . . , n} for vn,k = EX2
n,k. Since for every n, k and

ε > 0,

vn,k = EX2
n,k = E[X2

n,k; |Xn,k| < ε] + E[X2
n,k; |Xn,k| ≥ ε] ≤ ε2 + gn(ε) ,

it follows that

r2
n ≤ ε2 + gn(ε) ∀n, ε > 0 ,

hence Lindeberg’s condition (3.1.4) implies that rn → 0 as n→∞.

Remark. Lindeberg proved Theorem 3.1.3, introducing the condition (3.1.4).
Later, Feller proved that (3.1.3) plus rn → 0 implies that Lindeberg’s condition
holds. Together, these two results are known as the Feller-Lindeberg Theorem.

We see that the variables Xn,k are of uniformly small variance for large n. So,
considering independent random variables Yn,k that are also independent of the
Xn,k and such that each Yn,k has a N (0, vn,k) distribution, for a smooth function

h(·) one may control |Eh(Ŝn) − Eh(Gn)| by a Taylor expansion upon successively
replacing the Xn,k by Yn,k. This indeed is the outline of Lindeberg’s proof, whose
core is the following lemma.

Lemma 3.1.5. For h : R 7→ R of continuous and uniformly bounded second and
third derivatives, Gn having the N (0, vn) law, every n and ε > 0, we have that

|Eh(Ŝn)−Eh(Gn)| ≤
(ε

6
+
rn
2

)
vn‖h′′′‖∞ + gn(ε)‖h′′‖∞ ,

with ‖f‖∞ = supx∈R |f(x)| denoting the supremum norm.

Remark. Recall that Gn
D
= σnG for σn =

√
vn. So, assuming vn → 1 and

Lindeberg’s condition which implies that rn → 0 for n → ∞, it follows from the

lemma that |Eh(Ŝn) − Eh(σnG)| → 0 as n → ∞. Further, |h(σnx) − h(x)| ≤
|σn − 1||x|‖h′‖∞, so taking the expectation with respect to the standard normal
law we see that |Eh(σnG)−Eh(G)| → 0 if the first derivative of h is also uniformly
bounded. Hence,

(3.1.5) lim
n→∞

Eh(Ŝn) = Eh(G) ,
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for any continuous function h(·) of continuous and uniformly bounded first three
derivatives. This is actually all we need from Lemma 3.1.5 in order to prove Lin-
deberg’s clt. Further, as we show in Section 3.2, convergence in distribution as in
(3.1.3) is equivalent to (3.1.5) holding for all continuous, bounded functions h(·).

Proof of Lemma 3.1.5. LetGn =
∑n
k=1 Yn,k for mutually independent Yn,k,

distributed according to N (0, vn,k), that are independent of {Xn,k}. Fixing n and
h, we simplify the notations by eliminating n, that is, we write Yk for Yn,k, and Xk

for Xn,k. To facilitate the proof define the mixed sums

Ul =

l−1∑
k=1

Xk +

n∑
k=l+1

Yk , l = 1, . . . , n

Note the following identities

Gn = U1 + Y1, Ul +Xl = Ul+1 + Yl+1, l = 1, . . . , n− 1, Un +Xn = Ŝn ,

which imply that,

(3.1.6) |Eh(Gn)−Eh(Ŝn)| = |Eh(U1 + Y1)−Eh(Un +Xn)| ≤
n∑
l=1

∆l ,

where ∆l = |E[h(Ul + Yl) − h(Ul + Xl)]|, for l = 1, . . . , n. For any l and ξ ∈ R,
consider the remainder term

Rl(ξ) = h(Ul + ξ)− h(Ul)− ξh′(Ul)−
ξ2

2
h′′(Ul)

in second order Taylor’s expansion of h(·) at Ul. By Taylor’s theorem, we have that

|Rl(ξ)| ≤ ‖h′′′‖∞
|ξ|3

6
, (from third order expansion)

|Rl(ξ)| ≤ ‖h′′‖∞|ξ|2, (from second order expansion)

whence,

(3.1.7) |Rl(ξ)| ≤ min

{
‖h′′′‖∞

|ξ|3

6
, ‖h′′‖∞|ξ|2

}
.

Considering the expectation of the difference between the two identities,

h(Ul +Xl) = h(Ul) +Xlh
′(Ul) +

X2
l

2
h′′(Ul) +Rl(Xl) ,

h(Ul + Yl) = h(Ul) + Ylh
′(Ul) +

Y 2
l

2
h′′(Ul) +Rl(Yl) ,

we get that

∆l ≤
∣∣∣E[(Xl − Yl)h′(Ul)]

∣∣∣+
∣∣∣E[(X2

l

2
− Y 2

l

2
)h′′(Ul)

]∣∣∣+ |E[Rl(Xl)−Rl(Yl)]| .

Recall that Xl and Yl are independent of Ul and chosen such that EXl = EYl and
EX2

l = EY 2
l . As the first two terms in the bound on ∆l vanish we have that

(3.1.8) ∆l ≤ E|Rl(Xl)|+ E|Rl(Yl)| .
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Further, utilizing (3.1.7),

E|Rl(Xl)| ≤ ‖h′′′‖∞E
[ |Xl|3

6
; |Xl| ≤ ε

]
+ ‖h′′‖∞E[|Xl|2; |Xl| ≥ ε]

≤ ε

6
‖h′′′‖∞E[|Xl|2] + ‖h′′‖∞E[X2

l ; |Xl| ≥ ε] .

Summing these bounds over l = 1, . . . , n, by our assumption that
∑n
l=1 EX2

l = vn
and the definition of gn(ε), we get that

(3.1.9)

n∑
l=1

E|Rl(Xl)| ≤
ε

6
vn‖h′′′‖∞ + gn(ε)‖h′′‖∞ .

Recall that Yl/
√
vn,l is a standard normal random variable, whose fourth moment

is 3 (see (1.3.18)). By monotonicity in q of the Lq-norms (c.f. Lemma 1.3.16), it

follows that E[|Yl/
√
vn,l|3] ≤ 3, hence E|Yl|3 ≤ 3v

3/2
n,l ≤ 3rnvn,l. Utilizing once

more (3.1.7) and the fact that vn =
∑n
l=1 vn,l, we arrive at

(3.1.10)

n∑
l=1

E|Rl(Yl)| ≤
‖h′′′‖∞

6

n∑
l=1

E|Yl|3 ≤
rn
2
vn‖h′′′‖∞ .

Plugging (3.1.8)–(3.1.10) into (3.1.6) completes the proof of the lemma. �

In view of (3.1.5), Lindeberg’s clt builds on the following elementary lemma,
whereby we approximate the indicator function on (−∞, b] by continuous, bounded
functions hk : R 7→ R for each of which Lemma 3.1.5 applies.

Lemma 3.1.6. There exist h±k (x) of continuous and uniformly bounded first three

derivatives, such that 0 ≤ h−k (x) ↑ I(−∞,b)(x) and 1 ≥ h+
k (x) ↓ I(−∞,b](x) as

k →∞.

Proof. There are many ways to prove this. Here is one which is from first prin-
ciples, hence requires no analysis knowledge. The function ψ : [0, 1] 7→ [0, 1] given

by ψ(x) = 140
∫ 1

x
u3(1−u)3du is monotone decreasing, with continuous derivatives

of all order, such that ψ(0) = 1, ψ(1) = 0 and whose first three derivatives at 0 and
at 1 are all zero. Its extension φ(x) = ψ(min(x, 1)+) to a function on R that is one
for x ≤ 0 and zero for x ≥ 1 is thus non-increasing, with continuous and uniformly
bounded first three derivatives. It is easy to check that the translated and scaled
functions h+

k (x) = φ(k(x − b)) and h−k (x) = φ(k(x − b) + 1) have all the claimed
properties. �

Proof of Theorem 3.1.3. Applying (3.1.5) for h−k (·), then taking k → ∞
we have by monotone convergence that

lim inf
n→∞

P(Ŝn < b) ≥ lim
n→∞

E[h−k (Ŝn)] = E[h−k (G)] ↑ FG(b−) .

Similarly, considering h+
k (·), then taking k →∞ we have by bounded convergence

that

lim sup
n→∞

P(Ŝn ≤ b) ≤ lim
n→∞

E[h+
k (Ŝn)] = E[h+

k (G)] ↓ FG(b) .

Since FG(·) is a continuous function we conclude that P(Ŝn ≤ b) converges to
FG(b) = FG(b−), as n→∞. This holds for every b ∈ R as claimed. �
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3.1.2. Applications of the clt. We start with the simpler, i.i.d. case. In

doing so, we use the notation Zn
D−→ G when the analog of (3.1.3) holds for the

sequence {Zn}, that is P(Zn ≤ b)→ P(G ≤ b) as n→∞ for all b ∈ R (where G is
a standard normal variable).

Example 3.1.7 (Normal approximation of the Binomial). Consider i.i.d.
random variables {Bi}, each of whom is Bernoulli of parameter 0 < p < 1 (i.e.
P (B1 = 1) = 1− P (B1 = 0) = p). The sum Sn = B1 + · · ·+Bn has the Binomial
distribution of parameters (n, p), that is,

P(Sn = k) =

(
n

k

)
pk(1− p)n−k , k = 0, . . . , n .

For example, if Bi indicates that the ith independent toss of the same coin lands on
a Head then Sn counts the total numbers of Heads in the first n tosses of the coin.
Recall that EB = p and Var(B) = p(1− p) (see Example 1.3.69), so the clt states

that (Sn−np)/
√
np(1− p) D−→ G. It allows us to approximate, for all large enough

n, the typically non-computable weighted sums of binomial terms by integrals with
respect to the standard normal density.

Here is another example that is similar and almost as widely used.

Example 3.1.8 (Normal approximation of the Poisson distribution). It
is not hard to verify that the sum of two independent Poisson random variables has
the Poisson distribution, with a parameter which is the sum of the parameters of
the summands. Thus, by induction, if {Xi} are i.i.d. each of Poisson distribution
of parameter 1, then Nn = X1 + . . . + Xn has a Poisson distribution of param-
eter n. Since E(N1) = Var(N1) = 1 (see Example 1.3.69), the clt applies for
(Nn−n)/n1/2. This provides an approximation for the distribution function of the
Poisson variable Nλ of parameter λ that is a large integer. To deal with non-integer
values λ = n + η for some η ∈ (0, 1), consider the mutually independent Poisson

variables Nn, Nη and N1−η. Since Nλ
D
= Nn+Nη and Nn+1

D
= Nn+Nη+N1−η, this

provides a monotone coupling , that is, a construction of the random variables Nn,
Nλ and Nn+1 on the same probability space, such that Nn ≤ Nλ ≤ Nn+1. Because

of this monotonicity, for any ε > 0 and all n ≥ n0(b, ε) the event {(Nλ−λ)/
√
λ ≤ b}

is between {(Nn+1 − (n+ 1))/
√
n+ 1 ≤ b− ε} and {(Nn − n)/

√
n ≤ b+ ε}. Con-

sidering the limit as n→∞ followed by ε→ 0, it thus follows that the convergence

(Nn − n)/n1/2 D−→ G implies also that (Nλ − λ)/λ1/2 D−→ G as λ→∞. In words,
the normal distribution is a good approximation of a Poisson with large parameter.

In Theorem 2.3.3 we established the strong law of large numbers when the sum-
mands Xi are only pairwise independent. Unfortunately, as the next example shows,
pairwise independence is not good enough for the clt.

Example 3.1.9. Consider i.i.d. {ξi} such that P(ξi = 1) = P(ξi = −1) = 1/2
for all i. Set X1 = ξ1 and successively let X2k+j = Xjξk+2 for j = 1, . . . , 2k and
k = 0, 1, . . .. Note that each Xl is a {−1, 1}-valued variable, specifically, a product
of a different finite subset of ξi-s that corresponds to the positions of ones in the
binary representation of 2l− 1 (with ξ1 for its least significant digit, ξ2 for the next
digit, etc.). Consequently, each Xl is of zero mean and if l 6= r then in EXlXr

at least one of the ξi-s will appear exactly once, resulting with EXlXr = 0, hence
with {Xl} being uncorrelated variables. Recall part (b) of Exercise 1.4.43, that such
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variables are pairwise independent. Further, EXl = 0 and Xl ∈ {−1, 1} mean that
P(Xl = −1) = P(Xl = 1) = 1/2 are identically distributed. As for the zero mean
variables Sn =

∑n
j=1Xj, we have arranged things such that S1 = ξ1 and for any

k ≥ 0

S2k+1 =

2k∑
j=1

(Xj +X2k+j) =

2k∑
j=1

Xj(1 + ξk+2) = S2k(1 + ξk+2) ,

hence S2k = ξ1
∏k+1
i=2 (1 + ξi) for all k ≥ 1. In particular, S2k = 0 unless ξ2 = ξ3 =

. . . = ξk+1 = 1, an event of probability 2−k. Thus, P(S2k 6= 0) = 2−k and certainly
the clt result (3.1.3) does not hold along the subsequence n = 2k.

We turn next to applications of Lindeberg’s triangular array clt, starting with
the asymptotic of the count of record events till time n� 1.

Exercise 3.1.10. Consider the count Rn of record events during the first n in-
stances of i.i.d. R.V. with a continuous distribution function, as in Example 2.2.27.
Recall that Rn = B1+· · ·+Bn for mutually independent Bernoulli random variables
{Bk} such that P(Bk = 1) = 1−P(Bk = 0) = k−1.

(a) Check that bn/ log n→ 1 where bn = Var(Rn).
(b) Show that Lindeberg’s clt applies for Xn,k = (log n)−1/2(Bk − k−1).

(c) Recall that |ERn− log n| ≤ 1, and conclude that (Rn− log n)/
√

log n
D−→

G.

Remark. Let Sn denote the symmetric group of permutations on {1, . . . , n}. For
s ∈ Sn and i ∈ {1, . . . , n}, denoting by Li(s) the smallest j ≤ n such that sj(i) = i,
we call {sj(i) : 1 ≤ j ≤ Li(s)} the cycle of s containing i. If each s ∈ Sn is equally
likely, then the law of the number Tn(s) of different cycles in s is the same as that
of Rn of Example 2.2.27 (for a proof see [Dur10, Example 2.2.4]). Consequently,

Exercise 3.1.10 also shows that in this setting (Tn − log n)/
√

log n
D−→ G.

Part (a) of the following exercise is a special case of Lindeberg’s clt, known also
as Lyapunov’s theorem.

Exercise 3.1.11 (Lyapunov’s theorem). Let Sn =
∑n
k=1Xk for {Xk} mutually

independent such that vn = Var(Sn) <∞.

(a) Show that if there exists q > 2 such that

lim
n→∞

v−q/2n

n∑
k=1

E(|Xk −EXk|q) = 0 ,

then v
−1/2
n (Sn −ESn)

D−→ G.
(b) Show that part (a) applies in case vn → ∞ and E(|Xk − EXk|q) ≤

C(VarXk)r for r = 1, some q > 2, C <∞ and k = 1, 2, . . ..
(c) Provide an example where the conditions of part (b) hold with r = q/2

but v
−1/2
n (Sn −ESn) does not converge in distribution.

The next application of Lindeberg’s clt involves the use of truncation (which we
have already introduced in the context of the weak law of large numbers), to derive
the clt for normalized sums of certain i.i.d. random variables of infinite variance.
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Proposition 3.1.12. Suppose {Xk} are i.i.d of symmetric distribution, that is

X1
D
= −X1 (or P(X1 > x) = P(X1 < −x) for all x) such that P(|X1| > x) = x−2

for x ≥ 1. Then, 1√
n logn

∑n
k=1Xk

D−→ G as n→∞.

Remark 3.1.13. Note that Var(X1) = EX2
1 =

∫∞
0

2xP(|X1| > x)dx = ∞ (c.f.
part (a) of Lemma 1.4.32), so the usual clt of Proposition 3.1.2 does not apply here.
Indeed, the infinite variance of the summands results in a different normalization
of the sums Sn =

∑n
k=1Xk that is tailored to the specific tail behavior of x 7→

P(|X1| > x).
Caution should be exercised here, since when P(|X1| > x) = x−α for x > 1 and

some 0 < α < 2, there is no way to approximate the distribution of (Sn − an)/bn
by the standard normal distribution. Indeed, in this case bn = n1/α and the
approximation is by an α-stable law (c.f. Definition 3.3.32 and Exercise 3.3.34).

Proof. We plan to apply Lindeberg’s clt for the truncated random variables
Xn,k = b−1

n XkI|Xk|≤cn where bn =
√
n log n and cn ≥ 1 are such that both cn/bn →

0 and cn/
√
n → ∞. Indeed, for each n the variables Xn,k, k = 1, . . . , n, are i.i.d.

of bounded and symmetric distribution (since both the distribution of Xk and the
truncation function are symmetric). Consequently, EXn,k = 0 for all n and k.
Further, we have chosen bn such that

vn = nEX2
n,1 =

n

b2n
EX2

1I|X1|≤cn =
n

b2n

∫ cn

0

2x[P(|X1| > x)−P(|X1| > cn)]dx

=
n

b2n

[ ∫ 1

0

2xdx+

∫ cn

1

2

x
dx−

∫ cn

0

2x

c2n
dx
]

=
2n log cn

b2n
→ 1

as n → ∞. Finally, note that |Xn,k| ≤ cn/bn → 0 as n → ∞, implying that
gn(ε) = 0 for any ε > 0 and all n large enough, hence Lindeberg’s condition

trivially holds. We thus deduce from Lindeberg’s clt that 1√
n logn

Sn
D−→ G as

n → ∞, where Sn =
∑n
k=1XkI|Xk|≤cn is the sum of the truncated variables. We

have chosen the truncation level cn large enough to assure that

P(Sn 6= Sn) ≤
n∑
k=1

P(|Xk| > cn) = nP(|X1| > cn) = nc−2
n → 0

for n→∞, hence we may now conclude that 1√
n logn

Sn
D−→ G as claimed. �

We conclude this section with Kolmogorov’s three series theorem, the most defin-
itive result on the convergence of random series.

Theorem 3.1.14 (Kolmogorov’s three series theorem). Suppose {Xk} are

independent random variables. For non-random c > 0 let X
(c)
n = XnI|Xn|≤c be the

corresponding truncated variables and consider the three series

(3.1.11)
∑
n

P(|Xn| > c),
∑
n

EX(c)
n ,

∑
n

Var(X(c)
n ).

Then, the random series
∑
nXn converges a.s. if and only if for some c > 0 all

three series of (3.1.11) converge.

Remark. By convergence of a series we mean the existence of a finite limit to the
sum of its first m entries when m → ∞. Note that the theorem implies that if all
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three series of (3.1.11) converge for some c > 0, then they necessarily converge for
every c > 0.

Proof. We prove the sufficiency first, that is, assume that for some c > 0
all three series of (3.1.11) converge. By Theorem 2.3.17 and the finiteness of∑
n Var(X

(c)
n ) it follows that the random series

∑
n(X

(c)
n − EX

(c)
n ) converges a.s.

Then, by our assumption that
∑
n EX

(c)
n converges, also

∑
nX

(c)
n converges a.s.

Further, by assumption the sequence of probabilities P(Xn 6= X
(c)
n ) = P(|Xn| > c)

is summable, hence by Borel-Cantelli I, we have that a.s. Xn 6= X
(c)
n for at most

finitely many n’s. The convergence a.s. of
∑
nX

(c)
n thus results with the conver-

gence a.s. of
∑
nXn, as claimed.

We turn to prove the necessity of convergence of the three series in (3.1.11) to the
convergence of

∑
nXn, which is where we use the clt. To this end, assume the

random series
∑
nXn converges a.s. (to a finite limit) and fix an arbitrary constant

c > 0. The convergence of
∑
nXn implies that |Xn| → 0, hence a.s. |Xn| > c

for only finitely many n’s. In view of the independence of these events and Borel-
Cantelli II, necessarily the sequence P(|Xn| > c) is summable, that is, the series∑
n P(|Xn| > c) converges. Further, the convergence a.s. of

∑
nXn then results

with the a.s. convergence of
∑
nX

(c)
n .

Suppose now that the non-decreasing sequence vn =
∑n
k=1 Var(X

(c)
k ) is unbounded,

in which case the latter convergence implies that a.s. Tn = v
−1/2
n

∑n
k=1X

(c)
k → 0

when n → ∞. We further claim that in this case Lindeberg’s clt applies for

Ŝn =
∑n
k=1Xn,k, where

Xn,k = v−1/2
n (X

(c)
k −m

(c)
k ), and m

(c)
k = EX

(c)
k .

Indeed, per fixed n the variables Xn,k are mutually independent of zero mean

and such that
∑n
k=1 EX2

n,k = 1. Further, since |X(c)
k | ≤ c and we assumed that

vn ↑ ∞ it follows that |Xn,k| ≤ 2c/
√
vn → 0 as n→∞, resulting with Lindeberg’s

condition holding (as gn(ε) = 0 when ε > 2c/
√
vn, i.e. for all n large enough).

Combining Lindeberg’s clt conclusion that Ŝn
D−→ G and Tn

a.s.→ 0, we deduce that

(Ŝn−Tn)
D−→ G (c.f. Exercise 3.2.8). However, since Ŝn−Tn = −v−1/2

n
∑n
k=1m

(c)
k

are non-random, the sequence P(Ŝn − Tn ≤ 0) is composed of zeros and ones,
hence cannot converge to P(G ≤ 0) = 1/2. We arrive at a contradiction to our

assumption that vn ↑ ∞, and so conclude that the sequence Var(X
(c)
n ) is summable,

that is, the series
∑
n Var(X

(c)
n ) converges.

By Theorem 2.3.17, the summability of Var(X
(c)
n ) implies that the series

∑
n(X

(c)
n −

m
(c)
n ) converges a.s. We have already seen that

∑
nX

(c)
n converges a.s. so it follows

that their difference
∑
nm

(c)
n , which is the middle term of (3.1.11), converges as

well. �

3.2. Weak convergence

Focusing here on the theory of weak convergence, we first consider in Subsection
3.2.1 the convergence in distribution in a more general setting than that of the clt.
This is followed by the study in Subsection 3.2.2 of weak convergence of probability
measures and the theory associated with it. Most notably its relation to other modes
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of convergence, such as convergence in total variation or point-wise convergence of
probability density functions. We conclude by introducing in Subsection 3.2.3 the
key concept of uniform tightness which is instrumental to the derivation of weak
convergence statements, as demonstrated in later sections of this chapter.

3.2.1. Convergence in distribution. Motivated by the clt, we explore here
the convergence in distribution, its relation to convergence in probability, some
additional properties and examples in which the limiting law is not the normal law.
To start off, here is the definition of convergence in distribution.

Definition 3.2.1. We say that R.V.-s Xn converge in distribution to a R.V. X∞,

denoted by Xn
D−→ X∞, if FXn(α)→ FX∞(α) as n→∞ for each fixed α which is

a continuity point of FX∞ .
Similarly, we say that distribution functions Fn converge weakly to F∞, denoted

by Fn
w→ F∞, if Fn(α) → F∞(α) as n → ∞ for each fixed α which is a continuity

point of F∞.

Remark. If the limit R.V. X∞ has a probability density function, or more gener-
ally whenever FX∞ is a continuous function, the convergence in distribution of Xn

to X∞ is equivalent to the point-wise convergence of the corresponding distribu-
tion functions. Such is the case of the clt, since the normal R.V. G has a density.
Further,

Exercise 3.2.2. Show that if Fn
w→ F∞ and F∞(·) is a continuous function then

also supx |Fn(x)− F∞(x)| → 0.

The clt is not the only example of convergence in distribution we have already
met. Recall the Glivenko-Cantelli theorem (see Theorem 2.3.6), whereby a.s. the
empirical distribution functions Fn of an i.i.d. sequence of variables {Xi} converge
uniformly, hence point-wise to the true distribution function FX .

Here is an explicit necessary and sufficient condition for the convergence in distri-
bution of integer valued random variables

Exercise 3.2.3. Let Xn, 1 ≤ n ≤ ∞ be integer valued R.V.-s. Show that Xn
D−→

X∞ if and only if P(Xn = k)→n→∞ P(X∞ = k) for each k ∈ Z.

In contrast with all of the preceding examples, we demonstrate next why the

convergence Xn
D−→ X∞ has been chosen to be strictly weaker than the point-

wise convergence of the corresponding distribution functions. We also see that
Eh(Xn)→ Eh(X∞) or not, depending upon the choice of h(·), and even within the
collection of continuous functions with image in [−1, 1], the rate of this convergence
is not uniform in h.

Example 3.2.4. The random variables Xn = 1/n converge in distribution to
X∞ = 0. Indeed, it is easy to check that FXn(α) = I[1/n,∞)(α) converge to
FX∞(α) = I[0,∞)(α) at each α 6= 0. However, there is no convergence at the
discontinuity point α = 0 of FX∞ as FX∞(0) = 1 while FXn(0) = 0 for all n.
Further, Eh(Xn) = h( 1

n ) → h(0) = Eh(X∞) if and only if h(x) is continuous at
x = 0, and the rate of convergence varies with the modulus of continuity of h(x) at
x = 0.
More generally, if Xn = X + 1/n then FXn(α) = FX(α − 1/n) → FX(α−) as
n→∞. So, in order for X + 1/n to converge in distribution to X as n→∞, we
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have to restrict such convergence to the continuity points of the limiting distribution
function FX , as done in Definition 3.2.1.

We have seen in Examples 3.1.7 and 3.1.8 that the normal distribution is a good
approximation for the Binomial and the Poisson distributions (when the corre-
sponding parameter is large). Our next example is of the same type, now with the
approximation of the Geometric distribution by the Exponential one.

Example 3.2.5 (Exponential approximation of the Geometric). Let Zp
be a random variable with a Geometric distribution of parameter p ∈ (0, 1), that is,

P(Zp ≥ k) = (1− p)k−1
for any positive integer k. As p→ 0, we see that

P(pZp > t) = (1− p)bt/pc → e−t for all t ≥ 0

That is, pZp
D−→ T , with T having a standard exponential distribution. As Zp

corresponds to the number of independent trials till the first occurrence of a spe-
cific event whose probability is p, this approximation corresponds to waiting for the
occurrence of rare events.

At this point, you are to check that convergence in probability implies the con-
vergence in distribution, which is hence weaker than all notions of convergence
explored in Section 1.3.3 (and is perhaps a reason for naming it weak convergence).
The converse cannot hold, for example because convergence in distribution does not
require Xn and X∞ to be even defined on the same probability space. However,
convergence in distribution is equivalent to convergence in probability when the
limiting random variable is a non-random constant.

Exercise 3.2.6. Show that if Xn
p→ X∞, then Xn

D−→ X∞. Conversely, if

Xn
D−→ X∞ and X∞ is almost surely a non-random constant, then Xn

p→ X∞.

Further, as the next theorem shows, given Fn
w→ F∞, it is possible to construct

random variables Yn, n ≤ ∞ such that FYn = Fn and Yn
a.s.→ Y∞. The catch

of course is to construct the appropriate coupling, that is, to specify the relation
between the different Yn’s.

Theorem 3.2.7. Let Fn be a sequence of distribution functions that converges
weakly to F∞. Then there exist random variables Yn, 1 ≤ n ≤ ∞ on the probability

space ((0, 1],B(0,1], U) such that FYn = Fn for 1 ≤ n ≤ ∞ and Yn
a.s.−→ Y∞.

Proof. We use Skorokhod’s representation as in the proof of Theorem 1.2.37.
That is, for ω ∈ (0, 1] and 1 ≤ n ≤ ∞ let Y +

n (ω) ≥ Y −n (ω) be

Y +
n (ω) = sup{y : Fn(y) ≤ ω}, Y −n (ω) = sup{y : Fn(y) < ω} .

While proving Theorem 1.2.37 we saw that FY −n = Fn for any n ≤ ∞, and as

remarked there Y −n (ω) = Y +
n (ω) for all but at most countably many values of ω,

hence P(Y −n = Y +
n ) = 1. It thus suffices to show that for all ω ∈ (0, 1),

Y +
∞(ω) ≥ lim sup

n→∞
Y +
n (ω) ≥ lim sup

n→∞
Y −n (ω)

≥ lim inf
n→∞

Y −n (ω) ≥ Y −∞(ω) .(3.2.1)

Indeed, then Y −n (ω) → Y −∞(ω) for any ω ∈ A = {ω : Y +
∞(ω) = Y −∞(ω)} where

P(A) = 1. Hence, setting Yn = Y +
n for 1 ≤ n ≤ ∞ would complete the proof of the

theorem.
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Turning to prove (3.2.1) note that the two middle inequalities are trivial. Fixing
ω ∈ (0, 1) we proceed to show that

(3.2.2) Y +
∞(ω) ≥ lim sup

n→∞
Y +
n (ω) .

Since the continuity points of F∞ form a dense subset of R (see Exercise 1.2.39),
it suffices for (3.2.2) to show that if z > Y +

∞(ω) is a continuity point of F∞, then
necessarily z ≥ Y +

n (ω) for all n large enough. To this end, note that z > Y +
∞(ω)

implies by definition that F∞(z) > ω. Since z is a continuity point of F∞ and

Fn
w→ F∞ we know that Fn(z)→ F∞(z). Hence, Fn(z) > ω for all sufficiently large

n. By definition of Y +
n and monotonicity of Fn, this implies that z ≥ Y +

n (ω), as
needed. The proof of

(3.2.3) lim inf
n→∞

Y −n (ω) ≥ Y −∞(ω) ,

is analogous. For y < Y −∞(ω) we know by monotonicity of F∞ that F∞(y) < ω.
Assuming further that y is a continuity point of F∞, this implies that Fn(y) < ω
for all sufficiently large n, which in turn results with y ≤ Y −n (ω). Taking continuity
points yk of F∞ such that yk ↑ Y −∞(ω) will yield (3.2.3) and complete the proof. �

The next exercise provides useful ways to get convergence in distribution for one
sequence out of that of another sequence. Its result is also called the converging
together lemma or Slutsky’s lemma.

Exercise 3.2.8. Suppose that Xn
D−→ X∞ and Yn

D−→ Y∞, where Y∞ is non-
random and for each n the variables Xn and Yn are defined on the same probability
space.

(a) Show that then Xn + Yn
D−→ X∞ + Y∞.

Hint: Recall that the collection of continuity points of FX∞ is dense.

(b) Deduce that if Zn −Xn
D−→ 0 then Xn

D−→ X if and only if Zn
D−→ X.

(c) Show that YnXn
D−→ Y∞X∞.

For example, here is an application of Exercise 3.2.8 en-route to a clt connected
to renewal theory.

Exercise 3.2.9.

(a) Suppose {Nm} are non-negative integer-valued random variables and bm →
∞ are non-random integers such that Nm/bm

p→ 1. Show that if Sn =∑n
k=1Xk for i.i.d. random variables {Xk} with v = Var(X1) ∈ (0,∞)

and E(X1) = 0, then SNm/
√
vbm

D−→ G as m→∞.

Hint: Use Kolmogorov’s inequality to show that SNm/
√
vbm−Sbm/

√
vbm

p→
0.

(b) Let Nt = sup{n : Sn ≤ t} for Sn =
∑n
k=1 Yk and i.i.d. random variables

Yk > 0 such that v = Var(Y1) ∈ (0,∞) and E(Y1) = 1. Show that

(Nt − t)/
√
vt

D−→ G as t→∞.

Theorem 3.2.7 is key to solving the following:

Exercise 3.2.10. Suppose that Zn
D−→ Z∞. Show that then bn(f(c + Zn/bn) −

f(c))/f ′(c)
D−→ Z∞ for every positive constants bn → ∞ and every Borel function



3.2. WEAK CONVERGENCE 107

f : R → R (not necessarily continuous) that is differentiable at c ∈ R, with a
derivative f ′(c) 6= 0.

Consider the following exercise as a cautionary note about your interpretation of
Theorem 3.2.7.

Exercise 3.2.11. Let Mn =
∑n
k=1

∏k
i=1 Ui and Wn =

∑n
k=1

∏n
i=k Ui, where {Ui}

are i.i.d. uniformly on [0, c] and c > 0.

(a) Show that Mn
a.s.−→M∞ as n→∞, with M∞ taking values in [0,∞].

(b) Prove that M∞ is a.s. finite if and only if c < e (but EM∞ is finite only
for c < 2).

(c) In case c < e prove that Wn
D−→ M∞ as n→∞ while Wn can not have

an almost sure limit. Explain why this does not contradict Theorem 3.2.7.

The next exercise relates the decay (in n) of sups |FX∞(s) − FXn(s)| to that of
sup |Eh(Xn)−Eh(X∞)| over all functions h : R 7→ [−M,M ] with supx |h′(x)| ≤ L.

Exercise 3.2.12. Let ∆n = sups |FX∞(s)− FXn(s)|.
(a) Show that if supx |h(x)| ≤ M and supx |h′(x)| ≤ L, then for any b > a,

C = 4M + L(b− a) and all n

|Eh(Xn)−Eh(X∞)| ≤ C∆n + 4MP(X∞ /∈ [a, b]) .

(b) Show that if X∞ ∈ [a, b] and fX∞(x) ≥ η > 0 for all x ∈ [a, b], then
|Qn(α) − Q∞(α)| ≤ η−1∆n for any α ∈ (∆n, 1 − ∆n), where Qn(α) =
sup{x : FXn(x) < α} denotes α-quantile for the law of Xn. Using this,

construct Yn
D
= Xn such that P(|Yn − Y∞| > η−1∆n) ≤ 2∆n and deduce

the bound of part (a), albeit the larger value 4M + L/η of C.

Here is another example of convergence in distribution, this time in the context
of extreme value theory.

Exercise 3.2.13. Let Mn = max1≤i≤n {Ti}, where Ti, i = 1, 2, . . . are i.i.d. ran-
dom variables of distribution function FT (t). Noting that FMn

(x) = FT (x)n, show

that b−1
n (Mn − an)

D−→M∞ when:

(a) FT (t) = 1 − e−t for t ≥ 0 (i.e. Ti are Exponential of parameter one).
Here, an = log n, bn = 1 and FM∞(y) = exp(−e−y) for y ∈ R.

(b) FT (t) = 1 − t−α for t ≥ 1 and α > 0. Here, an = 0, bn = n1/α and
FM∞(y) = exp(−y−α) for y > 0.

(c) FT (t) = 1 − |t|α for −1 ≤ t ≤ 0 and α > 0. Here, an = 0, bn = n−1/α

and FM∞(y) = exp(−|y|α) for y ≤ 0.

Remark. Up to the linear transformation y 7→ (y− µ)/σ, the three distributions
of M∞ provided in Exercise 3.2.13 are the only possible limits of maxima of i.i.d.
random variables. They are thus called the extreme value distributions of Type 1
(or Gumbel-type), in case (a), Type 2 (or Fréchet-type), in case (b), and Type 3
(or Weibull-type), in case (c). Indeed,

Exercise 3.2.14.

(a) Building upon part (a) of Exercise 2.2.24, show that if G has the standard
normal distribution, then for any y ∈ R

lim
t→∞

1− FG(t+ y/t)

1− FG(t)
= e−y .
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(b) Let Mn = max1≤i≤n {Gi} for i.i.d. standard normal random variables

Gi. Show that bn(Mn− bn)
D−→M∞ where FM∞(y) = exp(−e−y) and bn

is such that 1− FG(bn) = n−1.

(c) Show that bn/
√

2 log n→ 1 as n→∞ and deduce that Mn/
√

2 log n
p→ 1.

(d) More generally, suppose Tt = inf{x ≥ 0 : Mx ≥ t}, where x 7→ Mx

is some monotone non-decreasing family of random variables such that

M0 = 0. Show that if e−tTt
D−→ T∞ as t → ∞ with T∞ having the

standard exponential distribution then (Mx− log x)
D−→M∞ as x→∞,

where FM∞(y) = exp(−e−y).

Our next example is of a more combinatorial flavor.

Exercise 3.2.15 (The birthday problem). Suppose {Xi} are i.i.d. with each
Xi uniformly distributed on {1, . . . , n}. Let Tn = min{k : Xk = Xl, for some l < k}
mark the first coincidence among the entries of the sequence X1, X2, . . ., so

P(Tn > r) =

r∏
k=2

(1− k − 1

n
) ,

is the probability that among r items chosen uniformly and independently from
a set of n different objects, no two are the same (the name “birthday problem”
corresponds to n = 365 with the items interpreted as the birthdays for a group of
size r). Show that P(n−1/2Tn > s)→ exp(−s2/2) as n→∞, for any fixed s ≥ 0.
Hint: Recall that −x− x2 ≤ log(1− x) ≤ −x for x ∈ [0, 1/2].

The symmetric, simple random walk on the integers is the sequence of random
variables Sn =

∑n
k=1 ξk where ξk are i.i.d. such that P(ξk = 1) = P(ξk = −1) = 1

2 .

From the clt we already know that n−1/2Sn
D−→ G. The next exercise provides

the asymptotics of the first and last visits to zero by this random sequence, namely
R = inf{` ≥ 1 : S` = 0} and Ln = sup{` ≤ n : S` = 0}. Much more is known about
this random sequence (c.f. [Dur10, Section 4.3] or [Fel68, Chapter 3]).

Exercise 3.2.16. Let qn,r = P(S1 > 0, . . . , Sn−1 > 0, Sn = r) and

pn,r = P(Sn = r) = 2−n
(
n

k

)
k = (n+ r)/2 .

(a) Counting paths of the walk, prove the discrete reflection principle that
Px(R < n, Sn = y) = P−x(Sn = y) = pn,x+y for any positive integers
x, y, where Px(·) denote probabilities for the walk starting at S0 = x.

(b) Verify that qn,r = 1
2 (pn−1,r−1 − pn−1,r+1) for any n, r ≥ 1.

Hint: Paths of the walk contributing to qn,r must have S1 = 1. Hence,
use part (a) with x = 1 and y = r.

(c) Deduce that P(R > n) = pn−1,0 + pn−1,1 and that P(L2n = 2k) =
p2k,0p2n−2k,0 for k = 0, 1, . . . , n.

(d) Using Stirling’s formula (that
√

2πn(n/e)n/n! → 1 as n → ∞), show

that
√
πnP(R > 2n) → 1 and that (2n)−1L2n

D−→ X, where X has the
arc-sine probability density function fX(x) = 1

π
√
x(1−x)

on [0, 1].

(e) Let H2n count the number of 1 ≤ k ≤ 2n such that Sk ≥ 0 and Sk−1 ≥ 0.

Show that H2n
D
= L2n, hence (2n)−1H2n

D−→ X.
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3.2.2. Weak convergence of probability measures. We first extend the
definition of weak convergence from distribution functions to measures on Borel
σ-algebras.

Definition 3.2.17. For a topological space S, let Cb(S) denote the collection of all
continuous bounded functions on S. We say that a sequence of probability measures
νn on a topological space S equipped with its Borel σ-algebra (see Example 1.1.15),

converges weakly to a probability measure ν∞, denoted νn
w⇒ ν∞, if νn(h)→ ν∞(h)

for each h ∈ Cb(S).

As we show next, Definition 3.2.17 is an alternative definition of convergence in
distribution, which, in contrast to Definition 3.2.1, applies to more general R.V.
(for example to the Rd-valued random variables we consider in Section 3.5).

Proposition 3.2.18. The weak convergence of distribution functions is equivalent
to the weak convergence of the corresponding laws as probability measures on (R,B).

Consequently, Xn
D−→ X∞ if and only if for each h ∈ Cb(R), we have Eh(Xn) →

Eh(X∞) as n→∞.

Proof. Suppose first that Fn
w→ F∞ and let Yn, 1 ≤ n ≤ ∞ be the random

variables given by Theorem 3.2.7 such that Yn
a.s.→ Y∞. For h ∈ Cb(R) we have by

continuity of h that h(Yn)
a.s.→ h(Y∞), and by bounded convergence also

Pn(h) = E(h(Yn))→ E(h(Y∞)) = P∞(h) .

Conversely, suppose that Pn
w⇒ P∞ per Definition 3.2.17. Fixing α ∈ R, let the

non-negative h±k ∈ Cb(R) be such that h−k (x) ↑ I(−∞,α)(x) and h+
k (x) ↓ I(−∞,α](x)

as k →∞ (c.f. Lemma 3.1.6 for a construction of such functions). We have by the
weak convergence of the laws when n → ∞, followed by monotone convergence as
k →∞, that

lim inf
n→∞

Pn((−∞, α)) ≥ lim
n→∞

Pn(h−k ) = P∞(h−k ) ↑ P∞((−∞, α)) = F∞(α−) .

Similarly, considering h+
k (·) and then k → ∞, we have by bounded convergence

that

lim sup
n→∞

Pn((−∞, α]) ≤ lim
n→∞

Pn(h+
k ) = P∞(h+

k ) ↓ P∞((−∞, α]) = F∞(α) .

For any continuity point α of F∞ we conclude that Fn(α) = Pn((−∞, α]) converges
as n→∞ to F∞(α) = F∞(α−), thus completing the proof. �

By yet another application of Theorem 3.2.7 we find that convergence in distri-
bution is preserved under a.s. continuous mappings (see Corollary 2.2.13 for the
analogous statement for convergence in probability).

Proposition 3.2.19 (Continuous mapping). For a Borel function g let Dg

denote its set of points of discontinuity. If Xn
D−→ X∞ and P(X∞ ∈ Dg) = 0,

then g(Xn)
D−→ g(X∞). If in addition g is bounded then Eg(Xn)→ Eg(X∞).

Proof. Given Xn
D−→ X∞, by Theorem 3.2.7 there exists Yn

D
= Xn, such that

Yn
a.s.−→ Y∞. Fixing h ∈ Cb(R), clearly Dh◦g ⊆ Dg, so

P(Y∞ ∈ Dh◦g) ≤ P(Y∞ ∈ Dg) = 0.
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Therefore, by Exercise 2.2.12, it follows that h(g(Yn))
a.s.−→ h(g(Y∞)). Since h ◦ g is

bounded and Yn
D
= Xn for all n, it follows by bounded convergence that

Eh(g(Xn)) = Eh(g(Yn))→ E(h(g(Y∞)) = Eh(g(X∞)) .

This holds for any h ∈ Cb(R), so by Proposition 3.2.18, we conclude that g(Xn)
D−→

g(X∞). �

Our next theorem collects several equivalent characterizations of weak convergence
of probability measures on (R,B). To this end we need the following definition.

Definition 3.2.20. For a subset A of a topological space S, we denote by ∂A the
boundary of A, that is ∂A = A \ Ao is the closed set of points in the closure of A
but not in the interior of A. For a measure µ on (S,BS) we say that A ∈ BS is a
µ-continuity set if µ(∂A) = 0.

Theorem 3.2.21 (portmanteau theorem). The following four statements are
equivalent for any probability measures νn, 1 ≤ n ≤ ∞ on (R,B).

(a) νn
w⇒ ν∞

(b) For every closed set F , one has lim sup
n→∞

νn(F ) ≤ ν∞(F )

(c) For every open set G, one has lim inf
n→∞

νn(G) ≥ ν∞(G)

(d) For every ν∞-continuity set A, one has lim
n→∞

νn(A) = ν∞(A)

Remark. As shown in Subsection 3.5.1, this theorem holds with (R,B) replaced
by any metric space S and its Borel σ-algebra BS.

For νn = PXn we get the formulation of the Portmanteau theorem for random
variables Xn, 1 ≤ n ≤ ∞, where the following four statements are then equivalent

to Xn
D−→ X∞:

(a) Eh(Xn)→ Eh(X∞) for each bounded continuous h
(b) For every closed set F one has lim sup

n→∞
P(Xn ∈ F ) ≤ P(X∞ ∈ F )

(c) For every open set G one has lim inf
n→∞

P(Xn ∈ G) ≥ P(X∞ ∈ G)

(d) For every Borel set A such that P(X∞ ∈ ∂A) = 0, one has
lim
n→∞

P(Xn ∈ A) = P(X∞ ∈ A)

Proof. It suffices to show that (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (a), which we
shall establish in that order. To this end, with Fn(x) = νn((−∞, x]) denoting the

corresponding distribution functions, we replace νn
w⇒ ν∞ of (a) by the equivalent

condition Fn
w→ F∞ (see Proposition 3.2.18).

(a) ⇒ (b). Assuming Fn
w→ F∞, we have the random variables Yn, 1 ≤ n ≤ ∞ of

Theorem 3.2.7, such that PYn = νn and Yn
a.s.→ Y∞. Since F is closed, the function

IF is upper semi-continuous bounded by one, so it follows that a.s.

lim sup
n→∞

IF (Yn) ≤ IF (Y∞) ,

and by Fatou’s lemma,

lim sup
n→∞

νn(F ) = lim sup
n→∞

EIF (Yn) ≤ E lim sup
n→∞

IF (Yn) ≤ EIF (Y∞) = ν∞(F ) ,

as stated in (b).
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(b) ⇒ (c). The complement F = Gc of an open set G is a closed set, so by (b) we
have that

1− lim inf
n→∞

νn(G) = lim sup
n→∞

νn(Gc) ≤ ν∞(Gc) = 1− ν∞(G) ,

implying that (c) holds. In an analogous manner we can show that (c) ⇒ (b), so
(b) and (c) are equivalent.
(c) ⇒ (d). Since (b) and (c) are equivalent, we assume now that both (b) and (c)
hold. Then, applying (c) for the open set G = Ao and (b) for the closed set F = A
we have that

ν∞(A) ≥ lim sup
n→∞

νn(A) ≥ lim sup
n→∞

νn(A)

≥ lim inf
n→∞

νn(A) ≥ lim inf
n→∞

νn(Ao) ≥ ν∞(Ao) .(3.2.4)

Further, A = Ao ∪ ∂A so ν∞(∂A) = 0 implies that ν∞(A) = ν∞(Ao) = ν∞(A)
(with the last equality due to the fact that Ao ⊆ A ⊆ A). Consequently, for such a
set A all the inequalities in (3.2.4) are equalities, yielding (d).
(d) ⇒ (a). Consider the set A = (−∞, α] where α is a continuity point of F∞.
Then, ∂A = {α} and ν∞({α}) = F∞(α) − F∞(α−) = 0. Applying (d) for this
choice of A, we have that

lim
n→∞

Fn(α) = lim
n→∞

νn((−∞, α]) = ν∞((−∞, α]) = F∞(α) ,

which is our version of (a). �

We turn to relate the weak convergence to the convergence point-wise of proba-
bility density functions. To this end, we first define a new concept of convergence
of measures, the convergence in total-variation.

Definition 3.2.22. The total variation norm of a finite signed measure ν on the
measurable space (S,F) is

‖ν‖tv = sup{ν(h) : h ∈ mF , sup
s∈S
|h(s)| ≤ 1}.

We say that a sequence of probability measures νn converges in total variation to a

probability measure ν∞, denoted νn
t.v.−→ ν∞, if ‖νn − ν∞‖tv → 0.

Remark. Note that ‖ν‖tv = 1 for any probability measure ν (since ν(h) ≤
ν(|h|) ≤ ‖h‖∞ν(1) ≤ 1 for the functions h considered, with equality for h = 1). By
a similar reasoning, ‖ν− ν′‖tv ≤ 2 for any two probability measures ν, ν′ on (S,F).

Convergence in total-variation obviously implies weak convergence of the same
probability measures, but the converse fails, as demonstrated for example by νn =
δ1/n, the probability measure on (R,B) assigning probability one to the point 1/n,
which converge weakly to ν∞ = δ0 (see Example 3.2.4), whereas ‖νn − ν∞‖ = 2
for all n. The difference of course has to do with the non-uniformity of the weak
convergence with respect to the continuous function h.
To gain a better understanding of the convergence in total-variation, we consider

an important special case.

Proposition 3.2.23. Suppose P = fµ and Q = gµ for some measure µ on (S,F)
and f, g ∈ mF+ such that µ(f) = µ(g) = 1. Then,

(3.2.5) ‖P−Q‖tv =

∫
S
|f(s)− g(s)|dµ(s) .
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Further, suppose νn = fnµ with fn ∈ mF+ such that µ(fn) = 1 for all n ≤ ∞.

Then, νn
t.v.−→ ν∞ if fn(s)→ f∞(s) for µ-almost-every s ∈ S.

Proof. For any measurable function h : S 7→ [−1, 1] we have that

(fµ)(h)− (gµ)(h) = µ(fh)− µ(gh) = µ((f − g)h) ≤ µ(|f − g|) ,
with equality when h(s) = sgn((f(s)−g(s)) (see Proposition 1.3.56 for the left-most
identity and note that fh and gh are in L1(S,F , µ)). Consequently, ‖P −Q‖tv =
sup{(fµ)(h)− (gµ)(h) : h as above } = µ(|f − g|), as claimed.
For νn = fnµ, we thus have that ‖νn−ν∞‖tv = µ(|fn−f∞|), so the convergence in

total-variation is equivalent to fn → f∞ in L1(S,F , µ). Since fn ≥ 0 and µ(fn) = 1
for any n ≤ ∞, it follows from Scheffé’s lemma (see Lemma 1.3.35) that the latter
convergence is a consequence of fn(s)→ f∞(s) for µ a.e. s ∈ S. �

Two specific instances of Proposition 3.2.23 are of particular value in applications.

Example 3.2.24. Let νn = PXn denote the laws of random variables Xn that
have probability density functions fn, n = 1, 2, . . . ,∞. Recall Exercise 1.3.66 that
then νn = fnλ for Lebesgue’s measure λ on (R,B). Hence, by the preceding propo-
sition, the convergence point-wise of fn(x) to f∞(x) implies the convergence in

total-variation of PXn to PX∞ , and in particular implies that Xn
D−→ X∞.

Example 3.2.25. Similarly, if Xn are integer valued for n = 1, 2 . . ., then νn =

fnλ̃ for fn(k) = P(Xn = k) and the counting measure λ̃ on (Z, 2Z) such that

λ̃({k}) = 1 for each k ∈ Z. So, by the preceding proposition, the point-wise con-
vergence of Exercise 3.2.3 is not only necessary and sufficient for weak convergence
but also for convergence in total-variation of the laws of Xn to that of X∞.

In the next exercise, you are to rephrase Example 3.2.25 in terms of the topological
space of all probability measures on Z.

Exercise 3.2.26. Show that d(µ, ν) = ‖µ−ν‖tv is a metric on the collection of all
probability measures on Z, and that in this space the convergence in total variation
is equivalent to the weak convergence which in turn is equivalent to the point-wise
convergence at each x ∈ Z.

Hence, under the framework of Example 3.2.25, the Glivenko-Cantelli theorem
tells us that the empirical measures of integer valued i.i.d. R.V.-s {Xi} converge in
total-variation to the true law of X1.
Here is an example from statistics that corresponds to the framework of Example

3.2.24.

Exercise 3.2.27. Let Vn+1 denote the central value on a list of 2n+1 values (that
is, the (n + 1)th largest value on the list). Suppose the list consists of mutually
independent R.V., each chosen uniformly in [0, 1).

(a) Show that Vn+1 has probability density function (2n + 1)
(

2n
n

)
vn(1− v)

n

at each v ∈ [0, 1).

(b) Verify that the density fn(v) of V̂n =
√

2n(2Vn+1 − 1) is of the form
fn(v) = cn(1 − v2/(2n))n for some normalization constant cn that is

independent of |v| ≤
√

2n.
(c) Deduce that for n → ∞ the densities fn(v) converge point-wise to the

standard normal density, and conclude that V̂n
D−→ G.
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Here is an interesting interpretation of the clt in terms of weak convergence of
probability measures.

Exercise 3.2.28. Let M denote the set of probability measures ν on (R,B) for
which

∫
x2dν(x) = 1 and

∫
xdν(x) = 0, and γ ∈ M denote the standard normal

distribution. Consider the mapping T : M 7→ M where Tν is the law of (X1 +

X2)/
√

2 for X1 and X2 i.i.d. of law ν each. Explain why the clt implies that

Tmν
w⇒ γ as m→∞, for any ν ∈ M. Show that Tγ = γ (see Lemma 3.1.1), and

explain why γ is the unique, globally attracting fixed point of T in M.

Your next exercise is the basis behind the celebrated method of moments for weak
convergence.

Exercise 3.2.29. Suppose that X and Y are [0, 1]-valued random variables such
that E(Xn) = E(Y n) for n = 0, 1, 2, . . ..

(a) Show that Ep(X) = Ep(Y ) for any polynomial p(·).
(b) Show that Eh(X) = Eh(Y ) for any continuous function h : [0, 1] 7→ R

and deduce that X
D
= Y .

Hint: Recall Weierstrass approximation theorem, that if h is continuous on [0, 1]
then there exist polynomials pn such that supx∈[0,1] |h(x)− pn(x)| → 0 as n→∞.

We conclude with the following example about weak convergence of measures in
the space of infinite binary sequences.

Exercise 3.2.30. Consider the topology of coordinate wise convergence on S =
{0, 1}N and the Borel probability measures {νn} on S, where νn is the uniform
measure over the

(
2n
n

)
binary sequences of precisely n ones among the first 2n

coordinates, followed by zeros from position 2n + 1 onward. Show that νn
w⇒ ν∞

where ν∞ denotes the law of i.i.d. Bernoulli random variables of parameter p = 1/2.
Hint: Any open subset of S is a countable union of disjoint sets of the form Aθ,k =
{ω ∈ S : ωi = θi, i = 1, . . . , k} for some θ = (θ1, . . . , θk) ∈ {0, 1}k and k ∈ N.

3.2.3. Uniform tightness and vague convergence. So far we have studied
the properties of weak convergence. We turn to deal with general ways to establish
such convergence, a subject to which we return in Subsection 3.3.2. To this end,
the most important concept is that of uniform tightness, which we now define.

Definition 3.2.31. We say that a probability measure µ on (S,BS) is tight if for
each ε > 0 there exists a compact set Kε ⊆ S such that µ(Kc

ε) < ε. A collection
{µβ} of probability measures on (S,BS) is called uniformly tight if for each ε > 0
there exists one compact set Kε such that µβ(Kc

ε) < ε for all β.

Since bounded closed intervals are compact and [−M,M ]c ↓ ∅ as M ↑ ∞, by
continuity from above we deduce that each probability measure µ on (R,B) is
tight. The same argument applies for a finite collection of probability measures on
(R,B) (just choose the maximal value among the finitely many values of M = Mε

that are needed for the different measures). Further, in the case of S = R which we
study here one can take without loss of generality the compact Kε as a symmetric
bounded interval [−Mε,Mε], or even consider instead (−Mε,Mε] (whose closure
is compact) in order to simplify notations. Thus, expressing uniform tightness
in terms of the corresponding distribution functions leads in this setting to the
following alternative definition.
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Definition 3.2.32. A sequence of distribution functions Fn is called uniformly
tight, if for every ε > 0 there exists M = Mε such that

lim sup
n→∞

[1− Fn(M) + Fn(−M)] < ε .

Remark. As most texts use in the context of Definition 3.2.32 “tight” (or “tight
sequence”) instead of uniformly tight, we shall adopt the same convention here.

Uniform tightness of distribution functions has some structural resemblance to the
U.I. condition (1.3.11). As such we have the following simple sufficient condition
for uniform tightness (which is the analog of Exercise 1.3.54).

Exercise 3.2.33. A sequence of probability measures νn on (R,B) is uniformly
tight if supn νn(f(|x|)) is finite for some non-negative Borel function such that
f(r) → ∞ as r → ∞. Alternatively, if supnEf(|Xn|) < ∞ then the distribution
functions FXn form a tight sequence.

The importance of uniform tightness is that it guarantees the existence of limit
points for weak convergence.

Theorem 3.2.34 (Prohorov theorem). A collection Γ of probability measures
on a complete, separable metric space S equipped with its Borel σ-algebra BS, is
uniformly tight if and only if for any sequence νm ∈ Γ there exists a subsequence
νmk that converges weakly to some probability measure ν∞ on (S,BS) (where ν∞ is
not necessarily in Γ and may depend on the subsequence mk).

Remark. For a proof of Prohorov’s theorem, which is beyond the scope of these
notes, see [Dud89, Theorem 11.5.4].

Instead of Prohorov’s theorem, we prove here a bare-hands substitute for the
special case S = R. When doing so, it is convenient to have the following notion of
convergence of distribution functions.

Definition 3.2.35. When a sequence Fn of distribution functions converges to a
right continuous, non-decreasing function F∞ at all continuous points of F∞, we

say that Fn converges vaguely to F∞, denoted Fn
v→ F∞.

In contrast with weak convergence, the vague convergence allows for the limit
F∞(x) = ν∞((−∞, x]) to correspond to a measure ν∞ such that ν∞(R) < 1.

Example 3.2.36. Suppose Fn = pI[n,∞) +qI[−n,∞) +(1−p−q)F for some p, q ≥ 0
such that p+q ≤ 1 and a distribution function F that is independent of n. It is easy

to check that Fn
v→ F∞ as n→∞, where F∞ = q+ (1− p− q)F is the distribution

function of an R-valued random variable, with probability mass p at +∞ and mass
q at −∞. If p+ q > 0 then F∞ is not a distribution function of any measure on R
and Fn does not converge weakly.

The preceding example is generic, that is, the space R is compact, so the only loss
of mass when dealing with weak convergence on R has to do with its escape to ±∞.
It is thus not surprising that every sequence of distribution functions have vague
limit points, as stated by the following theorem.

Theorem 3.2.37 (Helly’s selection theorem). For every sequence Fn of dis-
tribution functions, there is a subsequence Fnk and a non-decreasing right contin-
uous function F∞ such that Fnk(y) → F∞(y) as k → ∞ at all continuity points y

of F∞, that is Fnk
v→ F∞.
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Deferring the proof of Helly’s theorem to the end of this section, uniform tightness
is exactly what prevents probability mass from escaping to ±∞, thus assuring the
existence of limit points for weak convergence.

Lemma 3.2.38. The sequence of distribution functions {Fn} is uniformly tight if
and only if each vague limit point of this sequence is a distribution function. That

is, if and only if when Fnk
v→ F , necessarily 1− F (x) + F (−x)→ 0 as x→∞.

Proof. Suppose first that {Fn} is uniformly tight and Fnk
v→ F . Fixing ε > 0,

there exist r1 < −Mε and r2 > Mε that are both continuity points of F . Then, by
the definition of vague convergence and the monotonicity of Fn,

1− F (r2) + F (r1) = lim
k→∞

(1− Fnk(r2) + Fnk(r1))

≤ lim sup
n→∞

(1− Fn(Mε) + Fn(−Mε)) < ε .

It follows that lim supx→∞(1 − F (x) + F (−x)) ≤ ε and since ε > 0 is arbitrarily
small, F must be a distribution function of some probability measure on (R,B).
Conversely, suppose {Fn} is not uniformly tight, in which case by Definition 3.2.32,

for some ε > 0 and nk ↑ ∞
(3.2.6) 1− Fnk(k) + Fnk(−k) ≥ ε for all k.

By Helly’s theorem, there exists a vague limit point F to Fnk as k → ∞. That

is, for some kl ↑ ∞ as l → ∞ we have that Fnkl
v→ F . For any two continuity

points r1 < 0 < r2 of F , we thus have by the definition of vague convergence, the
monotonicity of Fnkl , and (3.2.6), that

1− F (r2) + F (r1) = lim
l→∞

(1− Fnkl (r2) + Fnkl (r1))

≥ lim inf
l→∞

(1− Fnkl (kl) + Fnkl (−kl)) ≥ ε.

Considering now r = min(−r1, r2)→∞, this shows that infr(1−F (r)+F (−r)) ≥ ε,
hence the vague limit point F cannot be a distribution function of a probability
measure on (R,B). �

Remark. Comparing Definitions 3.2.31 and 3.2.32 we see that if a collection Γ
of probability measures on (R,B) is uniformly tight, then for any sequence νm ∈ Γ
the corresponding sequence Fm of distribution functions is uniformly tight. In view
of Lemma 3.2.38 and Helly’s theorem, this implies the existence of a subsequence

mk and a distribution function F∞ such that Fmk
w→ F∞. By Proposition 3.2.18

we deduce that νmk
w⇒ ν∞, a probability measure on (R,B), thus proving the only

direction of Prohorov’s theorem that we ever use.

Proof of Theorem 3.2.37. Fix a sequence of distribution function Fn. The
key to the proof is to observe that there exists a sub-sequence nk and a non-
decreasing function H : Q 7→ [0, 1] such that Fnk(q)→ H(q) for any q ∈ Q.
This is done by a standard analysis argument called the principle of ‘diagonal

selection’. That is, let q1, q2, . . ., be an enumeration of the set Q of all rational
numbers. There exists then a limit point H(q1) to the sequence Fn(q1) ∈ [0, 1],

that is a sub-sequence n
(1)
k such that F

n
(1)
k

(q1) → H(q1). Since F
n
(1)
k

(q2) ∈ [0, 1],

there exists a further sub-sequences n
(2)
k of n

(1)
k such that

F
n
(i)
k

(qi)→ H(qi) for i = 1, 2.
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In the same manner we get a collection of nested sub-sequences n
(i)
k ⊆ n

(i−1)
k such

that

F
n
(i)
k

(qj)→ H(qj), for all j ≤ i.

The diagonal n
(k)
k then has the property that

F
n
(k)
k

(qj)→ H(qj), for all j,

so nk = n
(k)
k is our desired sub-sequence, and since each Fn is non-decreasing, the

limit function H must also be non-decreasing on Q.
Let F∞(x) := inf{H(q) : q ∈ Q, q > x}, noting that F∞ ∈ [0, 1] is non-decreasing.

Further, F∞ is right continuous, since

lim
xn↓x

F∞(xn) = inf{H(q) : q ∈ Q, q > xn for some n}

= inf{H(q) : q ∈ Q, q > x} = F∞(x).

Suppose that x is a continuity point of the non-decreasing function F∞. Then, for
any ε > 0 there exists y < x such that F∞(x) − ε < F∞(y) and rational numbers
y < r1 < x < r2 such that H(r2) < F∞(x) + ε. It follows that

(3.2.7) F∞(x)− ε < F∞(y) ≤ H(r1) ≤ H(r2) < F∞(x) + ε .

Recall that Fnk(x) ∈ [Fnk(r1), Fnk(r2)] and Fnk(ri)→ H(ri) as k →∞, for i = 1, 2.
Thus, by (3.2.7) for all k large enough

F∞(x)− ε < Fnk(r1) ≤ Fnk(x) ≤ Fnk(r2) < F∞(x) + ε,

which since ε > 0 is arbitrary implies Fnk(x)→ F∞(x) as k →∞. �

Exercise 3.2.39. Suppose that the sequence of distribution functions {FXk} is
uniformly tight and EX2

k <∞ are such that EX2
n →∞ as n→∞. Show that then

also Var(Xn)→∞ as n→∞.

Hint: If |EXnl |2 →∞ then supl Var(Xnl) <∞ yields Xnl/EXnl
L2

→ 1, whereas the

uniform tightness of {FXnl } implies that Xnl/EXnl
p→ 0.

Using Lemma 3.2.38 and Helly’s theorem, you next explore the possibility of estab-
lishing weak convergence for non-negative random variables out of the convergence
of the corresponding Laplace transforms.

Exercise 3.2.40.

(a) Based on Exercise 3.2.29 show that if Z ≥ 0 and W ≥ 0 are such that

E(e−sZ) = E(e−sW ) for each s > 0, then Z
D
= W .

(b) Further, show that for any Z ≥ 0, the function LZ(s) = E(e−sZ) is
infinitely differentiable at all s > 0 and for any positive integer k,

E[Zk] = (−1)k lim
s↓0

dk

dsk
LZ(s) ,

even when (both sides are) infinite.
(c) Suppose that Xn ≥ 0 are such that L(s) = limn E(e−sXn) exists for all

s > 0 and L(s)→ 1 for s ↓ 0. Show that then the sequence of distribution
functions {FXn} is uniformly tight and that there exists a random variable

X∞ ≥ 0 such that Xn
D−→ X∞ and L(s) = E(e−sX∞) for all s > 0.
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Hint: To show that Xn
D−→ X∞ try reading and adapting the proof of

Theorem 3.3.18.
(d) Let Xn = n−1

∑n
k=1 kIk for Ik ∈ {0, 1} independent random variables,

with P(Ik = 1) = k−1. Show that there exists X∞ ≥ 0 such that Xn
D−→

X∞ and E(e−sX∞) = exp(
∫ 1

0
t−1(e−st − 1)dt) for all s > 0.

Remark. The idea of using transforms to establish weak convergence shall be
further developed in Section 3.3, with the Fourier transform instead of the Laplace
transform.

3.3. Characteristic functions

This section is about the fundamental concept of characteristic function, its rele-
vance for the theory of weak convergence, and in particular for the clt.
In Subsection 3.3.1 we define the characteristic function, providing illustrating ex-

amples and certain general properties such as the relation between finite moments
of a random variable and the degree of smoothness of its characteristic function. In
Subsection 3.3.2 we recover the distribution of a random variable from its charac-
teristic function, and building upon it, relate tightness and weak convergence with
the point-wise convergence of the associated characteristic functions. We conclude
with Subsection 3.3.3 in which we re-prove the clt of Section 3.1 as an applica-
tion of the theory of characteristic functions we have thus developed. The same
approach will serve us well in other settings which we consider in the sequel (c.f.
Sections 3.4 and 3.5).

3.3.1. Definition, examples, moments and derivatives. We start off
with the definition of the characteristic function of a random variable. To this
end, recall that a C-valued random variable is a function Z : Ω 7→ C such that the
real and imaginary parts of Z are measurable, and for Z = X + iY with X,Y ∈ R
integrable random variables (and i =

√
−1), let E(Z) = E(X) + iE(Y ) ∈ C.

Definition 3.3.1. The characteristic function ΦX of a random variable X is the
map R 7→ C given by

ΦX(θ) = E[eiθX ] = E[cos(θX)] + iE[sin(θX)]

where θ ∈ R and obviously both cos(θX) and sin(θX) are integrable R.V.-s.
We also denote by Φµ(θ) the characteristic function associated with a probability

measure µ on (R,B). That is, Φµ(θ) = µ(eiθx) is the characteristic function of a
R.V. X whose law PX is µ.

Here are some of the properties of characteristic functions, where the complex
conjugate x− iy of z = x+ iy ∈ C is denoted throughout by z and the modulus of

z = x+ iy is |z| =
√
x2 + y2.

Proposition 3.3.2. Let X be a R.V. and ΦX its characteristic function, then

(a) ΦX(0) = 1

(b) ΦX(−θ) = ΦX(θ)
(c) |ΦX(θ)| ≤ 1
(d) θ 7→ ΦX(θ) is a uniformly continuous function on R
(e) ΦaX+b(θ) = eibθΦX(aθ)
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Proof. For (a), ΦX(0) = E[ei0X ] = E[1] = 1. For (b), note that

ΦX(−θ) = E cos(−θX) + iE sin(−θX)

= E cos(θX)− iE sin(θX) = ΦX(θ) .

For (c), note that the function |z| =
√
x2 + y2 : R2 7→ R is convex, hence by

Jensen’s inequality (c.f. Exercise 1.3.20),

|ΦX(θ)| = |EeiθX | ≤ E|eiθX | = 1

(since the modulus |eiθx| = 1 for any real x and θ).
For (d), since ΦX(θ+h)−ΦX(θ) = EeiθX(eihX−1), it follows by Jensen’s inequality

for the modulus function that

|ΦX(θ + h)− ΦX(θ)| ≤ E[|eiθX ||eihX − 1|] = E|eihX − 1| = δ(h)

(using the fact that |zv| = |z||v|). Since 2 ≥ |eihX − 1| → 0 as h→ 0, by bounded
convergence δ(h) → 0. As the bound δ(h) on the modulus of continuity of ΦX(θ)
is independent of θ, we have uniform continuity of ΦX(·) on R.
For (e) simply note that ΦaX+b(θ) = Eeiθ(aX+b) = eiθbEei(aθ)X = eiθbΦX(aθ). �

We also have the following relation between finite moments of the random variable
and the derivatives of its characteristic function.

Lemma 3.3.3. If E|X|n < ∞, then the characteristic function ΦX(θ) of X has
continuous derivatives up to the n-th order, given by

(3.3.1)
dk

dθk
ΦX(θ) = E[(iX)keiθX ] , for k = 1, . . . , n

Proof. Note that for any x, h ∈ R

eihx − 1 = ix

∫ h

0

eiuxdu .

Consequently, for any h 6= 0, θ ∈ R and positive integer k we have the identity

∆k,h(x) = h−1
(
(ix)k−1ei(θ+h)x − (ix)k−1eiθx

)
− (ix)keiθx(3.3.2)

= (ix)keiθxh−1

∫ h

0

(eiux − 1)du ,

from which we deduce that |∆k,h(x)| ≤ 2|x|k for all θ and h 6= 0, and further that
|∆k,h(x)| → 0 as h→ 0. Thus, for k = 1, . . . , n we have by dominated convergence
(and Jensen’s inequality for the modulus function) that

|E∆k,h(X)| ≤ E|∆k,h(X)| → 0 for h→ 0.

Taking k = 1, we have from (3.3.2) that

E∆1,h(X) = h−1(ΦX(θ + h)− ΦX(θ))−E[iXeiθX ] ,

so its convergence to zero as h → 0 amounts to the identity (3.3.1) holding for
k = 1. In view of this, considering now (3.3.2) for k = 2, we have that

E∆2,h(X) = h−1(Φ′X(θ + h)− Φ′X(θ))−E[(iX)2eiθX ] ,

and its convergence to zero as h → 0 amounts to (3.3.1) holding for k = 2. We
continue in this manner for k = 3, . . . , n to complete the proof of (3.3.1). The
continuity of the derivatives follows by dominated convergence from the convergence
to zero of |(ix)kei(θ+h)x − (ix)keiθx| ≤ 2|x|k as h→ 0 (with k = 1, . . . , n). �



3.3. CHARACTERISTIC FUNCTIONS 119

The converse of Lemma 3.3.3 does not hold. That is, there exist random variables
with E|X| =∞ for which ΦX(θ) is differentiable at θ = 0 (c.f. Exercise 3.3.24).
However, as we see next, the existence of a finite second derivative of ΦX(θ) at
θ = 0 implies that EX2 <∞.

Lemma 3.3.4. If lim infθ→0 θ
−2(2ΦX(0)−ΦX(θ)−ΦX(−θ)) <∞, then EX2 <∞.

Proof. Note that θ−2(2ΦX(0)− ΦX(θ)− ΦX(−θ)) = Egθ(X), where

gθ(x) = θ−2(2− eiθx − e−iθx) = 2θ−2[1− cos(θx)]→ x2 for θ → 0 .

Since gθ(x) ≥ 0 for all θ and x, it follows by Fatou’s lemma that

lim inf
θ→0

Egθ(X) ≥ E[lim inf
θ→0

gθ(X)] = EX2 ,

thus completing the proof of the lemma. �

We continue with a few explicit computations of the characteristic function.

Example 3.3.5. Consider a Bernoulli random variable B of parameter p, that is,
P(B = 1) = p and P(B = 0) = 1− p. Its characteristic function is by definition

ΦB(θ) = E[eiθB ] = peiθ + (1− p)ei0θ = peiθ + 1− p .
The same type of explicit formula applies to any discrete valued R.V. For example,
if N has the Poisson distribution of parameter λ then

(3.3.3) ΦN (θ) = E[eiθN ] =

∞∑
k=0

(λeiθ)k

k!
e−λ = exp(λ(eiθ − 1)) .

The characteristic function has an explicit form also when the R.V. X has a
probability density function fX as in Definition 1.2.40. Indeed, then by Corollary
1.3.62 we have that

(3.3.4) ΦX(θ) =

∫
R
eiθxfX(x)dx ,

which is merely the Fourier transform of the density fX (and is well defined since
cos(θx)fX(x) and sin(θx)fX(x) are both integrable with respect to Lebesgue’s mea-
sure).

Example 3.3.6. If G has the N (µ, v) distribution, namely, the probability density
function fG(y) is given by (3.1.1), then its characteristic function is

ΦG(θ) = eiµθ−vθ
2/2 .

Indeed, recall Example 1.3.68 that G = σX + µ for σ =
√
v and X of a standard

normal distribution N (0, 1). Hence, considering part (e) of Proposition 3.3.2 for

a =
√
v and b = µ, it suffices to show that ΦX(θ) = e−θ

2/2. To this end, as X is
integrable, we have from Lemma 3.3.3 that

Φ′X(θ) = E(iXeiθX) =

∫
R
−x sin(θx)fX(x)dx

(since x cos(θx)fX(x) is an integrable odd function, whose integral is thus zero).
The standard normal density is such that f ′X(x) = −xfX(x), hence integrating by
parts we find that

Φ′X(θ) =

∫
R

sin(θx)f ′X(x)dx = −
∫
R
θ cos(θx)fX(x)dx = −θΦX(θ)
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(since sin(θx)fX(x) is an integrable odd function). We know that ΦX(0) = 1 and

since ϕ(θ) = e−θ
2/2 is the unique solution of the ordinary differential equation

ϕ′(θ) = −θϕ(θ) with ϕ(0) = 1, it follows that ΦX(θ) = ϕ(θ).

Example 3.3.7. In another example, applying the formula (3.3.4) we see that
the random variable U = U(a, b) whose probability density function is fU (x) =
(b− a)−11a<x<b, has the characteristic function

ΦU (θ) =
eiθb − eiθa

iθ(b− a)

(recall that
∫ b
a
ezxdx = (ezb − eza)/z for any z ∈ C). For a = −b the characteristic

function simplifies to sin(bθ)/(bθ). Or, in case b = 1 and a = 0 we have ΦU (θ) =
(eiθ − 1)/(iθ) for the random variable U of Example 1.1.26.
For a = 0 and z = −λ + iθ, λ > 0, the same integration identity applies also

when b → ∞ (since the real part of z is negative). Consequently, by (3.3.4), the
exponential distribution of parameter λ > 0 whose density is fT (t) = λe−λt1t>0

(see Example 1.3.68), has the characteristic function ΦT (θ) = λ/(λ− iθ).
Finally, for the density fS(s) = 0.5e−|s| it is not hard to check that ΦS(θ) =

0.5/(1 − iθ) + 0.5/(1 + iθ) = 1/(1 + θ2) (just break the integration over s ∈ R in
(3.3.4) according to the sign of s).

We next express the characteristic function of the sum of independent random
variables in terms of the characteristic functions of the summands. This relation
makes the characteristic function a useful tool for proving weak convergence state-
ments involving sums of independent variables.

Lemma 3.3.8. If X and Y are two independent random variables, then

ΦX+Y (θ) = ΦX(θ)ΦY (θ)

Proof. By the definition of the characteristic function

ΦX+Y (θ) = Eeiθ(X+Y ) = E[eiθXeiθY ] = E[eiθX ]E[eiθY ] ,

where the right-most equality is obtained by the independence of X and Y (i.e.
applying (1.4.12) for the integrable f(x) = g(x) = eiθx). Observing that the right-
most expression is ΦX(θ)ΦY (θ) completes the proof. �

Here are three simple applications of this lemma.

Example 3.3.9. If X and Y are independent and uniform on (−1/2, 1/2) then
by Corollary 1.4.34 the random variable ∆ = X + Y has the triangular density,
f∆(x) = (1 − |x|)1|x|≤1. Thus, by Example 3.3.7, Lemma 3.3.8, and the trigono-

metric identity cos θ = 1− 2 sin2(θ/2) we have that its characteristic function is

Φ∆(θ) = [ΦX(θ)]2 =
(2 sin(θ/2)

θ

)2

=
2(1− cos θ)

θ2
.

Exercise 3.3.10. Let X, X̃ be i.i.d. random variables.

(a) Show that the characteristic function of Z = X − X̃ is a non-negative,
real-valued function.

(b) Prove that there do not exist a < b and i.i.d. random variables X, X̃

such that X − X̃ is the uniform random variable on (a, b).
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In the next exercise you construct a random variable X whose law has no atoms
while its characteristic function does not converge to zero for θ →∞.

Exercise 3.3.11. Let X = 2
∑∞
k=1 3−kBk for {Bk} i.i.d. Bernoulli random vari-

ables such that P(Bk = 1) = P(Bk = 0) = 1/2.

(a) Show that ΦX(3kπ) = ΦX(π) 6= 0 for k = 1, 2, . . ..
(b) Recall that X has the uniform distribution on the Cantor set C, as speci-

fied in Example 1.2.43. Verify that x 7→ FX(x) is everywhere continuous,
hence the law PX has no atoms (i.e. points of positive probability).

We conclude with an application of characteristic functions for proving an inter-
esting identity in law.

Exercise 3.3.12. For integer 1 ≤ n ≤ ∞ and i.i.d. Tk, k = 1, 2, . . ., each of which
has the standard exponential distribution, let Sn :=

∑n
k=1 k

−1(Tk − 1).

(a) Show that with probability one, S∞ is finite valued and Sn → S∞ as
n→∞.

(b) Show that Sn+
∑n
k=1 k

−1 has the same distribution as Mn := maxnk=1 {Tk}.
(c) Deduce that P(S∞+γ∞ ≤ y) = e−e

−y
, for all y ∈ R, where γ∞ is Euler’s

constant, namely the limit as n→∞ of

γn :=
( n∑
k=1

1

k

)
− log n .

3.3.2. Inversion, continuity and convergence. Is it possible to recover the
distribution function from the characteristic function? Then answer is essentially
yes.

Theorem 3.3.13 (Lévy’s inversion theorem). Suppose ΦX is the characteris-
tic function of random variable X whose distribution function is FX . For any real
numbers a < b and θ, let

(3.3.5) ψa,b(θ) =
1

2π

∫ b

a

e−iθudu =
e−iθa − e−iθb

i2πθ
.

Then,

(3.3.6) lim
T↑∞

∫ T

−T
ψa,b(θ)ΦX(θ)dθ =

1

2
[FX(b) + FX(b−)]− 1

2
[FX(a) + FX(a−)] .

Furthermore, if
∫
R |ΦX(θ)|dθ <∞, then X has the bounded continuous probability

density function

(3.3.7) fX(x) =
1

2π

∫
R
e−iθxΦX(θ)dθ .

Remark. The identity (3.3.7) is a special case of the Fourier transform inversion
formula, and as such is in ‘duality’ with ΦX(θ) =

∫
R e

iθxfX(x)dx of (3.3.4). The
formula (3.3.6) should be considered its integrated version, which thereby holds
even in the absence of a density for X.

Here is a simple application of the ‘duality’ between (3.3.7) and (3.3.4).
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Example 3.3.14. The Cauchy density is fX(x) = 1/[π(1 + x2)]. Recall Example
3.3.7 that the density fS(s) = 0.5e−|s| has the positive, integrable characteristic
function 1/(1 + θ2). Thus, by (3.3.7),

0.5e−|s| =
1

2π

∫
R

1

1 + t2
e−itsdt .

Multiplying both sides by two, then changing t to x and s to −θ, we get (3.3.4) for
the Cauchy density, resulting with its characteristic function ΦX(θ) = e−|θ|.

When using characteristic functions for proving limit theorems we do not need
the explicit formulas of Lévy’s inversion theorem, but rather only the fact that the
characteristic function determines the law, that is:

Corollary 3.3.15. If the characteristic functions of two random variables X and

Y are the same, that is ΦX(θ) = ΦY (θ) for all θ, then X
D
= Y .

Remark. While the real-valued moment generating function MX(s) = E[esX ] is
perhaps a simpler object than the characteristic function, it has a somewhat limited
scope of applicability. For example, the law of a random variable X is uniquely
determined by MX(·) provided MX(s) is finite for all s ∈ [−δ, δ], some δ > 0 (c.f.
[Bil95, Theorem 30.1]). More generally, assuming all moments of X are finite, the
Hamburger moment problem is about uniquely determining the law of X from a
given sequence of moments EXk. You saw in Exercise 3.2.29 that this is always
possible when X has bounded support, but unfortunately, this is not always the case
when X has unbounded support. For more on this issue, see [Dur10, Subsection
3.3.5].

Proof of Corollary 3.3.15. Since ΦX = ΦY , comparing the right side of
(3.3.6) for X and Y shows that

[FX(b) + FX(b−)]− [FX(a) + FX(a−)] = [FY (b) + FY (b−)]− [FY (a) + FY (a−)] .

As FX is a distribution function, both FX(a)→ 0 and FX(a−)→ 0 when a ↓ −∞.
For this reason also FY (a)→ 0 and FY (a−)→ 0. Consequently,

FX(b) + FX(b−) = FY (b) + FY (b−) for all b ∈ R .

In particular, this implies that FX = FY on the collection C of continuity points
of both FX and FY . Recall that FX and FY have each at most a countable set of
points of discontinuity (see Exercise 1.2.39), so the complement of C is countable,
and consequently C is a dense subset of R. Thus, as distribution functions are non-
decreasing and right-continuous we know that FX(b) = inf{FX(x) : x > b, x ∈ C}
and FY (b) = inf{FY (x) : x > b, x ∈ C}. Since FX(x) = FY (x) for all x ∈ C, this

identity extends to all b ∈ R, resulting with X
D
= Y . �

Remark. In Lemma 3.1.1, it was shown directly that the sum of independent
random variables of normal distributions N (µk, vk) has the normal distribution
N (µ, v) where µ =

∑
k µk and v =

∑
k vk. The proof easily reduces to dealing

with two independent random variables, X of distribution N (µ1, v1) and Y of
distribution N (µ2, v2) and showing that X+Y has the normal distribution N (µ1 +
µ2, v1 +v2). Here is an easy proof of this result via characteristic functions. First by
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the independence of X and Y (see Lemma 3.3.8), and their normality (see Example
3.3.6),

ΦX+Y (θ) = ΦX(θ)ΦY (θ) = exp(iµ1θ − v1θ
2/2) exp(iµ2θ − v2θ

2/2)

= exp(i(µ1 + µ2)θ − 1

2
(v1 + v2)θ2)

We recognize this expression as the characteristic function corresponding to the
N (µ1 + µ2, v1 + v2) distribution, which by Corollary 3.3.15 must indeed be the
distribution of X + Y .

Proof of Lévy’s inversion theorem. Consider the product µ of the law
PX ofX which is a probability measure on R and Lebesgue’s measure of θ ∈ [−T, T ],
noting that µ is a finite measure on R× [−T, T ] of total mass 2T .
Fixing a < b ∈ R let ha,b(x, θ) = ψa,b(θ)e

iθx, where by (3.3.5) and Jensen’s
inequality for the modulus function (and the uniform measure on [a, b]),

|ha,b(x, θ)| = |ψa,b(θ)| ≤
1

2π

∫ b

a

|e−iθu|du =
b− a
2π

.

Consequently,
∫
|ha,b|dµ <∞, and applying Fubini’s theorem, we conclude that

JT (a, b) :=

∫ T

−T
ψa,b(θ)ΦX(θ)dθ =

∫ T

−T
ψa,b(θ)

[ ∫
R
eiθxdPX(x)

]
dθ

=

∫ T

−T

[ ∫
R
ha,b(x, θ)dPX(x)

]
dθ =

∫
R

[ ∫ T

−T
ha,b(x, θ)dθ

]
dPX(x) .

Since ha,b(x, θ) is the difference between the function eiθu/(i2πθ) at u = x− a and
the same function at u = x− b, it follows that∫ T

−T
ha,b(x, θ)dθ = R(x− a, T )−R(x− b, T ) .

Further, as the cosine function is even and the sine function is odd,

R(u, T ) =

∫ T

−T

eiθu

i2πθ
dθ =

∫ T

0

sin(θu)

πθ
dθ =

sgn(u)

π
S(|u|T ) ,

with S(r) =
∫ r

0
x−1 sinx dx for r > 0.

Even though the Lebesgue integral
∫∞

0
x−1 sinx dx does not exist, because both

the integral of the positive part and the integral of the negative part are infinite,
we still have that S(r) is uniformly bounded on (0,∞) and

lim
r↑∞

S(r) =
π

2

(c.f. Exercise 3.3.16). Consequently,

lim
T↑∞

[R(x− a, T )−R(x− b, T )] = ga,b(x) =


0 if x < a or x > b
1
2 if x = a or x = b

1 if a < x < b

.
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Since S(·) is uniformly bounded, so is |R(x− a, T )−R(x− b, T )| and by bounded
convergence,

lim
T↑∞

JT (a, b) = lim
T↑∞

∫
R

[R(x− a, T )−R(x− b, T )]dPX(x) =

∫
R
ga,b(x)dPX(x)

=
1

2
PX({a}) + PX((a, b)) +

1

2
PX({b}) .

With PX({a}) = FX(a) − FX(a−), PX((a, b)) = FX(b−) − FX(a) and PX({b}) =
FX(b)− FX(b−), we arrive at the assertion (3.3.6).

Suppose now that
∫
R |ΦX(θ)|dθ = C <∞. This implies that both the real and the

imaginary parts of eiθxΦX(θ) are integrable with respect to Lebesgue’s measure on
R, hence fX(x) of (3.3.7) is well defined. Further, |fX(x)| ≤ C is uniformly bounded
and by dominated convergence with respect to Lebesgue’s measure on R,

lim
h→0
|fX(x+ h)− fX(x)| ≤ lim

h→0

1

2π

∫
R
|e−iθx||ΦX(θ)||e−iθh − 1|dθ = 0,

implying that fX(·) is also continuous. Turning to prove that fX(·) is the density
of X, note that

|ψa,b(θ)ΦX(θ)| ≤ b− a
2π
|ΦX(θ)| ,

so by dominated convergence we have that

(3.3.8) lim
T↑∞

JT (a, b) = J∞(a, b) =

∫
R
ψa,b(θ)ΦX(θ)dθ .

Further, in view of (3.3.5), upon applying Fubini’s theorem for the integrable func-
tion e−iθuI[a,b](u)ΦX(θ) with respect to Lebesgue’s measure on R2, we see that

J∞(a, b) =
1

2π

∫
R

[ ∫ b

a

e−iθudu
]
ΦX(θ)dθ =

∫ b

a

fX(u)du ,

for the bounded continuous function fX(·) of (3.3.7). In particular, J∞(a, b) must
be continuous in both a and b. Comparing (3.3.8) with (3.3.6) we see that

J∞(a, b) =
1

2
[FX(b) + FX(b−)]− 1

2
[FX(a) + FX(a−)] ,

so the continuity of J∞(·, ·) implies that FX(·) must also be continuous everywhere,
with

FX(b)− FX(a) = J∞(a, b) =

∫ b

a

fX(u)du ,

for all a < b. This shows that necessarily fX(x) is a non-negative real-valued
function, which is the density of X. �

Exercise 3.3.16. Integrating
∫
z−1eizdz around the contour formed by the “up-

per” semi-circles of radii ε and r and the intervals [−r,−ε] and [r, ε], deduce that
S(r) =

∫ r
0
x−1 sinxdx is uniformly bounded on (0,∞) with S(r)→ π/2 as r →∞.

Our strategy for handling the clt and similar limit results is to establish the
convergence of characteristic functions and deduce from it the corresponding con-
vergence in distribution. One ingredient for this is of course the fact that the
characteristic function uniquely determines the corresponding law. Our next result
provides an important second ingredient, that is, an explicit sufficient condition for
uniform tightness in terms of the limit of the characteristic functions.
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Lemma 3.3.17. Suppose {νn} are probability measures on (R,B) and Φνn(θ) =
νn(eiθx) the corresponding characteristic functions. If Φνn(θ) → Φ(θ) as n → ∞,
for each θ ∈ R and further Φ(θ) is continuous at θ = 0, then the sequence {νn} is
uniformly tight.

Remark. To see why continuity of the limit Φ(·) at 0 is required, consider the
sequence νn of normal distributions N (0, n2). From Example 3.3.6 we see that
the point-wise limit Φ(θ) = Iθ=0 of Φνn(θ) = exp(−n2θ2/2) exists but is dis-
continuous at θ = 0. However, for any M < ∞ we know that νn([−M,M ]) =
ν1([−M/n,M/n]) → 0 as n → ∞, so clearly the sequence {νn} is not uniformly
tight. Indeed, the corresponding distribution functions Fn(x) = F1(x/n) converge
vaguely to F∞(x) = F1(0) = 1/2 which is not a distribution function (reflecting
escape of all the probability mass to ±∞).

Proof. We start the proof by deriving the key inequality

(3.3.9)
1

r

∫ r

−r
(1− Φµ(θ))dθ ≥ µ([−2/r, 2/r]c) ,

which holds for every probability measure µ on (R,B) and any r > 0, relating the
smoothness of the characteristic function at 0 with the tail decay of the correspond-
ing probability measure at ±∞. To this end, fixing r > 0, note that

J(x) :=

∫ r

−r
(1− eiθx)dθ = 2r −

∫ r

−r
(cos θx+ i sin θx)dθ = 2r − 2 sin rx

x
.

So J(x) is non-negative (since | sinu| ≤ |u| for all u), and bounded below by 2r −
2/|x| (since | sinu| ≤ 1). Consequently,

(3.3.10) J(x) ≥ max(2r − 2

|x|
, 0) ≥ rI{|x|>2/r} .

Now, applying Fubini’s theorem for the function 1−eiθx whose modulus is bounded
by 2 and the product of the probability measure µ and Lebesgue’s measure on
[−r, r], which is a finite measure of total mass 2r, we get the identity∫ r

−r
(1− Φµ(θ))dθ =

∫ r

−r

[ ∫
R
(1− eiθx)dµ(x)

]
dθ =

∫
R
J(x)dµ(x) .

Thus, the lower bound (3.3.10) and monotonicity of the integral imply that

1

r

∫ r

−r
(1− Φµ(θ))dθ =

1

r

∫
R
J(x)dµ(x) ≥

∫
R
I{|x|>2/r}dµ(x) = µ([−2/r, 2/r]c) ,

hence establishing (3.3.9).
We turn to the application of this inequality for proving the uniform tightness.

Since Φνn(0) = 1 for all n and Φνn(0) → Φ(0), it follows that Φ(0) = 1. Further,
Φ(θ) is continuous at θ = 0, so for any ε > 0, there exists r = r(ε) > 0 such that

ε

4
≥ |1− Φ(θ)| for all θ ∈ [−r, r],

and hence also
ε

2
≥ 1

r

∫ r

−r
|1− Φ(θ)|dθ .
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The point-wise convergence of Φνn to Φ implies that |1−Φνn(θ)| → |1−Φ(θ)|. By
bounded convergence with respect to Uniform measure of θ on [−r, r], it follows
that for some finite n0 = n0(ε) and all n ≥ n0,

ε ≥ 1

r

∫ r

−r
|1− Φνn(θ)|dθ ,

which in view of (3.3.9) results with

ε ≥ 1

r

∫ r

−r
[1− Φνn(θ)]dθ ≥ νn([−2/r, 2/r]c) .

Since ε > 0 is arbitrary and M = 2/r is independent of n, by Definition 3.2.32 this
amounts to the uniform tightness of the sequence {νn}. �

Building upon Corollary 3.3.15 and Lemma 3.3.17 we can finally relate the point-
wise convergence of characteristic functions to the weak convergence of the corre-
sponding measures.

Theorem 3.3.18 (Lévy’s continuity theorem). Let νn, 1 ≤ n ≤ ∞ be proba-
bility measures on (R,B).

(a) If νn
w⇒ ν∞, then Φνn(θ)→ Φν∞(θ) for each θ ∈ R.

(b) Conversely, if Φνn(θ) converges point-wise to a limit Φ(θ) that is contin-

uous at θ = 0, then {νn} is a uniformly tight sequence and νn
w⇒ ν such

that Φν = Φ.

Proof. For part (a), since both x 7→ cos(θx) and x 7→ sin(θx) are bounded
continuous functions, the assumed weak convergence of νn to ν∞ implies that
Φνn(θ) = νn(eiθx)→ ν∞(eiθx) = Φν∞(θ) (c.f. Definition 3.2.17).
Turning to deal with part (b), recall that by Lemma 3.3.17 we know that the

collection Γ = {νn} is uniformly tight. Hence, by Prohorov’s theorem (see the
remark preceding the proof of Lemma 3.2.38), for every subsequence νn(m) there is a
further sub-subsequence νn(mk) that converges weakly to some probability measure
ν∞. Though in general ν∞ might depend on the specific choice of n(m), we deduce
from part (a) of the theorem that necessarily Φν∞ = Φ. Since the characteristic
function uniquely determines the law (see Corollary 3.3.15), here the same limit
ν = ν∞ applies for all choices of n(m). In particular, fixing h ∈ Cb(R), the sequence
yn = νn(h) is such that every subsequence yn(m) has a further sub-subsequence
yn(mk) that converges to y = ν(h). Consequently, yn = νn(h) → y = ν(h) (see

Lemma 2.2.11), and since this applies for all h ∈ Cb(R), we conclude that νn
w⇒ ν

such that Φν = Φ. �

Here is a direct consequence of Lévy’s continuity theorem.

Exercise 3.3.19. Show that if Xn
D−→ X∞, Yn

D−→ Y∞ and Yn is independent of

Xn for 1 ≤ n ≤ ∞, then Xn + Yn
D−→ X∞ + Y∞.

Combining Exercise 3.3.19 with the Portmanteau theorem and the clt, you can
now show that a finite second moment is necessary for the convergence in distribu-
tion of n−1/2

∑n
k=1Xk for i.i.d. {Xk}.

Exercise 3.3.20. Suppose {Xk, X̃k} are i.i.d. and n−1/2
∑n
k=1Xk

D−→ Z (with
the limit Z ∈ R).
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(a) Set Yk = Xk − X̃k and show that n−1/2
∑n
k=1 Yk

D−→ Z − Z̃, with Z and

Z̃ i.i.d.
(b) Let Uk = YkI|Yk|≤b and Vk = YkI|Yk|>b. Show that for any u < ∞ and

all n,

P(

n∑
k=1

Yk ≥ u
√
n) ≥ P(

n∑
k=1

Uk ≥ u
√
n,

n∑
k=1

Vk ≥ 0) ≥ 1

2
P(

n∑
k=1

Uk ≥ u
√
n) .

(c) Apply the Portmanteau theorem and the clt for the bounded i.i.d. {Uk}
to get that for any u, b <∞,

P(Z − Z̃ ≥ u) ≥ 1

2
P(G ≥ u/

√
EU2

1 ) .

Considering the limit b→∞ followed by u→∞ deduce that EY 2
1 <∞.

(d) Conclude that if n−1/2
∑n
k=1Xk

D−→ Z, then necessarily EX2
1 <∞.

Remark. The trick of replacing Xk by the variables Yk = Xk − X̃k whose law is

symmetric (i.e. Yk
D
= −Yk), is very useful in many problems. It is often called the

symmetrization trick.

Exercise 3.3.21. Provide an example of a random variable X with a bounded
probability density function but for which

∫
R |ΦX(θ)|dθ =∞, and another example

of a random variable X whose characteristic function ΦX(θ) is not differentiable at
θ = 0.

As you find out next, Lévy’s inversion theorem can help when computing densities.

Exercise 3.3.22. Suppose the random variables Uk are i.i.d. where the law of each
Uk is the uniform probability measure on (−1, 1). Considering Example 3.3.7, show
that for each n ≥ 2, the probability density function of Sn =

∑n
k=1 Uk is

fSn(s) =
1

π

∫ ∞
0

cos(θs)(sin θ/θ)ndθ ,

and deduce that
∫∞

0
cos(θs)(sin θ/θ)ndθ = 0 for all s > n ≥ 2.

Exercise 3.3.23. Deduce from Example 3.3.14 that if {Xk} are i.i.d. each having
the Cauchy density, then n−1

∑n
k=1Xk has the same distribution as X1, for any

value of n.

We next relate differentiability of ΦX(·) with the weak law of large numbers and
show that it does not imply that E|X| is finite.

Exercise 3.3.24. Let Sn =
∑n
k=1Xk where the i.i.d. random variables {Xk} have

each the characteristic function ΦX(·).
(a) Show that if dΦX

dθ (0) = z ∈ C, then z = ia for some a ∈ R and n−1Sn
p→ a

as n→∞.
(b) Show that if n−1Sn

p→ a, then ΦX(±hk)nk → e±iaθ for any hk ↓ 0, θ > 0
and nk = [θ/hk], and deduce that dΦX

dθ (0) = ia.

(c) Conclude that the weak law of large numbers holds (i.e. n−1Sn
p→ a for

some non-random a), if and only if ΦX(·) is differentiable at θ = 0 (this
result is due to E.J.G. Pitman, see [Pit56]).

(d) Use Exercise 2.1.13 to provide a random variable X for which ΦX(·) is
differentiable at θ = 0 but E|X| =∞.
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As you show next, Xn
D−→ X∞ yields convergence of ΦXn(·) to ΦX∞(·), uniformly

over compact subsets of R.

Exercise 3.3.25. Show that if Xn
D−→ X∞ then for any r finite,

lim
n→∞

sup
|θ|≤r

|ΦXn(θ)− ΦX∞(θ)| = 0 .

Hint: By Theorem 3.2.7 you may further assume that Xn
a.s.→ X∞.

Characteristic functions of modulus one correspond to lattice or degenerate laws,
as you show in the following refinement of part (c) of Proposition 3.3.2.

Exercise 3.3.26. Suppose |ΦY (θ)| = 1 for some θ 6= 0.

(a) Show that Y is a (2π/θ)-lattice random variable, namely, that Y mod (2π/θ)
is P-degenerate.
Hint: Check conditions for equality when applying Jensen’s inequality for

(cos θY, sin θY ) and the convex function g(x, y) =
√
x2 + y2.

(b) Deduce that if in addition |ΦY (λθ)| = 1 for some λ /∈ Q then Y must be
P-degenerate, in which case ΦY (θ) = exp(iθc) for some c ∈ R.

Building on the preceding two exercises, you are to prove next the following con-
vergence of types result.

Exercise 3.3.27. Suppose Zn
D−→ Y and βnZn + γn

D−→ Ŷ for some Ŷ , non-P-
degenerate Y , and non-random βn ≥ 0, γn.

(a) Show that βn → β ≥ 0 finite.
Hint: Start with the finiteness of limit points of {βn}.

(b) Deduce that γn → γ finite.

(c) Conclude that Ŷ
D
= βY + γ.

Hint: Recall Slutsky’s lemma.

Remark. This convergence of types fails for P-degenerate Y . For example, if

Zn
D
= N (0, n−3), then both Zn

D−→ 0 and nZn
D−→ 0. Similarly, if Zn

D
= N (0, 1)

then βnZn
D
= N (0, 1) for the non-converging sequence βn = (−1)n (of alternating

signs).

Mimicking the proof of Lévy’s inversion theorem, for random variables of bounded
support you get the following alternative inversion formula, based on the theory of
Fourier series.

Exercise 3.3.28. Suppose R.V. X supported on (0, t) has the characteristic func-
tion ΦX and the distribution function FX . Let θ0 = 2π/t and ψa,b(·) be as in

(3.3.5), with ψa,b(0) = b−a
2π .

(a) Show that for any 0 < a < b < t

lim
T↑∞

T∑
k=−T

θ0(1− |k|
T

)ψa,b(kθ0)ΦX(kθ0) =
1

2
[FX(b)+FX(b−)]− 1

2
[FX(a)+FX(a−)] .

Hint: Recall that ST (r) =
∑T
k=1(1− k/T ) sin kr

k is uniformly bounded for

r ∈ (0, 2π) and integer T ≥ 1, and ST (r)→ π−r
2 as T →∞.
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(b) Show that if
∑
k |ΦX(kθ0)| < ∞ then X has the bounded continuous

probability density function, given for x ∈ (0, t) by

fX(x) =
θ0

2π

∑
k∈Z

e−ikθ0xΦX(kθ0) .

(c) Deduce that if R.V.s X and Y supported on (0, t) are such that ΦX(kθ0) =

ΦY (kθ0) for all k ∈ Z, then X
D
= Y .

Here is an application of the preceding exercise for the random walk on the circle
S1 of radius one (c.f. Definition 5.1.6 for the random walk on R).

Exercise 3.3.29. Let t = 2π and Ω denote the unit circle S1 parametrized by
the angular coordinate to yield the identification Ω = [0, t] where both end-points
are considered the same point. We equip Ω with the topology induced by [0, t] and
the surface measure λΩ similarly induced by Lebesgue’s measure (as in Exercise
1.4.38). In particular, R.V.-s on (Ω,BΩ) correspond to Borel periodic functions on
R, of period t. In this context we call U of law t−1λΩ a uniform R.V. and call
Sn = (

∑n
k=1 ξk)mod t, with i.i.d ξ, ξk ∈ Ω, a random walk.

(a) Verify that Exercise 3.3.28 applies for θ0 = 1 and R.V.-s on Ω.
(b) Show that if probability measures νn on (Ω,BΩ) are such that Φνn(k)→

ϕ(k) for n→∞ and fixed k ∈ Z, then νn
w⇒ ν∞ and ϕ(k) = Φν∞(k) for

all k ∈ Z.
Hint: Since Ω is compact the sequence {νn} is uniformly tight.

(c) Show that ΦU (k) = 1k=0 and ΦSn(k) = Φξ(k)n. Deduce from these facts

that if ξ has a density with respect to λΩ then Sn
D−→ U as n→∞.

Hint: Recall part (a) of Exercise 3.3.26.
(d) Check that if ξ = α is non-random for some α/t /∈ Q, then Sn does

not converge in distribution, but SKn
D−→ U for Kn which are uniformly

chosen in {1, 2, . . . , n}, independently of the sequence {ξk}.

3.3.3. Revisiting the clt. Applying the theory of Subsection 3.3.2 we pro-
vide an alternative proof of the clt, based on characteristic functions. One can
prove many other weak convergence results for sums of random variables by prop-
erly adapting this approach, which is exactly what we will do when demonstrating
the convergence to stable laws (see Exercise 3.3.34), and in proving the Poisson
approximation theorem (in Subsection 3.4.1), and the multivariate clt (in Section
3.5).
To this end, we start by deriving the analog of the bound (3.1.7) for the charac-

teristic function.

Lemma 3.3.30. If a random variable X has E(X) = 0 and E(X2) = v <∞, then
for all θ ∈ R, ∣∣∣ΦX(θ)−

(
1− 1

2
vθ2
)∣∣∣ ≤ θ2E min(|X|2, |θ||X|3/6).

Proof. Let R2(x) = eix−1− ix− (ix)2/2. Then, rearranging terms, recalling
E(X) = 0 and using Jensen’s inequality for the modulus function, we see that∣∣∣ΦX(θ)−

(
1− 1

2
vθ2
)∣∣∣ =

∣∣∣E[eiθX−1− iθX− i
2

2
θ2X2

]∣∣∣ =
∣∣∣ER2(θX)

∣∣∣ ≤ E|R2(θX)|.
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Since |R2(x)| ≤ min(|x|2, |x|3/6) for any x ∈ R (see also Exercise 3.3.35), by mono-
tonicity of the expectation we get that E|R2(θX)| ≤ E min(|θX|2, |θX|3/6), com-
pleting the proof of the lemma. �

The following simple complex analysis estimate is needed for relating the approx-
imation of the characteristic function of summands to that of their sum.

Lemma 3.3.31. Suppose zn,k ∈ C are such that zn =
∑n
k=1 zn,k → z∞ and ηn =∑n

k=1 |zn,k|2 → 0 when n→∞. Then,

ϕn :=

n∏
k=1

(1 + zn,k)→ exp(z∞) for n→∞.

Proof. Recall that the power series expansion

log(1 + z) =

∞∑
k=1

(−1)k−1zk

k

converges for |z| < 1. In particular, for |z| ≤ 1/2 it follows that

| log(1 + z)− z| ≤
∞∑
k=2

|z|k

k
≤ |z|2

∞∑
k=2

2−(k−2)

k
≤ |z|2

∞∑
k=2

2−(k−1) = |z|2 .

Let δn = max{|zn,k| : k = 1, . . . , n}. Note that δ2
n ≤ ηn, so our assumption that

ηn → 0 implies that δn ≤ 1/2 for all n sufficiently large, in which case

| logϕn − zn| = | log

n∏
k=1

(1 + zn,k)−
n∑
k=1

zn,k| ≤
n∑
k=1

| log(1 + zn,k)− zn,k| ≤ ηn .

With zn → z∞ and ηn → 0, it follows that logϕn → z∞. Consequently, ϕn →
exp(z∞) as claimed. �

We will give now an alternative proof of the clt of Theorem 3.1.2.

Proof of Theorem 3.1.2. From Example 3.3.6 we know that ΦG(θ) = e−
θ2

2

is the characteristic function of the standard normal distribution. So, by Lévy’s
continuity theorem it suffices to show that ΦŜn(θ) → exp(−θ2/2) as n → ∞, for

each θ ∈ R. Recall that Ŝn =
∑n
k=1Xn,k, with Xn,k = (Xk − µ)/

√
vn i.i.d.

random variables, so by independence (see Lemma 3.3.8) and scaling (see part (e)
of Proposition 3.3.2), we have that

ϕn := ΦŜn(θ) =

n∏
k=1

ΦXn,k(θ) = ΦY (n−1/2θ)n = (1 + zn/n)n,

where Y = (X1 − µ)/
√
v and zn = zn(θ) := n[ΦY (n−1/2θ) − 1]. Applying Lemma

3.3.31 for zn,k = zn/n it remains only to show that zn → −θ2/2 (for then ηn =
|zn|2/n→ 0). Indeed, since E(Y ) = 0 and E(Y 2) = 1, we have from Lemma 3.3.30
that

|zn + θ2/2| =
∣∣n[ΦY (n−1/2θ)− 1] + θ2/2

∣∣ ≤ EVn ,

for Vn = min(|θY |2, n−1/2|θY |3/6). With Vn
a.s.→ 0 as n → ∞ and Vn ≤ |θ|2|Y |2

which is integrable, it follows by dominated convergence that EVn → 0 as n→∞,
hence zn → −θ2/2 completing the proof of Theorem 3.1.2. �
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We proceed with a brief introduction of stable laws, their domain of attraction
and the corresponding limit theorems (which are a natural generalization of the
clt).

Definition 3.3.32. Random variable Y has a stable law if it is non-degenerate

and for any m ≥ 1 there exist constants dm > 0 and cm, such that Y1 + . . .+ Ym
D
=

dmY + cm, where {Yi} are i.i.d. copies of Y . Such variable has a symmetric stable

law if in addition Y
D
= −Y . We further say that random variable X is in the

domain of attraction of non-degenerate Y if there exist constants bn > 0 and an

such that Zn(X) = (Sn − an)/bn
D−→ Y for Sn =

∑n
k=1Xk and i.i.d. copies Xk of

X.

By definition, the collection of stable laws is closed under the affine map Y 7→
±
√
vY +µ for µ ∈ R and v > 0 (which correspond to the centering and scale of the

law, but not necessarily its mean and variance). Clearly, each stable law is in its
own domain of attraction and as we see next, only stable laws have a non-empty
domain of attraction.

Proposition 3.3.33. If X is in the domain of attraction of some non-degenerate
variable Y , then Y must have a stable law.

Proof. Fix m ≥ 1, and setting n = km let βn = bn/bk > 0 and γn =
(an −mak)/bk. We then have the representation

βnZn(X) + γn =

m∑
i=1

Z
(i)
k ,

where Z
(i)
k = (X(i−1)k+1 + . . .+Xik − ak)/bk are i.i.d. copies of Zk(X). From our

assumption that Zk(X)
D−→ Y we thus deduce (by at most m − 1 applications of

Exercise 3.3.19), that βnZn(X)+γn
D−→ Ŷ , where Ŷ = Y1+. . .+Ym for i.i.d. copies

{Yi} of Y . Moreover, by assumption Zn(X)
D−→ Y , hence by the convergence of

types Ŷ
D
= dmY + cm for some finite non-random dm ≥ 0 and cm (c.f. Exercise

3.3.27). Recall Lemma 3.3.8 that ΦŶ (θ) = [ΦY (θ)]m. So, with Y assumed non-

degenerate the same applies to Ŷ (see Exercise 3.3.26), and in particular dm > 0.
Since this holds for any m ≥ 1, by definition Y has a stable law. �

We have already seen two examples of symmetric stable laws, namely those asso-
ciated with the zero-mean normal density and with the Cauchy density of Example
3.3.14. Indeed, as you show next, for each α ∈ (0, 2) there corresponds the sym-
metric α-stable variable Yα whose characteristic function is ΦYα(θ) = exp(−|θ|α)
(so the Cauchy distribution corresponds to the symmetric stable of index α = 1
and the normal distribution corresponds to index α = 2).

Exercise 3.3.34. Fixing α ∈ (0, 2), suppose X
D
= −X and P(|X| > x) = x−α for

all x ≥ 1.

(a) Check that ΦX(θ) = 1−γ(|θ|)|θ|α where γ(r) = α
∫∞
r

(1−cosu)u−(α+1)du
converges as r ↓ 0 to γ(0) finite and positive.

(b) Setting ϕα,0(θ) = exp(−|θ|α), bn = (γ(0)n)1/α and Ŝn = b−1
n

∑n
k=1Xk

for i.i.d. copies Xk of X, deduce that ΦŜn(θ) → ϕα,0(θ) as n → ∞, for
any fixed θ ∈ R.
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(c) Conclude that X is in the domain of attraction of a symmetric stable
variable Yα, whose characteristic function is ϕα,0(·).

(d) Fix α = 1 and show that with probability one lim supn→∞ Ŝn = ∞ and

lim infn→∞ Ŝn = −∞.
Hint: Recall Kolmogorov’s 0-1 law. The same proof applies for any α > 0
once we verify that Yα has unbounded support.

(e) Show that if α = 1 then 1
n logn

∑n
k=1 |Xk| → 1 in probability but not

almost surely (in contrast, X is integrable when α > 1, in which case the
strong law of large numbers applies).

Remark. While outside the scope of these notes, one can show that (up to scaling)
any symmetric stable variable must be of the form Yα for some α ∈ (0, 2]. Further,

for any α ∈ (0, 2) the necessary and sufficient condition for X
D
= −X to be in the

domain of attraction of Yα is that the function L(x) = xαP(|X| > x) is slowly
varying at ∞ (that is, L(ux)/L(x) → 1 for x → ∞ and fixed u > 0). Indeed, as
shown for example in [Bre92, Theorem 9.32], up to the mapping Y 7→

√
vY + µ,

the collection of all stable laws forms a two parameter family Yα,κ, parametrized
by the index α ∈ (0, 2] and skewness κ ∈ [−1, 1]. The corresponding characteristic
functions are

(3.3.11) ϕα,κ(θ) = exp(−|θ|α(1 + iκsgn(θ)gα(θ))) ,

where g1(r) = (2/π) log |r| and gα = tan(πα/2) is constant for all α 6= 1 (in
particular, g2 = 0 so the parameter κ is irrelevant when α = 2). Further, in case
α < 2 the domain of attraction of Yα,κ consists precisely of the random variables
X for which L(x) = xαP(|X| > x) is slowly varying at∞ and (P(X > x)−P(X <
−x))/P(|X| > x) → κ as x → ∞ (for example, see [Bre92, Theorem 9.34]). To
complete this picture, we recall [Fel71, Theorem XVII.5.1], that X is in the domain
of attraction of the normal variable Y2 if and only if L(x) = E[X2I|X|≤x] is slowly

varying (as is of course the case whenever EX2 is finite).

As shown in the following exercise, controlling the modulus of the remainder term
for the n-th order Taylor approximation of eix one can generalize the bound on
ΦX(θ) beyond the case n = 2 of Lemma 3.3.30.

Exercise 3.3.35. For any x ∈ R and non-negative integer n, let

Rn(x) = eix −
n∑
k=0

(ix)k

k!
.

(a) Show that Rn(x) =
∫ x

0
iRn−1(y)dy for all n ≥ 1 and deduce by induction

on n that

|Rn(x)| ≤ min
(2|x|n

n!
,
|x|n+1

(n+ 1)!

)
for all x ∈ R, n = 0, 1, 2, . . . .

(b) Conclude that if E|X|n <∞ then∣∣ΦX(θ)−
n∑
k=0

(iθ)kEXk

k!

∣∣ ≤ |θ|nE
[

min
(2|X|n

n!
,
|θ||X|n+1

(n+ 1)!

)]
.

By solving the next exercise you generalize the proof of Theorem 3.1.2 via char-
acteristic functions to the setting of Lindeberg’s clt.
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Exercise 3.3.36. Consider Ŝn =
∑n
k=1Xn,k for mutually independent random

variables Xn,k, k = 1, . . . , n, of zero mean and variance vn,k, such that vn =∑n
k=1 vn,k → 1 as n→∞.

(a) Fixing θ ∈ R show that

ϕn = ΦŜn(θ) =

n∏
k=1

(1 + zn,k) ,

where zn,k = ΦXn,k(θ)− 1.

(b) With z∞ = −θ2/2, use Lemma 3.3.30 to verify that |zn,k| ≤ 2θ2vn,k and
further, for any ε > 0,

|zn − vnz∞| ≤
n∑
k=1

|zn,k − vn,kz∞| ≤ θ2gn(ε) +
|θ|3

6
εvn ,

where zn =
∑n
k=1 zn,k and gn(ε) is given by (3.1.4).

(c) Recall that Lindeberg’s condition gn(ε)→ 0 implies that r2
n = maxk vn,k →

0 as n → ∞. Deduce that then zn → z∞ and ηn =
∑n
k=1 |zn,k|2 → 0

when n→∞.
(d) Applying Lemma 3.3.31, conclude that Ŝn

D−→ G.

We conclude this section with an exercise that reviews various techniques one may
use for establishing convergence in distribution for sums of independent random
variables.

Exercise 3.3.37. Throughout this problem Sn =
∑n
k=1Xk for mutually indepen-

dent random variables {Xk}.
(a) Suppose that P(Xk = kα) = P(Xk = −kα) = 1/(2kβ) and P(Xk = 0) =

1 − k−β. Show that for any fixed α ∈ R and β > 1, the series Sn(ω)
converges almost surely as n→∞.

(b) Consider the setting of part (a) when 0 ≤ β < 1 and γ = 2α − β + 1 is

positive. Find non-random bn such that b−1
n Sn

D−→ Z and 0 < FZ(z) < 1
for some z ∈ R. Provide also the characteristic function ΦZ(θ) of Z.

(c) Repeat part (b) in case β = 1 and α > 0 (see Exercise 3.1.11 for α = 0).
(d) Suppose now that P(Xk = 2k) = P(Xk = −2k) = 1/(2k2) and P(Xk =

1) = P(Xk = −1) = 0.5(1− k−2). Show that Sn/
√
n
D−→ G.

3.4. Poisson approximation and the Poisson process

Subsection 3.4.1 deals with the Poisson approximation theorem and few of its ap-
plications. It leads naturally to the introduction of the Poisson process in Subsection
3.4.2, where we also explore its relation to sums of i.i.d. Exponential variables and
to order statistics of i.i.d. uniform random variables.

3.4.1. Poisson approximation. The Poisson approximation theorem is about
the law of the sum Sn of a large number (= n) of independent random variables.
In contrast to the clt that also deals with such objects, here all variables are non-
negative integer valued and the variance of Sn remains bounded, allowing for the
approximation in law of Sn by an integer valued variable. The Poisson distribution
results when the number of terms in the sum grows while the probability that each
of them is non-zero decays. As such, the Poisson approximation is about counting
the number of occurrences among many independent rare events.
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Theorem 3.4.1 (Poisson approximation). Let Sn =

n∑
k=1

Zn,k, where for each

n the random variables Zn,k for 1 ≤ k ≤ n, are mutually independent, each taking
value in the set of non-negative integers. Suppose that pn,k = P(Zn,k = 1) and
εn,k = P(Zn,k ≥ 2) are such that as n→∞,

(a)

n∑
k=1

pn,k → λ <∞,

(b) max
k=1,··· ,n

{pn,k} → 0,

(c)

n∑
k=1

εn,k → 0.

Then, Sn
D−→ Nλ of a Poisson distribution with parameter λ, as n→∞.

Proof. The first step of the proof is to apply truncation by comparing Sn
with

Sn =

n∑
k=1

Zn,k ,

where Zn,k = Zn,kIZn,k≤1 for k = 1, . . . , n. Indeed, observe that,

P(Sn 6= Sn) ≤
n∑
k=1

P(Zn,k 6= Zn,k) =

n∑
k=1

P(Zn,k ≥ 2)

=

n∑
k=1

εn,k → 0 for n→∞, by assumption (c) .

Hence, (Sn − Sn)
p→ 0. Consequently, the convergence Sn

D−→ Nλ of the sums of

truncated variables imply that also Sn
D−→ Nλ (c.f. Exercise 3.2.8).

As seen in the context of the clt, characteristic functions are a powerful tool
for the convergence in distribution of sums of independent random variables (see
Subsection 3.3.3). This is also evident in our proof of the Poisson approximation

theorem. That is, to prove that Sn
D−→ Nλ, if suffices by Levy’s continuity theorem

to show the convergence of the characteristic functions ΦSn(θ)→ ΦNλ(θ) for each
θ ∈ R.
To this end, recall that Zn,k are independent Bernoulli variables of parameters
pn,k, k = 1, . . . , n. Hence, by Lemma 3.3.8 and Example 3.3.5 we have that for
zn,k = pn,k(eiθ − 1),

ΦSn(θ) =

n∏
k=1

ΦZn,k(θ) =

n∏
k=1

(1− pn,k + pn,ke
iθ) =

n∏
k=1

(1 + zn,k) .

Our assumption (a) implies that for n→∞

zn :=

n∑
k=1

zn,k = (

n∑
k=1

pn,k)(eiθ − 1)→ λ(eiθ − 1) := z∞ .

Further, since |zn,k| ≤ 2pn,k, our assumptions (a) and (b) imply that for n→∞,

ηn =

n∑
k=1

|zn,k|2 ≤ 4

n∑
k=1

p2
n,k ≤ 4( max

k=1,...,n
{pn,k})(

n∑
k=1

pn,k)→ 0 .
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Applying Lemma 3.3.31 we conclude that when n→∞,

ΦSn(θ)→ exp(z∞) = exp(λ(eiθ − 1)) = ΦNλ(θ)

(see (3.3.3) for the last identity), thus completing the proof. �

Remark. Recall Example 3.2.25 that the weak convergence of the laws of the
integer valued Sn to that of Nλ also implies their convergence in total variation.
In the setting of the Poisson approximation theorem, taking λn =

∑n
k=1 pn,k, the

more quantitative result

||PSn − PNλn ||tv =

∞∑
k=0

|P(Sn = k)−P(Nλn = k)| ≤ 2 min(λ−1
n , 1)

n∑
k=1

p2
n,k

due to Stein (1987) also holds (see also [Dur10, (3.6.1)] for a simpler argument,
due to Hodges and Le Cam (1960), which is just missing the factor min(λ−1

n , 1)).

For the remainder of this subsection we list applications of the Poisson approxi-
mation theorem, starting with

Example 3.4.2 (Poisson approximation for the Binomial). Take indepen-
dent variables Zn,k ∈ {0, 1}, so εn,k = 0, with pn,k = pn that does not depend on

k. Then, the variable Sn = Sn has the Binomial distribution of parameters (n, pn).
By Stein’s result, the Binomial distribution of parameters (n, pn) is approximated
well by the Poisson distribution of parameter λn = npn, provided pn → 0. In case
λn = npn → λ <∞, Theorem 3.4.1 yields that the Binomial (n, pn) laws converge
weakly as n→∞ to the Poisson distribution of parameter λ. This is in agreement
with Example 3.1.7 where we approximate the Binomial distribution of parameters
(n, p) by the normal distribution, for in Example 3.1.8 we saw that, upon the same
scaling, Nλn is also approximated well by the normal distribution when λn →∞.

Recall the occupancy problem where we distribute at random r distinct balls
among n distinct boxes and each of the possible nr assignments of balls to boxes is
equally likely. In Example 2.1.10 we considered the asymptotic fraction of empty
boxes when r/n → α and n → ∞. Noting that the number of balls Mn,k in the
k-th box follows the Binomial distribution of parameters (r, n−1), we deduce from

Example 3.4.2 that Mn,k
D−→ Nα. Thus, P(Mn,k = 0) → P(Nα = 0) = e−α.

That is, for large n each box is empty with probability about e−α, which may
explain (though not prove) the result of Example 2.1.10. Here we use the Poisson
approximation theorem to tackle a different regime, in which r = rn is of order
n log n, and consequently, there are fewer empty boxes.

Proposition 3.4.3. Let Sn denote the number of empty boxes. Assuming r = rn

is such that ne−r/n → λ ∈ [0,∞), we have that Sn
D−→ Nλ as n→∞.

Proof. Let Zn,k = IMn,k=0 for k = 1, . . . , n, that is Zn,k = 1 if the k-th box

is empty and Zn,k = 0 otherwise. Note that Sn =
∑n
k=1 Zn,k, with each Zn,k

having the Bernoulli distribution of parameter pn = (1 − n−1)r. Our assumption
about rn guarantees that npn → λ. If the occupancy Zn,k of the various boxes were
mutually independent, then the stated convergence of Sn to Nλ would have followed
from Theorem 3.4.1. Unfortunately, this is not the case, so we present a bare-
hands approach showing that the dependence is weak enough to retain the same
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conclusion. To this end, first observe that for any l = 1, 2, . . . , n, the probability
that given boxes k1 < k2 < . . . < kl are all empty is,

P(Zn,k1 = Zn,k2 = · · · = Zn,kl = 1) = (1− l

n
)r .

Let pl = pl(r, n) = P(Sn = l) denote the probability that exactly l boxes are empty
out of the n boxes into which the r balls are placed at random. Then, considering
all possible choices of the locations of these l ≥ 1 empty boxes we get the identities
pl(r, n) = bl(r, n)p0(r, n− l) for

(3.4.1) bl(r, n) =

(
n

l

)(
1− l

n

)r
.

Further, p0(r, n) = 1−P( at least one empty box), so that by the inclusion-exclusion
formula,

(3.4.2) p0(r, n) =

n∑
l=0

(−1)lbl(r, n) .

According to part (b) of Exercise 3.4.4, p0(r, n) → e−λ. Further, for fixed l we
have that (n − l)e−r/(n−l) → λ, so as before we conclude that p0(r, n − l) → e−λ.
By part (a) of Exercise 3.4.4 we know that bl(r, n) → λl/l! for fixed l, hence
pl(r, n) → e−λλl/l!. As pl = P(Sn = l), the proof of the proposition is thus
complete. �

The following exercise provides the estimates one needs during the proof of Propo-
sition 3.4.3 (for more details, see [Dur10, Theorem 3.6.5]).

Exercise 3.4.4. Assuming ne−r/n → λ, show that

(a) bl(r, n) of (3.4.1) converges to λl/l! for each fixed l.
(b) p0(r, n) of (3.4.2) converges to e−λ.

Finally, here is an application of Proposition 3.4.3 to the coupon collector’s prob-
lem of Example 2.1.8, where Tn denotes the number of independent trials, it takes
to have at least one representative of each of the n possible values (and each trial
produces a value Ui that is distributed uniformly on the set of n possible values).

Example 3.4.5 (Revisiting the coupon collector’s problem). For any
x ∈ R, we have that

(3.4.3) lim
n→∞

P(Tn − n log n ≤ nx) = exp(−e−x),

which is an improvement over our weak law result that Tn/n log n→ 1. Indeed, to
derive (3.4.3) view the first r trials of the coupon collector as the random placement
of r balls into n distinct boxes that correspond to the n possible values. From this
point of view, the event {Tn ≤ r} corresponds to filling all n boxes with the r
balls, that is, having none empty. Taking r = rn = [n log n + nx] we have that
ne−r/n → λ = e−x, and so it follows from Proposition 3.4.3 that P(Tn ≤ rn) →
P(Nλ = 0) = e−λ, as stated in (3.4.3).
Note that though Tn =

∑n
k=1Xn,k with Xn,k independent, the convergence in dis-

tribution of Tn, given by (3.4.3), is to a non-normal limit. This should not surprise
you, for the terms Xn,k with k near n are large and do not satisfy Lindeberg’s
condition.
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Exercise 3.4.6. Recall that τn` denotes the first time one has ` distinct values
when collecting coupons that are uniformly distributed on {1, 2, . . . , n}. Using the
Poisson approximation theorem show that if n → ∞ and ` = `(n) is such that

n−1/2` → λ ∈ [0,∞), then τn` − `
D−→ N with N a Poisson random variable of

parameter λ2/2.

3.4.2. Poisson Process. The Poisson process is a continuous time stochastic
process ω 7→ Nt(ω), t ≥ 0 which belongs to the following class of counting processes.

Definition 3.4.7. A counting process is a mapping ω 7−→ Nt(ω), where Nt(ω)
is a piecewise constant, non-decreasing, right continuous function of t ≥ 0, with
N0(ω) = 0 and (countably) infinitely many jump discontinuities, each of whom is
of size one.
Associated with each sample path Nt(ω) of such a process are the jump times

0 = T0 < T1 < · · · < Tn < · · · such that Tk = inf{t ≥ 0 : Nt ≥ k} for each k, or
equivalently

Nt = sup{k ≥ 0 : Tk ≤ t}.
In applications we find such Nt as counting the number of discrete events occurring
in the interval [0, t] for each t ≥ 0, with Tk denoting the arrival or occurrence time
of the k-th such event.

Remark. It is possible to extend the notion of counting processes to discrete
events indexed on Rd, d ≥ 2. This is done by assigning random integer counts
NA to Borel subsets A of Rd in an additive manner, that is, NA∪B = NA + NB
whenever A and B are disjoint. Such processes are called point processes. See also
Exercise 8.1.13 for more about Poisson point process and inhomogeneous Poisson
processes of non-constant rate.

Among all counting processes we characterize the Poisson process by the joint
distribution of its jump (arrival) times {Tk}.

Definition 3.4.8. The Poisson process of rate λ > 0 is the unique counting
process with the gaps between jump times τk = Tk − Tk−1, k = 1, 2, . . . being i.i.d.
random variables, each having the exponential distribution of parameter λ.

Thus, from Exercise 1.4.47 we deduce that the k-th arrival time Tk of the Poisson
process of rate λ has the gamma density of parameters α = k and λ,

fTk(u) =
λkuk−1

(k − 1)!
e−λu1u>0 .

As we have seen in Example 2.3.7, counting processes appear in the context of
renewal theory. In particular, as shown in Exercise 2.3.8, the Poisson process of

rate λ satisfies the strong law of large numbers t−1Nt
a.s.→ λ.

Recall that a random variable N has the Poisson(µ) law if

P(N = n) =
µn

n!
e−µ, n = 0, 1, 2, . . . .

Our next proposition, which is often used as an alternative definition of the Poisson
process, also explains its name.

Proposition 3.4.9. For any ` and any 0 = t0 < t1 < · · · < t`, the increments
Nt1 , Nt2 − Nt1 , . . . , Nt` − Nt`−1

, are independent random variables and for some
λ > 0 and all t > s ≥ 0, the increment Nt −Ns has the Poisson(λ(t− s)) law.
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Thus, the Poisson process has independent increments, each having a Poisson law,
where the parameter of the count Nt − Ns is proportional to the length of the
corresponding interval [s, t].

The proof of Proposition 3.4.9 relies on the lack of memory of the exponential
distribution. That is, if the law of a random variable T is exponential (of some
parameter λ > 0), then for all t, s ≥ 0,

(3.4.4) P(T > t+ s|T > t) =
P(T > t+ s)

P(T > t)
=
e−λ(t+s)

e−λt
= e−λs = P(T > s) .

Indeed, the key to the proof of Proposition 3.4.9 is the following lemma.

Lemma 3.4.10. Fixing t > 0, the variables {τ ′j} with τ ′1 = TNt+1 − t, and τ ′j =
TNt+j − TNt+j−1, j ≥ 2 are i.i.d. each having the exponential distribution of pa-
rameter λ. Further, the collection {τ ′j} is independent of Nt which has the Poisson
distribution of parameter λt.

Remark. Note that in particular, Et = TNt+1 − t which counts the time till
next arrival occurs, hence called the excess life time at t, follows the exponential
distribution of parameter λ.

Proof. Fixing t > 0 and n ≥ 1 let Hn(x) = P(t ≥ Tn > t − x). With
Hn(x) =

∫ x
0
fTn(t− y)dy and Tn independent of τn+1, we get by Fubini’s theorem

(for It≥Tn>t−τn+1), and the integration by parts of Lemma 1.4.31 that

P(Nt = n) = P(t ≥ Tn > t− τn+1) = E[Hn(τn+1)]

=

∫ t

0

fTn(t− y)P(τn+1 > y)dy

=

∫ t

0

λn(t− y)n−1

(n− 1)!
e−λ(t−y)e−λydy = e−λt

(λt)n

n!
.(3.4.5)

As this applies for any n ≥ 1, it follows that Nt has the Poisson distribution of
parameter λt. Similarly, observe that for any s1 ≥ 0 and n ≥ 1,

P(Nt = n, τ ′1 > s1) = P(t ≥ Tn > t− τn+1 + s1)

=

∫ t

0

fTn(t− y)P(τn+1 > s1 + y)dy

= e−λs1P(Nt = n) = P(τ1 > s1)P(Nt = n) .

Since T0 = 0, P(Nt = 0) = e−λt and T1 = τ1, in view of (3.4.4) this conclusion
extends to n = 0, proving that τ ′1 is independent of Nt and has the same exponential
law as τ1.
Next, fix arbitrary integer k ≥ 2 and non-negative sj ≥ 0 for j = 1, . . . , k. Then,

for any n ≥ 0, since {τn+j , j ≥ 2} are i.i.d. and independent of (Tn, τn+1),

P(Nt = n, τ ′j > sj , j = 1, . . . , k)

= P(t ≥ Tn > t− τn+1 + s1, Tn+j − Tn+j−1 > sj , j = 2, . . . , k)

= P(t ≥ Tn > t− τn+1 + s1)

k∏
j=2

P(τn+j > sj) = P(Nt = n)

k∏
j=1

P(τj > sj).



3.4. POISSON APPROXIMATION AND THE POISSON PROCESS 139

Since sj ≥ 0 and n ≥ 0 are arbitrary, this shows that the random variables Nt and
τ ′j , j = 1, . . . , k are mutually independent (c.f. Corollary 1.4.12), with each τ ′j hav-
ing an exponential distribution of parameter λ. As k is arbitrary, the independence
of Nt and the countable collection {τ ′j} follows by Definition 1.4.3. �

Proof of Proposition 3.4.9. Fix t, sj ≥ 0, j = 1, . . . , k, and non-negative
integers n and mj , 1 ≤ j ≤ k. The event {Nsj = mj , 1 ≤ j ≤ k} is of the form
{(τ1, . . . , τr) ∈ H} for r = mk + 1 and

H =

k⋂
j=1

{x ∈ [0,∞)r : x1 + · · ·+ xmj ≤ sj < x1 + · · ·+ xmj+1} .

Since the event {(τ ′1, . . . , τ ′r) ∈ H} is merely {Nt+sj − Nt = mj , 1 ≤ j ≤ k}, it
follows form Lemma 3.4.10 that

P(Nt = n,Nt+sj −Nt = mj , 1 ≤ j ≤ k) = P(Nt = n, (τ ′1, . . . , τ
′
r) ∈ H)

= P(Nt = n)P((τ1, . . . , τr) ∈ H) = P(Nt = n)P(Nsj = mj , 1 ≤ j ≤ k) .

By induction on ` this identity implies that if 0 = t0 < t1 < t2 < · · · < t`, then

(3.4.6) P(Nti −Nti−1 = ni, 1 ≤ i ≤ `) =
∏̀
i=1

P(Nti−ti−1 = ni)

(the case ` = 1 is trivial, and to advance the induction to ` + 1 set k = `, t = t1,

n = n1 and sj = tj+1 − t1, mj =
∑j+1
i=2 ni).

Considering (3.4.6) for ` = 2, t2 = t > s = t1, and summing over the values of n1

we see that P(Nt −Ns = n2) = P(Nt−s = n2), hence by (3.4.5) we conclude that
Nt −Ns has the Poisson distribution of parameter λ(t− s), as claimed. �

The Poisson process is also related to the order statistics {Vn,k} for the uniform
measure, as stated in the next two exercises.

Exercise 3.4.11. Let U1, U2, . . . , Un be i.i.d. with each Ui having the uniform
measure on (0, 1]. Denote by Vn,k the k-th smallest number in {U1, . . . , Un}.

(a) Show that (Vn,1, . . . , Vn,n) has the same law as (T1/Tn+1, . . . , Tn/Tn+1),
where {Tk} are the jump (arrival) times for a Poisson process of rate λ
(see Subsection 1.4.2 for the definition of the law PX of a random vector
X).

(b) Taking λ = 1, deduce that nVn,k
D−→ Tk as n→∞ while k is fixed, where

Tk has the gamma density of parameters α = k and s = 1.

Exercise 3.4.12. Fixing any positive integer n and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t,
show that

P(Tk ≤ tk, k = 1, . . . , n|Nt = n) =
n!

tn

∫ t1

0

∫ t2

x1

· · · (
∫ tn

xn−1

dxn)dxn−1 · · · dx1 .

That is, conditional on the event Nt = n, the first n jump times {Tk : k = 1, . . . , n}
have the same law as the order statistics {Vn,k : k = 1, . . . , n} of a sample of n i.i.d
random variables U1, . . . , Un, each of which is uniformly distributed in [0, t].

Here is an application of Exercise 3.4.12.

Exercise 3.4.13. Consider a Poisson process Nt of rate λ and jump times {Tk}.
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(a) Compute the values of g(n) = E(INt=n

n∑
k=1

Tk).

(b) Compute the value of v = E(

Nt∑
k=1

(t− Tk)).

(c) Suppose that Tk is the arrival time to the train station of the k-th pas-
senger on a train that departs the station at time t. What is the meaning
of Nt and of v in this case?

The representation of the order statistics {Vn,k} in terms of the jump times of
a Poisson process is very useful when studying the large n asymptotics of their
spacings {Rn,k}. For example,

Exercise 3.4.14. Let Rn,k = Vn,k − Vn,k−1, k = 1, . . . , n, denote the spacings
between Vn,k of Exercise 3.4.11 (with Vn,0 = 0). Show that as n→∞,

(3.4.7)
n

log n
max

k=1,...,n
Rn,k

p→ 1 ,

and further for each fixed x ≥ 0,

(3.4.8) Gn(x) := n−1
n∑
k=1

I{Rn,k>x/n}
p→ e−x ,

(3.4.9) Bn(x) := P( min
k=1,...,n

Rn,k > x/n2)→ e−x .

As we show next, the Poisson approximation theorem provides a characterization
of the Poisson process that is very attractive for modeling real-world phenomena.

Corollary 3.4.15. If Nt is a Poisson process of rate λ > 0, then for any fixed
k, 0 < t1 < t2 < · · · < tk and non-negative integers n1, n2, · · · , nk,

P(Ntk+h −Ntk = 1|Ntj = nj , j ≤ k) = λh+ o(h),

P(Ntk+h −Ntk ≥ 2|Ntj = nj , j ≤ k) = o(h),

where o(h) denotes a function f(h) such that h−1f(h)→ 0 as h ↓ 0.

Proof. Fixing k, the tj and the nj , denote by A the event {Ntj = nj , j ≤ k}.
For a Poisson process of rate λ the random variable Ntk+h −Ntk is independent of
A with P(Ntk+h−Ntk = 1) = e−λhλh and P(Ntk+h−Ntk ≥ 2) = 1−e−λh(1+λh).
Since e−λh = 1−λh+o(h) we see that the Poisson process satisfies this corollary. �

Our next exercise explores the phenomenon of thinning, that is, the partitioning
of Poisson variables as sums of mutually independent Poisson variables of smaller
parameter.

Exercise 3.4.16. Suppose {Xi} are i.i.d. with P(Xi = j) = pj for j = 0, 1, . . . , k
and N a Poisson random variable of parameter λ that is independent of {Xk}. Let

Nj =

N∑
i=1

IXi=j j = 0, . . . , k .

(a) Show that the variables Nj, j = 0, 1, . . . , k are mutually independent with
Nj having a Poisson distribution of parameter λpj.
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(b) Show that the sub-sequence of jump times {T̃k} obtained by independently
keeping with probability p each of the jump times {Tk} of a Poisson pro-

cess Nt of rate λ, yields in turn a Poisson process Ñt of rate λp.

We conclude this section noting the superposition property, namely that the sum
of two independent Poisson processes is yet another Poisson process.

Exercise 3.4.17. Suppose Nt = N
(1)
t + N

(2)
t where N

(1)
t and N

(2)
t are two inde-

pendent Poisson processes of rates λ1 > 0 and λ2 > 0, respectively. Show that Nt
is a Poisson process of rate λ1 + λ2.

3.5. Random vectors and the multivariate clt

The goal of this section is to extend the clt to random vectors, that is, Rd-valued
random variables. Towards this end, we revisit in Subsection 3.5.1 the theory
of weak convergence, this time in the more general setting of Rd-valued random
variables. Subsection 3.5.2 is devoted to the extension of characteristic functions
and Lévy’s theorems to the multivariate setting, culminating with the Cramér-
wold reduction of convergence in distribution of random vectors to that of their
one dimensional linear projections. Finally, in Subsection 3.5.3 we introduce the
important concept of Gaussian random vectors and prove the multivariate clt.

3.5.1. Weak convergence revisited. Recall Definition 3.2.17 of weak con-
vergence for a sequence of probability measures on a topological space S, which
suggests the following definition for convergence in distribution of S-valued random
variables.

Definition 3.5.1. We say that (S,BS)-valued random variables Xn converge in

distribution to a (S,BS)-valued random variable X∞, denoted by Xn
D−→ X∞, if

PXn
w⇒ PX∞ .

As already remarked, the Portmanteau theorem about equivalent characterizations
of the weak convergence holds also when the probability measures νn are on a Borel
measurable space (S,BS) with (S, ρ) any metric space (and in particular for S = Rd).

Theorem 3.5.2 (portmanteau theorem). The following five statements are
equivalent for any probability measures νn, 1 ≤ n ≤ ∞ on (S,BS), with (S, ρ) any
metric space.

(a) νn
w⇒ ν∞

(b) For every closed set F , one has lim sup
n→∞

νn(F ) ≤ ν∞(F )

(c) For every open set G, one has lim inf
n→∞

νn(G) ≥ ν∞(G)

(d) For every ν∞-continuity set A, one has lim
n→∞

νn(A) = ν∞(A)

(e) If the Borel function g : S 7→ R is such that ν∞(Dg) = 0, then νn ◦g−1 w⇒
ν∞ ◦ g−1 and if in addition g is bounded then νn(g)→ ν∞(g).

Remark. For S = R, the equivalence of (a)–(d) is the content of Theorem 3.2.21
while Proposition 3.2.19 derives (e) out of (a) (in the context of convergence in

distribution, that is, Xn
D−→ X∞ and P(X∞ ∈ Dg) = 0 implying that g(Xn)

D−→
g(X∞)). In addition to proving the converse of the continuous mapping property,
we extend the validity of this equivalence to any metric space (S, ρ), for we shall
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apply it again in Subsection 10.2, considering there S = C([0,∞)), the metric space
of all continuous functions on [0,∞).

Proof. The derivation of (b) ⇒ (c) ⇒ (d) in Theorem 3.2.21 applies for any
topological space. The direction (e) ⇒ (a) is also obvious since h ∈ Cb(S) has
Dh = ∅ and Cb(S) is a subset of the bounded Borel functions on the same space
(c.f. Exercise 1.2.20). So taking g ∈ Cb(S) in (e) results with (a). It thus remains
only to show that (a)⇒ (b) and that (d)⇒ (e), which we proceed to show next.
(a) ⇒ (b). Fixing A ∈ BS let ρA(x) = infy∈A ρ(x, y) : S 7→ [0,∞). Since |ρA(x) −
ρA(x′)| ≤ ρ(x, x′) for any x, x′, it follows that x 7→ ρA(x) is a continuous function
on (S, ρ). Consequently, hr(x) = (1 − rρA(x))+ ∈ Cb(S) for all r ≥ 0. Further,
ρA(x) = 0 for all x ∈ A, implying that hr ≥ IA for all r. Thus, applying part (a)
of the Portmanteau theorem for hr we have that

lim sup
n→∞

νn(A) ≤ lim
n→∞

νn(hr) = ν∞(hr) .

As ρA(x) = 0 if and only if x ∈ A it follows that hr ↓ IA as r →∞, resulting with

lim sup
n→∞

νn(A) ≤ ν∞(A) .

Taking A = A = F a closed set, we arrive at part (b) of the theorem.
(d) ⇒ (e). Fix a Borel function g : S 7→ R with K = supx |g(x)| < ∞ such that
ν∞(Dg) = 0. Clearly, {α ∈ R : ν∞ ◦ g−1({α}) > 0} is a countable set. Thus, fixing
ε > 0 we can pick ` < ∞ and α0 < α1 < · · · < α` such that ν∞ ◦ g−1({αi}) = 0
for 0 ≤ i ≤ `, α0 < −K < K < α` and αi − αi−1 < ε for 1 ≤ i ≤ `. Let
Ai = {x : αi−1 < g(x) ≤ αi} for i = 1, . . . , `, noting that ∂Ai ⊂ {x : g(x) = αi−1,
or g(x) = αi} ∪ Dg. Consequently, by our assumptions about g(·) and {αi} we
have that ν∞(∂Ai) = 0 for each i = 1, . . . , `. It thus follows from part (d) of the
Portmanteau theorem that∑̀

i=1

αiνn(Ai)→
∑̀
i=1

αiν∞(Ai)

as n→∞. Our choice of αi and Ai is such that g ≤
∑`
i=1 αiIAi ≤ g + ε, resulting

with

νn(g) ≤
∑̀
i=1

αiνn(Ai) ≤ νn(g) + ε

for n = 1, 2, . . . ,∞. Considering first n → ∞ followed by ε ↓ 0, we establish that
νn(g)→ ν∞(g). More generally, recall that Dh◦g ⊆ Dg for any g : S 7→ R and h ∈
Cb(R). Thus, by the preceding proof νn(h ◦ g)→ ν∞(h ◦ g) as soon as ν∞(Dg) = 0.

This applies for every h ∈ Cb(R), so in this case νn ◦ g−1 w⇒ ν∞ ◦ g−1. �

We next show that the relation of Exercise 3.2.6 between convergences in prob-
ability and in distribution also extends to any metric space (S, ρ), a fact we will
later use in Subsection 10.2, when considering the metric space of all continuous
functions on [0,∞).

Corollary 3.5.3. If random variables Xn, 1 ≤ n ≤ ∞ on the same probability

space and taking value in a metric space (S, ρ) are such that ρ(Xn, X∞)
p→ 0, then

Xn
D−→ X∞.
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Proof. Fixing h ∈ Cb(S) and ε > 0, we have by continuity of h(·) that Gr ↑ S,
where

Gr = {y ∈ S : |h(x)− h(y)| ≤ ε whenever ρ(x, y) ≤ r−1} .
By definition, if X∞ ∈ Gr and ρ(Xn, X∞) ≤ r−1 then |h(Xn)−h(X∞)| ≤ ε. Hence,
for any n, r ≥ 1,

E[|h(Xn)− h(X∞)|] ≤ ε+ 2‖h‖∞(P(X∞ /∈ Gr) + P(ρ(Xn, X∞) > r−1)) ,

where ‖h‖∞ = supx∈S |h(x)| is finite (by the boundedness of h). Considering n→∞
followed by r → ∞ we deduce from the convergence in probability of ρ(Xn, X∞)
to zero, that

lim sup
n→∞

E[|h(Xn)− h(X∞)|] ≤ ε+ 2‖h‖∞ lim
r→∞

P(X∞ /∈ Gr) = ε .

Since this applies for any ε > 0, it follows by the triangle inequality that Eh(Xn)→
Eh(X∞) for all h ∈ Cb(S), i.e. Xn

D−→ X∞. �

Remark. The notion of distribution function for an Rd-valued random vector
X = (X1, . . . , Xd) is

FX(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) .
Inducing a partial order on Rd by x ≤ y if and only if x− y has only non-negative
coordinates, each distribution function FX(x) has the three properties listed in
Theorem 1.2.37. Unfortunately, these three properties are not sufficient for a given
function F : Rd 7→ [0, 1] to be a distribution function. For example, since the mea-

sure of each rectangle A =
∏d
i=1(ai, bi] should be positive, the additional constraint

of the form ∆AF =
∑2d

j=1±F (xj) ≥ 0 should hold if F (·) is to be a distribution

function. Here xj enumerates the 2d corners of the rectangle A and each corner
is taken with a positive sign if and only if it has an even number of coordinates
from the collection {a1, . . . , ad}. Adding the fourth property that ∆AF ≥ 0 for
each rectangle A ⊂ Rd, we get the necessary and sufficient conditions for F (·) to be
a distribution function of some Rd-valued random variable (c.f. [Bil95, Theorem
12.5] for a detailed proof).

Recall Definition 3.2.31 of uniform tightness, where for S = Rd we can take Kε =
[−Mε,Mε]

d with no loss of generality. Though Prohorov’s theorem about uniform
tightness (i.e. Theorem 3.2.34) is beyond the scope of these notes, we shall only
need in the sequel the fact that a uniformly tight sequence of probability measures
has at least one limit point. This can be proved for S = Rd in a manner similar
to what we have done in Theorem 3.2.37 and Lemma 3.2.38 for S = R1, using the
corresponding concept of distribution function FX(·) (see [Dur10, Theorem 3.9.2]
for more details).

3.5.2. Characteristic function. We start by extending the useful notion of
characteristic function to the context of Rd-valued random variables (which we also
call hereafter random vectors).

Definition 3.5.4. Adopting the notation (x, y) =
∑d
i=1 xiyi for x, y ∈ Rd, a ran-

dom vector X = (X1, X2, · · · , Xd) with values in Rd has the characteristic function

ΦX(θ) = E[ei(θ,X)] ,

where θ = (θ1, θ2, · · · , θd) ∈ Rd and i =
√
−1.
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Remark. The characteristic function ΦX : Rd 7→ C exists for any X since

(3.5.1) ei(θ,X) = cos(θ,X) + i sin(θ,X) ,

with both real and imaginary parts being bounded (hence integrable) random vari-
ables. Actually, it is easy to check that all five properties of Proposition 3.3.2 hold,
where part (e) is modified to ΦAtX+b(θ) = exp(i(b, θ))ΦX(Aθ), for any non-random

d × d-dimensional matrix A and b ∈ Rd (with At denoting the transpose of the
matrix A).

Here is the extension of the notion of probability density function (as in Definition
1.2.40) to a random vector.

Definition 3.5.5. Suppose fX is a non-negative Borel measurable function with∫
Rd fX(x)dx = 1. We say that a random vector X = (X1, . . . , Xd) has a probability

density function fX(·) if for every b = (b1, . . . , bd),

FX(b) =

∫ b1

−∞
· · ·
∫ bd

−∞
fX(x1, . . . , xd)dxd · · · dx1

(such fX is sometimes called the joint density of X1, . . . , Xd). This is the same as

saying that the law of X is of the form fXλ
d with λd the d-fold product Lebesgue

measure on Rd (i.e. the d > 1 extension of Example 1.3.60).

Example 3.5.6. We have the following extension of the Fourier transform formula
(3.3.4) to random vectors X with density,

ΦX(θ) =

∫
Rd
ei(θ,x)fX(x)dx

(this is merely a special case of the extension of Corollary 1.3.62 to h : Rd 7→ R).

We next state and prove the corresponding extension of Lévy’s inversion theorem.

Theorem 3.5.7 (Lévy’s inversion theorem). Suppose ΦX(θ) is the character-
istic function of random vector X = (X1, . . . , Xd) whose law is PX , a probability

measure on (Rd,BRd). If A = [a1, b1]× · · · × [ad, bd] with PX(∂A) = 0, then

(3.5.2) PX(A) = lim
T→∞

∫
[−T,T ]d

d∏
j=1

ψaj ,bj (θj)ΦX(θ)dθ

for ψa,b(·) of (3.3.5). Further, the characteristic function determines the law of a
random vector. That is, if ΦX(θ) = ΦY (θ) for all θ then X has the same law as Y .

Proof. We derive (3.5.2) by adapting the proof of Theorem 3.3.13. First apply
Fubini’s theorem with respect to the product of Lebesgue’s measure on [−T, T ]d

and the law of X (both of which are finite measures on Rd) to get the identity

JT (a, b) :=

∫
[−T,T ]d

d∏
j=1

ψaj ,bj (θj)ΦX(θ)dθ =

∫
Rd

[ d∏
j=1

∫ T

−T
haj ,bj (xj , θj)dθj

]
dPX(x)

(where ha,b(x, θ) = ψa,b(θ)e
iθx). In the course of proving Theorem 3.3.13 we have

seen that for j = 1, . . . , d the integral over θj is uniformly bounded in T and that
it converges to gaj ,bj (xj) as T ↑ ∞. Thus, by bounded convergence it follows that

lim
T↑∞

JT (a, b) =

∫
Rd
ga,b(x)dPX(x) ,
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where

ga,b(x) =

d∏
j=1

gaj ,bj (xj) ,

is zero on Ac and one on Ao (see the explicit formula for ga,b(x) provided there).
So, our assumption that PX(∂A) = 0 implies that the limit of JT (a, b) as T ↑ ∞ is
merely PX(A), thus establishing (3.5.2).
Suppose now that ΦX(θ) = ΦY (θ) for all θ. Adapting the proof of Corollary 3.3.15

to the current setting, let J = {α ∈ R : P(Xj = α) > 0 or P(Yj = α) > 0 for some
j = 1, . . . , d} noting that if all the coordinates {aj , bj , j = 1, . . . , d} of a rectangle
A are from the complement of J then both PX(∂A) = 0 and PY (∂A) = 0. Thus,
by (3.5.2) we have that PX(A) = PY (A) for any A in the collection C of rectangles
with coordinates in the complement of J . Recall that J is countable, so for any
rectangle A there exists An ∈ C such that An ↓ A, and by continuity from above of
both PX and PY it follows that PX(A) = PY (A) for every rectangle A. In view of
Proposition 1.1.39 and Exercise 1.1.21 this implies that the probability measures
PX and PY agree on all Borel subsets of Rd. �

We next provide the ingredients needed when using characteristic functions en-
route to the derivation of a convergence in distribution result for random vectors.
To this end, we start with the following analog of Lemma 3.3.17.

Lemma 3.5.8. Suppose the random vectors Xn, 1 ≤ n ≤ ∞ on Rd are such that
ΦXn(θ) → ΦX∞(θ) as n → ∞ for each θ ∈ Rd. Then, the corresponding sequence
of laws {PXn} is uniformly tight.

Proof. Fixing θ ∈ Rd consider the sequence of random variables Yn = (θ,Xn).
Since ΦYn(α) = ΦXn(αθ) for 1 ≤ n ≤ ∞, we have that ΦYn(α) → ΦY∞(α) for all
α ∈ R. The uniform tightness of the laws of Yn then follows by Lemma 3.3.17.
Considering θ1, . . . , θd which are the unit vectors in the d different coordinates,
we have the uniform tightness of the laws of Xn,j for the sequence of random
vectors Xn = (Xn,1, Xn,2, . . . , Xn,d) and each fixed coordinate j = 1, . . . , d. For
the compact sets Kε = [−Mε,Mε]

d and all n,

P(Xn /∈ Kε) ≤
d∑
j=1

P(|Xn,j | > Mε) .

As d is finite, this leads from the uniform tightness of the laws of Xn,j for each
j = 1, . . . , d to the uniform tightness of the laws of Xn. �

Equipped with Lemma 3.5.8 we are ready to state and prove Lévy’s continuity
theorem.

Theorem 3.5.9 (Lévy’s continuity theorem). Let Xn, 1 ≤ n ≤ ∞ be random

vectors with characteristic functions ΦXn(θ). Then, Xn
D−→ X∞ if and only if

ΦXn(θ)→ ΦX∞(θ) as n→∞ for each fixed θ ∈ Rd.

Proof. This is a re-run of the proof of Theorem 3.3.18, adapted to Rd-valued
random variables. First, both x 7→ cos((θ, x)) and x 7→ sin((θ, x)) are bounded

continuous functions, so if Xn
D−→ X∞, then clearly as n→∞,

ΦXn(θ) = E
[
ei(θ,Xn)

]
→ E

[
ei(θ,X∞)

]
= ΦX∞(θ).
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For the converse direction, assuming that ΦXn → ΦX∞ point-wise, we know from
Lemma 3.5.8 that the collection {PXn} is uniformly tight. Hence, by Prohorov’s
theorem, for every subsequence n(m) there is a further sub-subsequence n(mk) such
that PXn(mk)

converges weakly to some probability measure PY , possibly dependent

upon the choice of n(m). As Xn(mk)
D−→ Y , we have by the preceding part of the

proof that ΦXn(mk)
→ ΦY , and necessarily ΦY = ΦX∞ . The characteristic function

determines the law (see Theorem 3.5.7), so Y
D
= X∞ is independent of the choice

of n(m). Thus, fixing h ∈ Cb(Rd), the sequence yn = Eh(Xn) is such that every
subsequence yn(m) has a further sub-subsequence yn(mk) that converges to y∞.

Consequently, yn → y∞ (see Lemma 2.2.11). This applies for all h ∈ Cb(Rd), so we

conclude that Xn
D−→ X∞, as stated. �

Remark. As in the case of Theorem 3.3.18, it is not hard to show that if ΦXn(θ)→
Φ(θ) as n → ∞ and Φ(θ) is continuous at θ = 0 then Φ is necessarily the charac-

teristic function of some random vector X∞ and consequently Xn
D−→ X∞.

The proof of the multivariate clt is just one of the results that rely on the following
immediate corollary of Lévy’s continuity theorem.

Corollary 3.5.10 (Cramér-Wold device). A sufficient condition for Xn
D−→

X∞ is that (θ,Xn)
D−→ (θ,X∞) for each θ ∈ Rd.

Proof. Since (θ,Xn)
D−→ (θ,X∞) it follows by Lévy’s continuity theorem (for

d = 1, that is, Theorem 3.3.18), that

lim
n→∞

E
[
ei(θ,Xn)

]
= E

[
ei(θ,X∞)

]
.

As this applies for any θ ∈ Rd, we get that Xn
D−→ X∞ by applying Lévy’s

continuity theorem in Rd (i.e., Theorem 3.5.9), now in the converse direction. �

Remark. Beware that it is not enough to consider only finitely many values of
θ in the Cramér-Wold device. For example, consider the random vectors Xn =
(Xn, Yn) with {Xn, Y2n} i.i.d. and Y2n+1 = X2n+1. Convince yourself that in this

case Xn
D−→ X1 and Yn

D−→ Y1 but the random vectors Xn do not converge in
distribution (to any limit).

The computation of the characteristic function is much simplified in the presence
of independence.

Exercise 3.5.11. Show that if Y = (Y1, . . . , Yd) with Yk mutually independent
R.V., then for all θ = (θ1, . . . , θd) ∈ Rd,

(3.5.3) ΦY (θ) =

d∏
k=1

ΦYk(θk)

Conversely, show that if (3.5.3) holds for all θ ∈ Rd, the random variables Yk,
k = 1, . . . , d are mutually independent of each other.
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3.5.3. Gaussian random vectors and the multivariate clt. Recall the
following linear algebra concept.

Definition 3.5.12. An d × d matrix A with entries Ajk is called non-negative
definite (or positive semidefinite) if Ajk = Akj for all j, k, and for any θ ∈ Rd

(θ,Aθ) =

d∑
j=1

d∑
k=1

θjAjkθk ≥ 0.

We are ready to define the class of multivariate normal distributions via the cor-
responding characteristic functions.

Definition 3.5.13. We say that a random vector X = (X1, X2, · · · , Xd) is Gauss-
ian, or alternatively that it has a multivariate normal distribution if

(3.5.4) ΦX(θ) = e−
1
2 (θ,Vθ)ei(θ,µ),

for some non-negative definite d× d matrix V, some µ = (µ1, . . . , µd) ∈ Rd and all

θ = (θ1, . . . , θd) ∈ Rd. We denote such a law by N (µ,V).

Remark. For d = 1 this definition coincides with Example 3.3.6.

Our next proposition proves that the multivariate N (µ,V) distribution is well
defined and further links the vector µ and the matrix V to the first two moments
of this distribution.

Proposition 3.5.14. The formula (3.5.4) corresponds to the characteristic func-
tion of a probability measure on Rd. Further, the parameters µ and V of the Gauss-
ian random vector X are merely µj = EXj and Vjk = Cov(Xj , Xk), j, k = 1, . . . , d.

Proof. Any non-negative definite matrix V can be written as V = UtD2U
for some orthogonal matrix U (i.e., such that UtU = I, the d × d-dimensional
identity matrix), and some diagonal matrix D. Consequently,

(θ,Vθ) = (Aθ,Aθ)

for A = DU and all θ ∈ Rd. We claim that (3.5.4) is the characteristic function
of the random vector X = AtY + µ, where Y = (Y1, . . . , Yd) has i.i.d. coordinates
Yk, each of which has the standard normal distribution. Indeed, by Exercise 3.5.11
ΦY (θ) = exp(− 1

2 (θ, θ)) is the product of the characteristic functions exp(−θ2
k/2) of

the standard normal distribution (see Example 3.3.6), and by part (e) of Proposition
3.3.2, ΦX(θ) = exp(i(θ, µ))ΦY (Aθ), yielding the formula (3.5.4).

We have just shown that X has the N (µ,V) distribution if X = AtY + µ for a
Gaussian random vector Y (whose distribution is N (0, I)), such that EYj = 0 and
Cov(Yj , Yk) = 1j=k for j, k = 1, . . . , d. It thus follows by linearity of the expec-
tation and the bi-linearity of the covariance that EXj = µj and Cov(Xj , Xk) =
[EAtY (AtY )t]jk = (AtIA)jk = Vjk, as claimed. �

Definition 3.5.13 allows for V that is non-invertible, so for example the constant
random vector X = µ is considered a Gaussian random vector though it obviously
does not have a density. The reason we make this choice is to have the collection
of multivariate normal distributions closed with respect to L2-convergence, as we
prove below to be the case.
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Proposition 3.5.15. Suppose Gaussian random vectors Xn converge in L2 to
a random vector X∞, that is, E[‖Xn − X∞‖2] → 0 as n → ∞. Then, X∞ is
a Gaussian random vector, whose parameters are the limits of the corresponding
parameters of Xn.

Proof. Recall that the convergence in L2 ofXn toX∞ implies that µ
n

= EXn

converge to µ∞ = EX∞ and the element-wise convergence of the covariance matri-

ces Vn to the corresponding covariance matrix V∞. Further, the L2-convergence
implies the corresponding convergence in probability and hence, by bounded con-

vergence ΦXn(θ) → ΦX∞(θ) for each θ ∈ Rd. Since ΦXn(θ) = e−
1
2 (θ,Vnθ)ei(θ,µn),

for any n <∞, it follows that the same applies for n =∞. It is a well known fact
of linear algebra that the element-wise limit V∞ of non-negative definite matrices
Vn is necessarily also non-negative definite. In view of Definition 3.5.13, we see
that the limit X∞ is a Gaussian random vector, whose parameters are the limits
of the corresponding parameters of Xn. �

One of the main reasons for the importance of the multivariate normal distribution
is the following clt (which is the multivariate extension of Proposition 3.1.2).

Theorem 3.5.16 (Multivariate clt). Let Ŝn = n−
1
2

n∑
k=1

(Xk −µ), where {Xk}

are i.i.d. random vectors with finite second moments and such that µ = EX1.

Then, Ŝn
D−→ G, with G having the N (0,V) distribution and where V is the d×d-

dimensional covariance matrix of X1.

Proof. Consider the i.i.d. random vectors Y k = Xk − µ each having also the

covariance matrix V. Fixing an arbitrary vector θ ∈ Rd we proceed to show that

(θ, Ŝn)
D−→ (θ,G), which in view of the Cramér-Wold device completes the proof

of the theorem. Indeed, note that (θ, Ŝn) = n−
1
2

∑n
k=1 Zk, where Zk = (θ, Y k) are

i.i.d. R-valued random variables, having zero mean and variance

vθ = Var(Z1) = E[(θ, Y 1)2] = (θ, E[Y 1Y
t
1] θ) = (θ,Vθ) .

Observing that the clt of Proposition 3.1.2 thus applies to (θ, Ŝn), it remains only
to verify that the resulting limit distribution N (0, vθ) is indeed the law of (θ,G).
To this end note that by Definitions 3.5.4 and 3.5.13, for any s ∈ R,

Φ(θ,G)(s) = ΦG(sθ) = e−
1
2 s

2(θ,Vθ) = e−vθs
2/2 ,

which is the characteristic function of the N (0, vθ) distribution (see Example 3.3.6).
Since the characteristic function uniquely determines the law (see Corollary 3.3.15),
we are done. �

Here is an explicit example for which the multivariate clt applies.

Example 3.5.17. The simple random walk on Zd is Sn =
∑n
k=1Xk where X,

Xk are i.i.d. random vectors such that

P(X = +ei) = P(X = −ei) =
1

2d
i = 1, . . . , d,

and ei is the unit vector in the i-th direction, i = 1, . . . , d. In this case EX = 0
and if i 6= j then EXiXj = 0, resulting with the covariance matrix V = (1/d)I for

the multivariate normal limit in distribution of n−1/2Sn.
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Building on Lindeberg’s clt for weighted sums of i.i.d. random variables, the
following multivariate normal limit is the basis for the convergence of random walks
to Brownian motion, to which Section 10.2 is devoted.

Exercise 3.5.18. Suppose {ξk} are i.i.d. with Eξ1 = 0 and Eξ2
1 = 1. Consider

the random functions Ŝn(t) = n−1/2S(nt) where S(t) =
∑[t]
k=1 ξk + (t − [t])ξ[t]+1

and [t] denotes the integer part of t.

(a) Verify that Lindeberg’s clt applies for Ŝn =
∑n
k=1 an,kξk whenever the

non-random {an,k} are such that rn = max{|an,k| : k = 1, . . . , n} → 0
and vn =

∑n
k=1 a

2
n,k → 1.

(b) Let c(s, t) = min(s, t) and fixing 0 = t0 ≤ t1 < · · · < td, denote by C the
d× d matrix of entries Cjk = c(tj , tk). Show that for any θ ∈ Rd,

d∑
r=1

(tr − tr−1)(

r∑
j=1

θj)
2 = (θ,Cθ) ,

(c) Using the Cramér-Wold device deduce that (Ŝn(t1), . . . , Ŝn(td))
D−→ G

with G having the N (0,C) distribution.

As we see in the next exercise, there is more to a Gaussian random vector than
each coordinate having a normal distribution.

Exercise 3.5.19. Suppose X1 has a standard normal distribution and S is inde-
pendent of X1 and such that P(S = 1) = P(S = −1) = 1/2.

(a) Check that X2 = SX1 also has a standard normal distribution.
(b) Check that X1 and X2 are uncorrelated random variables, each having

the standard normal distribution, while X = (X1, X2) is not a Gaussian
random vector and where X1 and X2 are not independent variables.

Motivated by the proof of Proposition 3.5.14 here is an important property of
Gaussian random vectors which may also be considered to be an alternative to
Definition 3.5.13.

Exercise 3.5.20. A random vector X has the multivariate normal distribution

if and only if (
∑d
i=1 ajiXi, j = 1, . . . ,m) is a Gaussian random vector for any

non-random coefficients a11, a12, . . . , amd ∈ R.

The classical definition of the multivariate normal density applies for a strict subset
of the distributions we consider in Definition 3.5.13.

Definition 3.5.21. We say that X has a non-degenerate multivariate normal
distribution if the matrix V is invertible, or alternatively, when V is (strictly)
positive definite matrix, that is (θ,Vθ) > 0 whenever θ 6= 0.

We next relate the density of a random vector with its characteristic function, and
provide the density for the non-degenerate multivariate normal distribution.

Exercise 3.5.22.

(a) Show that if
∫
Rd |ΦX(θ)|dθ < ∞, then X has the bounded continuous

probability density function

(3.5.5) fX(x) =
1

(2π)d

∫
Rd
e−i(θ,x)ΦX(θ)dθ .
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(b) Show that a random vector X with a non-degenerate multivariate normal
distribution N (µ,V) has the probability density function

fX(x) = (2π)−d/2(detV)−1/2 exp
(
− 1

2
(x− µ,V−1(x− µ))

)
.

Here is an application to the uniform distribution over the sphere in Rn, as n→∞.

Exercise 3.5.23. Suppose {Yk} are i.i.d. random variables with EY 2
1 = 1 and

EY1 = 0. Let Wn = n−1
∑n
k=1 Y

2
k and Xn,k = Yk/

√
Wn for k = 1, . . . , n.

(a) Noting that Wn
a.s.→ 1 deduce that Xn,1

D−→ Y1.

(b) Show that n−1/2
∑n
k=1Xn,k

D−→ G whose distribution is N (0, 1).
(c) Show that if {Yk} are standard normal random variables, then the ran-

dom vector Xn = (Xn,1, . . . , Xn,n) has the uniform distribution over the
surface of the sphere of radius

√
n in Rn (i.e., the unique measure sup-

ported on this sphere and invariant under orthogonal transformations),
and interpret the preceding results for this special case.

Next you find an interesting property about the coordinate of maximal value in
certain Gaussian random vectors.

Exercise 3.5.24. Suppose random vector X = (X1, X2, · · · , Xd) has the multi-
variate normal distribution N (0,V), with Vii = 1 for all i and Vij < 1 for all
i 6= j.

(a) Show that for each 1 ≤ j ≤ d, the random variable Xj is independent of

Mj := max
1≤i≤d,i6=j

{Xi − VijXj

1− Vij

}
.

(b) Check that with probability one, the index

j? := arg max
1≤j≤d

Xj ,

is uniquely attained and that j? = j if and only if Xj ≥Mj.
(c) Deduce that U(Xj? ,Mj?) is uniformly distributed on (0, 1), where U(x,m) :=

(1 − FG(x))/(1 − FG(m)) for x,m ∈ R and a standard normal variable
G.

We conclude the section with the following exercise, which is a multivariate, Lin-
deberg’s type clt.

Exercise 3.5.25. Let yt denotes the transpose of the vector y ∈ Rd and ‖y‖
its Euclidean norm. The independent random vectors {Y k} on Rd are such that

Y k
D
= −Y k,

lim
n→∞

n∑
k=1

P(‖Y k‖ >
√
n) = 0,

and for some symmetric, (strictly) positive definite matrix V and any fixed ε ∈
(0, 1],

lim
n→∞

n−1
n∑
k=1

E(Y kY
t
kI‖Y k‖≤ε

√
n) = V.

(a) Let Tn =
∑n
k=1Xn,k for Xn,k = n−1/2Y kI‖Y k‖≤

√
n. Show that Tn

D−→
G, with G having the N (0,V) multivariate normal distribution.
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(b) Let Ŝn = n−1/2
∑n
k=1 Y k and show that Ŝn

D−→ G.

(c) Show that (Ŝn)tV−1Ŝn
D−→ Z and identify the law of Z.





CHAPTER 4

Conditional expectations and probabilities

The most important concept in probability theory is the conditional expectation
to which this chapter is devoted. In contrast with the elementary definition often
used for a finite or countable sample space, the conditional expectation, as defined
in Section 4.1, is itself a random variable. Section 4.2 details the important prop-
erties of the conditional expectation. Section 4.3 provides a representation of the
conditional expectation as an orthogonal projection in Hilbert space. Finally, in
Section 4.4 we represent the conditional expectation also as the expectation with
respect to the random regular conditional probability distribution.

4.1. Conditional expectation: existence and uniqueness

In Subsection 4.1.1 we review the elementary definition of the conditional expec-
tation E(X|Y ) in case of discrete valued R.V.-s X and Y . This motivates our
formal definition of the conditional expectation for any pair of R.V.s. such that
X is integrable. The existence and uniqueness of the conditional expectation is
shown there based on the Radon-Nikodym theorem, the proof of which we provide
in Subsection 4.1.2.

4.1.1. Conditional expectation: motivation and definition. Suppose
the R.V.s X and Z on a probability space (Ω,F ,P) are both simple functions.
More precisely, let X take the distinct values x1, . . . , xm ∈ R and Z take the
distinct values z1, . . . , zn ∈ R, where without loss of generality we assume that
P(Z = zi) > 0 for i = 1, . . . , n. Then, from elementary probability theory, we know
that for any i = 1, . . . , n, j = 1, . . . ,m,

P(X = xj |Z = zi) =
P(X = xj , Z = zi)

P(Z = zi)
,

and we can compute the corresponding conditional expectation

E[X|Z = zi] =

m∑
j=1

xjP(X = xj |Z = zi) .

Noting that this conditional expectation is a function of ω ∈ Ω (via the value of
Z(ω)), we define the R.V. Y = E[X|Z] on the same probability space such that
Y (ω) = E[X|Z = zi] whenever ω is such that Z(ω) = zi.

Example 4.1.1. Suppose that X = ω1 and Z = ω2 on the probability space F =
2Ω, Ω = {1, 2}2 with

P(1, 1) = .5, P(1, 2) = .1, P(2, 1) = .1, P(2, 2) = .3.
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Then,

P(X = 1|Z = 1) =
P(X = 1, Z = 1)

P(Z = 1)
=

5

6
,

implying that P(X = 2|Z = 1) = 1
6 and

E[X|Z = 1] = 1 · 5

6
+ 2 · 1

6
=

7

6
.

Likewise, check that E[X|Z = 2] = 7
4 , hence E[X|Z] = 7

6IZ=1 + 7
4IZ=2.

Partitioning Ω into the discrete collection of Z-atoms, namely the sets Gi = {ω :
Z(ω) = zi} for i = 1, . . . , n, observe that Y (ω) is constant on each of these sets.
The σ-algebra G = FZ = σ(Z) = {Z−1(B), B ∈ B} is in this setting merely
the collection of all 2n possible unions of various Z-atoms. Hence, G is finitely
generated and since Y (ω) is constant on each generator Gi of G, we see that Y (ω)
is measurable on (Ω,G). Further, since any G ∈ G is of the form G =

⋃
i∈I Gi for

the disjoint sets Gi and some I ⊆ {1, . . . , n}, we find that

E[Y IG] =
∑
i∈I

E[Y IGi ] =
∑
i∈I

E[X|Z = zi]P(Z = zi)

=
∑
i∈I

m∑
j=1

xjP(X = xj , Z = zi) = E[XIG] .

To summarize, in case X and Z are simple functions and G = σ(Z), we have
Y = E[X|Z] as a R.V. on (Ω,G) such that E[Y IG] = E[XIG] for all G ∈ G.
Proceeding hereafter to consider an arbitrary probability space (Ω,F ,P), with

some integrable R.V. X and an arbitrary σ-algebra G ⊆ F , we note that both
properties above still make sense, motivating our general definition of the condi-
tional expectation, as in the following theorem.

Theorem 4.1.2. Given X ∈ L1(Ω,F ,P) and G ⊆ F a σ-algebra there exists a
R.V. Y called the conditional expectation (C.E.) of X given G, denoted by E[X|G],
such that Y ∈ L1(Ω,G,P) and for any G ∈ G,

(4.1.1) E [(X − Y ) IG] = 0 .

Moreover, if (4.1.1) holds for any G ∈ G and R.V.s Y and Ỹ , both of which are in

L1(Ω,G,P), then P(Ỹ = Y ) = 1. In other words, the C.E. is uniquely defined for
P-almost every ω.

Remark. We call Y ∈ L1(Ω,G,P) that satisfies (4.1.1) for all G ∈ G a version
of the C.E. E[X|G]. In view of the preceding theorem, unless stated otherwise
we consider all versions of the C.E. as being the same R.V. In particular, hereafter
properties of the C.E. hold only in an a.s. sense (even when this qualifier is omitted,
see the convention within Definition 1.2.8).
Given our motivation for Theorem 4.1.2, we let E[X|Z] stand for E[X|FZ ] and

likewise E[X|Z1, Z2, . . .] stand for E[X|FZ], where FZ = σ(Z1, Z2, . . .). We note in
passing that any σ-algebra G ⊆ F may be represented as FZ for some (S,S)-valued
R.V. but this may not be the case if restricted to S = R.

While we arrived at (4.1.1) by analyzing a special case, it is also an immediate con-
sequence of postulating (4.2.1) and treating bounded factors V ∈ mG as constants,
in the sense that E[V X|G] = VE[X|G] (as in Proposition 4.2.10).
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To check whether a R.V. is a C.E. with respect to a given σ-algebra G, it suffices
to verify (4.1.1) for some π-system that contains Ω and generates G, as you show in
the following exercise. This useful general observation is often key to determining
an explicit formula for the C.E.

Exercise 4.1.3. Suppose that P is a π-system of subsets of Ω such that Ω ∈ P
and G = σ(P) ⊆ F . Show that if X ∈ L1(Ω,F ,P) and Y ∈ L1(Ω,G,P) are such
that E[XIG] = E[Y IG] for every G ∈ P then Y = E[X|G].

To prove the existence of the C.E. we need the following definition of absolute
continuity of measures.

Definition 4.1.4. Let ν and µ be two measures on measurable space (S,F). We
say that ν is absolutely continuous with respect to µ, denoted by ν � µ, if

µ(A) = 0 =⇒ ν(A) = 0

for any set A ∈ F .

Recall Proposition 1.3.56 that given a measure µ on (S,F), any f ∈ mF+ induces a
new measure fµ on (S,F). The next theorem, whose proof is deferred to Subsection
4.1.2, shows that all absolutely continuous σ-finite measures with respect to a σ-
finite measure µ are of this form.

Theorem 4.1.5 (Radon-Nikodym theorem). If ν and µ are two σ-finite mea-
sures on (S,F) such that ν � µ, then there exists f ∈ mF+ finite valued such that
ν = fµ. Further, if fµ = gµ then µ({s : f(s) 6= g(s)}) = 0.

Remark. Having ν � µ, is also necessary for ν = fµ (c.f. Lebesgue decompo-
sition, as in Theorem 4.1.10). Likewise, while our assumption in Radon-Nikodym
theorem that µ is a σ-finite measure can be somewhat relaxed, it can not be com-
pletely dispensed off.

Definition 4.1.6. The function f such that ν = fµ is called the Radon-Nikodym
derivative (or density) of ν with respect to µ and denoted f = dν

dµ .

We note in passing that a real-valued R.V. has a probability density function f
if and only if its law is absolutely continuous with respect to the completion λ
of Lebesgue measure on (R,B), with f being the corresponding Radon-Nikodym
derivative (c.f. Example 1.3.60).

Proof of Theorem 4.1.2. Given two versions Y and Ỹ of E[X|G] we apply

(4.1.1) for the set Gδ = {ω : Y (ω) − Ỹ (ω) > δ} to see that (by linearity of the
expectation),

0 = E [XIGδ ]−E [XIGδ ] = E [(Y − Ỹ ) IGδ ] ≥ δP(Gδ) .

Hence, P(Gδ) = 0. Since this applies for any δ > 0 and Gδ ↑ G0 as δ ↓ 0, we deduce

that P(Y − Ỹ > 0) = 0. The same argument applies with the roles of Y and Ỹ

reversed, so P(Y − Ỹ = 0) = 1 as claimed.
We turn to the existence of the C.E. assuming first that X ∈ L1(Ω,F ,P) is also

non-negative. Let µ denote the probability measure obtained by restricting P to
the measurable space (Ω,G) and ν denote the measure obtained by restricting XP
of Proposition 1.3.56 to this measurable space, noting that ν is a finite measure
(since ν(Ω) = (XP)(Ω) = E[X] < ∞). If G ∈ G is such that µ(G) = P(G) = 0,
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then by definition also ν(G) = (XP)(G) = 0. Therefore, ν is absolutely continuous
with respect to µ, and by the Radon-Nikodym theorem there exists Y ∈ mG+ such
that ν = Y µ. This implies that for any G ∈ G,

E[XIG] = P(XIG) = ν(G) = (Y µ)(G) = µ(Y IG) = E[Y IG]

(and in particular, that E[Y ] = ν(Ω) < ∞), proving the existence of the C.E. for
non-negative R.V.s.
Turning to deal with the case of a general integrable R.V. X we use the representa-

tion X = X+−X− with X+ ≥ 0 and X− ≥ 0 such that both E[X+] and E[X−] are
finite. Set Y = Y + − Y − where the integrable, non-negative R.V.s Y ± = E[X±|G]
exist by the preceding argument. Then, Y ∈ mG is integrable, and by definition of
Y ± we have that for any G ∈ G

E[Y IG] = E[Y + IG]−E[Y − IG] = E[X+IG]−E[X−IG] = E[XIG] .

This establishes (4.1.1) and completes the proof of the theorem. �

Remark. Beware that for Y = E[X|G] often Y± 6= E[X±|G] (for example, take
the trivial G = {∅,Ω} and P(X = 2) = P(X = −2) = 1/2 for which Y = 0 while
E[X±|G] = 1).

Exercise 4.1.7. Suppose either E(Yk)+ is finite or E(Yk)− is finite for random
variables Yk, k = 1, 2 on (Ω,F ,P) such that E[Y1IA] ≤ E[Y2IA] for any A ∈ F .
Show that then P(Y1 ≤ Y2) = 1.

In the next exercise you show that the Radon-Nikodym density preserves the
product structure.

Exercise 4.1.8. Suppose that νk � µk are pairs of σ-finite measures on (Sk,Fk)
for k = 1, . . . , n with the corresponding Radon-Nikodym derivatives fk = dνk/dµk.

(a) Show that the σ-finite product measure ν = ν1 × · · · × νn on the product
space (S,F) is absolutely continuous with respect to the σ-finite measure
µ = µ1 × · · · × µn on (S,F), with dν/dµ(s) =

∏n
k=1 fk(sk) for s =

(s1, . . . , sn).
(b) Suppose µ and ν as in part (a), are product probability measures on S =
{(s1, . . . , sn) : sk ∈ Sk, k = 1, . . . , n}. Show that the random variables
gk(s) = fk(sk), k = 1, . . . , n, on (S,F), are both mutually µ-independent
and mutually ν-independent.

4.1.2. Proof of the Radon-Nikodym theorem. This section is devoted
to proving the Radon-Nikodym theorem, which we have already used for estab-
lishing the existence of C.E. This is done by proving the more general Lebesgue
decomposition, based on the following definition.

Definition 4.1.9. Two measures µ1 and µ2 on the same measurable space (S,F)
are mutually singular if there is a set A ∈ F such that µ1(A) = 0 and µ2(Ac) = 0.
This is denoted by µ1⊥µ2, and we sometimes state that µ1 is singular with respect
to µ2, instead of µ1 and µ2 mutually singular.

Equipped with the concept of mutually singular measures, we next state the
Lebesgue decomposition and show that the Radon-Nikodym theorem is a direct
consequence of this decomposition.
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Theorem 4.1.10 (Lebesgue decomposition). Suppose µ and ν are measures
on the same measurable space (S,F) such that µ(S) and ν(S) are finite. Then,
ν = νac + νs where the measure νs is singular with respect to µ and νac = fµ for
some f ∈ mF+. Further, such a decomposition of ν is unique (per given µ).

Remark. To build your intuition, note that Lebesgue decomposition is quite
explicit for σ-finite measures on a countable space S (with F = 2S). Indeed, then
νac and νs are the restrictions of ν to the support Sµ = {s ∈ S : µ({s}) > 0}
of µ and its complement, respectively, with f(s) = ν({s})/µ({s}) for s ∈ Sµ the
Radon-Nikodym derivative of νac with respect to µ (see Exercise 1.2.48 for more
on the support of a measure).

Proof of the Radon-Nikodym theorem. Assume first that ν(S) and µ(S)
are finite. Let ν = νac + νs be the unique Lebesgue decomposition induced by µ.
Then, by definition there exists a set A ∈ F such that νs(A

c) = µ(A) = 0. Further,
our assumption that ν � µ implies that νs(A) ≤ ν(A) = 0 as well, hence νs(S) = 0,
i.e. ν = νac = fµ for some f ∈ mF+.
Next, in case ν and µ are σ-finite measures the sample space S is a countable union

of disjoint sets An ∈ F such that both ν(An) and µ(An) are finite. Considering the
measures νn = IAnν and µn = IAnµ such that νn(S) = ν(An) and µn(S) = µ(An)
are finite, our assumption that ν � µ implies that νn � µn. Hence, by the
preceding argument for each n there exists fn ∈ mF+ such that νn = fnµn. With
ν =

∑
n νn and νn = (fnIAn)µ (by the composition relation of Proposition 1.3.56),

it follows that ν = fµ for f =
∑
n fnIAn ∈ mF+ finite valued.

As for the uniqueness of the Radon-Nikodym derivative f , suppose that fµ = gµ
for some g ∈ mF+ and a σ-finite measure µ. Consider En = Dn

⋂
{s : g(s)−f(s) ≥

1/n, g(s) ≤ n} and measurable Dn ↑ S such that µ(Dn) < ∞. Then, necessarily
both µ(fIEn) and µ(gIEn) are finite with

n−1µ(En) ≤ µ((g − f)IEn) = (gµ)(En)− (fµ)(En) = 0 ,

implying that µ(En) = 0. Considering the union over n = 1, 2, . . . we deduce
that µ({s : g(s) > f(s)}) = 0, and upon reversing the roles of f and g, also
µ({s : g(s) < f(s)}) = 0. �

Remark. Following the same argument as in the preceding proof of the Radon-
Nikodym theorem, one easily concludes that Lebesgue decomposition applies also
for any two σ-finite measures ν and µ.

Our next lemma is the key to the proof of Lebesgue decomposition.

Lemma 4.1.11. If the finite measures µ and ν on (S,F) are not mutually singular,
then there exists B ∈ F and ε > 0 such that µ(B) > 0 and ν(A) ≥ εµ(A) for all
A ∈ FB.

The proof of this lemma is based on the Hahn-Jordan decomposition of a finite
signed measure to its positive and negative parts (for a definition of a finite signed
measure see the remark after Definition 1.1.2).

Theorem 4.1.12 (Hahn decomposition). For any finite signed measure ν :
F 7→ R there exists D ∈ F such that ν+ = IDν and ν− = −IDcν are measures on
(S,F).
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See [Bil95, Theorem 32.1] for a proof of the Hahn decomposition as stated here,
or [Dud89, Theorem 5.6.1] for the same conclusion in case of a general, that is
[−∞,∞]-valued signed measure, where uniqueness of the Hahn-Jordan decomposi-
tion of a signed measure as the difference between the mutually singular measures
ν± is also shown (see also [Dur10, Theorems A.4.3 and A.4.4]).

Remark. If IBν is a measure we call B ∈ F a positive set for the signed measure
ν and if −IBν is a measure we say that B ∈ F is a negative set for ν. So, the Hahn
decomposition provides a partition of S into a positive set (for ν) and a negative
set (for ν).

Proof of Lemma 4.1.11. Let A =
⋃
nDn where Dn, n = 1, 2 . . ., is a posi-

tive set for the Hahn decomposition of the finite signed measure ν−n−1µ. Since Ac

is contained in the negative set Dc
n for ν−n−1µ, it follows that ν(Ac) ≤ n−1µ(Ac).

Taking n → ∞ we deduce that ν(Ac) = 0. If µ(Dn) = 0 for all n then µ(A) = 0
and necessarily ν is singular with respect to µ, contradicting the assumptions of
the lemma. Therefore, µ(Dn) > 0 for some finite n. Taking ε = n−1 and B = Dn

results with the thesis of the lemma. �

Proof of Lebesgue decomposition. Our goal is to construct f ∈ mF+

such that the measure νs = ν − fµ is singular with respect to µ. Since necessarily
νs(A) ≥ 0 for any A ∈ F , such a function f must belong to

H = {h ∈ mF+ : ν(A) ≥ (hµ)(A), for all A ∈ F}.

Indeed, we take f to be an element of H for which (fµ)(S) is maximal. To show
that such f exists note first that H is closed under non-decreasing passages to the

limit (by monotone convergence). Further, if h and h̃ are both in H then also

max{h, h̃} ∈ H since with Γ = {s : h(s) > h̃(s)} we have that for any A ∈ F ,

ν(A) = ν(A ∩ Γ) + ν(A ∩ Γc) ≥ µ(hIA∩Γ) + µ(h̃IA∩Γc) = µ(max{h, h̃}IA) .

That is, H is also closed under the formation of finite maxima and in particu-
lar, the function limn max(h1, . . . , hn) is in H for any hn ∈ H. Now let κ =
sup{(hµ)(S) : h ∈ H} noting that κ ≤ ν(S) is finite. Choosing hn ∈ H such
that (hnµ)(S) ≥ κ − n−1 results with f = limn max(h1, . . . , hn) in H such that
(fµ)(S) ≥ limn(hnµ)(S) = κ. Since f is an element of H both νac = fµ and
νs = ν − fµ are finite measures.
If νs fails to be singular with respect to µ then by Lemma 4.1.11 there exists
B ∈ F and ε > 0 such that µ(B) > 0 and νs(A) ≥ (εIBµ)(A) for all A ∈ F . Since
ν = νs+fµ, this implies that f+εIB ∈ H. However, ((f+εIB)µ)(S) ≥ κ+εµ(B) > κ
contradicting the fact that κ is the finite maximal value of (hµ)(S) over h ∈ H.
Consequently, this construction of f has ν = fµ+ νs with a finite measure νs that
is singular with respect to µ.
Finally, to prove the uniqueness of the Lebesgue decomposition, suppose there

exist f1, f2 ∈ mF+, such that both ν−f1µ and ν−f2µ are singular with respect to
µ. That is, there exist A1, A2 ∈ F such that µ(Ai) = 0 and (ν − fiµ)(Aci ) = 0 for
i = 1, 2. Considering A = A1 ∪ A2 it follows that µ(A) = 0 and (ν − fiµ)(Ac) = 0
for i = 1, 2. Consequently, for any E ∈ F we have that (ν − f1µ)(E) = ν(E ∩A) =
(ν − f2µ)(E), proving the uniqueness of νs, and hence of the decomposition of ν as
νac + νs. �
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We conclude with a simple application of Radon-Nikodym theorem in conjunction
with Lemma 1.3.8.

Exercise 4.1.13. Suppose ν and µ are two σ-finite measures on the same mea-
surable space (S,F) such that ν(A) ≤ µ(A) for all A ∈ F . Show that if ν(g) = µ(g)
is finite for some g ∈ mF such that µ({s : g(s) ≤ 0}) = 0 then ν(·) = µ(·).

4.2. Properties of the conditional expectation

In some generic settings the C.E. is rather explicit. One such example is when X
is measurable on the conditioning σ-algebra G.

Example 4.2.1. If X ∈ L1(Ω,G,P) then Y = X ∈ mG satisfies (4.1.1) so
E[X|G] = X. In particular, if X = c is a constant R.V. then E[X|G] = c for
any σ-algebra G.

Here is an extension of this example.

Exercise 4.2.2. Suppose that (Y,Y)-valued random variable Y is measurable on
G and (X,X)-valued random variable Z is P-independent of G. Show that if ϕ is
measurable on the product space (X × Y,X × Y) and ϕ(Z, Y ) is integrable, then
E[ϕ(Z, Y )|G] = g(Y ) where g(y) = E[ϕ(Z, y)].

Since only constant random variables are measurable on F0 = {∅,Ω}, by definition
of the C.E. clearly E[X|F0] = EX. We show next that E[X|H] = EX also whenever
the conditioning σ-algebra H is independent of σ(X) (and in particular, when H is
P-trivial).

Proposition 4.2.3. If X ∈ L1(Ω,F ,P) and the σ-algebra H is independent of
σ(σ(X),G), then

E[X|σ(H,G)] = E[X| G] .

For G = {∅,Ω} this implies that

H independent of σ(X) =⇒ E[X|H] = EX .

Remark. Recall that a P-trivial σ-algebra H ⊆ F is independent of σ(X) for
any X ∈ mF . Hence, by Proposition 4.2.3 in this case E[X|H] = EX for all
X ∈ L1(Ω,F , P ).

Proof. Let Y = E[X|G] ∈ mG. Because H is independent of σ(G, σ(X)), it
follows that for any G ∈ G and H ∈ H the random variable IH is independent of
both XIG and Y IG. Consequently,

E[XIG∩H ] = E[XIGIH ] = E[XIG]EIH

E[Y IG∩H ] = E[Y IGIH ] = E[Y IG]EIH

Further, E[XIG] = E[Y IG] by the definition of Y , hence E[XIA] = E[Y IA] for
any A ∈ A = {G ∩ H : G ∈ G, H ∈ H}. Applying Exercise 4.1.3 with Y ∈
L1(Ω,G,P) ⊆ L1(Ω, σ(H,G),P) and A a π-system of subsets containing Ω and
generating σ(G,H), we thus conclude that

E[X|σ(G,H)] = Y = E[X|G]

as claimed. �

We turn to derive various properties of the C.E. operation, starting with its posi-
tivity and linearity (per fixed conditioning σ-algebra).
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Proposition 4.2.4. Fix a σ-algebra G ⊆ F .

(a) For any X ∈ L1(Ω,F ,P),

(4.2.1) EX = E[E(X|G)] .

(b) ( Positivity) X ≥ 0 =⇒ Y = E[X|G] ≥ 0 a.s. and X > 0 =⇒
Y > 0 a.s.

Proof. Considering G = Ω ∈ G in the definition of the C.E. we find that
EX = E[XIG] = E[Y IG] = EY .
Turning to the positivity of the C.E. note that if X ≥ 0 a.s. then 0 ≤ E[XIG] =

E[Y IG] ≤ 0 for G = {ω : Y (ω) ≤ 0} ∈ G. Hence, in this case E[Y IY≤0] = 0.
That is, almost surely Y ≥ 0. Further, δP(X > δ, Y ≤ 0) ≤ E[XIX>δIY≤0] ≤
E[XIY≤0] = 0 for any δ > 0, so P(X > 0, Y = 0) = 0 as well. �

We next show that the C.E. operator is linear.

Proposition 4.2.5. ( Linearity) Let X,Y ∈ L1(Ω,F ,P) and G ⊆ F a σ-algebra.
Then, for any α, β ∈ R,

E[αX + βY |G] = αE[X|G] + βE[Y |G] .

Proof. Let Z = E[X|G] and V = E[Y |G]. Since Z, V ∈ L1(Ω,F ,P) the
same applies for αZ + βV . Further, for any G ∈ G, by linearity of the expectation
operator and the definition of the C.E.

E[(αZ+βV )IG] = αE[ZIG]+βE[V IG] = αE[XIG]+βE[Y IG] = E[(αX+βY )IG],

as claimed. �

From its positivity and linearity we immediately get the monotonicity of the C.E.

Corollary 4.2.6 (Monotonicity). If X,Y ∈ L1(Ω,F ,P) are such that X ≤ Y ,
then E[X|G] ≤ E[Y |G] for any σ-algebra G ⊆ F .

In the following exercise you are to combine the linearity and positivity of the
C.E. with Fubini’s theorem.

Exercise 4.2.7. Show that if X,Y ∈ L1(Ω,F ,P) are such that E[X|Y ] = Y and
E[Y |X] = X then almost surely X = Y .
Hint: First show that E[(X − Y )I{X>c≥Y }] = 0 for any non-random c.

We next deal with the relationship between the C.E.s of the same R.V. for nested
conditioning σ-algebras.

Proposition 4.2.8 (Tower property). Suppose X ∈ L1(Ω,F ,P) and the σ-
algebras H and G are such that H ⊆ G ⊆ F . Then, E[X|H] = E[E(X|G)|H].

Proof. Recall that Y = E[X|G] is integrable, hence Z = E[Y |H] is integrable.
Fixing A ∈ H we have that E[Y IA] = E[ZIA] by the definition of the C.E. Z. Since
H ⊆ G, also A ∈ G hence E[XIA] = E[Y IA] by the definition of the C.E. Y . We
deduce that E[XIA] = E[ZIA] for all A ∈ H. It then follows from the definition of
the C.E. that Z is a version of E[X|H]. �

Remark. The tower property is also called the law of iterated expectations.
Any σ-algebra G contains the trivial σ-algebra F0 = {∅,Ω}. Thus, applying the

tower property with H = F0 and using the fact that E[Y |F0] = EY for any
integrable random variable Y , one recovers (4.2.1).
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Here is an application of the tower property, leading to stronger conclusion than
what one has from Proposition 4.2.3.

Lemma 4.2.9. If integrable R.V. X and σ-algebra G are such that E[X|G] is in-
dependent of X, then E[X|G] = E[X].

Proof. Let Z = E[X|G]. Applying the tower property for H = σ(Z) ⊆ G we
have that E[X|H] = E[Z|H]. Clearly, E[Z|H] = Z (see Example 4.2.1), whereas
our assumption that X is independent of Z implies that E[X|H] = E[X] (see
Proposition 4.2.3). Consequently, Z = E[X], as claimed. �

As shown next, we can take out what is known when computing the C.E.

Proposition 4.2.10. Suppose Y ∈ mG and X ∈ L1(Ω,F ,P) are such that XY ∈
L1(Ω,F ,P). Then, E[XY |G] = YE[X|G].

Proof. Let Z = E[X|G] which is well defined due to our assumption that
E|X| < ∞. By the definition of E[XY |G], it suffices to verify that if Y ∈ mG and
E|XY | <∞, then E|ZY | <∞ and

(4.2.2) E[XY IA] = E[ZY IA] , ∀A ∈ G .
To this end, note that if Y = IB for B ∈ G then Y IA = IG for G = B ∩ A ∈ G
so (4.2.2) follows from the definition of the C.E. Z (with integrability of ZY due
to having Z ∈ L1). By linearity of the expectation, the preceding extends to Y
which is a simple function on (Ω,G). Next, recall that for X ≥ 0 by positivity
of the C.E. also Z ≥ 0, so by monotone convergence (4.2.2) then applies for all
Y ∈ mG+. In particular, for A = Ω this implies that E[ZY ] = E[XY ] is finite
whenever X,Y ≥ 0 are such that both X and XY are integrable. In general, let
X = X+ − X− and Y = Y+ − Y− for Y± ∈ mG+ and the integrable X± ≥ 0.
Since |XY | = (X+ + X−)(Y+ + Y−) is integrable, so are the products X±Y± of
non-negative variables. By the preceding, the identity (4.2.2) holds for each of
the four possible choices of the pair (X±, Y±), with Z± = E[X±|G] instead of Z
(and further E[Z±Y±] < ∞ in all four cases). Upon noting that Z = Z+ − Z−
(by linearity of the C.E.), and XY = X+Y+ −X+Y− −X−Y+ +X−Y−, it readily
follows that (4.2.2) applies also for X and Y (and further that ZY ∈ L1(Ω,G,P)
as claimed). �

Adopting hereafter the notation P(A|G) for E[IA|G], the following exercises illus-
trate some of the many applications of Propositions 4.2.8 and 4.2.10.

Exercise 4.2.11. For any σ-algebras Gi ⊆ F , i = 1, 2, 3, let Gij = σ(Gi,Gj) and
prove that the following conditions are equivalent:

(a) P[A3|G12] = P[A3|G2] for all A3 ∈ G3.
(b) P[A1 ∩A3|G2] = P[A1|G2]P[A3|G2] for all A1 ∈ G1 and A3 ∈ G3.
(c) P[A1|G23] = P[A1|G2] for all A1 ∈ G1.

Remark. Taking G1 = σ(Xk, k < n), G2 = σ(Xn) and G3 = σ(Xk, k > n),
condition (a) of the preceding exercise states that the sequence of random variables
{Xk} has the Markov property. That is, the conditional probability of a future
event A3 given the past and present information G12 is the same as its conditional
probability given the present G2 alone. Condition (c) makes the same statement,
but with time reversed, while condition (b) says that past and future events A1 and
A3 are conditionally independent given the present information, that is, G2.
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Exercise 4.2.12. Let Z = (X,Y ) be a uniformly chosen point in (0, 1)2. That
is, X and Y are independent random variables, each having the U(0, 1) measure
of Example 1.1.26. Set T = 2IA(Z) + 10IB(Z) + 4IC(Z) where A = {(x, y) :
0 < x < 1/4, 3/4 < y < 1}, B = {(x, y) : 1/4 < x < 3/4, 0 < y < 1/2} and
C = {(x, y) : 3/4 < x < 1, 1/4 < y < 1}.

(a) Find an explicit formula for the conditional expectation W = E(T |X)
and use it to determine the conditional expectation U = E(TX|X).

(b) Find the value of E[(T −W ) sin(eX)].

Exercise 4.2.13. Fixing a positive integer k, compute E(X|Y ) in case Y = kX−
[kX] for X having the U(0, 1) measure of Example 1.1.26 (and where [x] denotes
the integer part of x).

Exercise 4.2.14. Fixing t ∈ R and X integrable random variable, let Y =
max(X, t) and Z = min(X, t). Setting at = E[X|X ≤ t] and bt = E[X|X ≥ t],
show that E[X|Y ] = Y IY >t + atIY=t and E[X|Z] = ZIZ<t + btIZ=t.

Exercise 4.2.15. Let X, Y be i.i.d. random variables. Suppose θ is independent
of (X,Y ), with P(θ = 1) = p, P(θ = 0) = 1 − p. Let Z = (Z1, Z2) where
Z1 = θX + (1− θ)Y and Z2 = θY + (1− θ)X.

(a) Prove that Z and θ are independent.
(b) Obtain an explicit expression for E[g(X,Y )|Z], in terms of Z1 and Z2,

where g : R2 7→ R is a bounded Borel function.

Exercise 4.2.16. Suppose EX2 <∞ and define Var(X|G) = E[(X−E(X|G))2|G].

(a) Show that, E[Var(X|G2)] ≤ E[Var(X|G1)] for any two σ-algebras G1 ⊆ G2

(that is, the dispersion of X about its conditional mean decreases as the
σ−algebra grows).

(b) Show that for any σ-algebra G,

Var[X] = E[Var(X|G)] + Var[E(X|G)] .

Exercise 4.2.17. Suppose N is a non-negative, integer valued R.V. which is in-
dependent of the independent, integrable R.V.-s ξi on the same probability space,
and that

∑
i P(N ≥ i)E|ξi| is finite.

(a) Check that

X(ω) =

N(ω)∑
i=1

ξi(ω) ,

is integrable and deduce that EX =
∑
i P(N ≥ i)Eξi.

(b) Suppose in addition that ξi are identically distributed, in which case this
is merely Wald’s identity EX = ENEξ1. Show that if both ξ1 and N are
square-integrable, then so is X and

Var(X) = Var(ξ1)EN + Var(N)(Eξ1)2 .

Suppose XY , X and Y are integrable. Combining Proposition 4.2.10 and (4.2.1)
convince yourself that if E[X|Y ] = EX then E[XY ] = EXEY . Recall that if X and
Y are independent and integrable then E[X|Y ] = EX (c.f. Proposition 4.2.3). As
you show next, the converse implications are false and further, one cannot dispense
of the nesting relationship between the two σ-algebras in the tower property.

Exercise 4.2.18. Provide examples of X,Y ∈ {−1, 0, 1} such that
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(a) E[XY ] = EXEY but E[X|Y ] 6= EX.
(b) E[X|Y ] = EX but X is not independent of Y .
(c) For Ω = {1, 2, 3} and Fi = σ({i}), i = 1, 2, 3,

E[E(X|F1)|F2] 6= E[E(X|F2)|F1].

As shown in the sequel, per fixed conditioning σ-algebra we can interpret the
C.E. as an expectation in a different (conditional) probability space. Indeed, every
property of the expectation has a corresponding extension to the C.E. For example,
the extension of Jensen’s inequality is

Proposition 4.2.19 (Jensen’s inequality). Suppose g(·) is a convex function
on an open interval G of R, that is,

λg(x) + (1− λ)g(y) ≥ g(λx+ (1− λ)y) ∀ x, y ∈ G, 0 ≤ λ ≤ 1.

If X is an integrable R.V. with P(X ∈ G) = 1 and g(X) is also integrable, then
almost surely E[g(X)|H] ≥ g(E[X|H]) for any σ-algebra H.

Proof. Recall our derivation of (1.3.3) showing that

g(x) ≥ g(c) + (D−g)(c)(x− c) ∀c, x ∈ G
Further, with (D−g)(·) a finite, non-decreasing function on G where g(·) is contin-
uous, it follows that

g(x) = sup
c∈G∩Q

{g(c) + (D−g)(c)(x− c)} = sup
n
{anx+ bn}

for some sequences {an} and {bn} in R and all x ∈ G.
Since P(X ∈ G) = 1, almost surely g(X) ≥ anX + bn and by monotonicity of

the C.E. also E[g(X)|H] ≥ anY + bn for Y = E[X|H]. Further, P(Y ∈ G) = 1
due to the linearity and positivity of the C.E., so almost surely E[g(X)|H] ≥
supn{anY + bn} = g(Y ), as claimed. �

Example 4.2.20. Fixing q ≥ 1 and applying (the conditional) Jensen’s inequality
for the convex function g(x) = |x|q, we have that E[|X|q|H] ≥ |E[X|H]|q for any
X ∈ Lq(Ω,F ,P). So, by the tower property and the monotonicity of the expectation,

‖X‖qq = E|X|q = E[E(|X|q|H)]

≥ E[|E(X|H)|q] = ‖E(X|H)‖qq .
In conclusion, ‖X‖q ≥ ‖E(X|H)‖q for all q ≥ 1.

Exercise 4.2.21. Let Z = E[X|G] for an integrable random variable X and a
σ-algebra G.

(a) Show that if EZ2 = EX2 <∞ then Z = X a.s.
(b) Suppose that Z = E[X|G] has the same law as X. Show that then Z = X

a.s. even if EX2 =∞.

Hint: Show that E[(|X| − X)IA] = 0 for A = {Z ≥ 0} ∈ G, so X ≥ 0 for
almost every ω ∈ A. Applying this for X − c with c non-random deduce that
P(X < c ≤ Z) = 0 and conclude that X ≥ Z a.s.

In the following exercises you are to derive the conditional versions of Markov’s
and Hölder’s inequalities.

Exercise 4.2.22. Suppose p > 0 is non-random and X is a random variable in
(Ω,F ,P) with E|X|p finite.
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(a) Prove that for every σ-algebra G ⊆ F , with probability one

E[|X|p |G] =

∫ ∞
0

pxp−1P(|X| > x |G)dx .

(b) Deduce the conditional version of Markov’s inequality, that for any a > 0

P(|X| ≥ a |G) ≤ a−pE[|X|p |G]

(compare with Lemma 1.4.32 and Example 1.3.14).

Exercise 4.2.23. Suppose E|X|p < ∞ and E|Y |q < ∞ for some p, q > 1 such
that 1

p + 1
q = 1. Prove the conditional Hölder’s inequality

E[|XY | |G] ≤ (E[|X|p |G])1/p(E[|Y |q |G])1/q

(compare with Proposition 1.3.17).

Here are the corresponding extensions of some of the convergence theorems of
Section 1.3.3.

Theorem 4.2.24 (Monotone convergence for C.E.). If 0 ≤ Xm ↑ X∞ a.s.
and EX∞ <∞, then E[Xm|G] ↑ E[X∞|G].

Proof. Let Ym = E[Xm|G] ∈ mG+. By monotonicity of the C.E. we have that
the sequence Ym is a.s. non-decreasing, hence it has a limit Y∞ ∈ mG+ (possibly
infinite). We complete the proof by showing that Y∞ = E[X∞|G]. Indeed, for any
G ∈ G,

E[Y∞IG] = lim
m→∞

E[YmIG] = lim
m→∞

E[XmIG] = E[X∞IG],

where since Ym ↑ Y∞ and Xm ↑ X∞ the first and third equalities follow by the
monotone convergence theorem (the unconditional version), and the second equality
from the definition of the C.E. Ym. Considering G = Ω we see that Y∞ is integrable.
In conclusion, E[Xm|G] = Ym ↑ Y∞ = E[X∞|G], as claimed. �

Lemma 4.2.25 (Fatou’s lemma for C.E.). If the non-negative, integrable Xn

on same measurable space (Ω,F) are such that lim infn→∞Xn is integrable, then
for any σ-algebra G ⊆ F ,

E
(

lim inf
n→∞

Xn

∣∣∣ G) ≤ lim inf
n→∞

E[Xn|G] a.s.

Proof. Applying the monotone convergence theorem for the C.E. of the non-
decreasing sequence of non-negative R.V.s Zn = inf{Xk : k ≥ n} (whose limit is
the integrable lim infn→∞Xn), results with

(4.2.3) E
(

lim inf
n→∞

Xn|G
)

= E( lim
n→∞

Zn|G) = lim
n→∞

E[Zn|G] a.s.

Since Zn ≤ Xn it follows that E[Zn|G] ≤ E[Xn|G] for all n and

(4.2.4) lim
n→∞

E[Zn|G] = lim inf
n→∞

E[Zn|G] ≤ lim inf
n→∞

E[Xn|G] a.s.

Upon combining (4.2.3) and (4.2.4) we obtain the thesis of the lemma. �

Fatou’s lemma leads to the C.E. version of the dominated convergence theorem.

Theorem 4.2.26 (Dominated convergence for C.E.). If supm |Xm| is inte-

grable and Xm
a.s→ X∞, then E[Xm|G]

a.s.→ E[X∞|G].
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Proof. Let Y = supm |Xm| and Zm = Y −Xm ≥ 0. Applying Fatou’s lemma
for the C.E. of the non-negative, integrable R.V.s Zm ≤ 2Y , we see that

E
(

lim inf
m→∞

Zm

∣∣∣ G) ≤ lim inf
m→∞

E[Zm|G] a.s.

Since Xm converges, by the linearity of the C.E. and integrability of Y this is
equivalent to

E
(

lim
m→∞

Xm

∣∣∣ G) ≥ lim sup
m→∞

E[Xm|G] a.s.

Applying the same argument for the non-negative, integrable R.V.s Wm = Y +Xm

results with

E
(

lim
m→∞

Xm

∣∣∣ G) ≤ lim inf
m→∞

E[Xm|G] a.s. .

We thus conclude that a.s. the lim inf and lim sup of the sequence E[Xm|G] coincide
and are equal to E[X∞|G], as stated. �

Exercise 4.2.27. Let X1, X2 be random variables defined on same probability
space (Ω,F ,P) and G ⊆ F a σ-algebra. Prove that (a), (b) and (c) below are
equivalent.

(a) For any Borel sets B1 and B2,

P(X1 ∈ B1, X2 ∈ B2|G) = P(X1 ∈ B1|G)P(X2 ∈ B2|G) .

(b) For any bounded Borel functions h1 and h2,

E[h1(X1)h2(X2)|G] = E[h1(X1)|G]E[h2(X2)|G] .

(c) For any bounded Borel function h,

E[h(X1)|σ(G, σ(X2))] = E[h(X1)|G] .

Definition 4.2.28. If one of the equivalent conditions of Exercise 4.2.27 holds we
say that X1 and X2 are conditionally independent given G.

Exercise 4.2.29. Suppose that X and Y are conditionally independent given σ(Z)
and that X and Z are conditionally independent given F , where F ⊆ σ(Z). Prove
that then X and Y are conditionally independent given F .

Our next result shows that the C.E. operation is continuous with respect to Lq

convergence.

Theorem 4.2.30. Suppose Xn
Lq→ X∞. That is, Xn, X∞ ∈ Lq(Ω,F ,P) are such

that E(|Xn −X∞|q)→ 0. Then, E[Xn|G]
Lq→ E[X∞|G] for any σ-algebra G ⊆ F .

Proof. We saw already in Example 4.2.20 that E[Xn|G] are in Lq(Ω,G,P)
for n ≤ ∞. Further, by the linearity of C.E., Jensen’s Inequality for the convex
function |x|q as in this example, and the tower property of (4.2.1),

E[|E(Xn|G)−E(X∞|G)|q] = E[|E(Xn −X∞|G)|q]
≤ E[E(|Xn −X∞|q|G)] = E[|Xn −X∞|q]→ 0,

by our hypothesis, yielding the thesis of the theorem. �

As you will show, the C.E. operation is also continuous with respect to the follow-
ing topology of weak Lq convergence.
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Definition 4.2.31. Let L∞(Ω,F ,P) denote the collection of all random variables
on (Ω,F) which are P-a.s. bounded, with ‖Y ‖∞ denoting the smallest non-random
K such that P(|Y | ≤ K) = 1. Setting p(q) : [1,∞]→ [1,∞] via p(q) = q/(q−1), we

say that Xn converges weakly in Lq to X∞, denoted Xn
wLq−→ X∞, if Xn, X∞ ∈ Lq

and E[(Xn−X∞)Y ]→ 0 for each fixed Y such that ‖Y ‖p(q) is finite (compare with
Definition 1.3.26).

Exercise 4.2.32. Show that E[YE(X|G)] = E[XE(Y |G)] for any σ-algebra G ⊆
F , provided that for some q ≥ 1 and p = q/(q − 1) both ‖X‖q and ‖Y ‖p are finite.

Deduce that if Xn
wLq−→ X∞ then E[Xn|G]

wLq−→ E[X∞|G] for any σ-algebra G ⊆ F .

In view of Example 4.2.20 we already know that for each integrable random vari-
able X the collection {E[X|G] : G ⊆ F is a σ-algebra} is a bounded in L1(Ω,F ,P).
As we show next, this collection is even uniformly integrable (U.I.), a key fact in
our study of uniformly integrable martingales (see Subsection 5.3.1).

Proposition 4.2.33. For any X ∈ L1(Ω,F ,P), the collection {E[X|H] : H ⊆ F
is a σ-algebra} is U.I.

Proof. Fixing ε > 0, let δ = δ(X, ε) > 0 be as in part (b) of Exercise 1.3.43
and set the finite constant M = δ−1E|X|. By Markov’s inequality and Example
4.2.20 we get that MP(A) ≤ E|Y | ≤ E|X| for A = {|Y | ≥ M} ∈ H and Y =
E[X|H]. Hence, P(A) ≤ δ by our choice of M , whereby our choice of δ results
with E[|X|IA] ≤ ε (c.f. part (b) of Exercise 1.3.43). Further, by (the conditional)
Jensen’s inequality |Y | ≤ E[|X| |H] (see Example 4.2.20). Therefore, by definition
of the C.E. E[|X| |H],

E[|Y |I|Y |>M ] ≤ E[|Y |IA] ≤ E[E[|X||H]IA] = E[|X|IA] ≤ ε .

Since this applies for any σ-algebra H ⊆ F and the value of M = M(X, ε) does not
depend on Y , we conclude that the collection of such Y = E[X|H] is U.I. �

To check your understanding of the preceding derivation, prove the following nat-
ural extension of Proposition 4.2.33.

Exercise 4.2.34. Let C be a uniformly integrable collection of random variables

on (Ω,F ,P). Show that the collection D of all R.V. Y such that Y
a.s.
= E[X|H] for

some X ∈ C and σ-algebra H ⊆ F , is U.I.

Here is a somewhat counter intuitive fact about the conditional expectation.

Exercise 4.2.35. Suppose Yn
a.s→ Y∞ in (Ω,F ,P) when n → ∞ and {Yn} are

uniformly integrable.

(a) Show that E[Yn|G]
L1

→ E[Y∞|G] for any σ-algebra G ⊆ F .
(b) Provide an example of such sequence {Yn} and a σ-algebra G ⊂ F such

that E[Yn|G] does not converge almost surely to E[Y∞|G].

4.3. The conditional expectation as an orthogonal projection

It readily follows from our next proposition that for X ∈ L2(Ω,F ,P) and σ-
algebras G ⊆ F the C.E. Y = E[X|G] is the unique Y ∈ L2(Ω,G,P) such that

(4.3.1) ‖X − Y ‖2 = inf{‖X −W‖2 : W ∈ L2(Ω,G,P)}.
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Proposition 4.3.1. For any X ∈ L2(Ω,F ,P) and σ-algebras G ⊆ F , a R.V.
Y ∈ L2(Ω,G,P) is optimal in the sense of (4.3.1) if and only if it satisfies the
orthogonality relations

(4.3.2) E[(X − Y )Z] = 0 for all Z ∈ L2(Ω,G,P) .

Further, any such R.V. Y is a version of E[X|G].

Proof. If Y ∈ L2(Ω,G,P) satisfies (4.3.1) then considering W = Y + αZ it
follows that for any Z ∈ L2(Ω,G,P) and α ∈ R,

0 ≤ ‖X − Y − αZ‖22 − ‖X − Y ‖22 = α2EZ2 − 2αE[(X − Y )Z] .

By elementary calculus, this inequality holds for all α ∈ R if and only if E[(X −
Y )Z] = 0. Conversely, suppose Y ∈ L2(Ω,G,P) satisfies (4.3.2) and fix W ∈
L2(Ω,G,P). Then, considering (4.3.2) for Z = W − Y we see that

‖X −W‖22 = ‖X − Y ‖22 − 2E[(X − Y )(W − Y )] + ‖W − Y ‖22 ≥ ‖X − Y ‖22 ,
so necessarily Y satisfies (4.3.1). Finally, since IG ∈ L2(Ω,G,P) for any G ∈ G, if
Y satisfies (4.3.2) then it also satisfies the identity (4.1.1) which characterizes the
C.E. E[X|G]. �

Example 4.3.2. If G = σ(A1, . . . , A`) for a finite partition of Ω to disjoint sets
Ai and n ≤ ` is such that P(Ai) > 0 for i = 1, . . . , n, then L2(Ω,G,P) consists of
all variables of the form W =

∑n
i=1 viIAi , vi ∈ R. A R.V. Y of this form satisfies

(4.3.1) if and only if the corresponding {vi} minimizes

E[(X −
n∑
i=1

viIAi)
2]−EX2 =

{ n∑
i=1

P(Ai)v
2
i − 2

n∑
i=1

viE[XIAi ]
}
,

which amounts to vi = E[XIAi ]/P(Ai). In particular, if n = ` and Z =
∑n
i=1 ziIAi

for distinct zi-s, then σ(Z) = G and we thus recover our first definition of the C.E.

E[X|Z] =

n∑
i=1

E[XIZ=zi ]

P(Z = zi)
IZ=zi .

As shown in the sequel, using (4.3.1) as an alternative characterization of the
C.E. of X ∈ L2(Ω,F ,P) we can prove the existence of the C.E. without invoking
the Radon-Nikodym theorem. We start by defining the relevant concepts from the
theory of Hilbert spaces on which this approach is based.

Definition 4.3.3. A linear vector space is a set H that is closed under operations
of addition and multiplication by (real-valued) scalars. That is, if h1, h2 ∈ H then
h1 + h2 ∈ H and αh ∈ H for all α ∈ R, where α(h1 + h2) = αh1 +αh2, (α+ β)h =
αh + βh, α(βh) = (αβ)h and 1h = h. A normed vector space is a linear vector
space H equipped with a norm ‖ · ‖. That is, a non-negative function on H such
that ‖αh‖ = |α|‖h‖ for all α ∈ R and d(h1, h2) = ‖h1 − h2‖ is a metric on H.

Definition 4.3.4. A sequence {hn} in a normed vector space is called a Cauchy
sequence if supk,m≥n ‖hk − hm‖ → 0 as n→∞ and we say that {hn} converges to
h ∈ H if ‖hn − h‖ → 0 as n → ∞. A Banach space is a normed vector space in
which every Cauchy sequence converges.

Building on the preceding, we define the concept of inner product and the corre-
sponding Hilbert spaces and sub-spaces.
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Definition 4.3.5. A Hilbert space is a Banach space H whose norm is of the
form (h, h)1/2 for a bi-linear, symmetric function (h1, h2) : H × H 7→ R such that
(h, h) ≥ 0 and we call such (h1, h2) an inner product for H. A subset K of a Hilbert
space which is closed under addition and under multiplication by a scalar is called
a Hilbert sub-space if every Cauchy sequence {hn} ⊆ K has a limit in K.

Here are two elementary properties of inner products we use in the sequel.

Exercise 4.3.6. Let ‖h‖ = (h, h)
1
2 with (h1, h2) an inner product for a linear

vector space H. Show that Schwarz inequality

(u, v)2 ≤ ‖u‖2‖v‖2 ,
and the parallelogram law ‖u+v‖2+‖u−v‖2 = 2‖u‖2+2‖v‖2 hold for any u, v ∈ H.

Our next proposition shows that for each finite q ≥ 1 the space Lq(Ω,F ,P) is a
Banach space for the norm ‖ ·‖q, the usual addition of R.V.s and the multiplication
of a R.V. X(ω) by a non-random (scalar) constant. Further, L2(Ω,G,P) is a Hilbert
sub-space of L2(Ω,F ,P) for any σ-algebras G ⊂ F .

Proposition 4.3.7. Upon identifying R-valued R.V. which are equal with proba-
bility one as being in the same equivalence class, for each q ≥ 1 and a σ-algebra F ,
the space Lq(Ω,F ,P) is a Banach space for the norm ‖ ·‖q. Further, L2(Ω,G,P) is
then a Hilbert sub-space of L2(Ω,F ,P) for the inner product (X,Y ) = EXY and
any σ-algebras G ⊆ F .

Proof. Fixing q ≥ 1, we identify X and Y such that P(X 6= Y ) = 0 as
being the same element of Lq(Ω,F ,P). The resulting set of equivalence classes is a
normed vector space. Indeed, both ‖·‖q, the addition of R.V. and the multiplication
by a non-random scalar are compatible with this equivalence relation. Further, if
X,Y ∈ Lq(Ω,F ,P) then ‖αX‖q = |α|‖X‖q <∞ for all α ∈ R and by Minkowski’s
inequality ‖X + Y ‖q ≤ ‖X‖q + ‖Y ‖q < ∞. Consequently, Lq(Ω,F ,P) is closed
under the operations of addition and multiplication by a non-random scalar, with
‖ · ‖q a norm on this collection of equivalence classes.
Suppose next that {Xn} ⊆ Lq is a Cauchy sequence for ‖ · ‖q. Then, by definition,

there exist kn ↑ ∞ such that ‖Xr−Xs‖qq < 2−n(q+1) for all r, s ≥ kn. Observe that
by Markov’s inequality

P(|Xkn+1 −Xkn | ≥ 2−n) ≤ 2nq‖Xkn+1 −Xkn‖qq < 2−n ,

and consequently the sequence P(|Xkn+1
− Xkn | ≥ 2−n) is summable. By Borel-

Cantelli I it follows that
∑
n |Xkn+1

(ω)−Xkn(ω)| is finite with probability one, in
which case clearly

Xkn = Xk1 +

n−1∑
i=1

(Xki+1 −Xki)

converges to a finite limit X(ω). Next let, X = lim supn→∞Xkn (which per Theo-
rem 1.2.22 is an R-valued R.V.). Then, fixing n and r ≥ kn, for any t ≥ n,

E
[
|Xr −Xkt |q

]
= ‖Xr −Xkt‖qq ≤ 2−nq ,

so that by the a.s. convergence of Xkt to X and Fatou’s lemma

E|Xr −X|q = E
[

lim
t→∞

|Xr −Xkt |q
]
≤ lim inf

t→∞
E|Xr −Xkt |q ≤ 2−nq .
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This inequality implies that Xr − X ∈ Lq and hence also X ∈ Lq. As r → ∞ so

does n and we can further deduce from the preceding inequality that Xr
Lq→ X.

Recall that |EXY | ≤
√

EX2EY 2 by the Cauchy-Schwarz inequality. Thus, the bi-
linear, symmetric function (X,Y ) = EXY on L2×L2 is real-valued and compatible
with our equivalence relation. As ‖X‖22 = (X,X), the Banach space L2(Ω,F ,P) is
a Hilbert space with respect to this inner product.
Finally, observe that for any σ-algebra G ⊆ F the subset L2(Ω,G,P) of the Hilbert

space L2(Ω,F ,P) is closed under addition of R.V.s and multiplication by a non-
random constant. Further, as shown before, the L2 limit of a Cauchy sequence
{Xn} ⊆ L2(Ω,G,P) is lim supnXkn which also belongs to L2(Ω,G,P). Hence, the
latter is a Hilbert subspace of L2(Ω,F ,P). �

Remark. With minor notational modifications, this proof shows that for any
measure µ on (S,F) and q ≥ 1 finite, the set Lq(S,F , µ) of µ-a.e. equivalence classes
of R-valued, measurable functions f such that µ(|f |q) <∞, is a Banach space. This
is merely a special case of a general extension of this property, corresponding to
Y = R in your next exercise.

Exercise 4.3.8. For q ≥ 1 finite and a given Banach space (Y, ‖ · ‖), consider
the space Lq(S,F , µ;Y) of all µ-a.e. equivalence classes of functions f : S 7→ Y,
measurable with respect to the Borel σ-algebra induced on Y by ‖ · ‖ and such that
µ(‖f(·)‖q) <∞.

(a) Show that ‖f‖q = µ(‖f(·)‖q)1/q makes Lq(S,F , µ;Y) into a Banach
space.

(b) For future applications of the preceding, verify that the space Y = Cb(T)
of bounded, continuous real-valued functions on a topological space T is
a Banach space for the supremum norm ‖f‖ = sup{|f(t)| : t ∈ T}.

Your next exercise extends Proposition 4.3.7 to the collection L∞(Ω,F ,P) of all
R-valued R.V. which are in equivalence classes of bounded random variables.

Exercise 4.3.9. Fixing a probability space (Ω,F ,P) prove the following facts:

(a) L∞(Ω,F ,P) is a Banach space for ‖X‖∞ = inf{M : P(|X| ≤M) = 1}.
(b) ‖X‖q ↑ ‖X‖∞ as q ↑ ∞, for any X ∈ L∞(Ω,F ,P).
(c) If E[|X|q] <∞ for some q > 0 then E|X|q → P(|X| > 0) as q → 0.
(d) The collection SF of simple functions is dense in Lq(Ω,F ,P) for any

1 ≤ q ≤ ∞.
(e) The collection Cb(R) of bounded, continuous real-valued functions, is

dense in Lq(R,B, λ) for any q ≥ 1 finite.
Hint: The (bounded) monotone class theorem might be handy.

In view of Proposition 4.3.7, the existence of the C.E. of X ∈ L2 which satisfies
(4.3.1), or the equivalent condition (4.3.2), is a special instance of the following
fundamental geometric property of Hilbert spaces.

Theorem 4.3.10 (Orthogonal projection). Given h ∈ H and a Hilbert sub-

space G of H, let d = inf{‖h − g‖ : g ∈ G}. Then, there exists a unique ĥ ∈ G,

called the orthogonal projection of h on G, such that d = ‖h− ĥ‖. This is also the

unique ĥ ∈ G such that (h− ĥ, f) = 0 for all f ∈ G.
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Proof. We start with the existence of ĥ ∈ G such that d = ‖h − ĥ‖. To this
end, let gn ∈ G be such that ‖h − gn‖ → d. Applying the parallelogram law for
u = h− 1

2 (gm + gk) and v = 1
2 (gm − gk) we find that

‖h−gk‖2 +‖h−gm‖2 = 2‖h− 1

2
(gm+gk)‖2 +2‖1

2
(gm−gk)‖2 ≥ 2d2 +

1

2
‖gm−gk‖2

since 1
2 (gm + gk) ∈ G. Taking k,m→∞, both ‖h− gk‖2 and ‖h− gm‖2 approach

d2 and hence by the preceding inequality ‖gm − gk‖ → 0. In conclusion, {gn} is a

Cauchy sequence in the Hilbert sub-space G, which thus converges to some ĥ ∈ G.

Recall that ‖h− ĥ‖ ≥ d by the definition of d. Since for n→∞ both ‖h− gn‖ → d

and ‖gn−ĥ‖ → 0, the converse inequality is a consequence of the triangle inequality

‖h− ĥ‖ ≤ ‖h− gn‖+ ‖gn − ĥ‖.
Next, suppose there exist g1, g2 ∈ G such that (h − gi, f) = 0 for i = 1, 2 and

all f ∈ G. Then, by linearity of the inner product (g1 − g2, f) = 0 for all f ∈ G.
Considering f = g1 − g2 ∈ G we see that (g1 − g2, g1 − g2) = ‖g1 − g2‖2 = 0 so
necessarily g1 = g2.

We complete the proof by showing that ĥ ∈ G is such that ‖h − ĥ‖2 ≤ ‖h − g‖2
for all g ∈ G if and only if (h− ĥ, f) = 0 for all f ∈ G. This is done exactly as in
the proof of Proposition 4.3.1. That is, by symmetry and bi-linearity of the inner
product, for all f ∈ G and α ∈ R,

‖h− ĥ− αf‖2 − ‖h− ĥ‖2 = α2‖f‖2 − 2α(h− ĥ, f)

We arrive at the stated conclusion upon noting that fixing f , this function is non-

negative for all α if and only if (h− ĥ, f) = 0. �

Applying Theorem 4.3.10 for the Hilbert subspace G = L2(Ω,G,P) of L2(Ω,F ,P)
(see Proposition 4.3.7), you have the existence of a unique Y ∈ G satisfying (4.3.2)
for each non-negative X ∈ L2.

Exercise 4.3.11. Show that for any non-negative integrable X, not necessarily in
L2, the sequence Yn ∈ G corresponding to Xn = min(X,n) is non-decreasing and
that its limit Y satisfies (4.1.1). Verify that this allows you to prove Theorem 4.1.2
without ever invoking the Radon-Nikodym theorem.

Exercise 4.3.12. Suppose G ⊆ F is a σ-algebra.

(a) Show that for any X ∈ L1(Ω,F ,P) there exists some G ∈ G such that

E[XIG] = sup
A∈G

E[XIA] .

Any G with this property is called G-optimal for X.
(b) Show that Y = E[X|G] almost surely, if and only if for any r ∈ R, the

event {ω : Y (ω) > r} is G-optimal for the random variable (X − r).

Here is an alternative proof of the existence of E[X|G] for X ∈ L2 which avoids
the orthogonal projection, as well as the Radon-Nikodym theorem (the general case
then follows as in Exercise 4.3.11).

Exercise 4.3.13. Suppose X ∈ L2(Ω,F ,P). Assume first that the σ-algebra
G ⊆ F is countably generated. That is G = σ(B1, B2, . . .) for some Bk ∈ F .

(a) Let Yn = E[X|Gn] for the finitely generated Gn = σ(Bk, k ≤ n) (for its
existence, see Example 4.3.2). Show that Yn is a Cauchy sequence in
L2(Ω,G,P), hence it has a limit Y ∈ L2(Ω,G,P).
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(b) Show that Y = E[X|G].

Hint: You may rely on Exercise 4.1.3.
Assume now that G is not countably generated.

(c) Let H1 ⊆ H2 be finite σ-algebras. Show that

E[E(X|H1)2] ≤ E[E(X|H2)2] .

(d) Let α = sup E[E(X|H)2], where the supremum is over all finite σ-algebras
H ⊂ G. Show that α is finite, and that there exists an increasing sequence
of finite σ-algebras Hn ⊂ G such that E[E(X|Hn)2] ↑ α as n→∞.

(e) For the sequence Hk of part (d) let H∞ = σ(∪kHk) and Wk = E[X|Hk].
Explain why parts (a) and (b) imply that Wk converges in L2(Ω,H∞,P)
to W such that E[WIH ] = E[XIH ] for any H ∈ H∞.

( f ) Fixing A ∈ G such that A /∈ H∞, let Hn,A = σ(A,Hn) and Zn =
E[X|Hn,A]. Explain why {Zn} has an L2 limit Z such that EZ2 =
EW 2 = α and deduce that E[(W − Z)2] = 0, hence Z = W a.s.

(g) Conclude that W is a version of the C.E. E[X|G].

4.4. Regular conditional probability distributions

We first show that if the random vector (X,Z) ∈ R2 has a probability den-
sity function fX,Z(x, z) (per Definition 3.5.5), then the C.E. E[X|Z] can be com-
puted out of the corresponding conditional probability density (as done in a typ-
ical elementary probability course). To this end, let fZ(z) =

∫
R fX,Z(x, z)dx and

fX(x) =
∫
R fX,Z(x, z)dz denote the probability density functions of Z and X. That

is, fZ(z) = λ(fX,Z(·, z)) and fX(x) = λ(fX,Z(x, ·)) for Lebesgue measure λ and the
Borel function fX,Z on R2. Recall that fZ(·) and fX(·) are non-negative Borel
functions (for example, consider our proof of Fubini’s theorem in case of Lebesgue
measure on (R2,BR2) and the non-negative integrable Borel function h = fX,Z).
So, defining the conditional probability density function of X given Z as

fX|Z(x|z) =

{
fX,Z(x,z)
fZ(z) if fZ(z) > 0 ,

fX(x) otherwise ,

guarantees that fX|Z : R2 7→ R+ is Borel measurable and
∫
R fX|Z(x|z)dx = 1 for

all z ∈ R.

Proposition 4.4.1. Suppose the random vector (X,Z) has a probability density
function fX,Z(x, z) and g(·) is a Borel function on R such that E|g(X)| <∞. Then,
ĝ(Z) is a version of E[g(X)|Z] for the Borel function

(4.4.1) ĝ(z) =

∫
R
g(x)fX|Z(x|z)dx ,

in case
∫
R |g(x)|fX,Z(x, z)dx is finite (taking otherwise ĝ(z) = 0).

Remark. By Fubini’s theorem, within the support of PZ the limit as δ → 0 of
E[g(X) | |Z − z| < δ] coincides with ĝ(z) of (4.4.1), except possibly at points of
discontinuity of ĝ(·).

Proof. Since the Borel function h(x, z) = g(x)fX,Z(x, z) is integrable with
respect to Lebesgue measure on (R2,BR2), it follows that ĝ(·) is also a Borel function
(c.f. our proof of Fubini’s theorem). Further, by Fubini’s theorem the integrability
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of g(X) implies that λ(R \ A) = 0 for A = {z :
∫
|g(x)|fX,Z(x, z)dx < ∞}, and

with PZ = fZλ this implies that P(Z ∈ A) = 1. By Jensen’s inequality,

|ĝ(z)| ≤
∫
|g(x)|fX|Z(x|z)dx , ∀z ∈ A .

Thus, by Fubini’s theorem and the definition of fX|Z we have that

∞ > E|g(X)| =
∫
|g(x)|fX(x)dx ≥

∫
|g(x)|

[ ∫
A

fX|Z(x|z)fZ(z)dz
]
dx

=

∫
A

[ ∫
|g(x)|fX|Z(x|z)dx

]
fZ(z)dz ≥

∫
A

|ĝ(z)|fZ(z)dz = E|ĝ(Z)| .

So, ĝ(Z) is integrable. With (4.4.1) holding for all z ∈ A and P(Z ∈ A) = 1, by
Fubini’s theorem and the definition of fX|Z we have that for any Borel set B,

E[ĝ(Z)IB(Z)] =

∫
B∩A

ĝ(z)fZ(z)dz =

∫ [ ∫
g(x)fX|Z(x|z)dx

]
IB∩A(z)fZ(z)dz

=

∫
R2

g(x)IB∩A(z)fX,Z(x, z)dxdz = E[g(X)IB(Z)] .

This amounts to E[ĝ(Z)IG] = E[g(X)IG] for any G ∈ σ(Z) = {Z−1(B) : B ∈ B}
so indeed ĝ(Z) is a version of E[g(X)|Z]. �

To each conditional probability density fX|Z(·|·) corresponds the collection of con-

ditional probability measures P̂X|Z(B,ω) =
∫
B
fX|Z(x|Z(ω))dx. The remainder of

this section deals with the following generalization of the latter object.

Definition 4.4.2. Let Y : Ω 7→ S be an (S,S)-valued R.V. in the probability space

(Ω,F ,P), per Definition 1.2.1, and G ⊆ F a σ-algebra. The collection P̂Y |G(·, ·) :
S ×Ω 7→ [0, 1] is called the regular conditional probability distribution (R.C.P.D.)
of Y given G if:

(a) P̂Y |G(A, ·) is a version of the C.E. E[IY ∈A|G] for each fixed A ∈ S.

(b) For any fixed ω ∈ Ω, the set function P̂Y |G(·, ω) is a probability measure
on (S,S).

In case S = Ω, S = F and Y (ω) = ω, we call this collection the regular conditional

probability (R.C.P.) on F given G, denoted also by P̂(A|G)(ω).

Remark. Note that P̂(A|σ(B))(ω) = P(A|B)IB(ω) + P(A|Bc)IBc(ω), which is
not merely the probability measure P(·|B) on (Ω,F).

If the R.C.P. exists, then we can define all conditional expectations through the
R.C.P. Unfortunately, the R.C.P. might not exist (see [Bil95, Exercise 33.11] for
an example in which there exists no R.C.P. on F given G).
Recall that each C.E. is uniquely determined only a.e. Hence, for any countable

collection of disjoint sets An ∈ F there is possibly a set of ω ∈ Ω of probability zero
for which a given collection of C.E. is such that

P(
⋃
n

An|G)(ω) 6=
∑
n

P(An|G)(ω) .

In case we need to examine an uncountable number of such collections in order to
see whether P(·|G) is a measure on (Ω,F), the corresponding exceptional sets of ω
can pile up to a non-negligible set, hence the reason why a R.C.P. might not exist.
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Nevertheless, as our next proposition shows, the R.C.P.D. exists for any condi-
tioning σ-algebra G and any real-valued random variable X. In this setting, the
R.C.P.D. is the analog of the law of X as in Definition 1.2.34, but now given the
information contained in G.

Proposition 4.4.3. For any real-valued random variable X and any σ-algebra

G ⊆ F , there exists a R.C.P.D. P̂X|G(·, ·).

Proof. Consider the random variables H(q, ω) = E[I{X≤q}|G](ω), indexed by
q ∈ Q. By monotonicity of the C.E. we know that if q ≤ r then H(q, ω) ≤ H(r, ω)
for all ω /∈ Ar,q where Ar,q ∈ G is such that P(Ar,q) = 0. Further, by linearity
and dominated convergence of C.E.s H(q + n−1, ω) → H(q, ω) as n → ∞ for all
ω /∈ Bq, where Bq ∈ G is such that P(Bq) = 0. For the same reason, H(q, ω) → 0
as q → −∞ and H(q, ω) → 1 as q → ∞ for all ω /∈ C, where C ∈ G is such
that P(C) = 0. Since Q is countable, the set D = C

⋃
r,q Ar,q

⋃
q Bq is also in

G with P(D) = 0. Next, for a fixed non-random distribution function G(·), let
F (x, ω) = inf{G(r, ω) : r ∈ Q, r > x}, where G(r, ω) = H(r, ω) if ω /∈ D and
G(r, ω) = G(r) otherwise. Clearly, for all ω ∈ Ω the non-decreasing function
x 7→ F (x, ω) converges to zero when x→ −∞ and to one when x→∞, as C ⊆ D.
Furthermore, x 7→ F (x, ω) is right continuous, hence a distribution function, since

lim
xn↓x

F (xn, ω) = inf{G(r, ω) : r ∈ Q, r > xn for somen}

= inf{G(r, ω) : r ∈ Q, r > x} = F (x, ω) .

Thus, to each ω ∈ Ω corresponds a unique probability measure P̂(·, ω) on (R,B)

such that P̂((−∞, x], ω) = F (x, ω) for all x ∈ R (recall Theorem 1.2.37 for its
existence and Proposition 1.2.45 for its uniqueness).
Note that G(q, ·) ∈ mG for all q ∈ Q, hence so is F (x, ·) for each x ∈ R (see

Theorem 1.2.22). It follows that {B ∈ B : P̂(B, ·) ∈ mG} is a λ-system (see
Corollary 1.2.19 and Theorem 1.2.22), containing the π-system P = {R, (−∞, q] :

q ∈ Q}, hence by Dynkin’s π− λ theorem P̂(B, ·) ∈ mG for all B ∈ B. Further, for
ω /∈ D and q ∈ Q,

H(q, ω) = G(q, ω) ≤ F (q, ω) ≤ G(q + n−1, ω) = H(q + n−1, ω)→ H(q, ω)

as n→∞ (specifically, the left-most inequality holds for ω /∈ ∪rAr,q and the right-

most limit holds for ω /∈ Bq). Hence, P̂(B,ω) = E[I{X∈B}|G](ω) for any B ∈ P
and ω /∈ D. Since P(D) = 0 it follows from the definition of the C.E. that for any
G ∈ G and B ∈ P, ∫

G

P̂(B,ω)dP(ω) = E[I{X∈B} ∩ IG] .

Fixing G ∈ G, by monotone convergence and linearity of the expectation, the set L
of B ∈ B for which this equation holds is a λ-system. Consequently, L = σ(P) = B.

Since this applies for all G ∈ G, we conclude that P̂(B, ·) is a version of E[IX∈B |G]

for each B ∈ B. That is, P̂(B,ω) is per Definition 4.4.2 the R.C.P.D. of X given
G. �

Remark. The reason behind Proposition 4.4.3 is that σ(X) inherits the structure
of the Borel σ-algebra B which in turn is “not too big” due to the fact the rational
numbers are dense in R. Indeed, as you are to deduce in the next exercise, there
exists a R.C.P.D. for any (S,S)-valued R.V. X with a B-isomorphic (S,S).
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Exercise 4.4.4. Suppose (S,S) is B-isomorphic, that is, there exists a Borel set
T (equipped with the induced Borel σ-algebra T = {B ∩ T : B ∈ B}) and a one to
one and onto mapping g : S 7→ T such that both g and g−1 are measurable. For

any σ-algebra G and (S,S)-valued R.V. X let P̂Y |G(·, ·) denote the R.C.P.D. of the
real-valued random variable Y = g(X).

(a) Explain why without loss of generality P̂Y |G(T, ω) = 1 for all ω ∈ Ω.
(b) Verify that for any A ∈ S both {ω : X(ω) ∈ A} = {ω : Y (ω) ∈ g(A)} and

g(A) ∈ B.

(c) Deduce that Q̂(A,ω) = P̂Y |G(g(A), ω) is the R.C.P.D. of X given G.

Our next exercise provides a generalization of Proposition 4.4.3 which is key to
the canonical construction of Markov chains in Section 6.1. We note in passing
that to conform with the notation for Markov chains, we reverse the order of the

arguments in the transition probabilities P̂X|Y (y,A) with respect to that of the

R.C.P.D. P̂X|σ(Y )(A,ω).

Exercise 4.4.5. Suppose (S,S) is B-isomorphic and X and Y are (S,S)-valued
R.V. in the same probability space (Ω,F ,P). Prove that there exists (regular) tran-

sition probability P̂X|Y (·, ·) : S× S 7→ [0, 1] such that

(a) For each A ∈ S fixed, y 7→ P̂X|Y (y,A) is a measurable function and

P̂X|Y (Y (ω), A) is a version of the C.E. E[IX∈A|σ(Y )](ω).

(b) For any fixed ω ∈ Ω, the set function P̂X|Y (Y (ω), ·) is a probability
measure on (S,S).

Hint: With g : S 7→ T as before, show that σ(Y ) = σ(g(Y )) and deduce from

Theorem 1.2.26 that P̂X|σ(g(Y ))(A,ω) = f(A, g(Y (ω)) for each A ∈ S, where z 7→
f(A, z) is a Borel function.

Here is the extension of the change of variables formula (1.3.14) to the setting of
conditional distributions.

Exercise 4.4.6. Suppose X ∈ mF and Y ∈ mG for some σ-algebras G ⊆ F are
real-valued. Prove that, for any Borel function h : R2 7→ R such that E|h(X,Y )| <
∞, almost surely,

E[h(X,Y )|G] =

∫
R
h(x, Y (ω))dP̂X|G(x, ω) .

For an integrable R.V. X (and a non-random constant Y = c), this exercise
provides the representation

E[X|G] =

∫
R
xdP̂X|G(x, ω) ,

of the C.E. in terms of the corresponding R.C.P.D. (with the right side denoting the

Lebesgue’s integral of Definition 1.3.1 for the probability space (R,B, P̂X|G(·, ω)).

Solving the next exercise should improve your understanding of the relation be-
tween the R.C.P.D. and the conditional probability density function.

Exercise 4.4.7. Suppose that the random vector (X,Y, Z) has a probability density
function fX,Y,Z per Definition 3.5.5.

(a) Express the R.C.P.D. P̂Y |σ(X,Z) in terms of fX,Y,Z .
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(b) Using this expression show that if X is independent of σ(Y,Z), then

E[Y |X,Z] = E[Y |Z] .

(c) Provide an example of random variables X,Y, Z, such that X is indepen-
dent of Y and

E[Y |X,Z] 6= E[Y |Z] .

Exercise 4.4.8. Let Sn =
∑n
k=1 ξk for i.i.d. integrable random variables ξk.

(a) Show that E[ξ1|Sn] = n−1Sn.
Hint: Consider E[ξπ(1)ISn∈B ] for B ∈ B and π a uniformly chosen ran-
dom permutation of {1, . . . , n} which is independent of {ξk}.

(b) Find P(ξ1 ≤ b|S2) in case the i.i.d. ξk are Exponential of parameter λ.
Hint: See the representation of Exercise 3.4.11.

Exercise 4.4.9. Let E[X|X < Y ] = E[XIX<Y ]/P(X < Y ) for integrable X and
Y such that P(X < Y ) > 0. For each of the following statements, either show that
it implies E[X|X < Y ] ≤ EX or provide a counter example.

(a) X and Y are independent.
(b) The random vector (X,Y ) has the same joint law as the random vector

(Y,X) and P(X = Y ) = 0.
(c) EX2 <∞, EY 2 <∞ and E[XY ] ≤ EXEY .

Exercise 4.4.10. Suppose (X,Y ) are distributed according to a multivariate nor-
mal distribution, with EX = EY = 0 and EY 2 > 0. Show that E[X|Y ] = ρY with
ρ = E[XY ]/EY 2.





CHAPTER 5

Discrete time martingales and stopping times

In this chapter we study a collection of stochastic processes called martingales.
To simplify our presentation we focus on discrete time martingales and filtrations,
also called discrete parameter martingales and filtrations, with definitions and ex-
amples provided in Section 5.1 (indeed, a discrete time stochastic process is merely
a sequence of random variables defined on the same probability space). As we shall
see in Section 5.4, martingales play a key role in computations involving stopping
times. Martingales share many other useful properties, chiefly among which are
tail bounds and convergence theorems. Section 5.2 deals with martingale repre-
sentations and tail inequalities, some of which are applied in Section 5.3 to prove
various convergence theorems. Section 5.5 further demonstrates the usefulness of
martingales in the study of branching processes, likelihood ratios, and exchangeable
processes.

5.1. Definitions and closure properties

Subsection 5.1.1 introduces the concepts of filtration, martingale and stopping
time and provides a few illustrating examples and interpretations. Subsection 5.1.2
introduces the related super-martingales and sub-martingales, as well as the power-
ful martingale transform and other closure properties of this collection of stochastic
processes.

5.1.1. Martingales, filtrations and stopping times: definitions and
examples. Our starting point is the following rigorous mathematical definition of
a (discrete time) filtration, which intuitively represents any procedure of collecting
more and more information as time goes on (not necessarily implying a connection
with mutual-information).

Definition 5.1.1. A filtration is a non-decreasing family of sub-σ-algebras {Fn}
of our measurable space (Ω,F). That is, F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn · · · ⊆ F and
Fn is a σ-algebra for each n. We denote by Fn ↑ F∞ a filtration {Fn} and the
associated σ-algebra F∞ = σ(

⋃
k Fk) such that the relation Fk ⊆ F` applies for all

0 ≤ k ≤ ` ≤ ∞.

Given a filtration, we are interested in stochastic processes (S.Ps) such that for
each n the information gathered by that time suffices for evaluating the value of
the n-th element of the process. That is,

Definition 5.1.2. A S.P. {Xn, n = 0, 1, . . .} is adapted to a filtration {Fn}, also
denoted Fn-adapted, if σ(Xn) ⊆ Fn for each n (that is, Xn ∈ mFn for each n).

At this point you should convince yourself that {Xn} is adapted to the filtration
{Fn} if and only if σ(X0, X1, . . . , Xn) ⊆ Fn for all n. That is,

177
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Definition 5.1.3. The filtration {FX
n } with FX

n = σ(X0, X1, . . . , Xn) is the min-
imal filtration with respect to which {Xn} is adapted. We therefore call it the
canonical filtration for the S.P. {Xn}.

Whenever clear from the context what it means, we shall use the notation Xn

both for the whole S.P. {Xn} and for the n-th R.V. of this process, and likewise we
may sometimes use Fn to denote the whole filtration {Fn}.
A martingale consists of a filtration and an adapted S.P. which can represent the

outcome of a “fair gamble”. That is, the expected future reward given current
information is exactly the current value of the process, or as a rigorous definition:

Definition 5.1.4. A martingale (denoted MG) is a pair (Xn,Fn), where {Fn} is
a filtration and {Xn} is an integrable S.P., that is, E|Xn| < ∞ for all n, adapted
to this filtration, such that

(5.1.1) E[Xn+1|Fn] = Xn ∀n, a.s.

Remark. The “slower” a filtration n 7→ Fn grows, the easier it is for an adapted
S.P. to be a martingale. That is, if Hn ⊆ Fn for all n and S.P. {Xn} adapted to
filtration {Hn} is such that (Xn,Fn) is a martingale, then by the tower property
(Xn,Hn) is also a martingale. In particular, if (Xn,Fn) is a martingale then {Xn}
is also a martingale with respect to its canonical filtration. For this reason, hereafter
the statement {Xn} is a MG (without explicitly specifying the filtration), means
that {Xn} is a MG with respect to its canonical filtration FX

n = σ(Xk, k ≤ n).

We next provide an alternative characterization of the martingale property.

Proposition 5.1.5. If Xn =
∑n
k=0Dk then the canonical filtration for {Xn} is

the same as the canonical filtration for {Dn}. Further, (Xn,Fn) is a martingale if
and only if {Dn} is an integrable S.P., adapted to {Fn}, such that E[Dn+1|Fn] = 0
a.s. for all n.

Remark. The martingale differences associated with (martingale) {Xn} areDn =
Xn −Xn−1, n ≥ 1 and D0 = X0.

Proof. With both the transformation from (X0, . . . , Xn) to (D0, . . . , Dn) and
its inverse being continuous (hence Borel), it follows that FX

n = FD
n for each n

(c.f. Exercise 1.2.33). Therefore, {Xn} is adapted to a given filtration {Fn} if and
only if {Dn} is adapted to this filtration (see Definition 5.1.3). It is easy to show
by induction on n that E|Xk| < ∞ for k = 0, . . . , n if and only if E|Dk| < ∞ for
k = 0, . . . , n. Hence, {Xn} is an integrable S.P. if and only if {Dn} is. Finally, with
Xn ∈ mFn it follows from the linearity of the C.E. that

E[Xn+1|Fn]−Xn = E[Xn+1 −Xn|Fn] = E[Dn+1|Fn] ,

and the alternative expression for the martingale property follows from (5.1.1). �

Our first example of a martingale, is the random walk, perhaps the most funda-
mental stochastic process.

Definition 5.1.6. The random walk is the stochastic process Sn = S0 +
∑n
k=1 ξk

with real-valued, independent, identically distributed {ξk} which are also indepen-
dent of S0. Unless explicitly stated otherwise, we always set S0 to be zero. We say
that the random walk is symmetric if the law of ξk is the same as that of −ξk. We
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call it a simple random walk (on Z), in short srw, if ξk ∈ {−1, 1}. The srw is
completely characterized by the parameter p = P(ξk = 1) which is always assumed
to be in (0, 1) (or alternatively, by q = 1− p = P(ξk = −1)). Thus, the symmetric
srw corresponds to p = 1/2 = q (and the asymmetric srw corresponds to p 6= 1/2).

The random walk is a MG (with respect to its canonical filtration), whenever
E|ξ1| <∞ and Eξ1 = 0.

Remark. More generally, such partial sums {Sn} form a MG even when the
independent and integrable R.V. ξk of zero mean have non-identical distributions,
and the canonical filtration of {Sn} is merely {Fξ

n}, where Fξ
n = σ(ξ1, . . . , ξn).

Indeed, this is an application of Proposition 5.1.5 for independent, integrable Dk =
Sk−Sk−1 = ξk, k ≥ 1 (with D0 = 0), where E[Dn+1|D0, D1, . . . , Dn] = EDn+1 = 0
for all n ≥ 0 by our assumption that Eξk = 0 for all k.

Definition 5.1.7. We say that a stochastic process {Xn} is square-integrable if
EX2

n <∞ for all n. Similarly, we call a martingale (Xn,Fn) such that EX2
n <∞

for all n, an L2-MG (or a square-integrable MG).

Square-integrable martingales have zero-mean, uncorrelated differences and admit
an elegant decomposition of conditional second moments.

Exercise 5.1.8. Suppose (Xn,Fn) and (Yn,Fn) are square-integrable martingales.

(a) Show that the corresponding martingale differences Dn are uncorrelated
and that each Dn, n ≥ 1, has zero mean.

(b) Show that for any ` ≥ n ≥ 0,

E[X`Y`|Fn]−XnYn = E[(X` −Xn)(Y` − Yn)|Fn]

=
∑̀

k=n+1

E[(Xk −Xk−1)(Yk − Yk−1)|Fn] .

(c) Deduce that if supk |Xk| ≤ C non-random then for any ` ≥ 1,

E
[(∑̀

k=1

D2
k

)2] ≤ 6C4 .

Remark. A square-integrable stochastic process with zero-mean mutually inde-
pendent differences is necessarily a martingale (consider Proposition 5.1.5). So, in
view of part (a) of Exercise 5.1.8, the MG property is between the more restrictive
requirement of having zero-mean, independent differences, and the not as useful
property of just having zero-mean, uncorrelated differences. While in general these
three conditions are not the same, as you show next they do coincide in case of
Gaussian stochastic processes.

Exercise 5.1.9. A stochastic process {Xn} is Gaussian if for each n the ran-
dom vector (X1, . . . , Xn) has the multivariate normal distribution (c.f. Definition
3.5.13). Show that having independent or uncorrelated differences are equivalent
properties for such processes, which together with each of these differences having
a zero mean is then also equivalent to the MG property.

Products of R.V. is another classical source for martingales.
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Example 5.1.10. Consider the stochastic process Mn =
∏n
k=1 Yk for independent,

integrable random variables Yk ≥ 0. Clearly, FM
n ⊆ FY

n (see Exercise 1.2.33).
Further, upon taking out what is known, we get by independence that

E[Mn+1|FY
n ] = E[Yn+1Mn|FY

n ] = MnE[Yn+1|FY
n ] = MnE[Yn+1] ,

so {Mn} is a MG, which we then call the product martingale, if and only if
EYk = 1 for all k ≥ 1 (for general sequence {Yn} we need instead that a.s.
E[Yn+1|Y1, . . . , Yn] = 1 for all n).

Remark. In investment applications, the MG condition EYk = 1 corresponds to
a neutral return rate, and is not the same as the condition E[log Yk] = 0 under
which the associated partial sums Sn = logMn form a MG.

We proceed to define the important concept of stopping time (in the simpler
context of a discrete parameter filtration).

Definition 5.1.11. A random variable τ taking values in {0, 1, . . . , n, . . . ,∞} is a
stopping time for the filtration {Fn} (also denoted Fn-stopping time), if the event
{ω : τ(ω) ≤ n} is in Fn for each finite n ≥ 0.

Remark. Intuitively, a stopping time corresponds to a situation where the deci-
sion whether to stop or not at any given (non-random) time step is based on the
information available by that time step. As we shall amply see in the sequel, one of
the advantages of MGs is in providing a handle on explicit computations associated
with various stopping times.

The next two exercises provide examples of stopping times. Practice your under-
standing of this concept by solving them.

Exercise 5.1.12. Suppose that θ and τ are stopping times for the same filtration
{Fn}. Show that then θ∧τ , θ∨τ and θ+τ are also stopping times for this filtration.

Exercise 5.1.13. Show that the first hitting time τ(ω) = inf{k ≥ 0 : Xk(ω) ∈ B}
of a Borel set B ⊆ R by a sequence {Xk}, is a stopping time for the canonical
filtration {FX

n }. Provide an example where the last hitting time θ = sup{k ≥ 0 :
Xk ∈ B} of a set B by the sequence, is not a stopping time (not surprising, since
we need to know the whole sequence {Xk} in order to verify that there are no visits
to B after a given time n).

Here is an elementary application of first hitting times.

Exercise 5.1.14 (Reflection principle). Suppose {Sn} is a symmetric random
walk starting at S0 = 0 (see Definition 5.1.6).

(a) Show that P(Sn − Sk ≥ 0) ≥ 1/2 for k = 1, 2, . . . , n.
(b) Fixing x > 0, let τ = inf{k ≥ 0 : Sk > x} and show that

P(Sn > x) ≥
n∑
k=1

P(τ = k, Sn − Sk ≥ 0) ≥ 1

2

n∑
k=1

P(τ = k) .

(c) Deduce that for any n and x > 0,

P(
n

max
k=1

Sk > x) ≤ 2P(Sn > x) .
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(d) Considering now the symmetric srw, show that for any positive integers
n, x,

P(
n

max
k=1

Sk ≥ x) = 2P(Sn ≥ x)−P(Sn = x)

and that Z2n+1
D
= (|S2n+1|−1)/2, where Zn denotes the number of (strict)

sign changes within {S0 = 0, S1, . . . , Sn}.
Hint: Show that P(Z2n+1 ≥ r|S1 = −1) = P(max2n+1

k=1 Sk ≥ 2r − 1|S1 =
−1) by reflecting (the signs of) the increments occurring between the odd
and the even strict sign changes of the srw.

We conclude this subsection with a useful sufficient condition for the integrability
of a stopping time.

Exercise 5.1.15. Suppose the Fn-stopping time τ is such that a.s.

P[τ ≤ n+ r|Fn] ≥ ε
for some positive integer r, some ε > 0 and all n.

(a) Show that P(τ > kr) ≤ (1− ε)k for any positive integer k.
Hint: Use induction on k.

(b) Deduce that in this case Eτ <∞.

5.1.2. Sub-martingales, super-martingales and stopped martingales.
Often when operating on a MG, we naturally end up with a sub-martingale or a
super-martingale, as defined next. Moreover, these processes share many of the
properties of martingales, so it is useful to develop a unified theory for them.

Definition 5.1.16. A sub-martingale (denoted sub-MG) is an integrable S.P.
{Xn}, adapted to the filtration {Fn}, such that

E[Xn+1|Fn] ≥ Xn ∀n, a.s.

A super-martingale (denoted sup-MG) is an integrable S.P. {Xn}, adapted to the
filtration {Fn} such that

E[Xn+1|Fn] ≤ Xn ∀n, a.s.

(A typical S.P. {Xn} is neither a sub-MG nor a sup-MG, as the sign of the R.V.
E[Xn+1|Fn]−Xn may well be random, or possibly dependent upon n).

Remark 5.1.17. Note that {Xn} is a sub-MG if and only if {−Xn} is a sup-MG.
By this identity, all results about sub-MGs have dual statements for sup-MGs and
vice verse. We often state only one out of each such pair of statements. Further,
{Xn} is a MG if and only if {Xn} is both a sub-MG and a sup-MG. As a result,
every statement holding for either sub-MGs or sup-MGs, also hold for MGs.

Example 5.1.18. Expanding on Example 5.1.10, if the non-negative, integrable
random variables Yk are such that E[Yn|Y1, . . . , Yn−1] ≥ 1 a.s. for all n then Mn =∏n
k=1 Yk is a sub-MG, and if E[Yn|Y1, . . . , Yn−1] ≤ 1 a.s. for all n then {Mn} is a

sup-MG. Such martingales appear for example in mathematical finance, where Yk
denotes the random proportional change in the value of a risky asset at the k-th
trading round. So, positive conditional mean return rate yields a sub-MG while
negative conditional mean return rate gives a sup-MG.

The sub-martingale (and super-martingale) property is closed with respect to the
addition of S.P.
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Exercise 5.1.19. Show that if {Xn} and {Yn} are sub-MGs with respect to a
filtration {Fn}, then so is {Xn +Yn}. In contrast, show that for any sub-MG {Yn}
there exists integrable {Xn} adapted to {FY

n } such that {Xn+Yn} is not a sub-MG
with respect to any filtration.

Here are some of the properties of sub-MGs (and of sup-MGs).

Proposition 5.1.20. If (Xn,Fn) is a sub-MG, then a.s. E[X`|Fm] ≥ Xm for
any ` > m. Consequently, for s sub-MG necessarily n 7→ EXn is non-decreasing.
Similarly, for a sup-MG a.s. E[X`|Fm] ≤ Xm (with n 7→ EXn non-increasing),
and for a martingale a.s. E[X`|Fm] = Xm for all ` > m (with E[Xn] independent
of n).

Proof. Suppose {Xn} is a sub-MG and ` = m+ k for k ≥ 1. Then,

E[Xm+k|Fm] = E[E(Xm+k|Fm+k−1)|Fm] ≥ E[Xm+k−1|Fm]

with the equality due to the tower property and the inequality by the definition
of a sub-MG and monotonicity of the C.E. Iterating this inequality for decreasing
values of k we deduce that E[Xm+k|Fm] ≥ E[Xm|Fm] = Xm for all non-negative
integers k,m, as claimed. Next taking the expectation of this inequality, we have
by monotonicity of the expectation and (4.2.1) that E[Xm+k] ≥ E[Xm] for all
k,m ≥ 0, or equivalently, that n 7→ EXn is non-decreasing.
To get the corresponding results for a super-martingale {Xn} note that then
{−Xn} is a sub-martingale, see Remark 5.1.17. As already mentioned there, if
{Xn} is a MG then it is both a super-martingale and a sub-martingale, hence
both E[X`|Fm] ≥ Xm and E[X`|Fm] ≤ Xm, resulting with E[X`|Fm] = Xm, as
stated. �

Exercise 5.1.21. Show that a sub-martingale (Xn,Fn) is a martingale if and only
if EXn = EX0 for all n.

We next detail a few examples in which sub-MGs or sup-MGs naturally appear,
starting with an immediate consequence of Jensen’s inequality

Proposition 5.1.22. Suppose Φ : R 7→ R is convex and E[|Φ(Xn)|] < ∞ for all
n.

(a) If (Xn,Fn) is a martingale then (Φ(Xn),Fn) is a sub-martingale.
(b) If x 7→ Φ(x) is also non-decreasing, (Φ(Xn),Fn) is a sub-martingale even

when (Xn,Fn) is only a sub-martingale.

Proof. With Φ(Xn) integrable and adapted, it suffices to check that a.s.
E[Φ(Xn+1)|Fn] ≥ Φ(Xn) for all n. To this end, since Φ(·) is convex and Xn is
integrable, by the conditional Jensen’s inequality,

E[Φ(Xn+1)|Fn] ≥ Φ(E[Xn+1|Fn]) ,

so it remains only to verify that Φ(E[Xn+1|Fn]) ≥ Φ(Xn). This clearly applies
when (Xn,Fn) is a MG, and even for a sub-MG (Xn,Fn), provided that Φ(·) is
monotone non-decreasing. �

Example 5.1.23. Typical convex functions for which the preceding proposition is
often applied are Φ(x) = |x|p, p ≥ 1, Φ(x) = (x−c)+, Φ(x) = max(x, c) (for c ∈ R),
Φ(x) = ex and Φ(x) = x log x (the latter only for non-negative S.P.). Considering
instead Φ(·) concave leads to a sup-MG, as for example when Φ(x) = min(x, c) or
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Φ(x) = xp for some p ∈ (0, 1) or Φ(x) = log x (latter two cases restricted to non-
negative S.P.). For example, if {Xn} is a sub-martingale then (Xn − c)+ is also
a sub-martingale (since (x − c)+ is a convex, non-decreasing function). Similarly,
if {Xn} is a super-martingale, then min(Xn, c) is also a super-martingale (since
−Xn is a sub-martingale and the function −min(−x, c) = max(x,−c) is convex
and non-decreasing).

Here is a concrete application of Proposition 5.1.22.

Exercise 5.1.24. Suppose {ξi} are mutually independent, Eξi = 0 and Eξ2
i = σ2

i .

(a) Let Sn =
∑n
i=1 ξi and s2

n =
∑n
i=1 σ

2
i . Show that {S2

n} is a sub-martingale
and {S2

n − s2
n} is a martingale.

(b) Show that if in addition mn =
∏n
i=1 Eeξi are finite, then {eSn} is a

sub-martingale and Mn = eSn/mn is a martingale.

Remark. A special case of Exercise 5.1.24 is the random walk Sn of Definition
5.1.6, with S2

n − nEξ2
1 being a MG when ξ1 is square-integrable and of zero mean.

Likewise, eSn is a sub-MG whenever Eξ1 = 0 and Eeξ1 is finite. Though eSn is in
general not a MG, the normalized Mn = eSn/[Eeξ1 ]n is merely the product MG of
Example 5.1.10 for the i.i.d. variables Yi = eξi/E(eξ1).

Here is another family of super-martingales, this time related to super-harmonic
functions.

Definition 5.1.25. A lower semi-continuous function f : Rd 7→ R is super-
harmonic if for any x and r > 0,

f(x) ≥ 1

|B(0, r)|

∫
B(x,r)

f(y)dy

where B(x, r) = {y : |x− y| ≤ r} is the ball of radius r centered at x and |B(x, r)|
denotes its volume.

Exercise 5.1.26. Suppose Sn = x+
∑n
k=1 ξk for i.i.d. ξk that are chosen uniformly

on the ball B(0, 1) in Rd (i.e. using Lebesgue’s measure on this ball, scaled by
its volume). Show that if f(·) is super-harmonic on Rd then f(Sn) is a super-
martingale.
Hint: When checking the integrability of f(Sn) recall that a lower semi-continuous
function is bounded below on any compact set.

We next define the important concept of a martingale transform, and show that
it is a powerful and flexible method for generating martingales.

Definition 5.1.27. We call a sequence {Vn} predictable (or pre-visible) for the
filtration {Fn}, also denoted Fn-predictable, if Vn is measurable on Fn−1 for all
n ≥ 1. The sequence of random variables

Yn =

n∑
k=1

Vk(Xk −Xk−1) , n ≥ 1, Y0 = 0

is called the martingale transform of the Fn-predictable {Vn} with respect to a sub
or super martingale (Xn,Fn).

Theorem 5.1.28. Suppose {Yn} is the martingale transform of Fn-predictable
{Vn} with respect to a sub or super martingale (Xn,Fn).
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(a) If Yn is integrable and (Xn,Fn) is a martingale, then (Yn,Fn) is also a
martingale.

(b) If Yn is integrable, Vn ≥ 0 and (Xn,Fn) is a sub-martingale (or super-
martingale) then (Yn,Fn) is also a sub-martingale (super-martingale, re-
spectively).

(c) For the integrability of Yn it suffices in both cases to have |Vn| ≤ cn for
some non-random finite constants cn, or alternatively to have Vn ∈ Lq
and Xn ∈ Lp for all n and some p, q > 1 such that 1

q + 1
p = 1.

Proof. With {Vn} and {Xn} adapted to the filtration Fn, it follows that
VkXl ∈ mFk ⊆ mFn for all l ≤ k ≤ n. By inspection Yn ∈ mFn as well (see
Corollary 1.2.19), i.e. {Yn} is adapted to {Fn}.
Turning to prove part (c) of the theorem, note that for each n the variable Yn is

a finite sum of terms of the form ±VkXl. If Vk ∈ Lq and Xl ∈ Lp for some p, q > 1
such that 1

q + 1
p = 1, then by Hölder’s inequality VkXl is integrable. Alternatively,

since a super-martingale Xl is in particular integrable, VkXl is integrable as soon
as |Vk| is bounded by a non-random finite constant. In conclusion, if either of these
conditions applies for all k, l then obviously {Yn} is an integrable S.P.
Recall that Yn+1 − Yn = Vn+1(Xn+1 −Xn) and Vn+1 ∈ mFn (since {Vn} is Fn-

predictable). Therefore, taking out Vn+1 which is measurable on Fn we find that

E[Yn+1 − Yn|Fn] = E[Vn+1(Xn+1 −Xn)|Fn] = Vn+1E[Xn+1 −Xn|Fn] .

This expression is zero when (Xn,Fn) is a MG and non-negative when Vn+1 ≥ 0
and (Xn,Fn) is a sub-MG. Since the preceding applies for all n, we consequently
have that (Yn,Fn) is a MG in the former case and a sub-MG in the latter. Finally,
to complete the proof also in case of a sup-MG (Xn,Fn), note that then −Yn is the
MG transform of {Vn} with respect to the sub-MG (−Xn,Fn). �

Here are two concrete examples of a martingale transform.

Example 5.1.29. The S.P. Yn =
∑n
k=1Xk−1(Xk − Xk−1) is a MG whenever

Xn ∈ L2(Ω,F ,P) is a MG (indeed, Vn = Xn−1 is predictable for the canonical
filtration of {Xn} and consider p = q = 2 in part (c) of Theorem 5.1.28).

Example 5.1.30. Given an integrable process {Vn} suppose that for each k ≥ 1 the
bounded ξk has zero mean and is independent of Fk−1 = σ(ξ1, . . . , ξk−1, V1, . . . , Vk).
Then, Yn =

∑n
k=1 Vkξk is a martingale for the filtration {Fn}. Indeed, by assump-

tion, the differences ξn of Xn =
∑n
k=1 ξk are such that E[ξk|Fk−1] = 0 for all

k ≥ 1. Hence, (Xn,Fn) is a martingale (c.f. Proposition 5.1.5), and {Yn} is
the martingale transform of the Fn-predictable {Vn} with respect to the martingale
(Xn,Fn) (where the integrability of Yn is a consequence of the boundedness of each
ξk and integrability of each Vk). In discrete mathematics applications one often
uses a special case of this construction, with an auxiliary sequence of random i.i.d.
signs ξk ∈ {−1, 1} such that P(ξ1 = 1) = 1

2 and {ξn} is independent of the given
integrable S.P. {Vn}.

We next define the important concept of a stopped stochastic process and then
use the martingale transform to show that stopped sub and super martingales are
also sub-MGs (sup-MGs, respectively).
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Definition 5.1.31. Given a stochastic process {Xn} and a a random variable τ
taking values in {0, 1, . . . , n, . . . ,∞}, the stopped at τ stochastic process, denoted
{Xn∧τ}, is given by

Xn∧τ (ω) =

{
Xn(ω), n ≤ τ(ω)

Xτ(ω)(ω), n > τ(ω)

Theorem 5.1.32. If (Xn,Fn) is a sub-MG (or a sup-MG or a MG) and θ ≤ τ
are stopping times for {Fn}, then (Xn∧τ −Xn∧θ,Fn) is also a sub-MG (or sup-MG
or MG, respectively). In particular, taking θ = 0 we have that (Xn∧τ ,Fn) is then
a sub-MG (or sup-MG or MG, respectively).

Proof. We may and shall assume that (Xn,Fn) is a sub-MG (just consider
−Xn in caseXn is a sup-MG and both whenXn is a MG). Let Vk(ω) = I{θ(ω)<k≤τ(ω)}.
Since θ ≤ τ are two Fn-stopping times, it follows that Vk(ω) = I{θ(ω)≤(k−1)} −
I{τ(ω)≤(k−1)} is measurable on Fk−1 for all k ≥ 1. Thus, {Vn} is a bounded,
non-negative Fn-predictable sequence. Further, since

Xn∧τ (ω)−Xn∧θ(ω) =

n∑
k=1

I{θ(ω)<k≤τ(ω)}(Xk(ω)−Xk−1(ω))

is the martingale transform of {Vn} with respect to sub-MG (Xn,Fn), we know from
Theorem 5.1.28 that (Xn∧τ −Xn∧θ,Fn) is also a sub-MG. Finally, considering the
latter sub-MG for θ = 0 and adding to it the sub-MG (X0,Fn), we conclude that
(Xn∧τ ,Fn) is a sub-MG (c.f. Exercise 5.1.19 and note that Xn∧0 = X0). �

Theorem 5.1.32 thus implies the following key ingredient in the proof of Doob’s
optional stopping theorem (to which we return in Section 5.4).

Corollary 5.1.33. If (Xn,Fn) is a sub-MG and τ ≥ θ are Fn-stopping times,
then EXn∧τ ≥ EXn∧θ for all n. The reverse inequality holds in case (Xn,Fn) is a
sup-MG, with EXn∧θ = EXn∧τ for all n in case (Xn,Fn) is a MG.

Proof. Suffices to consider Xn which is a sub-MG for the filtration Fn. In
this case we have from Theorem 5.1.32 that Yn = Xn∧τ −Xn∧θ is also a sub-MG
for this filtration. Noting that Y0 = 0 we thus get from Proposition 5.1.20 that
EYn ≥ 0. Theorem 5.1.32 also implies the integrability of Xn∧θ so by linearity of
the expectation we conclude that EXn∧τ ≥ EXn∧θ. �

An important concept associated with each stopping time is the stopped σ-algebra
defined next.

Definition 5.1.34. The stopped σ-algebra Fτ associated with the stopping time
τ for a filtration {Fn} is the collection of events A ∈ F∞ such that A∩{ω : τ(ω) ≤
n} ∈ Fn for all n.

With Fn representing the information known at time n, think of Fτ as quantifying
the information known upon stopping at τ . Some of the properties of these stopped
σ-algebras are detailed in the next exercise.

Exercise 5.1.35. Let θ and τ be Fn-stopping times.

(a) Verify that Fτ is a σ-algebra and if τ(ω) = n is non-random then Fτ =
Fn.
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(b) Suppose Xn ∈ mFn for all n (including n =∞ unless τ is finite for all ω).
Show that then Xτ ∈ mFτ . Deduce that σ(τ) ⊆ Fτ and XkI{τ=k} ∈ mFτ
for any k non-random.

(c) Show that for any integrable {Yn} and non-random k,

E[YτI{τ=k}|Fτ ] = E[Yk|Fk]I{τ=k} .

(d) Show that if θ ≤ τ then Fθ ⊆ Fτ .

Our next exercise shows that the martingale property is equivalent to the “strong
martingale property” whereby conditioning at stopped σ-algebras Fθ replaces the
one at Fn for non-random n.

Exercise 5.1.36. Given an integrable stochastic process {Xn} adapted to a filtra-
tion {Fn}, show that (Xn,Fn) is a martingale if and only if E[Xn|Fθ] = Xθ for
any non-random, finite n and all Fn-stopping times θ ≤ n.

For non-integrable stochastic processes we generalize the concept of a martingale
into that of a local martingale.

Exercise 5.1.37. The pair (Xn,Fn) is called a local martingale if {Xn} is adapted
to the filtration {Fn} and there exist Fn-stopping times τk such that τk ↑ ∞ with
probability one and (Xn∧τk ,Fn) is a martingale for each k. Show that any martin-
gale is a local martingale and any integrable, local martingale is a martingale.

We conclude with the renewal property of stopping times with respect to the
canonical filtration of an i.i.d. sequence.

Exercise 5.1.38. Suppose τ is an a.s. finite stopping time with respect to the
canonical filtration {FZ

n } of a sequence {Zk} of i.i.d. R.V-s.

(a) Show that T Z
τ = σ(Zτ+k, k ≥ 1) is independent of the stopped σ-algebra

FZ
τ .

(b) Provide an example of a finite FZ
n -stopping time τ and independent {Zk}

for which T Z
τ is not independent of FZ

τ .

5.2. Martingale representations and inequalities

In Subsection 5.2.1 we show that martingales are at the core of all adapted pro-
cesses. We further explore there the structure of certain sub-martingales, intro-
ducing the increasing process associated with square-integrable martingales. This
is augmented in Subsection 5.2.2 by the study of maximal inequalities for sub-
martingales (and martingales). Such inequalities are an important technical tool
in many applications of probability theory. In particular, they are the key to the
convergence results of Section 5.3.

5.2.1. Martingale decompositions. To demonstrate the relevance of mar-
tingales to the study of general stochastic processes, we start with a representation
of any adapted, integrable, discrete-time S.P. as the sum of a martingale and a
predictable process.

Theorem 5.2.1 (Doob’s decomposition). Given an integrable stochastic process
{Xn}, adapted to a discrete parameter filtration {Fn}, n ≥ 0, there exists a decom-
position Xn = Yn +An such that (Yn,Fn) is a MG and {An} is an Fn-predictable
sequence. This decomposition is unique up to the value of Y0 ∈ mF0.
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Proof. Let A0 = 0 and for n ≥ 1 set

An = An−1 + E[Xn −Xn−1|Fn−1].

By definition of the conditional expectation we see that Ak − Ak−1 is measurable
on Fk−1 for any k ≥ 1. Since Fk−1 ⊆ Fn−1 for all k ≤ n and An = A0 +∑n
k=1(Ak − Ak−1), it follows that {An} is Fn-predictable. We next check that

Yn = Xn − An is a MG. To this end, recall that since {Xn} is integrable so is
{Xn − Xn−1}, whereas the C.E. only reduces the L1 norm (see Example 4.2.20).
Therefore, E|An − An−1| ≤ E|Xn − Xn−1| < ∞. Hence, An is integrable, as
is Xn, implying by Minkowski’s inequality that Yn is integrable as well. With
{Xn} adapted and {An} predictable, hence adapted, to {Fn}, we see that {Yn} is
also Fn-adapted. It remains to check the martingale condition, that almost surely
E[Yn − Yn−1|Fn−1] = 0 for all n ≥ 1. Indeed, by linearity of the C.E. and the
construction of the Fn-predictable sequence {An}, for any n ≥ 1,

E[Yn − Yn−1|Fn−1] = E[Xn −Xn−1 − (An −An−1)|Fn−1]

= E[Xn −Xn−1|Fn−1]− (An −An−1) = 0 .

We finish the proof by checking that such a decomposition is unique up to the

choice of Y0. To this end, suppose that Xn = Yn + An = Ỹn + Ãn are two such

decompositions of a given stochastic process {Xn}. Then, Ỹn−Yn = An−Ãn. Since

{An} and {Ãn} are both Fn-predictable sequences while (Yn,Fn) and (Ỹn,Fn) are
martingales, we find that

An − Ãn = E[An − Ãn|Fn−1] = E[Ỹn − Yn|Fn−1]

= Ỹn−1 − Yn−1 = An−1 − Ãn−1 .

Thus, An − Ãn is independent of n and if in addition Y0 = Ỹ0 then An − Ãn =

A0 − Ã0 = Ỹ0 − Y0 = 0 for all n. In conclusion, both sequences {An} and {Yn} are
uniquely determined as soon as we determine Y0, a R.V. measurable on F0. �

Doob’s decomposition has more structure when (Xn,Fn) is a sub-MG.

Exercise 5.2.2. Check that the predictable part of Doob’s decomposition of a sub-
martingale (Xn,Fn) is a non-decreasing sequence, that is, An ≤ An+1 for all n.

Remark. As shown in Subsection 5.3.2, Doob’s decomposition is particularly
useful in connection with square-integrable martingales {Xn}, where one can relate
the limit of Xn as n → ∞ with that of the non-decreasing sequence {An} in the
decomposition of {X2

n}.

We next evaluate Doob’s decomposition for two classical sub-MGs.

Example 5.2.3. Consider the sub-MG {S2
n} for the random walk Sn =

∑n
k=1 ξk,

where ξk are i.i.d. random variables with Eξ1 = 0 and Eξ2
1 = 1. Since Yn = S2

n−n
is a martingale (see Exercise 5.1.24), and Doob’s decomposition S2

n = Yn + An is
unique, it follows that the non-decreasing predictable part in the decomposition of
S2
n is An = n.

In contrast with the preceding example, the non-decreasing predictable part in
Doob’s decomposition is for most sub-MGs a non-degenerate random sequence, as
is the case in our next example.
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Example 5.2.4. Consider the sub-MG (Mn,FZ
n ) where Mn =

∏n
i=1 Zi for i.i.d.

integrable Zi ≥ 0 such that EZ1 > 1 (see Example 5.1.10). The non-decreasing
predictable part of its Doob’s decomposition is such that for n ≥ 1

An+1 −An = E[Mn+1 −Mn|FZ
n ] = E[Zn+1Mn −Mn|FZ

n ]

= MnE[Zn+1 − 1|FZ
n ] = Mn(EZ1 − 1)

(since Zn+1 is independent of FZ
n ). In this case An = (EZ1 − 1)

∑n−1
k=1 Mk + A1,

where we are free to choose for A1 any non-random constant. We see that {An} is
a non-degenerate random sequence (assuming the R.V. Zi are not a.s. constant).

We conclude with the representation of any L1-bounded martingale as the differ-
ence of two non-negative martingales (resembling the representation X = X+−X−
for an integrable R.V. X and non-negative X±).

Exercise 5.2.5. Let (Xn,Fn) be a martingale with supn E|Xn| < ∞. Show that
there is a representation Xn = Yn − Zn with (Yn,Fn) and (Zn,Fn) non-negative
martingales such that supn E|Yn| <∞ and supn E|Zn| <∞.

5.2.2. Maximal and up-crossing inequalities. Martingales are rather tame
stochastic processes. In particular, as we see next, the tail of maxk≤nXk is bounded
by moments of Xn. This is a major improvement over Markov’s inequality, relat-
ing the typically much smaller tail of the R.V. Xn to its moments (see part (b) of
Example 1.3.14).

Theorem 5.2.6 (Doob’s inequality). For any sub-martingale {Xn} and x > 0
let τx = inf{k ≥ 0 : Xk ≥ x}. Then, for any finite n ≥ 0,

(5.2.1) P(
n

max
k=0

Xk ≥ x) ≤ x−1E[XnI{τx≤n}] ≤ x
−1E[(Xn)+] .

Proof. Since Xτx ≥ x whenever τx is finite, setting

An = {ω : τx(ω) ≤ n} = {ω :
n

max
k=0

Xk(ω) ≥ x} ,

it follows that

E[Xn∧τx ] = E[XτxIτx≤n] + E[XnIτx>n] ≥ xP(An) + E[XnIAcn ].

With {Xn} a sub-MG and τx ≤ ∞ a pair of FX
n -stopping times, it follows from

Corollary 5.1.33 that E[Xn∧τx ] ≤ E[Xn]. Therefore, E[Xn]−E[XnIAcn ] ≥ xP(An)
which is exactly the left inequality in (5.2.1). The right inequality there holds by
monotonicity of the expectation and the trivial fact XIA ≤ (X)+IA ≤ (X)+ for
any R.V. X and any measurable set A. �

Remark. Doob’s inequality generalizes Kolmogorov’s maximal inequality. In-
deed, consider Xk = Z2

k for the L2-martingale Zk = Y1 + · · ·+ Yk, where {Yl} are
mutually independent with EYl = 0 and EY 2

l <∞. By Proposition 5.1.22 {Xk} is
a sub-MG, so by Doob’s inequality we obtain that for any z > 0,

P( max
1≤k≤n

|Zk| ≥ z) = P( max
1≤k≤n

Xk ≥ z2) ≤ z−2E[(Xn)+] = z−2 Var(Zn)

which is exactly Kolmogorov’s maximal inequality of Proposition 2.3.16.

Combining Doob’s inequality with Doob’s decomposition of non-negative sub-
martingales, we arrive at the following bounds, due to Lenglart.
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Lemma 5.2.7. Let Vn = maxnk=0 Zk and An denote the Fn-predictable sequence in
Doob’s decomposition of a non-negative submartingale (Zn,Fn) with Z0 = 0. Then,
for any Fn-stopping time τ and all x, y > 0,

(5.2.2) P(Vτ ≥ x,Aτ ≤ y) ≤ x−1E(Aτ ∧ y) .

Further, in this case E[V pτ ] ≤ cpE[Apτ ] for cp = 1 + 1/(1− p) and any p ∈ (0, 1).

Proof. Since Mn = Zn − An is a MG with respect to the filtration {Fn}
(starting at M0 = 0), by Theorem 5.1.32 the same applies for the stopped stochastic
process Mn∧θ, with θ any Fn-stopping time. By the same reasoning Zn∧θ = Mn∧θ+
An∧θ is a sub-MG with respect to {Fn}. Applying Doob’s inequality (5.2.1) for
this non-negative sub-MG we deduce that for any n and x > 0,

P(Vn∧θ ≥ x) = P(
n

max
k=0

Zk∧θ ≥ x) ≤ x−1E[Zn∧θ ] = x−1E[An∧θ ] .

Both Vn∧θ and An∧θ are non-negative and non-decreasing in n (see Exercise 5.2.2),
so by monotone convergence we have that P(Vθ ≥ x) ≤ x−1EAθ. In particular,
fixing y > 0, since {An} is Fn-predictable, θ = τ ∧ inf{n ≥ 0 : An+1 > y} is an
Fn-stopping time. Further, with An non-decreasing, θ < τ if and only if Aτ > y
in which case Aθ ≤ y (by the definition of θ). Consequently, Aθ ≤ Aτ ∧ y and as
{Vτ ≥ x,Aτ ≤ y} ⊆ {Vθ ≥ x} we arrive at the inequality (5.2.2).
Next, considering (5.2.2) for x = y we see that for Y = Aτ and any y > 0,

P(Vτ ≥ y) ≤ P(Y ≥ y) + E[min(Y/y, 1)] .

Multiplying both sides of this inequality by pyp−1 and integrating over y ∈ (0,∞),
upon taking r = 1 > p in part (a) of Lemma 1.4.32 we conclude that

EV pτ ≤ EY p + (1− p)−1EY p ,

as claimed. �

To practice your understanding, adapt the proof of Doob’s inequality en-route to
the following dual inequality (which is often called Doob’s second sub-MG inequal-
ity).

Exercise 5.2.8. Show that for any sub-MG {Xn}, finite n ≥ 0 and x > 0,

(5.2.3) P(
n

min
k=0

Xk ≤ −x) ≤ x−1(E[(Xn)+]−E[X0]) .

Here is a typical example of an application of Doob’s inequality.

Exercise 5.2.9. Suppose an ∈ (0, 1] are non-random and Zn are independent
random variables such that EZn = 0, E[|Zn|] = 1 for all n ≥ 1, while P(An) → 0
for An = {ω : Zn(ω) 6= 0}. Let

Yn = |Zn|Yn−1 + anZnI{Yn−1=0} , ∀n ≥ 1 , Y0 = 0 .

(a) Show that {Yn} is a martingale and that for any x > 0 and n ≥ 1,

P(
n

max
k=1

Yk ≥ x) ≤ 1

2x

[
a1 +

n∑
k=2

ak(1−P(Ak−1))
]
.

Hint: Verify that {ω : Yn(ω) 6= 0} = An.

(b) Show that Yn
p→ 0 as n → ∞, but such convergence in L1 of Yn never

holds.
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(c) Suppose that in addition |Zk| ≥ 1/ak on Ak. Show that Yn
a.s.→ 0 if

and only if
∑
k P(Ak) < ∞, whereas {Yn} is L1-bounded if and only if∑

k ak <∞.

Martingales also provide bounds on the probability that the sum of bounded in-
dependent variables is too close to its mean (in lieu of the clt).

Exercise 5.2.10. Let Sn =
∑n
k=1 ξk where {ξk} are independent and Eξk = 0,

|ξk| ≤ K for all k. Let s2
n =

∑n
k=1 Eξ2

k. Using Corollary 5.1.33 for the martingale
S2
n − s2

n and a suitable stopping time show that

P(
n

max
k=1
|Sk| ≤ x) ≤ (x+K)2/s2

n .

If the positive part of the sub-MG has finite p-th moment you can improve the
rate of decay in x in Doob’s inequality by an application of Proposition 5.1.22 for
the convex non-decreasing Φ(y) = max(y, 0)p, denoted hereafter by (y)p+. Further,
in case of a MG the same argument yields comparable bounds on tail probabilities
for the maximum of |Yk|.

Exercise 5.2.11.

(a) Show that for any sub-MG {Yn}, p ≥ 1, finite n ≥ 0 and y > 0,

P(
n

max
k=0

Yk ≥ y) ≤ y−pE
[

max(Yn, 0)p
]
.

(b) Show that in case {Yn} is a martingale, also

P(
n

max
k=1
|Yk| ≥ y) ≤ y−pE

[
|Yn|p

]
.

(c) Suppose the martingale {Yn} is such that Y0 = 0. Using the fact that
(Yn + c)2 is a sub-martingale and optimizing over c, show that for y > 0,

P(
n

max
k=0

Yk ≥ y) ≤ EY 2
n

EY 2
n + y2

Here is the version of Doob’s inequality for non-negative sup-MGs and its appli-
cation for the random walk.

Exercise 5.2.12.

(a) Show that if τ is a stopping time for the canonical filtration of a non-
negative super-martingale {Xn} then EX0 ≥ EXn∧τ ≥ E[XτIτ≤n] for
any finite n.

(b) Deduce that if {Xn} is a non-negative super-martingale then for any x >
0

P(sup
k
Xk ≥ x) ≤ x−1EX0 .

(c) Suppose Sn is a random walk with Eξ1 = −µ < 0 and Var(ξ1) = σ2 > 0.
Let α = µ/(σ2 + µ2) and f(x) = 1/(1 + α(z − x)+). Show that f(Sn) is
a super-martingale and use this to conclude that for any z > 0,

P(sup
k
Sk ≥ z) ≤

1

1 + αz
.

Hint: Taking v(x) = αf(x)21x<z show that gx(y) = f(x) + v(x)[(y −
x) + α(y − x)2] ≥ f(y) for all x and y. Then show that f(Sn) =
E[gSn(Sn+1)|Sk, k ≤ n].



5.2. MARTINGALE REPRESENTATIONS AND INEQUALITIES 191

Integrating Doob’s inequality we next get bounds on the moments of the maximum
of a sub-MG.

Corollary 5.2.13 (Lp maximal inequalities). If {Xn} is a sub-MG then for
any n and p > 1,

(5.2.4) E
[

max
k≤n

(Xk)p+
]
≤ qpE

[
(Xn)p+

]
,

where q = p/(p − 1) is a finite universal constant. Consequently, if {Yn} is a MG
then for any n and p > 1,

(5.2.5) E
[(

max
k≤n
|Yk|

)p] ≤ qpE[|Yn|p] .
Proof. The bound (5.2.4) is obtained by applying part (b) of Lemma 1.4.32

for the non-negative variables X = (Xn)+ and Y = maxk≤n (Xk)+. Indeed, the
hypothesis P(Y ≥ y) ≤ y−1E[XIY≥y] of this lemma is provided by the left in-
equality in (5.2.1), for x = y > 0 and the non-negative sub-martingale (Xk)+. The
conclusion of Lemma 1.4.32(b), namely that EY p ≤ qpEXp, is in turn precisely our
statement (5.2.4). In case {Yn} is a martingale, we get (5.2.5) by applying (5.2.4)
for the non-negative sub-MG Xn = |Yn|. �

Remark. A bound such as (5.2.5) can not hold for all sub-MGs. For example,
the non-random sequence Yk = (k − n) ∧ 0 is a sub-MG with |Y0| = n but Yn = 0.

The following two exercises show that while Lp maximal inequalities as in Corollary
5.2.13 can not hold for p = 1, such an inequality does hold provided we replace
E(Xn)+ in the bound by E[(Xn)+ log max(Xn, 1)].

Exercise 5.2.14. Consider the martingale Mn =
∏n
k=1 Yk for i.i.d. non-negative

random variables {Yk} with EY1 = 1 and P(Y1 = 1) < 1.

(a) Explain why E(log Y1)+ is finite and why the strong law of large numbers

implies that n−1 logMn
a.s.→ µ < 0 when n→∞.

(b) Deduce that Mn
a.s.→ 0 as n → ∞ and that consequently {Mn} is not

uniformly integrable.
(c) Show that if (5.2.4) applies for p = 1 and some q < ∞, then any non-

negative martingale would have been uniformly integrable.

Exercise 5.2.15. Show that if {Xn} is a non-negative sub-MG then

E
[

max
k≤n

Xk

]
≤ (1− e−1)−1{1 + E[Xn(logXn)+]} .

Hint: Apply part (c) of Lemma 1.4.32 and recall that x(log y)+ ≤ e−1y+ x(log x)+

for any x, y ≥ 0.

We just saw that in general L1-bounded martingales might not be U.I. Neverthe-
less, as you show next, for sums of independent zero-mean random variables these
two properties are equivalent.

Exercise 5.2.16. Suppose Sn =
∑n
k=1 ξk with ξk independent.

(a) Prove Ottaviani’s inequality. Namely, show that for any n and t, s ≥ 0,

P(
n

max
k=1
|Sk| ≥ t+ s) ≤ P(|Sn| ≥ t) + P(

n
max
k=1
|Sk| ≥ t+ s)

n
max
k=1

P(|Sn − Sk| > s) .

(b) Suppose further that {ξk} is integrable and supn E|Sn| < ∞. Show that
then E[supk |Sk|] is finite.
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In the spirit of Doob’s inequality bounding the tail probability of the maximum
of a sub-MG {Xk, k = 0, 1, . . . , n} in terms of the value of Xn, we will bound the
oscillations of {Xk, k = 0, 1, . . . , n} over an interval [a, b] in terms of X0 and Xn.
To this end, we require the following definition of up-crossings.

Definition 5.2.17. The number of up-crossings of the interval [a, b] by {Xk(ω), k =
0, 1, . . . , n}, denoted Un[a, b](ω), is the largest ` ∈ Z+ such that Xsi(ω) < a and
Xti(ω) > b for 1 ≤ i ≤ ` and some 0 ≤ s1 < t1 < · · · < s` < t` ≤ n.

For example, Fig. 1 depicts two up-crossings of [a, b].

Figure 1. Illustration of up-crossings of [a, b] by Xk(ω)

Our next result, Doob’s up-crossing inequality, is the key to the a.s. convergence
of sup-MGs (and sub-MGs) on which Section 5.3 is based.

Lemma 5.2.18 (Doob’s up-crossing inequality). If {Xn} is a sup-MG then

(5.2.6) (b− a)E(Un[a, b]) ≤ E[(Xn − a)−]−E[(X0 − a)−] ∀a < b .

Proof. Fixing a < b, let V1 = I{X0<a} and for n = 2, 3, . . ., define recursively
Vn = I{Vn−1=1,Xn−1≤b} + I{Vn−1=0,Xn−1<a}. Informally, the sequence Vk is zero
while waiting for the process {Xn} to enter (−∞, a) after which time it reverts
to one and stays so while waiting for this process to enter (b,∞). See Figure 1
for an illustration in which black circles depict indices k such that Vk = 1 and
open circles indicate those values of k with Vk = 0. Clearly, the sequence {Vn} is
predictable for the canonical filtration of {Xn}. Let {Yn} denote the martingale
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transform of {Vn} with respect to {Xn} (per Definition 5.1.27). By the choice of
V· every up-crossing of the interval [a, b] by {Xk, k = 0, 1, . . . , n} contributes to Yn
the difference between the value of X· at the end of the up-crossing (i.e. the last in
the corresponding run of black circles), which is at least b and its value at the start
of the up-crossing (i.e. the last in the preceding run of open circles), which is at
most a. Thus, each up-crossing increases Yn by at least (b− a) and if X0 < a then
the first up-crossing must have contributed at least (b−X0) = (b− a) + (X0 − a)−
to Yn. The only other contribution to Yn is by the up-crossing of the interval [a, b]
that is in progress at time n (if there is such), and since it started at value at most
a, its contribution to Yn is at least −(Xn − a)−. We thus conclude that

Yn ≥ (b− a)Un[a, b] + (X0 − a)− − (Xn − a)−

for all ω ∈ Ω. With {Vn} predictable, bounded and non-negative it follows that {Yn}
is a super-martingale (see parts (b) and (c) of Theorem 5.1.28). Thus, considering
the expectation of the preceding inequality yields the up-crossing inequality (5.2.6)
since 0 = EY0 ≥ EYn for the sup-MG {Yn}. �

Doob’s up-crossing inequality implies that the total number of up-crossings of [a, b]
by a non-negative sup-MG has a finite expectation. In this context, Dubins’ up-
crossing inequality, which you are to derive next, provides universal (i.e. depending
only on a/b), exponential bounds on tail probabilities of this random variable.

Exercise 5.2.19. Suppose (X1
n,Fn) and (X2

n,Fn) are both sup-MGs and τ is an
Fn-stopping time such that X1

τ ≥ X2
τ .

(a) Show that Wn = X1
nIτ>n +X2

nIτ≤n is a sup-MG with respect to Fn and
deduce that so is Yn = X1

nIτ≥n + X2
nIτ<n (this is sometimes called the

switching principle).
(b) For a sup-MG Xn ≥ 0 and constants b > a > 0 define the FX

n -stopping
times τ0 = −1, θ` = inf{k > τ` : Xk ≤ a} and τ`+1 = inf{k > θ` : Xk ≥
b}, ` = 0, 1, . . .. That is, the `-th up-crossing of (a, b) by {Xn} starts at
θ`−1 and ends at τ`. For ` = 0, 1, . . . let Zn = a−`b` when n ∈ [τ`, θ`) and
Zn = a−`−1b`Xn for n ∈ [θ`, τ`+1). Show that (Zn,FX

n ) is a sup-MG.
(c) For b > a > 0 let U∞[a, b] denote the total number of up-crossings of the

interval [a, b] by a non-negative super-martingale {Xn}. Deduce from the
preceding that for any positive integer `,

P(U∞[a, b] ≥ `) ≤
(a
b

)`
E[min(X0/a, 1)]

(this is Dubins’ up-crossing inequality).

5.3. The convergence of Martingales

As we shall see in this section, a sub-MG (or a sup-MG), has an integrable
limit under relatively mild integrability assumptions. For example, in this con-
text L1-boundedness (i.e. the finiteness of supn E|Xn|), yields a.s. convergence
(see Doob’s convergence theorem), while the L1-convergence of {Xn} is equivalent
to the stronger hypothesis of uniform integrability of this process (see Theorem
5.3.12). Finally, the even stronger Lp-convergence applies for the smaller sub-class
of Lp-bounded martingales (see Doob’s Lp martingale convergence).
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Indeed, these convergence results are closely related to the fact that the maximum
and up-crossings counts of a sub-MG do not grow too rapidly (and same applies
for sup-MGs and martingales). To further explore this direction, we next link the
finiteness of the total number of up-crossings U∞[a, b] of intervals [a, b], b > a, by a
process {Xn} to its a.s. convergence.

Lemma 5.3.1. If for each b > a almost surely U∞[a, b] < ∞, then Xn
a.s→ X∞

where X∞ is an R-valued random variable.

Proof. Note that the event that Xn has an almost sure (R-valued) limit as
n→∞ is the complement of

Γ =
⋃

a,b∈Q
a<b

Γa,b ,

where for each b > a,

Γa,b = {ω : lim inf
n→∞

Xn(ω) < a < b < lim sup
n→∞

Xn(ω)} .

Since Γ is a countable union of these events, it thus suffices to show that P(Γa,b) = 0
for any a, b ∈ Q, a < b. To this end note that if ω ∈ Γa,b then lim supnXn(ω) > b
and lim infnXn(ω) < a are both limit points of the sequence {Xn(ω)}, hence the
total number of up-crossings of the interval [a, b] by this sequence is infinite. That
is, Γa,b ⊆ {ω : U∞[a, b](ω) = ∞}. So, from our hypothesis that U∞[a, b] is finite
almost surely it follows that P(Γa,b) = 0 for each a < b, resulting with the stated
conclusion. �

Combining Doob’s up-crossing inequality of Lemma 5.2.18 with Lemma 5.3.1 we
now prove Doob’s a.s. convergence theorem for sup-MGs (and sub-MGs).

Theorem 5.3.2 (Doob’s convergence theorem). Suppose sup-MG (Xn,Fn)

is such that supn{E[(Xn)−]} <∞. Then, Xn
a.s.→ X∞ and E|X∞| ≤ lim infn E|Xn|

is finite.

Proof. Fixing b > a, recall that 0 ≤ Un[a, b] ↑ U∞[a, b] as n ↑ ∞, where
U∞[a, b] denotes the total number of up-crossings of [a, b] by the sequence {Xn}.
Hence, by monotone convergence E(U∞[a, b]) = supn E(Un[a, b]). Further, with
(x−a)− ≤ |a|+x−, we get from Doob’s up-crossing inequality and the monotonicity
of the expectation that

E(Un[a, b]) ≤ 1

(b− a)
E(Xn − a)− ≤

1

(b− a)

(
|a|+ sup

n
E[(Xn)−]

)
.

Thus, our hypothesis that supn E[(Xn)−] < ∞ implies that E(U∞[a, b]) is finite,
hence in particular U∞[a, b] is finite almost surely.

Since this applies for any b > a, we have from Lemma 5.3.1 that Xn
a.s→ X∞.

Further, with Xn a sup-MG, we have that E|Xn| = EXn + 2E(Xn)− ≤ EX0 +
2E(Xn)− for all n. Using this observation in conjunction with Fatou’s lemma for

0 ≤ |Xn|
a.s.→ |X∞| and our hypothesis, we find that

E|X∞| ≤ lim inf
n→∞

E|Xn| ≤ EX0 + 2 sup
n
{E[(Xn)−]} <∞ ,

as stated. �
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Remark. In particular, Doob’s convergence theorem implies that if (Xn,Fn) is

a non-negative sup-MG then Xn
a.s.→ X∞ for some integrable X∞ (and in this

case EX∞ ≤ EX0). The same convergence applies for a non-positive sub-MG and
more generally, for any sub-MG with supn{E(Xn)+} < ∞. Further, the following
exercise provides alternative equivalent conditions for the applicability of Doob’s
convergence theorem.

Exercise 5.3.3. Show that the following five conditions are equivalent for any
sub-MG {Xn} (and if {Xn} is a sup-MG, just replace (Xn)+ by (Xn)−).

(a) limn E|Xn| exists and is finite.
(b) supn E|Xn| <∞.
(c) lim infn E|Xn| <∞.
(d) limn E(Xn)+ exists and is finite.
(e) supn E(Xn)+ <∞.

Note that the L1-boundedness assumption of Doob’s convergence theorem is not
necessary for the a.s. convergence of martingales (e.g. see Exercise 5.2.9).
Our first application of Doob’s convergence theorem extends Doob’s inequality

(5.2.1) to the following bound on the maximal value of a U.I. sub-MG.

Corollary 5.3.4. For any U.I. sub-MG {Xn} and x > 0,

(5.3.1) P(Xk ≥ x for some k <∞) ≤ x−1E[X∞ Iτx<∞] ≤ x−1E[(X∞)+] ,

where τx = min{k ≥ 0 : Xk ≥ x}.

Proof. Let An = {τx ≤ n} = {maxk≤nXk ≥ x} and A∞ = {τx < ∞} =
{Xk ≥ x for some k < ∞}. Then, An ↑ A∞ and as the U.I. sub-MG {Xn} is

L1-bounded, we have from Doob’s convergence theorem that Xn
a.s.→ X∞. Con-

sequently, XnIAn and (Xn)+ converge almost surely to X∞IA∞ and (X∞)+, re-
spectively. Since these two sequences are U.I. we further have that E[XnIAn ] →
E[X∞IA∞ ] and E[(Xn)+]→ E[(X∞)+]. Recall Doob’s inequality (5.2.1) that

(5.3.2) P(An) ≤ x−1E[XnIAn ] ≤ x−1E[(Xn)+]

for any n finite. Taking n→∞ we conclude that

P(A∞) ≤ x−1E[X∞IA∞ ] ≤ x−1E[(X∞)+]

which is precisely our stated inequality (5.3.1). �

Applying Doob’s convergence theorem we also find that martingales of bounded
differences either converge to a finite limit or oscillate between −∞ and +∞.

Proposition 5.3.5. Suppose {Xn} is a martingale of uniformly bounded differ-
ences. That is, almost surely supn |Xn − Xn−1| ≤ c for some finite non-random
constant c. Then, P(A ∪B) = 1 for the events

A = {ω : lim
n→∞

Xn(ω) exists and is finite},

B = {ω : lim sup
n→∞

Xn(ω) =∞ and lim inf
n→∞

Xn(ω) = −∞}.

Proof. We may and shall assume without loss of generality that X0 = 0
(otherwise, apply the proposition for the MG Yn = Xn − X0). Fixing a posi-
tive integer k, consider the stopping time τk(ω) = inf{n ≥ 0 : Xn(ω) ≤ −k} for
the canonical filtration of {Xn} and the associated stopped sup-MG Yn = Xn∧τk
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(per Theorem 5.1.32). By definition of τk and our hypothesis of Xn having uni-
formly bounded differences, it follows that Yn(ω) ≥ −k− c for all n. Consequently,
supn E(Yn)− ≤ k + c and by Doob’s convergence theorem Yn(ω) → Y∞(ω) ∈ R
for all ω /∈ Γk and some measurable Γk such that P(Γk) = 0. In particular, if
τk(ω) = ∞ and ω /∈ Γk then Xn(ω) = Yn(ω) has a finite limit, so ω ∈ A. This
shows that Ac ⊆ {τk < ∞} ∪ Γk for all k, and hence Ac ⊆ B− ∪k Γk where
B− = ∩k{τk < ∞} = {ω : lim infnXn(ω) = −∞}. With P(Γk) = 0 for all k,
we thus deduce that P(A ∪ B−) = 1. Applying the preceding argument for the
sup-MG {−Xn} we find that P(A ∪B+) = 1 for B+ = {ω : lim supnXn(ω) =∞}.
Combining these two results we conclude that P(A∪ (B−∩B+)) = 1 as stated. �

Remark. Consider a random walk Sn =
∑n
k=1 ξk with zero-mean, bounded in-

crements {ξk} (i.e. |ξk| ≤ c with c a finite non-random constant), such that the
finite v = Eξ2

k is non-zero, and let A denote the event where Sn(ω) → S∞(ω) as

n→∞ for some S∞(ω) finite. Then, Ŝn(ω) = (nv)−1/2Sn(ω)→ 0 whenever ω ∈ A.

Thus, upon combining the clt Ŝn
D−→ G with Fatou’s lemma and part (d) of the

Portmanteau theorem we deduce that for any ε > 0,

P(A) ≤ E[lim inf
n→∞

I|Ŝn|≤ε] ≤ lim inf
n→∞

P(|Ŝn| ≤ ε) = P(|G| ≤ ε) .

Taking ε ↓ 0 it follows that P(A) = 0. Hence, by Proposition 5.3.5, such random
walk is an example of a non-converging MG for which a.s.

lim sup
n→∞

Sn =∞ = − lim inf
n→∞

Sn .

Here is another application of Proposition 5.3.5.

Exercise 5.3.6. Consider the Fn-adapted Wn ≥ 0, such that supn |Wn+1−Wn| ≤
K for some finite non-random constant K and W0 = 0. Suppose there exist non-
random, positive constants a and b such that for all n ≥ 0,

E[Wn+1 −Wn + a|Fn]I{Wn≥b} ≤ 0 .

With Nn =
∑n
k=1 I{Wk<b}, show that P(N∞ is finite) = 0.

Hint: Check that Xn = Wn + an− (K + a)Nn−1 is a sup-MG of uniformly bounded
differences.

As we show next, Doob’s convergence theorem leads to the integrability of Xθ for
any L1 bounded sub-MG Xn and any stopping time θ.

Lemma 5.3.7. If (Xn,Fn) is a sub-MG and supn E[(Xn)+] <∞ then E|Xθ| <∞
for any Fn-stopping time θ.

Proof. Since ((Xn)+,Fn) is a sub-MG (see Proposition 5.1.22), it follows
that E[(Xn∧θ)+] ≤ E[(Xn)+] for all n (consider Theorem 5.1.32 for the sub-MG
(Xn)+ and τ =∞). Thus, our hypothesis that supn E[(Xn)+] is finite results with
supn E[(Yn)+] finite, where Yn = Xn∧θ. Applying Doob’s convergence theorem for

the sub-MG (Yn,Fn) we have that Yn
a.s→ Y∞ with Y∞ = Xθ integrable. �

We further get the following relation, which is key to establishing Doob’s optional
stopping for certain sup-MGs (and sub-MGs).

Proposition 5.3.8. Suppose (Xn,Fn) is a non-negative sup-MG and τ ≥ θ are
stopping times for the filtration {Fn}. Then, EXθ ≥ EXτ are finite valued.
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Proof. From Theorem 5.1.32 we know that Zn = Xn∧τ −Xn∧θ is a sup-MG
(as are Xn∧τ and Xn∧θ), with Z0 = 0. Thus, E[Xn∧θ] ≥ E[Xn∧τ ] are finite and
since τ ≥ θ, subtracting from both sides the finite E[XnIθ≥n] we find that

E[XθIθ<n] ≥ E[XτIτ<n] + E[XnIτ≥nIθ<n] .

The sup-MG {Xn} is non-negative, so by Doob’s convergence theorem Xn
a.s.→ X∞

and in view of Fatou’s lemma

lim inf
n→∞

E[XnIτ≥nIθ<n] ≥ E[X∞Iτ=∞Iθ<∞] .

Further, by monotone convergence E[XτIτ<n] ↑ E[XτIτ<∞] and E[XθIθ<n] ↑
E[XθIθ<∞]. Hence, taking n→∞ results with

E[XθIθ<∞] ≥ E[XτIτ<∞] + E[XτIτ=∞Iθ<∞] .

Adding the identity E[XθIθ=∞] = E[XτIθ=∞], which holds for τ ≥ θ, yields the
stated inequality E[Xθ] ≥ E[Xτ ]. Considering 0 ≤ θ we further see that E[X0] ≥
E[Xθ] ≥ E[Xτ ] ≥ 0 are finite, as claimed. �

Solving the next exercise should improve your intuition about the domain of va-
lidity of Proposition 5.1.22 and of Doob’s convergence theorem.

Exercise 5.3.9.

(a) Provide an example of a sub-martingale {Xn} for which {X2
n} is a super-

martingale and not a sub-martingale. Explain why your example does not
contradict Proposition 5.1.22.

(b) Provide an example of a martingale which converges a.s. to −∞ and
explain why it does not contradict Theorem 5.3.2.
Hint: Try Sn =

∑n
i=1 ξi, with zero-mean, independent but not identically

distributed ξi.

We conclude this sub-section with few additional applications of Doob’s conver-
gence theorem.

Exercise 5.3.10. Suppose {Xn} and {Yn} are non-negative, integrable processes
adapted to the filtration Fn such that

∑
n≥1 Yn < ∞ a.s. and E[Xn+1|Fn] ≤

(1 +Yn)Xn+Yn for all n. Show that Xn converges a.s. to a finite limit as n→∞.
Hint: Find a non-negative super-martingale (Wn,Fn) whose convergence implies
that of Xn.

Exercise 5.3.11. Let {Xk} be mutually independent but not necessarily integrable
random variables, such that −Xn has the same law as Xn (for each n). Suppose
that Sk = X1 + . . .+Xk converges a.s. for k →∞.

(a) Fixing c < ∞ non-random, let Y
(c)
n =

∑n
k=1 |Sk−1|I|Sk−1|≤cXkI|Xk|≤c .

Show that Y
(c)
n is a martingale with respect to the filtration {FX

n } and

that supn ‖Y
(c)
n ‖2 <∞.

Hint: Kolmogorov’s three series theorem may help in proving that {Y (c)
n }

is L2-bounded.
(b) Show that Yn =

∑n
k=1 |Sk−1|Xk converges a.s.
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5.3.1. Uniformly integrable martingales. The main result of this subsec-
tion is the following L1 convergence theorem for uniformly integrable (U.I.) sub-
MGs (and sup-MGs).

Theorem 5.3.12. If (Xn,Fn) is a sub-MG, then {Xn} is U.I. (c.f. Definition

1.3.47), if and only if Xn
L1

→ X∞, in which case also Xn
a.s.→ X∞ and Xn ≤

E[X∞|Fn] for all n.

Remark. If {Xn} is uniformly integrable then supn E|Xn| is finite (see Lemma
1.3.48). Thus, the assumption of Theorem 5.3.12 is stronger than that of Theorem
5.3.2, as is its conclusion.

Proof. If {Xn} is U.I. then supn E|Xn| < ∞. For {Xn} sub-MG it thus

follows by Doob’s convergence theorem that Xn
a.s.→ X∞ with X∞ integrable. Ob-

viously, this implies that Xn
p→ X∞. Similarly, if we start instead by assuming

that Xn
L1

→ X∞ then also Xn
p→ X∞. Either way, Vitali’s convergence theorem

(i.e. Theorem 1.3.49), tells us that uniform integrability is equivalent to L1 con-

vergence when Xn
p→ X∞. We thus deduce that for sub-MGs the U.I. property is

equivalent to L1 convergence and either one of these yields also the corresponding
a.s. convergence.
Turning to show that Xn ≤ E[X∞|Fn] for all n, recall that Xm ≤ E[X`|Fm] for

all ` > m and any sub-MG (see Proposition 5.1.20). Further, since X`
L1

→ X∞ it

follows that E[X`|Fm]
L1

→ E[X∞|Fm] as `→∞, per fixed m (see Theorem 4.2.30).
The latter implies the convergence a.s. of these conditional expectations along some
sub-sequence `k (c.f. Theorem 2.2.10). Hence, we conclude that for any m, a.s.

Xm ≤ lim inf
`→∞

E[X`|Fm] ≤ E[X∞|Fm] ,

i.e., Xn ≤ E[X∞|Fn] for all n. �

The preceding theorem identifies the collection of U.I. martingales as merely the
set of all Doob’s martingales, a concept we now define.

Definition 5.3.13. The sequence Xn = E[X|Fn] with X an integrable R.V. and
{Fn} a filtration, is called Doob’s martingale of X with respect to {Fn}.

Corollary 5.3.14. A martingale (Xn,Fn) is U.I. if and only if Xn = E[X∞|Fn]

is a Doob’s martingale with respect to {Fn}, or equivalently if and only if Xn
L1

→ X∞.

Proof. Theorem 5.3.12 states that a sub-MG (hence also a MG) is U.I. if and
only if it converges in L1 and in this case Xn ≤ E[X∞|Fn]. Applying this theorem
also for −Xn we deduce that a U.I. martingale is necessarily a Doob’s martingale
of the form Xn = E[X∞|Fn]. Conversely, the sequence Xn = E[X|Fn] for some
integrable X and a filtration {Fn} is U.I. (see Proposition 4.2.33). �

We next generalize Theorem 4.2.26 about dominated convergence of C.E.

Theorem 5.3.15 (Lévy’s upward theorem). Suppose supm |Xm| is integrable,

Xn
a.s.→ X∞ and Fn ↑ F∞. Then E[Xn|Fn]→ E[X∞|F∞] both a.s. and in L1.

Remark. Lévy’s upward theorem is trivial if {Xn} is adapted to {Fn} (which
is obviously not part of its assumptions). On the other hand, recall that in view



5.3. THE CONVERGENCE OF MARTINGALES 199

of part (b) of Exercise 4.2.35, having {Xn} U.I. and Xn
a.s.→ X∞ is in general not

enough even for the a.s. convergence of E[Xn|G] to E[X∞|G].

Proof. Consider first the special case where Xn = X does not depend on
n. Then, Yn = E[X|Fn] is a U.I. martingale. Therefore, E[Y∞|Fn] = E[X|Fn]
for all n, where Y∞ denotes the a.s. and L1 limit of Yn (see Corollary 5.3.14).
As Yn ∈ mFn ⊆ mF∞ clearly Y∞ = limn Yn ∈ mF∞. Further, by definition of
the C.E. E[XIA] = E[Y∞IA] for all A in the π-system P =

⋃
n Fn hence with

F∞ = σ(P) it follows that Y∞ = E[X|F∞] (see Exercise 4.1.3).

Turning to the general case, with Z = supm |Xm| integrable and Xm
a.s.→ X∞, we

deduce that X∞ and Wk = sup{|Xn −X∞| : n ≥ k} ≤ 2Z are both integrable. So,
the conditional Jensen’s inequality and the monotonicity of the C.E. imply that for
all n ≥ k,

|E[Xn|Fn]−E[X∞|Fn]| ≤ E[|Xn −X∞| |Fn] ≤ E[Wk|Fn] .

Consequently, considering n→∞ we find by the special case of the theorem where
Xn is replaced by Wk independent of n (which we already proved), that

lim sup
n→∞

|E[Xn|Fn]−E[X∞|Fn]| ≤ lim
n→∞

E[Wk|Fn] = E[Wk|F∞] .

Similarly, we know that E[X∞|Fn]
a.s→ E[X∞|F∞]. Further, by definition Wk ↓ 0

a.s. when k → ∞, so also E[Wk|F∞] ↓ 0 by the usual dominated convergence of
C.E. (see Theorem 4.2.26). Combining these two a.s. convergence results and the

preceding inequality, we deduce that E[Xn|Fn]
a.s→ E[X∞|F∞] as stated. Finally,

since |E[Xn|Fn]| ≤ E[Z|Fn] for all n, it follows that {E[Xn|Fn]} is U.I. and hence
the a.s. convergence of this sequence to E[X∞|F∞] yields its convergence in L1 as
well (c.f. Theorem 1.3.49). �

Considering Lévy’s upward theorem for Xn = X∞ = IA and A ∈ F∞ yields the
following corollary.

Corollary 5.3.16 (Lévy’s 0-1 law). If Fn ↑ F∞, A ∈ F∞, then E[IA|Fn]
a.s.→

IA.

As shown in the sequel, Kolmogorov’s 0-1 law about P-triviality of the tail σ-
algebra T X = ∩nT X

n of independent random variables is a special case of Lévy’s
0-1 law.

Proof of Corollary 1.4.10. Let FX = σ(
⋃
n FX

n ). Recall Definition 1.4.9

that T X ⊆ T X
n ⊆ FX for all n. Thus, by Lévy’s 0-1 law E[IA|FX

n ]
a.s.→ IA for

any A ∈ T X. By assumption {Xk} are P-mutually independent, hence for any
A ∈ T X the R.V. IA ∈ mT X

n is independent of the σ-algebra FX
n . Consequently,

E[IA|FX
n ]

a.s.
= P(A) for all n. We deduce that P(A)

a.s.
= IA, implying that P(A) ∈

{0, 1} for all A ∈ T X, as stated. �

The generalization of Theorem 4.2.30 which you derive next also relaxes the as-
sumptions of Lévy’s upward theorem in case only L1 convergence is of interest.

Exercise 5.3.17. Show that if Xn
L1

→ X∞ and Fn ↑ F∞ then E[Xn|Fn]
L1

→
E[X∞|F∞].

Here is an example of the importance of uniform integrability when dealing with
convergence.
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Exercise 5.3.18. Suppose Xn
a.s.→ 0 are [0, 1]-valued random variables and {Mn}

is a non-negative MG.

(a) Provide an example where E[XnMn] = 1 for all n finite.
(b) Show that if {Mn} is U.I. then E[XnMn]→ 0.

Definition 5.3.19. A continuous function x : [0, 1) 7→ R is absolutely continuous
if for every ε > 0 there exists δ > 0 such that for all k < ∞, s1 < t1 ≤ s2 < t2 ≤
· · · ≤ sk < tk ∈ [0, 1)

k∑
`=1

|t` − s`| ≤ δ =⇒
k∑
`=1

|x(t`)− x(s`)| ≤ ε.

The next exercise uses convergence properties of MGs to prove a classical result
in real analysis, namely, that an absolutely continuous function is differentiable for
Lebesgue a.e. t ∈ [0, 1).

Exercise 5.3.20. On the probability space ([0, 1),B, U) consider the events

Ai,n = [(i− 1)2−n, i2−n) for i = 1, . . . , 2n, n = 0, 1, . . . ,

and the associated σ-algebras Fn = σ(Ai,n, i = 1, . . . , 2n).

(a) Write an explicit formula for E[h|Fn] and h ∈ L1([0, 1),B, U).

(b) For hi,n = 2n(x(i2−n)−x((i−1)2−n)), show that Xn(t) =
∑2n

i=1 hi,nIAi,n(t)
is a martingale with respect to {Fn}.

(c) Show that for absolutely continuous x(·) the martingale {Xn} is U.I.
Hint: Show that P(|Xn| > ρ) ≤ c/ρ for some constant c < ∞ and all
n, ρ > 0.

(d) Show that then there exists h ∈ L1([0, 1),B, U) such that

x(t)− x(s) =

∫ t

s

h(u)du for all 1 > t ≥ s ≥ 0.

(e) Recall Lebesgue’s theorem, that ∆−1
∫ s+∆

s
|h(s)−h(u)|du a.s→ 0 as ∆→ 0,

for a.e. s ∈ [0, 1). Using it, conclude that dx
dt = h for almost every

t ∈ [0, 1).

A martingale Xn is called binary splitting if conditional on any event {Xk =
xk, k ≤ n} of positive probability, the variable Xn+1 takes at most two values. You
next show that any integrable X is the limit of some binary splitting Doob’s MG.

Exercise 5.3.21. Fix X integrable. Starting with X0 = EX, let Xk = E[X|Fξ
k ]

and Yk = ξk(X −Xk) for the {−1, 1}-valued variables ξk = 2IX≥Xk−1
− 1, k ≥ 1.

(a) Verify that (Xn,Fξ
n) is a U.I., binary splitting MG, and deduce that Xn →

X∞ = E[X|Fξ
∞] almost surely and in L1.

(b) Show that E[Yn] = 0 for all n, and Yn → |X −X∞| almost surely.
(c) Conclude that X∞ = X almost surely.

Here is another consequence of MG convergence properties (this time, of relevance
for certain economics theories).

Exercise 5.3.22. Given integrable random variables X, Y0 and Z0 on the same
probability space (Ω,F ,P), and two σ-algebras A ⊆ F , B ⊆ F , for k = 1, 2, . . ., let

Yk := E[X|σ(A, Z0, . . . , Zk−1)] , Zk := E[X|σ(B, Y0, . . . , Yk−1)] .
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Show that Yn → Y∞ and Zn → Z∞ a.s. and in L1, for some integrable random
variables Y∞ and Z∞. Deduce that a.s. Y∞ = Z∞, hence Yn −Zn → 0 a.s. and in
L1.

Recall that uniformly bounded p-th moment for some p > 1 implies U.I. (see
Exercise 1.3.54). Strengthening the L1 convergence of Theorem 5.3.12, the next
proposition shows that an Lp-bounded martingale converges to its a.s. limit also
in Lp (provided p > 1). In contrast to the preceding convergence results, this
one does not hold for sub-MGs (or sup-MGs) which are not MGs (for example, let
τ = inf{k ≥ 1 : ξk = 0} for independent {ξk} such that P(ξk 6= 0) = k2/(k + 1)2,

so P(τ ≥ n) = n−2 and verify that Xn = nI{n<τ}
a.s.→ 0 but EX2

n = 1, so this

L2-bounded sup-MG does not converge to zero in L2).

Proposition 5.3.23 (Doob’s Lp martingale convergence). If the MG {Xn}
is such that supn E|Xn|p < ∞ for some p > 1, then there exists a R.V. X∞ such
that Xn → X∞ almost surely and in Lp (so ‖Xn‖p → ‖X∞‖p).

Proof. Being Lp bounded, the MG {Xn} is L1 bounded and Doob’s mar-

tingale convergence theorem applies here, to yield that Xn
a.s.→ X∞ for some inte-

grable R.V. X∞, hence also Yn = |Xn −X∞|p
a.s.→ 0. Further, considering Doob’s

martingale convergence theorem for the L1 bounded sub-MG |Xn|p, we get that
lim infn→∞E(|Xn|p) ≥ E|X∞|p, so in particular X∞ ∈ Lp. It thus suffices to verify
that E|Xn − X∞|p → 0 as n → ∞ (as in Exercise 1.3.28, this would imply that
‖Xn‖p → ‖X∞‖p). To this end, with c = supn E|Xn|p finite we have by the Lp

maximal inequality of (5.2.5) that EZn ≤ qpc for Zn = maxk≤n |Xk|p and any
finite n. Since 0 ≤ Zn ↑ Z = supk<∞ |Xk|p, we have by monotone convergence that
EZ ≤ qpc is finite. As X∞ is the a.s. limit of Xn it follows that |X∞|p ≤ Z as

well. Hence, Yn = |Xn −X∞|p ≤ (|Xn|+ |X∞|)p ≤ 2pZ. Having that Yn
a.s.→ 0 and

Yn ≤ 2pZ for integrable Z, we deduce by dominated convergence that EYn → 0 as
n→∞, thus completing the proof of the proposition. �

Remark. Proposition 5.3.23 does not have an L1 analog. Indeed, as we have
seen already in Exercise 5.2.14, there exists a non-negative MG {Mn} such that
EMn = 1 for all n and Mn → M∞ = 0 almost surely, so obviously, Mn does not
converge to M∞ in L1.

Example 5.3.24. Consider the martingale Sn =
∑n
k=1 ξk for independent, square-

integrable, zero-mean random variables ξk such that
∑
k Eξ2

k < ∞. Since ES2
n =∑n

k=1 Eξ2
k, it follows from Proposition 5.3.23 that the random series Sn(ω) →

S∞(ω) almost surely and in L2 (see also Theorem 2.3.17 for a direct proof of this
result, based on Kolmogorov’s maximal inequality).

Exercise 5.3.25. Suppose Zn = 1√
n

∑n
k=1 ξk for i.i.d. ξk ∈ L2(Ω,F ,P) of zero-

mean and unit variance. Let Fn = σ(ξk, k ≤ n) and F∞ = σ(ξk, k <∞).

(a) Prove that EWZn → 0 for any fixed W ∈ L2(Ω,F∞,P).
(b) Deduce that the same applies for any W ∈ L2(Ω,F ,P) and conclude that

Zn does not converge in L2.

(c) Show that though Zn
D−→ G, a standard normal variable, there exists no

Z∞ ∈ mF such that Zn
p→ Z∞.
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We conclude this sub-section with the application of martingales to the study of
Pólya’s urn scheme.

Example 5.3.26 (Pólya’s urn). Consider an urn that initially contains r red and
b blue marbles. At the k-th step a marble is drawn at random from the urn, with all
possible choices being equally likely, and it and ck more marbles of the same color are
then returned to the urn. With Nn = r+b+

∑n
k=1 ck counting the number of marbles

in the urn after n iterations of this procedure, let Rn denote the number of red
marbles at that time and Mn = Rn/Nn the corresponding fraction of red marbles.
Since Rn+1 ∈ {Rn, Rn+cn} with P(Rn+1 = Rn+cn|FM

n ) = Rn/Nn = Mn it follows
that E[Rn+1|FM

n ] = Rn + cnMn = Nn+1Mn. Consequently, E[Mn+1|FM
n ] = Mn

for all n with {Mn} a uniformly bounded martingale.

For the study of Pólya’s urn scheme we need the following definition.

Definition 5.3.27. The beta density with parameters α > 0 and β > 0 is

fβ(u) =
Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−11u∈[0,1] ,

where Γ(α) =
∫∞

0
sα−1e−sds is finite and positive (compare with Definition 1.4.46).

In particular, α = β = 1 corresponds to the density fU (u) of the uniform measure
on (0, 1], as in Example 1.2.41.

Exercise 5.3.28. Let {Mn} be the martingale of Example 5.3.26.

(a) Show that Mn →M∞ a.s. and in Lp for any p > 1.
(b) Assuming further that ck = c for all k ≥ 1, show that for ` = 0, . . . , n,

P(Rn = r + `c) =

(
n

`

)∏`−1
i=0(r + ic)

∏n−`−1
j=0 (b+ jc)∏n−1

k=0(r + b+ kc)
,

and deduce that M∞ has the beta density with parameters α = b/c and
β = r/c (in particular, M∞ has the law of U(0, 1] when r = b = ck > 0).

(c) For r = b = ck > 0 show that P(supk≥1Mk > 3/4) ≤ 2/3.

Exercise 5.3.29 (Bernard Friedman’s urn). Consider the following variant
of Pólya’s urn scheme, where after the k-th step one returns to the urn in addition
to the marble drawn and ck marbles of its color, also dk ≥ 1 marbles of the opposite

color. Show that if ck, dk are uniformly bounded and r + b > 0, then Mn
a.s.→ 1/2.

Hint: With Xn = (Mn− 1/2)2 check that E[Xn|FM
n−1] = (1− an)Xn−1 +un, where

the non-negative constants an and un are such that
∑
k uk <∞ and

∑
k ak =∞.

Exercise 5.3.30. Fixing bn ∈ [δ, 1] for some δ > 0, suppose {Xn} are [0, 1]-valued,
Fn-adapted such that Xn+1 = (1 − bn)Xn + bnBn, n ≥ 0, and P(Bn = 1|Fn) =

1−P(Bn = 0|Fn) = Xn. Show that Xn
a.s.→ X∞ ∈ {0, 1} and P(X∞ = 1|F0) = X0.

5.3.2. Square-integrable martingales. If (Xn,Fn) is a square-integrable
martingale then (X2

n,Fn) is a sub-MG, so by Doob’s decomposition X2
n = Mn+An

for a non-decreasing Fn-predictable sequence {An} and a MG (Mn,Fn) with M0 =
0. In the course of proving Doob’s decomposition we saw that An − An−1 =
E[X2

n−X2
n−1|Fn−1] and part (b) of Exercise 5.1.8 provides an alternative expression

An −An−1 = E[(Xn −Xn−1)2|Fn−1], motivating the following definition.
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Definition 5.3.31. The sequence An = X2
0 +

∑n
k=1 E[(Xk − Xk−1)2|Fk−1] is

called the predictable compensator of an L2-martingale (Xn,Fn) and denoted by
angle-brackets, that is, An = 〈X〉n.

With EMn = EM0 = 0 it follows that EX2
n = E〈X〉n, so {Xn} is L2-bounded if

and only if supn E〈X〉n is finite. Further, 〈X〉n is non-decreasing, so it converges
to a limit, denoted hereafter 〈X〉∞. With 〈X〉n ≥ 〈X〉0 = X2

0 integrable it further
follows by monotone convergence that E〈X〉n ↑ E〈X〉∞, so {Xn} is L2 bounded
if and only if 〈X〉∞ is integrable, in which case Xn converges a.s. and in L2 (see
Doob’s L2 convergence theorem). As we show in the sequel much more can be said
about the relation between convergence of Xn(ω) and the random variable 〈X〉∞.
To simplify the notations assume hereafter that X0 = 0 = 〈X〉0 so 〈X〉n ≥ 0 (the
transformation of our results to the general case is trivial).
We start with the following explicit bounds on E[supn |Xn|p] for p ≤ 2, from which

we deduce that {Xn} is U.I. (hence converges a.s. and in L1), whenever 〈X〉1/2∞ is
integrable.

Proposition 5.3.32. For any q ∈ (0, 1], there exists finite cq such that if (Xn,Fn)
is an L2-MG with X0 = 0, then

E[sup
k
|Xk|2q] ≤ cqE[ 〈X〉q∞ ] .

Remark. Our proof gives cq = (2− q)/(1− q) for q < 1 and c1 = 4.

Proof. Let Vn = maxnk=0 |Xk|2, noting that Vn ↑ V∞ = supk |Xk|2 when
n → ∞. As already explained EX2

n ↑ E〈X〉∞ for n → ∞. Thus, applying the
bound (5.2.5) of Corollary 5.2.13 for p = 2 we find that

E[Vn] ≤ 4EX2
n ≤ 4E〈X〉∞ ,

and considering n→∞ we get our thesis for q = 1 (by monotone convergence).
Turning to the case of 0 < q < 1, note that (V∞)q = supk |Xk|2q. Further, the
Fn-predictable part in Doob’s decomposition of the non-negative sub-martingale
Zn = X2

n is An = 〈X〉n. Hence, applying Lemma 5.2.7 with p = q and τ = ∞
yields the stated bound. �

Here is an application of Proposition 5.3.32 to the study of a certain class of
random walks.

Exercise 5.3.33. Let Sn =
∑n
k=1 ξk for i.i.d. {ξk} of zero mean and finite second

moment. Suppose τ is an Fξ
n-stopping time such that E[

√
τ ] is finite.

(a) Compute the predictable compensator of the L2-martingale (Sn∧τ ,Fξ
n).

(b) Deduce that {Sn∧τ} is U.I. and that ESτ = 0.

We deduce from Proposition 5.3.32 that Xn(ω) converges a.s. to a finite limit

when 〈X〉1/2∞ is integrable. A considerable refinement of this conclusion is offered
by our next result, relating such convergence to 〈X〉∞ being finite at ω!

Theorem 5.3.34. Suppose (Xn,Fn) is an L2 martingale with X0 = 0 and non-
decreasing f : R+ → R+ satisfies

∫∞
a
f(t)−2dt <∞ for some a <∞.

(a) Xn(ω) converges to a finite limit for a.e. ω for which 〈X〉∞(ω) is finite.
(b) Xn(ω)/f(〈X〉n(ω))→ 0 for a.e. ω for which 〈X〉∞(ω) is infinite.
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(c) If the martingale differences Xn −Xn−1 are uniformly bounded then the
converse to part (a) holds. That is, 〈X〉∞(ω) is finite for a.e. ω for
which Xn(ω) converges to a finite limit.

Proof. (a) Recall that for any n and Fn-stopping time τ we have the identity
X2
n∧τ = Mn∧τ + 〈X〉n∧τ with EMn∧τ = 0, yielding by monotone convergence

that supn E[X2
n∧τ ] = E〈X〉τ . While proving Lemma 5.2.7 we noted that θv =

inf{n ≥ 0 : 〈X〉n+1 > v} are Fn-stopping times such that 〈X〉θv ≤ v. Thus, setting
Yn = Xn∧θk for a positive integer k, the martingale (Yn,Fn) is L2-bounded and
as such it almost surely has a finite limit. Further, if 〈X〉∞(ω) is finite, then by
definition θk(ω) = ∞ for some random positive integer k = k(ω), in which case
Xn∧θk = Xn for all n. As we consider only countably many values of k, this yields
the thesis of part (a) of the theorem.

(b). Necessarily f(t) ↑ ∞ as t → ∞, so we may and shall assume wlog that
f(a) > 0. Then, with Vn = f(a ∨ 〈X〉n)−1 an Fn-predictable sequence of bounded
variables, its martingale transform Yn =

∑n
k=1 Vk(Xk −Xk−1) with respect to the

square-integrable martingale {Xn} is also a square-integrable martingale for the
filtration {Fn} (c.f. Theorem 5.1.28). Further, since Vk ∈ mFk−1 it follows that
for all k ≥ 1,

〈Y 〉k − 〈Y 〉k−1 = E[(Yk − Yk−1)2|Fk−1] = V 2
k E[(Xk −Xk−1)2|Fk−1]

=
〈X〉k − 〈X〉k−1

f(a ∨ 〈X〉k)2
≤
∫ 〈X〉k
〈X〉k−1

f(a ∨ t)−2dt

(since t 7→ f(a ∨ t)−2 is non-increasing). Adding the preceding inequalities over
k ≥ 1, we deduce that 〈Y 〉∞ ≤

∫∞
0
f(a ∨ t)−2dt < ∞. Thus, by part (a) of the

theorem, for almost every ω, Yn(ω) has a finite limit. That is, for a.e. ω the
series

∑
n xn/bn converges, where bn = f(a∨〈X〉n(ω)) is a positive, non-decreasing

sequence and Xn(ω) =
∑n
k=1 xk for all n. If in addition to the convergence of this

series also 〈X〉∞(ω) = ∞ then bn ↑ ∞ and by Kronecker’s lemma Xn(ω)/bn → 0.
Further, in this case bn = f(〈X〉n(ω)) for all n large enough, yielding the thesis of
part (b) of the theorem.

(c). Suppose that P
(
〈X〉∞ = ∞, supn |Xn| < ∞

)
> 0. Then, there exists some r

such that P
(
〈X〉∞ =∞, τr =∞

)
> 0 for the Fn-stopping time τr = inf{m ≥ 0 :

|Xm| > r}. Since supm |Xm−Xm−1| ≤ c for some non-random finite constant c, we
have that |Xn∧τr | ≤ r+c, from which we deduce that E〈X〉n∧τr = EX2

n∧τr ≤ (r+c)2

for all n. With 0 ≤ 〈X〉n∧τr ↑ 〈X〉τr , by monotone convergence also

E
[
〈X〉∞Iτr=∞

]
≤ E

[
〈X〉τr

]
≤ (r + c)2 .

This contradicts our assumption that P
(
〈X〉∞ =∞, τr =∞

)
> 0. In conclusion,

necessarily, P
(
〈X〉∞ = ∞, supn |Xn| < ∞

)
= 0. Consequently, with supn |Xn|

finite on the set of ω values for which Xn(ω) converges to a finite limit, it follows
that 〈X〉∞(ω) is finite for a.e. such ω. �

We next prove Lévy’s extension of both Borel-Cantelli lemmas (which is a neat
application of the preceding theorem).

Proposition 5.3.35 (Borel-Cantelli III). Consider events An ∈ Fn for some
filtration {Fn}. Let Sn =

∑n
k=1 IAk count the number of events occurring among
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the first n, with S∞ =
∑
k IAk the corresponding total number of occurrences. Sim-

ilarly, let Zn =
∑n
k=1 ξk denote the sum of the first n conditional probabilities

ξk = P(Ak|Fk−1) and Z∞ =
∑
k ξk. Then, for almost every ω,

(a) If Z∞(ω) is finite, then so is S∞(ω).
(b) If Z∞(ω) is infinite, then Sn(ω)/Zn(ω)→ 1.

Remark. Given any sequence of events, by the tower property Eξk = P(Ak) for
all k and setting Fn = σ(Ak, k ≤ n) guarantees that Ak ∈ Fk for all k. Hence,
(a) If EZ∞ =

∑
k P(Ak) is finite, then from part (a) of Proposition 5.3.35 we

deduce that
∑
k IAk is finite a.s., thus recovering the first Borel-Cantelli lemma.

(b) For Fn = σ(Ak, k ≤ n) and mutually independent events {Ak} we have that
ξk = P(Ak) and Zn = ESn for all n. Thus, in this case, part (b) of Proposition

5.3.35 is merely the statement that Sn/ESn
a.s.→ 1 when

∑
k P(Ak) = ∞, which is

your extension of the second Borel-Cantelli via Exercise 2.2.26.

Proof. Clearly, Mn = Sn−Zn is square-integrable and Fn-adapted. Further,
as Mn−Mn−1 = IAn−E[IAn |Fn−1] and Var(IAn |Fn−1) = ξn(1−ξn), it follows that
the predictable compensator of the L2 martingale (Mn,Fn) is 〈M〉n =

∑n
k=1 ξk(1−

ξk). Hence, 〈M〉n ≤ Zn for all n, and if Z∞(ω) is finite, then so is 〈M〉∞(ω). By
part (a) of Theorem 5.3.34, for a.e. such ω the finite limit M∞(ω) of Mn(ω) exists,
implying that S∞ = M∞ + Z∞ is finite as well.
With Sn = Mn + Zn, it suffices for part (b) of the proposition to show that
Mn/Zn → 0 for a.e. ω for which Z∞(ω) = ∞. To this end, note first that by
the preceding argument, the finite limit M∞(ω) exists also for a.e. ω for which
Z∞(ω) =∞ while 〈M〉∞(ω) is finite. For such ω we have that Mn/Zn → 0 (since
Mn(ω) is a bounded sequence while Zn(ω) is unbounded). Finally, from part (b)
of Theorem 5.3.34 (with f(t) = t), we know that Mn/〈M〉n ≥Mn/Zn converges to
zero for a.e. ω for which 〈M〉∞(ω) is infinite. �

Remark. It is easy to adapt the proof of Proposition 5.3.35 so as to have the same
conclusions, now for Sn =

∑n
k=1 Γk and Fn-adapted, square-integrable Γn ≥ 0 such

that ξk = E[Γk|Fk−1] ≥ cVar(Γk|Fk−1) for some c > 0 and all k large enough.

Here is a direct application of Theorem 5.3.34.

Exercise 5.3.36. Given an L2 martingale (Mn,Fn) and positive, non-random
bn ↑ ∞, show that b−1

n Mn → 0 for a.e. ω such that
∑
k≥1 b

−2
k E[(Mk−Mk−1)2|Fk−1]

is finite.
Hint: Consider Xn =

∑n
k=1 b

−1
k (Mk −Mk−1) and recall Kronecker’s lemma.

The following extension of Kolmogorov’s three series theorem uses both Theorem
5.3.34 and Lévy’s extension of the Borel-Cantelli lemmas.

Exercise 5.3.37. Suppose {Xn} is adapted to filtration {Fn} and for any n, the
R.C.P.D. of Xn given Fn−1 equals the R.C.P.D. of −Xn given Fn−1. For non-

random c > 0 let X
(c)
n = XnI|Xn|≤c be the corresponding truncated variables.

(a) Verify that (Zn,Fn) is a MG, where Zn =
∑n
k=1X

(c)
k .

(b) Considering the series

(5.3.3)
∑
n

P(|Xn| > c |Fn−1), and
∑
n

Var(X(c)
n |Fn−1),
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show that for a.e. ω the series
∑
nXn(ω) has a finite limit if and only if

both series in (5.3.3) converge.
(c) Provide an example where the convergence in part (b) occurs with proba-

bility 0 < p < 1.

We now consider sufficient conditions for convergence almost surely of the mar-
tingale transform.

Exercise 5.3.38. Suppose Yn =
∑n
k=1 Vk(Zk−Zk−1) is the martingale transform

of the Fn-predictable {Vn} with respect to the martingale (Zn,Fn), per Definition
5.1.27.

(a) Show that if {Zn} is L2-bounded and {Vn} is uniformly bounded then

Yn
a.s.→ Y∞ finite.

(b) Deduce that for L2-bounded MG {Zn} the sequence Yn(ω) converges to a
finite limit for a.e. ω for which supk≥1 |Vk(ω)| is finite.

(c) Suppose now that {Vk} is predictable for the canonical filtration {Fn} of

the i.i.d. {ξk}. Show that if ξk
D
= −ξk and u 7→ uP(|ξ1| ≥ u) is bounded

above, then the series
∑
n Vnξn has a finite limit for a.e. ω for which∑

k≥1 |Vk(ω)| is finite.
Hint: Consider Exercise 5.3.37 for the adapted sequence Xk = Vkξk.

Here is another application of Lévy’s extension of the Borel-Cantelli lemmas.

Exercise 5.3.39. Suppose Xn = 1 +
∑n
k=1Dk, n ≥ 0, where the {−1, 1}-valued

Dk is Fk-adapted and such that E[Dk|Fk−1] ≥ ε for some non-random 1 > ε > 0
and all k ≥ 1.

(a) Show that (Xn,Fn) is a sub-martingale and provide its Doob decomposi-
tion.

(b) Using this decomposition and Lévy’s extension of the Borel-Cantelli lem-
mas, show that Xn →∞ almost surely.

(c) Let Zn = φXn for φ = (1 − ε)/(1 + ε). Show that (Zn,Fn) is a super-
martingale and deduce that P(infnXn ≤ 0) ≤ φ.

As we show next, the predictable compensator controls the exponential tails for
martingales of bounded differences.

Exercise 5.3.40. Fix λ > 0 non-random and an L2 martingale (Mn,Fn) with
M0 = 0 and bounded differences supk |Mk −Mk−1| ≤ 1.

(a) Show that Nn = exp(λMn − (eλ − λ− 1)〈M〉n) is a sup-MG for {Fn}.
Hint: Recall part (a) of Exercise 1.4.41.

(b) Show that for any Fn-stopping time τ and constants u, r > 0,

P(Mτ ≥ u, 〈M〉τ ≤ r) ≤ exp(−λu+ r(eλ − λ− 1))

(recall part (a) of Theorem 5.3.34 that a.s. 〈M〉τ finite implies the exis-
tence of finite Mτ , even when τ =∞).

(c) Applying (a) show that if the martingale {Sn} of Example 5.3.24 has
uniformly bounded differences |ξk| ≤ 1, then E exp(λS∞) is finite for
S∞ =

∑
k ξk and any λ ∈ R.

Applying part (c) of the preceding exercise, you are next to derive the following tail
estimate, due to Dvoretsky, in the context of Lévy’s extension of the Borel-Cantelli
lemmas.
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Exercise 5.3.41. Suppose Ak ∈ Fk for some filtration {Fk}. Let Sn =
∑n
k=1 IAk

and Zn =
∑n
k=1 P(Ak|Fk−1). Show that P(Sn ≥ r+u, Zn ≤ r) ≤ eu(r/(r+u))r+u

for all n and u, r > 0, then deduce that for any 0 < r < 1,

P
( n⋃
k=1

Ak
)
≤ er + P

( n∑
k=1

P(Ak|Fk−1) > r
)
.

Hint: Recall the proof of Borel-Cantelli III that the L2-martingale Mn = Sn − Zn
has differences bounded by one and 〈M〉n ≤ Zn.

We conclude this section with two properties of martingales of bounded differences.
First, showing the limited effect of changing the filtration on their predictable com-
pensators, then proving a refinement of the well known Azuma-Hoeffding concen-
tration inequality, from which we deduce the strong law of large numbers for such
martingales.

Exercise 5.3.42. Suppose (Mn,Fn) is an L2-martingale with M0 = 0 and uni-
formly bounded differences supk |Dk| ≤ C for C < ∞ and Dk := Mk − Mk−1.
Denote by 〈M〉n the Fn-predictable compensator of Mn, with

〈M〉?n :=

n∑
k=1

E[D2
k|FM

k−1] ,

denoting such predictable compensator with respect to the canonical filtration.

(a) Verify that Yn =
∑
k≤nD

2
k − 〈M〉n is an Fn-martingale and deduce that

E[max
k≤n
|Yk|2] ≤ 4C2E[M2

n] .

(b) Conclude that for any n,

‖max
k≤n
|〈M〉?k − 〈M〉k|‖2 ≤ 4C‖Mn‖2 .

Exercise 5.3.43. Suppose (Mn,Fn) is a martingale with M0 = 0 and differences
Dk = Mk −Mk−1, k ≥ 1 such that for some finite γk and all u ∈ [0, 1],

E[D2
ke
uDk |Fk−1] ≤ γ2

k E[euDk |Fk−1] <∞ .

(a) Show that Nn = exp(λMn − λ2rn/2) is a sup-MG for Fn provided λ ∈
[0, 1] and rn =

∑n
k=1 γ

2
k.

Hint: Recall part (b) of Exercise 1.4.41.
(b) Deduce that for I(x) = (x ∧ 1)(2x− x ∧ 1) and any u ≥ 0,

P(Mn ≥ u) ≤ exp(−rnI(u/rn)/2) .

(c) Conclude that b−1
n Mn

a.s.→ 0 for any martingale {Mn} of uniformly bounded
differences and non-random {bn} such that bn/

√
n log n→∞.

5.4. The optional stopping theorem

This section is about the use of martingales in computations involving stopping
times. The key tool for doing so is the following theorem.

Theorem 5.4.1 (Doob’s optional stopping). Suppose θ ≤ τ are Fn-stopping
times and Xn = Yn+Vn for sub-MGs (Vn,Fn), (Yn,Fn) such that Vn is non-positive
and {Yn∧τ} is uniformly integrable. Then, the R.V. Xθ and Xτ are integrable and
EXτ ≥ EXθ ≥ EX0 (where Xτ (ω) and Xθ(ω) are set as lim supnXn(ω) in case
the corresponding stopping time is infinite).
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Remark 5.4.2. Doob’s optional stopping theorem holds for any sub-MG (Xn,Fn)
such that {Xn∧τ} is uniformly integrable (just set Vn = 0). Alternatively, it holds
also whenever E[X∞|Fn] ≥ Xn for some integrable X∞ and all n (for then the
martingale Yn = E[X∞|Fn] is U.I. by Corollary 5.3.14, hence {Yn∧τ} also U.I. by
Proposition 5.4.4, and the sub-MG Vn = Xn − Yn is by assumption non-positive).
By far the most common application has (Xn,Fn) a martingale, in which case

it yields that EX0 = EXτ for any Fn-stopping time τ such that {Xn∧τ} is U.I.
(for example, whenever τ is bounded, or under the more general conditions of
Proposition 5.4.4).

Proof. By linearity of the expectation, it suffices to prove the claim separately
for Yn = 0 and for Vn = 0. Dealing first with Yn = 0, i.e. with a non-positive
sub-MG (Vn,Fn), note that (−Vn,Fn) is then a non-negative sup-MG. Thus, the
inequality E[Vτ ] ≥ E[Vθ] ≥ E[V0] and the integrability of Vθ and Vτ are immediate
consequences of Proposition 5.3.8.
Considering hereafter the sub-MG (Yn,Fn) such that {Yn∧τ} is U.I., since θ ≤ τ

are Fn-stopping times it follows by Theorem 5.1.32 that Un = Yn∧τ , Zn = Yn∧θ and
Un−Zn are all sub-MGs with respect to Fn. In particular, EUn ≥ EZn ≥ EZ0 for
all n. Our assumption that the sub-MG (Un,Fn) is U.I. results with Un → U∞ a.s.
and in L1 (see Theorem 5.3.12). Further, as we show in part (c) of Proposition 5.4.4,
in this case Un∧θ = Zn is U.I. so by the same reasoning, Zn → Z∞ a.s. and in L1.
We thus deduce that EU∞ ≥ EZ∞ ≥ EZ0. By definition, U∞ = limn Yn∧τ = Yτ
and Z∞ = limn Yn∧θ = Yθ. Consequently, EYτ ≥ EYθ ≥ EY0, as claimed. �

We complement Theorem 5.4.1 by first strengthening its conclusion and then pro-
viding explicit sufficient conditions for the uniform integrability of {Yn∧τ}.

Lemma 5.4.3. Suppose {Xn} is adapted to filtration {Fn} and the Fn-stopping
time τ is such that for any Fn-stopping time τ ≥ θ the R.V. Xθ is integrable and
E[Xτ ] ≥ E[Xθ]. Then, also E[Xτ |Fθ] ≥ Xθ a.s.

Proof. Fixing A ∈ Fθ set η = θIA + τIAc . Note that η ≤ τ is also an
Fn-stopping time since for any n,

{η ≤ n} = (A ∩ {θ ≤ n})
⋃

(Ac ∩ {τ ≤ n})

= (A ∩ {θ ≤ n})
⋃

((Ac ∩ {θ ≤ n}) ∩ {τ ≤ n}) ∈ Fn

because both A and Ac are in Fθ and {τ ≤ n} ∈ Fn (c.f. Definition 5.1.34 of
the σ-algebra Fθ). By assumption, Xη, Xθ, Xτ are integrable and EXτ ≥ EXη.
Since Xη = XθIA +XτIAc subtracting the finite E[XτIAc ] from both sides of this
inequality results with E[XτIA] ≥ E[XθIA]. This holds for all A ∈ Fθ and with
E[XτIA] = E[ZIA] for Z = E[Xτ |Fθ] (by definition of the conditional expectation),
we see that E[(Z−Xθ)IA] ≥ 0 for all A ∈ Fθ. Since both Z and Xθ are measurable
on Fθ (see part (b) of Exercise 5.1.35), it thus follows that a.s. Z ≥ Xθ, as
claimed. �

Proposition 5.4.4. Suppose {Yn} is integrable and τ is a stopping time for a
filtration {Fn}. Then, {Yn∧τ} is uniformly integrable if any one of the following
conditions hold.

(a) Eτ < ∞ and a.s. E[|Yn − Yn−1||Fn−1] ≤ c for some finite, non-random
c.
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(b) {YnIτ>n} is uniformly integrable and YτIτ<∞ is integrable.
(c) (Yn,Fn) is a uniformly integrable sub-MG (or sup-MG).

Proof. (a) Clearly, |Yn∧τ | ≤ Zn, where

Zn = |Y0|+
n∧τ∑
k=1

|Yk − Yk−1| = |Y0|+
n∑
k=1

|Yk − Yk−1|Iτ≥k ,

is non-decreasing in n. Hence, supn |Yn∧τ | ≤ Z∞, implying that {Yn∧τ} is U.I.
whenever EZ∞ is finite (c.f. Lemma 1.3.48). Proceeding to show that this is the
case under condition (a), recall that Iτ≥k ∈ mFk−1 for all k (since τ is an Fn-
stopping time). Thus, taking out what is known, by the tower property we find
that under condition (a),

E[|Yk − Yk−1|Iτ≥k] = E[E(|Yk − Yk−1| |Fk−1)Iτ≥k] ≤ cP(τ ≥ k)

for all k ≥ 1. Summing this bound over k = 1, 2, . . . results with

EZ∞ ≤ E|Y0|+ c

∞∑
k=1

P(τ ≥ k) = E|Y0|+ cEτ ,

with the integrability of Z∞ being a consequence of the hypothesis in condition (a)
that τ is integrable.

(b) Next note that |Xn∧τ | ≤ |Xτ |Iτ<∞ + |Xn|Iτ>n for every n, any sequence of
random variables {Xn} and any τ ∈ {0, 1, 2, . . . ,∞}. Condition (b) states that the
sequence {|Yn|Iτ>n} is U.I. and that the variable |Yτ |Iτ<∞ is integrable. Thus,
taking the expectation of the preceding inequality in case Xn = YnI|Yn|>M , we find
that when condition (b) holds,

sup
n

E[|Yn∧τ |I|Yn∧τ |>M ] ≤ E[|Yτ |I|Yτ |>MIτ<∞] + sup
n

E[|Yn|I|Yn|>MIτ>n] ,

converges to zero as M ↑ ∞. That is, {|Yn∧τ |} is then a U.I. sequence.

(c) The hypothesis of (c) that {Yn} is U.I. implies that {YnIτ>n} is also U.I. and
that supn E[(Yn)+] is finite. With τ an Fn-stopping time and (Yn,Fn) a sub-MG,
it further follows by Lemma 5.3.7 that YτIτ<∞ is integrable. Having arrived at the
hypothesis of part (b), we are done. �

Since {Yn∧τ} is U.I. whenever τ is bounded, we have the following immediate
consequences of Doob’s optional stopping theorem, Remark 5.4.2 and Lemma 5.4.3.

Corollary 5.4.5. For any sub-MG (Xn,Fn) and any non-decreasing sequence
{τk} of Fn-stopping times, (Xτk ,Fτk , k ≥ 0) is a sub-MG when either supk τk ≤ `
a non-random finite integer, or a.s. Xn ≤ E[X∞|Fn] for an integrable X∞ and all
n ≥ 0.

Check that by part (b) of Exercise 5.2.16 and part (c) of Proposition 5.4.4 it follows
from Doob’s optional stopping theorem that ESτ = 0 for any stopping time τ with
respect to the canonical filtration of Sn =

∑n
k=1 ξk provided the independent ξk

are integrable with Eξk = 0 and supn E|Sn| <∞.
Sometimes Doob’s optional stopping theorem is applied en-route to a useful con-

tradiction. For example,
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Exercise 5.4.6. Show that if {Xn} is a sub-martingale such that EX0 ≥ 0 and
infnXn < 0 a.s. then necessarily E[supnXn] =∞.
Hint: Assuming first that supn |Xn| is integrable, apply Doob’s optional stopping
theorem to arrive at a contradiction. Then consider the same argument for the
sub-MG Zn = max{Xn,−1}.

Exercise 5.4.7. Fixing b > 0, let τb = inf{n ≥ 0 : Sn ≥ b} for the random walk
{Sn} of Definition 5.1.6 and suppose ξn = Sn − Sn−1 are uniformly bounded, of
zero mean and positive variance.

(a) Show that τb is almost surely finite.
Hint: See Proposition 5.3.5.

(b) Show that E[min{Sn : n ≤ τb}] = −∞.

Martingales often provide much information about specific stopping times. We
detail below one such example, pertaining to the srw of Definition 5.1.6.

Corollary 5.4.8 (Gambler’s Ruin). Fixing positive integers a and b the prob-
ability that a srw {Sn}, starting at S0 = 0, hits −a before first hitting +b is
r = (eλb − 1)/(eλb − e−λa) for λ = log[(1− p)/p] 6= 0. For the symmetric srw, i.e.
when p = 1/2, this probability is r = b/(a+ b).

Remark. The probability r is often called the gambler’s ruin, or ruin probability
for a gambler with initial capital of +a, betting on the outcome of independent
rounds of the same game, a unit amount per round, gaining or losing an amount
equal to his bet in each round and stopping when either all his capital is lost (the
ruin event), or his accumulated gains reach the amount +b.

Proof. Consider the stopping time τa,b = inf{n ≥ 0 : Sn ≥ b, or Sn ≤ −a} for
the canonical filtration of the srw. That is, τa,b is the first time that the srw exits
the interval (−a, b). Since (Sk + k)/2 has the Binomial(k, p) distribution it is not
hard to check that sup` P(Sk = `) → 0 hence P(τa,b > k) ≤ P(−a < Sk < b) → 0
as k → ∞. Consequently, τa,b is finite a.s. Further, starting at S0 ∈ (−a, b) and
using only increments ξk ∈ {−1, 1}, necessarily Sτa,b ∈ {−a, b} with probability
one. Our goal is thus to compute the ruin probability r = P(Sτa,b = −a). To

this end, note that Eeλξk = peλ + (1 − p)e−λ = 1 for λ = log[(1 − p)/p]. Thus,
Mn = exp(λSn) =

∏n
k=1 e

λξk is, for such λ, a non-negative MG with M0 = 1
(c.f. Example 5.1.10). Clearly, Mn∧τa,b = exp(λSn∧τa,b) ≤ exp(|λ|max(a, b)) is
uniformly bounded (in n), hence uniformly integrable. So, applying Doob’s optional
stopping theorem for this MG and stopping time, we have that

1 = EM0 = E[Mτa,b ] = E[eλSτa,b ] = re−λa + (1− r)eλb ,

which easily yields the stated explicit formula for r in case λ 6= 0 (i.e. p 6= 1/2).
Finally, recall that {Sn} is a martingale for the symmetric srw, with Sn∧τa,b uni-
formly bounded, hence uniformly integrable. So, applying Doob’s optional stopping
theorem for this MG, we find that in the symmetric case

0 = ES0 = E[Sτa,b ] = −ar + b(1− r) ,

that is, r = b/(a+ b) when p = 1/2. �

Here is an interesting consequence of the Gambler’s ruin formula.
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Example 5.4.9. Initially, at step k = 0 zero is the only occupied site in Z. Then,
at each step a new particle starts at zero and follows a symmetric srw, indepen-
dently of the previous particles, till it lands on an unoccupied site, whereby it stops
and thereafter occupies this site. The set of occupied sites after k steps is thus
an interval of length k + 1 and we let Rk ∈ {1, . . . , k + 1} count the number of
non-negative integers occupied after k steps (starting at R0 = 1).
Clearly, Rk+1 ∈ {Rk, Rk + 1} and P(Rk+1 = Rk|FM

k ) = Rk/(k + 2) by the
preceding Gambler’s ruin formula. Thus, {Rk} follows the evolution of Bernard
Friedman’s urn with parameters dk = r = b = 1 and ck = 0. Consequently, by

Exercise 5.3.29 we have that (n+ 1)−1Rn
a.s.→ 1/2.

You are now to derive Wald’s identities about stopping times for the random
walk, and use them to gain further information about the stopping times τa,b of the
preceding corollary.

Exercise 5.4.10. Let τ be an integrable stopping time for the canonical filtration
of the random walk {Sn}.

(a) Show that if ξ1 is integrable, then Wald’s identity ESτ = Eξ1Eτ holds.
Hint: Use the representation Sτ =

∑∞
k=1 ξkIk≤τ and independence.

(b) Show that if in addition ξ1 is square-integrable, then Wald’s second iden-
tity E[(Sτ − τEξ1)2] = Var(ξ1)Eτ holds as well.
Hint: Explain why you may assume that Eξ1 = 0, prove the identity with
n ∧ τ instead of τ and use Doob’s L2 convergence theorem.

(c) Show that if ξ1 ≥ 0 then Wald’s identity applies also when Eτ = ∞
(under the convention that 0×∞ = 0).

Exercise 5.4.11. For the srw Sn and positive integers a, b consider the stopping
time τa,b = min{n ≥ 0 : Sn /∈ (−a, b)} as in proof of Corollary 5.4.8.

(a) Check that E[τa,b] <∞.
Hint: See Exercise 5.1.15.

(b) Combining Corollary 5.4.8 with Wald’s identities, compute the value of
E[τa,b].

(c) Show that τa,b ↑ τb = min{n ≥ 0 : Sn = b} for a ↑ ∞ (where the
minimum over the empty set is ∞), and deduce that Eτb = b/(2p − 1)
when p ≥ 1/2.

(d) Show that τb is almost surely finite when p ≥ 1/2.
(e) Find constants c1 and c2 such that Yn = S4

n − 6nS2
n + c1n

2 + c2n is a
martingale for the symmetric srw, and use it to evaluate E[(τb,b)

2] in
this case.

We next provide a few applications of Doob’s optional stopping theorem, starting
with information on the law of τb for srw (and certain other random walks).

Exercise 5.4.12. Consider the stopping time τb = inf{n ≥ 0 : Sn = b} and the
martingale Mn = exp(λSn)M(λ)−n for a srw {Sn}, with b a positive integer and
M(λ) = E[eλξ1 ].

(a) Show that if p = 1−q ∈ [1/2, 1) then eλbE[M(λ)−τb ] = 1 for every λ > 0.
(b) Deduce that for p ∈ [1/2, 1) and every 0 < s < 1,

E[sτ1 ] =
1

2qs

[
1−

√
1− 4pqs2

]
,
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and E[sτb ] = (E[sτ1 ])b.
(c) Show that if 0 < p < 1/2 then P(τb < ∞) = exp(−λ?b) for λ? =

log[(1− p)/p] > 0.
(d) Deduce that for p ∈ (0, 1/2) the variable Z = 1 + maxk≥0 Sk has a Geo-

metric distribution of success probability 1− e−λ? .

Exercise 5.4.13. Consider τb = min{n ≥ 0 : Sn ≥ b} for b > 0, in case the i.i.d.
increments ξn = Sn − Sn−1 of the random walk {Sn} are such that P(ξ1 > 0) > 0
and {ξ1|ξ1 > 0} has the Exponential law of parameter α.

(a) Show that for any n finite, conditional on {τb = n} the law of Sτb − b is
also Exponential of parameter α.
Hint: Recall the memory-less property of the exponential distribution.

(b) With M(λ) = E[eλξ1 ] and λ? ≥ 0 denoting the maximal solution of
M(λ) = 1, verify the existence of a monotone decreasing, continuous
function u : (0, 1] 7→ [λ?, α) such that M(u(s)) = 1/s.

(c) Evaluate E[sτbIτb<∞], 0 < s < 1, and P(τb < ∞) in terms of u(s) and
λ?.

Exercise 5.4.14. A monkey types a random sequence of capital letters {ξk} that
are chosen independently of each other, with each ξk chosen uniformly from among
the 26 possible values {A,B, . . . , Z}.

(a) Suppose that just before each time step n = 1, 2, · · · , a new gambler
arrives on the scene and bets $1 that ξn = P . If he loses, he leaves,
whereas if he wins, he receives $26, all of which he bets on the event
ξn+1 = R. If he now loses, he leaves, whereas if he wins, he bets his
current fortune of $262 on the event that ξn+2 = O, and so on, through
the word PROBABILITY . Show that the amount of money Mn that the
gamblers have collectively earned by time n is a martingale with respect
to {Fξ

n}.
(b) Let Ln denote the number of occurrences of the word PROBABILITY in

the first n letters typed by the monkey and τ̂ = inf{n ≥ 11 : Ln = 1} the
first time by which it produced this word. Using Doob’s optional stopping
theorem show that Eτ̂ = a for a = 2611. Does the same apply for the
first time τ by which the monkey produces the word ABRACADABRA
and if not, what is Eτ?

(c) Show that n−1Ln
a.s.→ 1

a and further that (Ln−n/a)/
√
vn

D−→ G for some
finite, positive constant v.
Hint: Show that the renewal theory clt of Exercise 3.2.9 applies here.

Exercise 5.4.15. Consider a fair game consisting of successive turns whose out-
come are the i.i.d. signs ξk ∈ {−1, 1} such that P(ξ1 = 1) = 1

2 , and where
upon betting the wagers {Vk} in each turn, your gain (or loss) after n turns is
Yn =

∑n
k=1 ξkVk. Here is a betting system {Vk}, predictable with respect to the

canonical filtration {Fξ
n}, as in Example 5.1.30, that surely makes a profit in this

fair game!
Choose a finite sequence x1, x2, . . . , x` of non-random positive numbers. For each
k ≥ 1, wager an amount Vk that equals the sum of the first and last terms in your
sequence prior to your k-s turn. Then, to update your sequence, if you just won
your bet delete those two numbers while if you lost it, append their sum as an extra
term x`+1 = x1 + x` at the right-hand end of the sequence. You play iteratively
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according to this rule till your sequence is empty (and if your sequence ever consists
of one term only, you wager that amount, so upon wining you delete this term, while
upon losing you append it to the sequence to obtain two terms).

(a) Let v =
∑`
i=1 xi. Show that the sum of terms in your sequence after n

turns is a martingale Sn = v − Yn with respect to {Fξ
n}. Deduce that

with probability one you terminate playing with a profit v at the finite
Fξ
n-stopping time τ = inf{n ≥ 0 : Sn = 0}.

(b) Show that Eτ is finite.
Hint: Consider the number of terms Nn in your sequence after n turns.

(c) Show that the expected value of your aggregate maximal loss till termina-
tion, namely EL for L = −mink≤τ Yk, is infinite (which is why you are
not to attempt this gambling scheme).

In the next exercise you derive a time-reversed version of the L2 maximal inequality
(5.2.4) by an application of Corollary 5.4.5.

Exercise 5.4.16. Associate to any given martingale (Yn,Hn) the record times
θk+1 = min{j ≥ 0 : Yj > Yθk}, k = 0, 1, . . . starting at θ0 = 0.

(a) Fixing m finite, set τk = θk ∧m and explain why (Yτk ,Hτk) is a MG.
(b) Deduce that if EY 2

m is finite then

m∑
k=1

E[(Yτk − Yτk−1
)2] = EY 2

m −EY 2
0 .

Hint: Apply Exercise 5.1.8.
(c) Conclude that for any martingale {Yn} and all m

E[(max
`≤m

Y` − Ym)2] ≤ EY 2
m .

5.5. Reversed MGs, likelihood ratios and branching processes

With martingales applied throughout probability theory, we present here just a
few selected applications. Our first example, Sub-section 5.5.1, deals with the
analysis of extinction probabilities for branching processes. We then study in Sub-
section 5.5.2 the likelihood ratios for independent experiments with the help of
Kakutani’s theorem about product martingales. Finally, in Sub-section 5.5.3 we
develop the theory of reversed martingales and applying it, provide zero-one law
and representation results for exchangeable processes.

5.5.1. Branching processes: extinction probabilities. We use martin-
gales to study the extinction probabilities of branching processes, the object we
define next.

Definition 5.5.1 (Branching process). The branching process is a discrete
time stochastic process {Zn} taking non-negative integer values, such that Z0 = 1
and for any n ≥ 1,

Zn =

Zn−1∑
j=1

N
(n)
j ,

where N and N
(n)
j for j = 1, 2, . . . are i.i.d. non-negative integer valued R.V.s with

finite mean mN = EN < ∞, and where we use the convention that if Zn−1 = 0
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then also Zn = 0. We call a branching process sub-critical when mN < 1, critical
when mN = 1 and super-critical when mN > 1.

Remark. The S.P. {Zn} is interpreted as counting the size of an evolving popula-

tion, with N
(n)
j being the number of offspring of jth individual of generation (n−1)

and Zn being the size of the n-th generation. Associated with the branching process

is the family tree with the root denoting the 0-th generation and having N
(n)
j edges

from vertex j at distance n from the root to vertices of distance (n+1) from the root.
Random trees generated in such a fashion are called Galton-Watson trees and are
the subject of much research. We focus here on the simpler S.P. {Zn} and shall use

throughout the filtration Fn = σ({N (k)
j , k ≤ n, j = 1, 2, . . .}). We note in passing

that in general FZ
n is a strict subset of Fn (since in general one can not recover the

number of offspring of each individual knowing only the total population sizes at
the different generations). Though not dealt with here, more sophisticated related
models have also been successfully studied by probabilists. For example, branching
process with immigration, where one adds to Zn an external random variable In
that count the number of individuals immigrating into the population at the nth

generation; Age-dependent branching process where individuals have random life-
times during which they produce offspring according to age-dependent probability
generating function; Multi-type branching process where each individual is assigned
a label (type), possibly depending on the type of its parent and with a different law
for the number of offspring in each type, and branching process in random envi-
ronment where the law of the number of offspring per individual is itself a random
variable (part of the a-apriori given random environment).

Our goal here is to find the probability pex of population extinction, formally
defined as follows.

Definition 5.5.2. The extinction probability of a branching process is

pex := P({ω : Zn(ω) = 0 for all n large enough}) .

Obviously, pex = 0 whenever P(N = 0) = 0 and pex = 1 whenever P(N = 0) = 1.
Hereafter we exclude these degenerate cases by assuming that 1 > P(N = 0) > 0.

To this end, we first deduce that with probability one, conditional upon non-
extinction the branching process grows unboundedly.

Lemma 5.5.3. If P(N = 0) > 0 then with probability one either Zn → ∞ or
Zn = 0 for all n large enough.

Proof. We start by proving that for any filtration Fn ↑ F∞ and any S.P.
Zn ≥ 0 if for A ∈ F∞, some non-random ηk > 0 and all large positive integers k, n

(5.5.1) P(A|Fn)I[0,k](Zn) ≥ ηkI[0,k](Zn) ,

then P(A∪B) = 1 for B = {limn Zn =∞}. Indeed, Ck = {Zn ≤ k, i.o. in n} are by
(5.5.1) such that Ck ⊆ {P(A|Fn) ≥ ηk, i.o. in n}. By Lévy’s 0-1 law P(A|Fn)→ IA
except on a set D such that P(D) = 0, hence also Ck ⊆ D∪{IA ≥ ηk} = D∪A for
all k. With Ck ↑ Bc it follows that Bc ⊆ D∪A yielding our claim that P(A∪B) = 1.
Turning now to the branching process Zn, let A = {ω : Zn(ω) = 0 for all n large

enough} which is in F∞, noting that if Zn ≤ k and N
(n+1)
j = 0, j = 1, . . . , k, then
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Zn+1 = 0 hence ω ∈ A. Consequently, by the independence of {N (n+1)
j , j = 1, . . .}

and Fn it follows that

E[IA|Fn]I{Zn≤k} ≥ E[I{Zn+1=0}|Fn]I{Zn≤k} ≥ P(N = 0)kI{Zn≤k}

for all n and k. That is, (5.5.1) holds in this case for ηk = P(N = 0)k > 0. As
shown already, this implies that with probability one either Zn →∞ or Zn = 0 for
all n large enough. �

The generating function

(5.5.2) L(s) = E[sN ] = P(N = 0) +

∞∑
k=1

P(N = k)sk

plays a key role in analyzing the branching process. In this task, we employ the
following martingales associated with branching process.

Lemma 5.5.4. Suppose 1 > P(N = 0) > 0. Then, (Xn,Fn) is a martingale where
Xn = m−nN Zn. In the super-critical case we also have the martingale (Mn,Fn) for
Mn = ρZn and ρ ∈ (0, 1) the unique solution of s = L(s). The same applies in the
sub-critical case if there exists a solution ρ ∈ (1,∞) of s = L(s).

Proof. Since the value of Zn is a non-random function of {N (k)
j , k ≤ n, j =

1, 2, . . .}, it follows that both Xn and Mn are Fn-adapted. We proceed to show by
induction on n that the non-negative processes Zn and sZn for each s > 0 such that
L(s) ≤ max(s, 1) are integrable with

(5.5.3) E[Zn+1|Fn] = mNZn , E[sZn+1 |Fn] = L(s)Zn .

Indeed, recall that the i.i.d. random variables N
(n+1)
j of finite mean mN are inde-

pendent of Fn on which Zn is measurable. Hence, by linearity of the expectation
it follows that for any A ∈ Fn,

E[Zn+1IA] =

∞∑
j=1

E[N
(n+1)
j I{Zn≥j}IA] =

∞∑
j=1

E[N
(n+1)
j ]E[I{Zn≥j}IA] = mNE[ZnIA] .

This verifies the integrability of Zn ≥ 0 as well as the identity E[Zn+1|Fn] = mNZn
of (5.5.3), which amounts to the martingale condition E[Xn+1|Fn] = Xn for Xn =
m−nN Zn. Similarly, fixing s > 0,

sZn+1 =

∞∑
`=0

I{Zn=`}
∏̀
j=1

sN
(n+1)
j .

Hence, by linearity of the expectation and independence of sN
(n+1)
j and Fn,

E[sZn+1IA] =

∞∑
`=0

E[I{Zn=`}IA
∏̀
j=1

sN
(n+1)
j ]

=

∞∑
`=0

E[I{Zn=`}IA]
∏̀
j=1

E[sN
(n+1)
j ] =

∞∑
`=0

E[I{Zn=`}IA]L(s)` = E[L(s)ZnIA] .

Since Zn ≥ 0 and L(s) ≤ max(s, 1) this implies that EsZn+1 ≤ 1 + EsZn and the
integrability of sZn follows by induction on n. Given that sZn is integrable and the
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preceding identity holds for all A ∈ Fn, we have thus verified the right identity in
(5.5.3), which in case s = L(s) is precisely the martingale condition for Mn = sZn .
Finally, to prove that s = L(s) has a unique solution in (0, 1) when mN = EN > 1,

note that the function s 7→ L(s) of (5.5.2) is continuous and bounded on [0, 1].
Further, since L(1) = 1 and L′(1) = EN > 1, it follows that L(s) < s for some
0 < s < 1. With L(0) = P(N = 0) > 0 we have by continuity that s = L(s)
for some s ∈ (0, 1). To show the uniqueness of such solution note that EN > 1

implies that P(N = k) > 0 for some k > 1, so L′′(s) =
∞∑
k=2

k(k − 1)P(N = k)sk−2

is positive and finite on (0, 1). Consequently, L(·) is strictly convex there. Hence,
if ρ ∈ (0, 1) is such that ρ = L(ρ), then L(s) < s for s ∈ (ρ, 1), so such a solution
ρ ∈ (0, 1) is unique. �

Remark. Since Xn = m−nN Zn is a martingale with X0 = 1, it follows that EZn =
mn
N for all n ≥ 0. Thus, a sub-critical branching process, i.e. when mN < 1, has

mean total population size

E[

∞∑
n=0

Zn] =

∞∑
n=0

mn
N =

1

1−mN
<∞ ,

which is finite.

We now determine the extinction probabilities for branching processes.

Proposition 5.5.5. Suppose 1 > P(N = 0) > 0. If mN ≤ 1 then pex = 1. In

contrast, if mN > 1 then pex = ρ, with m−nN Zn
a.s.→ X∞ and Zn

a.s.→ Z∞ ∈ {0,∞}.

Remark. In words, we find that for sub-critical and non-degenerate critical branch-
ing processes the population eventually dies off, whereas non-degenerate super-
critical branching processes survive forever with positive probability and conditional
upon such survival their population size grows unboundedly in time.

Proof. Applying Doob’s martingale convergence theorem to the non-negative

MG Xn of Lemma 5.5.4 we have that Xn
a.s.→ X∞ with X∞ almost surely finite.

In case mN ≤ 1 this implies that Zn = mn
NXn is almost surely bounded (in n),

hence by Lemma 5.5.3 necessarily Zn = 0 for all large n, i.e. pex = 1. In case

mN > 1 we have by Doob’s martingale convergence theorem that Mn
a.s.→ M∞ for

the non-negative MG Mn = ρZn of Lemma 5.5.4. Since ρ ∈ (0, 1) and Zn ≥ 0, it
follows that this MG is bounded by one, hence U.I. and with Z0 = 1 it follows that

EM∞ = EM0 = ρ (see Theorem 5.3.12). Recall Lemma 5.5.3 that Zn
a.s.→ Z∞ ∈

{0,∞}, so M∞ = ρZ∞ ∈ {0, 1} with

pex = P(Z∞ = 0) = P(M∞ = 1) = EM∞ = ρ

as stated. �

Remark. For a non-degenerate critical branching process (i.e. when mN = 1
and P(N = 0) > 0), we have seen that the martingale {Zn} converges to 0 with
probability one, while EZn = EZ0 = 1. Consequently, this MG is L1-bounded but
not U.I. (for another example, see Exercise 5.2.14). Further, as either Zn = 0 or
Zn ≥ 1, it follows that in this case 1 = E(Zn|Zn ≥ 1)(1− qn) for qn = P(Zn = 0).
Further, here qn ↑ pex = 1 so we deduce that conditional upon non-extinction, the
mean population size E(Zn|Zn ≥ 1) = 1/(1− qn) grows to infinity as n→∞.
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As you show next, if super-critical branching process has a square-integrable off-
spring distribution then m−nN Zn converges in law to a non-degenerate random vari-
able. The Kesten-Stigum L logL-theorem, (which we do not prove here), states
that the latter property holds if and only if E[N logN ] is finite.

Exercise 5.5.6. Consider a super-critical branching process {Zn} where the num-
ber of offspring is of mean mN = E[N ] > 1 and variance vN = Var(N) <∞.

(a) Compute E[X2
n] for Xn = m−nN Zn.

(b) Show that P(X∞ > 0) > 0 for the a.s. limit X∞ of the martingale Xn.
(c) Show that P(X∞ = 0) = pex and deduce that for a.e. ω, if the branching

process survives forever, that is Zn(ω) > 0 for all n, then X∞(ω) > 0.

The generating function L(s) = E[sN ] yields information about the laws of Zn
and that of X∞ of Proposition 5.5.5.

Proposition 5.5.7. Consider the generating functions Ln(s) = E[sZn ] for s ∈
[0, 1] and a branching process {Zn} starting with Z0 = 1. Then, L0(s) = s and
Ln(s) = L[Ln−1(s)] for n ≥ 1 and L(·) of (5.5.2). Consequently, the generating

function L̂∞(s) = E[sX∞ ] of X∞ is a solution of L̂∞(s) = L[L̂∞(s1/mN )] which
converges to one as s ↑ 1.

Remark. In particular, the probability qn = P(Zn = 0) = Ln(0) that the branch-
ing process is extinct after n generations is given by the recursion qn = L(qn−1)
for n ≥ 1, starting at q0 = 0. Since the continuous function L(s) is above s on
the interval from zero to the smallest positive solution of s = L(s) it follows that
qn is a monotone non-decreasing sequence that converges to this solution, which is
thus the value of pex. This alternative evaluation of pex does not use martingales.
Though implicit here, it instead relies on the Markov property of the branching
process (c.f. Example 6.1.10).

Proof. Recall that Z1 = N
(1)
1 and if Z1 = k then the branching process Zn

for n ≥ 2 has the same law as the sum of k i.i.d. variables, each having the same
law as Zn−1 (with the jth such variable counting the number of individuals in the
nth generation who are descendants of the jth individual of the first generation).
Consequently, E[sZn |Z1 = k] = E[sZn−1 ]k for all n ≥ 2 and k ≥ 0. Summing over
the disjoint events {Z1 = k} we have by the tower property that for n ≥ 2,

Ln(s) = E[E(sZn |Z1)] =

∞∑
k=0

P(N = k)Ln−1(s)k = L[Ln−1(s)]

for L(·) of (5.5.2), as claimed. Obviously, L0(s) = s and L1(s) = E[sN ] = L(s).

From this identity we conclude that L̂n(s) = L[L̂n−1(s1/mN )] for L̂n(s) = E[sXn ]

and Xn = m−nN Zn. With Xn
a.s.→ X∞ we have by bounded convergence that

L̂n(s) → L̂∞(s) = E[sX∞ ], which by the continuity of r 7→ L(r) on [0, 1] is thus a

solution of the identity L̂∞(s) = L[L̂∞(s1/mN )]. Further, by monotone convergence

L̂∞(s) ↑ L̂∞(1) = 1 as s ↑ 1. �

Remark. Of course, qn = P(T ≤ n) provides the distribution function of the
time of extinction T = inf{k ≥ 0 : Zk = 0}. For example, if N has the Bernoulli(p)
distribution for some 0 < p < 1 then T is merely a Geometric(1 − p) random
variable, but in general the law of T is more involved.
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The generating function L̂∞(·) determines the law of X∞ ≥ 0 (see Exercise 3.2.40).
For example, as you show next, in the special case where N has the Geometric
distribution, conditioned on non-extinction X∞ is an exponential random variable.

Exercise 5.5.8. Suppose Zn is a branching process with Z0 = 1 and N +1 having
a Geometric(p) distribution for some 0 < p < 1 (that is, P(N = k) = p(1− p)k for
k = 0, . . .). Here m = mN = (1 − p)/p so the branching process is sub-critical if
p > 1/2, critical if p = 1/2 and super-critical if p < 1/2.

(a) Check that L(s) = p/(1 − (1 − p)s) and ρ = 1/m. Then verify that
Ln(s) = (pmn(1 − s) + (1 − p)s − p)/((1 − p)(1 − s)mn + (1 − p)s − p)
except in the critical case for which Ln(s) = (n−(n−1)s)/((n+1)−ns).

(b) Show that in the super-critical case L̂∞(e−λ) = ρ+ (1− ρ)2/(λ+ (1− ρ))
for all λ ≥ 0 and deduce that conditioned on non-extinction X∞ has the
exponential distribution of parameter (1− ρ).

(c) Show that in the sub-critical case E[sZn |Zn 6= 0]→ (1−m)s/[1−ms] and
deduce that then the law of Zn conditioned upon non-extinction converges
weakly to a Geometric(1−m) distribution.

(d) Show that in the critical case E[e−λZn/n|Zn 6= 0]→ 1/(1+λ) for all λ ≥ 0
and deduce that then the law of n−1Zn conditioned upon non-extinction
converges weakly to an exponential distribution (of parameter one).

The following exercise demonstrates that martingales are also useful in the study
of Galton-Watson trees.

Exercise 5.5.9. Consider a super-critical branching process Zn such that 1 ≤
N ≤ ` for some non-random finite `. A vertex of the corresponding Galton-Watson
tree T∞ is called a branch point if it has more than one offspring. For each vertex
v ∈ T∞ let C(v) count the number of branch points one encounters when traversing
along a path from the root of the tree to v (possibly counting the root, but not
counting v among these branch points).

(a) Let ∂Tn denote the set of vertices in T∞ of distance n from the root.
Show that for each λ > 0,

Xn := M(λ)−n
∑
v∈∂Tn

e−λC(v)

is a martingale when M(λ) = mNe
−λ + P(N = 1)(1− e−λ).

(b) Let Bn = min{C(v) : v ∈ ∂Tn}. Show that a.s. lim infn→∞ n−1Bn ≥
δ where δ > 0 is non-random (and possibly depends on the offspring
distribution).

5.5.2. Product martingales and Radon-Nikodym derivatives. We start
with an explicit characterization of uniform integrability for the product martingale
of Example 5.1.10.

Theorem 5.5.10 (Kakutani’s Theorem). Let M∞ denote the a.s. limit of the
product martingale Mn =

∏n
k=1 Yk, with M0 = 1 and independent, integrable Yk ≥ 0

such that EYk = 1 for all k ≥ 1. By Jensen’s inequality, ak = E[
√
Yk] is in (0, 1]
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for all k ≥ 1. The following five statements are then equivalent:

(a) {Mn} is U.I. , (b) Mn
L1

→M∞; (c) EM∞ = 1;

(d)
∏
k

ak > 0 ; (e)
∑
k

(1− ak) <∞ ,

and if any (every) one of them fails, then M∞ = 0 a.s.

Proof. Statement (a) implies statement (b) because any U.I. martingale con-
verges in L1 (see Theorem 5.3.12). Further, the L1 convergence per statement (b)
implies that EMn → EM∞ and since EMn = EM0 = 1 for all n, this results with
EM∞ = 1 as well, which is statement (c).
Considering the non-negative martingale Nn =

∏n
k=1(
√
Yk/ak) we next show that

(c) implies (d) by proving the contra-positive. Indeed, by Doob’s convergence

theorem Nn
a.s.→ N∞ with N∞ finite a.s. Hence, if statement (d) fails to hold (that

is,
∏n
k=1 ak → 0), then Mn = N2

n(
∏n
k=1 ak)2 a.s.→ 0. So in this case M∞ = 0 a.s.

and statement (c) also fails to hold.
In contrast, if statement (d) holds then {Nn} is L2-bounded since for all n,

EN2
n = (

n∏
k=1

ak)−2EMn ≤
(∏
k

ak
)−2

= c <∞ .

Thus, with Mk ≤ N2
k it follows by the L2-maximal inequality that for all n,

E
[ n

max
k=0

Mk

]
≤ E

[ n
max
k=0

N2
k

]
≤ 4E[N2

n] ≤ 4c .

Hence, Mk ≥ 0 are such that supkMk is integrable and in particular, {Mn} is U.I.
(that is, (a) holds).
Finally, to see why the statements (d) and (e) are equivalent note that upon

applying the Borel Cantelli lemmas for independent events An with P(An) = 1−an
the divergence of the series

∑
k(1−ak) is equivalent to P(Acn eventually) = 0, which

for strictly positive ak is equivalent to
∏
k ak = 0. �

We next consider another martingale that is key to the study of likelihood ratios
in sequential statistics. To this end, let P and Q be two probability measures on
the same measurable space (Ω,F∞) with Pn = P

∣∣
Fn

and Qn = Q
∣∣
Fn

denoting the

restrictions of P and Q to a filtration Fn ↑ F∞.

Theorem 5.5.11. Suppose Qn � Pn for all n, with Mn = dQn/dPn denoting
the corresponding Radon-Nikodym derivatives on (Ω,Fn). Then,

(a) (Mn,Fn) is a martingale on the probability space (Ω,F∞,P) and when
n→∞ we have that P-a.s. Mn →M∞ <∞.

(b) If {Mn} is uniformly P-integrable then Q� P and dQ/dP = M∞.
(c) More generally, the Lebesgue decomposition of Q to its absolutely contin-

uous and singular parts with respect to P can be written as

(5.5.4) Q = Qac + Qs = M∞P + I{M∞=∞}Q .

Remark. While proving (5.5.4), we get an alternative representation of Qs as
the restriction of Q to the event {dP/dS = 0}, where S = (P + Q)/2 (with Qac

being the restriction of Q to the complement event {dP/dS > 0}). Further, from
(5.5.4) it follows that if Q� P then both Q(M∞ <∞) = 1 and P(M∞) = 1 while
if Q⊥P then both Q(M∞ =∞) = 1 and P(M∞ = 0) = 1.
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Example 5.5.12. Suppose Fn = σ(Πn) and the countable partitions Πn = {Ai,n} ⊂
F of Ω are nested (that is, for each n the partition Πn+1 is a refinement of Πn). It
is not hard to check directly that

Mn =
∑

{i:P(Ai,n)>0}

Q(Ai,n)

P(Ai,n)
IAi,n ,

is an Fn-sup-MG for (Ω,F ,P) and is further an Fn-martingale if Q(Ai,n) = 0
whenever P(Ai,n) = 0 (which is precisely the assumption made in Theorem 5.5.11).
We have seen this construction in Exercise 5.3.20, where Πn are the dyadic parti-
tions of Ω = [0, 1), P is taken to be Lebesgue’s measure on [0, 1) and Q([s, t)) =
x(t)− x(s) is the signed measure associated with the function x(·).

Proof. (a). By the Radon-Nikodym theorem, Mn ∈ mFn is non-negative
and P-integrable (since Pn(Mn) = Qn(Ω) = 1). Further, Q(A) = Qn(A) =
(MnPn)(A) = (MnP)(A) for all A ∈ Fn. In particular, if k ≤ n and A ∈ Fk then
(since Fk ⊆ Fn),

P(MnIA) = Q(A) = P(MkIA) ,

so in (Ω,F∞,P) we have Mk = E[Mn|Fk] by definition of the conditional expecta-
tion. Finally, by Doob’s convergence theorem the non-negative MG Mn converges
P-a.s. to M∞ which is P-a.s. finite.
(b). We have seen already that if A ∈ Fk then Q(A) = P(MnIA) for all n ≥ k.
Hence, if {Mn} is further uniformly P-integrable then also P(MnIA)→ P(M∞IA),
so taking n→∞ we deduce that in this case Q(A) = P(M∞IA) for any A ∈ ∪kFk
(and in particular for A = Ω). Since the probability measures Q and M∞P then
coincide on the π-system ∪kFk they agree also on the σ-algebra F∞ generated by
this π-system (recall Proposition 1.1.39).
(c). To deal with the general case, where Mn is not necessarily uniformly P-
integrable, consider the probability measure S = (P + Q)/2 and its restrictions
Sn = (Pn + Qn)/2 to Fn. Since P(A) ≥ 0 and Q(A) ≥ 0 for all A ∈ F∞, clearly
P � S and Q � S (see Definition 4.1.4). In particular, Pn � Sn and Qn � Sn
so there exist Vn = dPn/dSn ≥ 0 and Wn = dQn/dSn ≥ 0 such that Vn +Wn = 2.
By part (a), the bounded (Vn,Fn) and (Wn,Fn) are martingales on (Ω,F∞,S),
having the S-a.s. finite limits V∞ and W∞, respectively. Further, as shown in part
(b), V∞ = dP/dS and W∞ = dQ/dS. Recall that Qn = MnPn, so for any n,

WnSn = Qn = MnPn = MnVnSn .

Consequently, S-a.s. MnVn = Wn = 2 − Vn, implying that Vn > 0 and Mn =
(2− Vn)/Vn for all n. Considering n→∞ we thus deduce that S-a.s. Mn → (2−
V∞)/V∞ = W∞/V∞, possibly infinite. Setting M∞ := (2 − V∞)/V∞ coincides P-
a.s. with the limit of Mn in part (a), and further is such that I{M∞<∞} = I{V∞>0}.
Hence,

Q = W∞S = I{V∞>0}M∞V∞S + I{V∞=0}W∞S

= I{M∞<∞}M∞P + I{M∞=∞}Q .

Having M∞ finite P-a.s. this is precisely the stated Lebesgue decomposition of Q
with respect to P.
Finally, note that we have shown that S-a.s. Mn → M∞, so in particular, such

convergence holds also Q-a.s. �
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Combining Theorem 5.5.11 and Kakutani’s theorem we next deduce that if the
marginal laws of Xk under an infinite product measure Q for the sequence {Xk} are
absolutely continuous with respect to those marginal laws under another product
measure P, then either Q is absolutely continuous with respect to P, or these two
measures are mutually singular. This dichotomy is a key result in the treatment
by theoretical statistics of the problem of hypothesis testing (with independent
observables under both the null hypothesis and the alternative hypothesis). Indeed,
in case of absolute continuity, even given the whole sequence {Xk} it is impossible to
decide with certainty whether it came from the law Q or the law P. In contrast, in
the mutually singular case, a fixed thresholding of the likelihood ratio Mn of the first
n observations provides a decision rule for this question, whose error probabilities
decay to zero as n→∞.

Proposition 5.5.13. Suppose that P and Q are product measures on (RN,Bc)
which make the coordinates Xn(ω) = ωn independent with the respective laws Q ◦
X−1
k � P◦X−1

k for each k ∈ N. Let Yk(ω) = d(Q◦X−1
k )/d(P◦X−1

k )(Xk(ω)) then
denote the likelihood ratios of the marginals. Then, M∞ =

∏
k Yk exists a.s. under

both P and Q. If α =
∏
k P(
√
Yk) is positive then Q is absolutely continuous with

respect to P with dQ/dP = M∞, whereas if α = 0 then Q is singular with respect
to P such that Q-a.s. M∞ =∞ while P-a.s. M∞ = 0.

Remark 5.5.14. Note that the preceding Yk are identically distributed when both
P and Q are products of i.i.d. random variables. Hence in this case α > 0 if and
only if P(

√
Y1) = 1, which with P(Y1) = 1 is equivalent to P[(

√
Y1−1)2] = 0, i.e. to

having P-a.s. Y1 = 1. The latter condition implies that P-a.s. M∞ = 1, so Q = P.
We thus deduce that any Q 6= P that are both products of i.i.d. random variables,
are mutually singular, and for n large enough the likelihood test of comparing Mn

to a fixed threshold decides correctly between the two hypothesis regarding the law
of {Xk}, since P-a.s. Mn → 0 while Q-a.s. Mn →∞.

Proof. We are in the setting of Theorem 5.5.11 for Ω = RN and the filtration

FX
n = σ(Xk : 1 ≤ k ≤ n) ↑ FX = σ(Xk, k <∞) = Bc

(c.f. Exercise 1.2.14 and the definition of Bc preceding Kolmogorov’s extension
theorem). Here Mn = dQn/dPn =

∏n
k=1 Yk (c.f. part (a) of Exercise 4.1.8), and

the mutual independence of {Xk} imply that Yk ∈ mσ(Xk) are both mutually P-
independent and mutually Q-independent. In addition, P(Yk) = Q ◦X−1

k (R) = 1
(see Theorem 1.3.61). In the course of proving part (c) of Theorem 5.5.11 we have
shown that Mn →M∞ both P-a.s. and Q-a.s. Further, recall part (a) of Theorem
5.5.11 that Mn is a martingale on (Ω,FX,P). From Kakutani’s theorem we know
that the product martingale {Mn} is uniformly P-integrable when α > 0 (see (d)
implying (a) there), whereas if α = 0 then P-a.s. M∞ = 0. By part (b) of Theorem
5.5.11 the uniform P-integrability of Mn results with Q = M∞P� P. In contrast,
when P-a.s. M∞ = 0 we get from the decomposition of part (c) of Theorem 5.5.11
that Qac = 0 and Q = I{M∞=∞}Q so in this case Q-a.s. M∞ =∞ and Q⊥P. �

In the context of the preceding proposition, it is easy to check that if Xk have
probability density functions qk(·) and pk(·), respectively, under Q and P, then
Yk = qk(Xk)/pk(Xk), with the same formula applying for discrete valuedXk, except
that now qk(·) and pk(·) are the corresponding probability mass functions. Here is
a concrete application, in the special case of {0, 1}-valued Xk.
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Exercise 5.5.15. Suppose P and Q are two product probability measures on the
set Ω∞ = {0, 1}N of infinite binary sequences equipped with the product σ-algebra
generated by its cylinder sets, with pk = P({ω : ωk = 1}) strictly between zero and
one and qk = Q({ω : ωk = 1}) ∈ [0, 1].

(a) Deduce from Proposition 5.5.13 that Q is absolutely continuous with re-

spect to P if and only if
∑
k(1−√pkqk −

√
(1− pk)(1− qk)) is finite.

(b) Show that if
∑
k |pk − qk| is finite then Q is absolutely continuous with

respect to P.
(c) Show that if pk, qk ∈ [ε, 1 − ε] for some ε > 0 and all k, then Q � P if

and only if
∑
k(pk − qk)2 <∞.

(d) Show that if
∑
k qk < ∞ and

∑
k pk = ∞ then Q⊥P so in general the

condition
∑
k(pk − qk)2 < ∞ is not sufficient for absolute continuity of

Q with respect to P.

In the spirit of Theorem 5.5.11, as you show next, a positive martingale (Zn,Fn)
induces a collection of probability measures Qn that are equivalent to Pn = P

∣∣
Fn

(i.e. both Qn � Pn and Pn � Qn), and satisfy a certain martingale Bayes rule.
In particular, the following discrete time analog of Girsanov’s theorem, shows that
such construction can significantly simplify certain computations upon moving from
Pn to Qn.

Exercise 5.5.16. Suppose (Zn,Fn) is a (strictly) positive MG on (Ω,F ,P), nor-
malized so that EZ0 = 1. Let Pn = P

∣∣
Fn

and consider the equivalent probability

measure Qn on (Ω,Fn) of Radon-Nikodym derivative dQn/dPn = Zn.

(a) Show that Qk = Qn

∣∣
Fk

for any 0 ≤ k ≤ n.

(b) Fixing 0 ≤ k ≤ m ≤ n and Y ∈ L1(Ω,Fm,Qn) show that Qn-a.s. (hence
also P-a.s.), EQn [Y |Fk] = EP[Y Zm|Fk]/Zk.

(c) For Fn = Fξ
n, the canonical filtration of i.i.d. standard normal variables

{ξk} and any bounded, Fξ
n-predictable Vn, consider the measures Qn in-

duced by the exponential martingale Zn = exp(Yn − 1
2

∑n
k=1 V

2
k ), where

Yn =
∑n
k=1 ξkVk. Show that X of coordinates Xm =

∑m
k=1(ξk − Vk),

1 ≤ m ≤ n, is under Qn a Gaussian random vector whose law is the
same as that of {

∑m
k=1 ξk : 1 ≤ m ≤ n} under P.

Hint: Use characteristic functions.

5.5.3. Reversed martingales and 0-1 laws. Reversed martingales which
we next define, though less common than martingales, are key tools in the proof of
many asymptotics (e.g. 0-1 laws).

Definition 5.5.17. A reversed martingale (in short RMG), is a martingale in-
dexed by non-positive integers. That is, integrable Xn, n ≤ 0, adapted to a filtration
Fn, n ≤ 0, such that E[Xn+1|Fn] = Xn for all n ≤ −1. We denote by Fn ↓ F−∞
a filtration {Fn}n≤0 and the associated σ-algebra F−∞ =

⋂
n≤0 Fn such that the

relation Fk ⊆ F` applies for any −∞ ≤ k ≤ ` ≤ 0.

Remark. One similarly defines reversed subMG-s (and supMG-s), by replacing
E[Xn+1|Fn] = Xn for all n ≤ −1 with the condition E[Xn+1|Fn] ≥ Xn, for all
n ≤ −1 (or the condition E[Xn+1|Fn] ≤ Xn, for all n ≤ −1, respectively). Since
(Xn+k,Fn+k), k = 0, . . . ,−n, is then a MG (or sub-MG, or sup-MG), any result
about subMG-s, sup-MG-s and MG-s that does not involve the limit as n → ∞
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(such as, Doob’s decomposition, maximal and up-crossing inequalities), shall apply
also for reversed subMG-s, reversed supMG-s and RMG-s.

As we see next, RMG-s are the dual of Doob’s martingales (with time moving
backwards), hence U.I. and as such each RMG converges both a.s. and in L1 as
n→ −∞.

Theorem 5.5.18 (Lévy’s downward theorem). With X0 integrable, (Xn,Fn),
n ≤ 0 is a RMG if and only if Xn = E[X0|Fn] for all n ≤ 0. Further, E[X0|Fn]→
E[X0|F−∞] almost surely and in L1 when n→ −∞.

Remark. Actually, (Xn,Fn) is a RMG for Xn = E[Y |Fn], n ≤ 0 and any in-
tegrable Y (possibly Y 6∈ mF0). Further, E[Y |Fn] → E[Y |F−∞] almost surely
and in L1. This is merely a restatement of Lévy’s downward theorem, since for
X0 = E[Y |F0] we have by the tower property that E[Y |Fn] = E[X0|Fn] for any
−∞ ≤ n ≤ 0.

Proof. Suppose (Xn,Fn) is a RMG. Then, fixing n < 0 and applying Propo-
sition 5.1.20 for the MG (Yk,Gk) with Yk := Xn+k and Gk := Fn+k, k = 0, . . . ,−n
(taking there ` = −n > m = 0), we deduce that E[X0|Fn] = Xn. Conversely, sup-
pose Xn = E[X0|Fn] for X0 integrable and all n ≤ 0. Then, Xn ∈ L1(Ω,Fn,P) by
the definition of C.E. and further, with Fn ⊆ Fn+1, we have by the tower property
that

Xn = E[X0|Fn] = E[E(X0|Fn+1)|Fn] = E[Xn+1|Fn] ,

so any such (Xn,Fn) is a RMG.
Setting hereafter Xn = E[X0|Fn], note that for each n ≤ 0 and a < b , by

Doob’s up-crossing inequality for the MG (Yk,Gk), k = 0, . . . ,−n, we have that
E(Un[a, b]) ≤ (b − a)−1E[(X0 − a)−] (where Un[a, b] denotes the number of up-
crossings of the interval [a, b] by {Xk(ω), k = n, . . . , 0}). By monotone convergence
this implies that E(U−∞[a, b]) ≤ (b − a)−1E[(X0 − a)−] is finite (for any a < b).
Repeating the proof of Lemma 5.3.1, now for n → −∞, we thus deduce that

Xn
a.s.→ X−∞ as n→ −∞. Recall Proposition 4.2.33 that {E[X0|Fn]} is U.I. hence

by Vitali’s convergence theorem also Xn
L1

→ X−∞ when n→ −∞ (and in particular
the random variable X−∞ is integrable).
We now complete the proof by showing that X−∞ = E[X0|F−∞]. Indeed, fixing
k ≤ 0, since Xn ∈ mFk for all n ≤ k it follows that X−∞ = lim supn→−∞Xn

is also in mFk. This applies for all k ≤ 0, hence X−∞ ∈ m[
⋂
k≤0 Fk] = mF−∞.

Further, E[XnIA] → E[X−∞IA] for any A ∈ F−∞ (by the L1 convergence of
Xn to X−∞), and as A ∈ F−∞ ⊆ Fn also E[X0IA] = E[XnIA] for all n ≤ 0.
Thus, E[X−∞IA] = E[X0IA] for all A ∈ F−∞, so by the definition of conditional
expectation, X−∞ = E[X0|F−∞]. �

Similarly to Lévy’s upward theorem, as you show next, Lévy’s downward theorem
can be extended to accommodate a dominated sequences of random variables and

if X0 ∈ Lp for some p > 1, then Xn
Lp→ X−∞ as n → −∞ (which is the analog of

Doob’s Lp martingale convergence).

Exercise 5.5.19. Suppose Fn ↓ F−∞ and Yn
a.s.→ Y−∞ as n → −∞. Show that

if supn |Yn| is integrable, then E[Yn|Fn]→ E[Y−∞|F−∞] when n→ −∞, both a.s.
and in L1.
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Exercise 5.5.20. Suppose (Xn,Fn) is a RMG. Show that if E|X0|p is finite and

p > 1, then Xn
Lp→ X−∞ when n→ −∞

Not all reversed sub-MGs are U.I. but here is an explicit characterization of those
that are.

Exercise 5.5.21. Show that a reversed sub-MG {Xn} is U.I. if and only if infn EXn

is finite.

Our first application of RMG-s is to provide an alternative proof of the strong law
of large numbers of Theorem 2.3.3, with the added bonus of L1 convergence.

Theorem 5.5.22 (Strong law of large numbers). Suppose Sn =
∑n
k=1 ξk

for i.i.d. integrable {ξk}. Then, n−1Sn → Eξ1 a.s. and in L1 when n→∞.

Proof. Let X−m = (m + 1)−1Sm+1 for m ≥ 0, and define the corresponding
filtration F−m = σ(X−k, k ≥ m). Recall part (a) of Exercise 4.4.8, that Xn =
E[ξ1|Xn] for each n ≤ 0. Further, clearly Fn = σ(Gn, T−n) for Gn = σ(Xn) and
T` = σ(ξr, r > `). With T X

−n independent of σ(σ(ξ1),Gn), we thus have that
Xn = E[ξ1|Fn] for each n ≤ 0 (see Proposition 4.2.3). Consequently, (Xn,Fn) is
a RMG which by Lévy’s downward theorem converges for n→ −∞ both a.s. and
in L1 to the finite valued random variable X−∞ = E[ξ1|F−∞]. Combining this
and the tower property leads to EX−∞ = Eξ1 so it only remains to show that
P(X−∞ 6= c) = 0 for some non-random constant c. To this end, note that for any
` finite,

X−∞ = lim sup
m→∞

1

m

m∑
k=1

ξk = lim sup
m→∞

1

m

m∑
k=`+1

ξk .

Clearly, X−∞ ∈ mT X
` for any ` so X−∞ is also measurable on the tail σ-algebra

T =
⋂
` T` of the sequence {ξk}. We complete the proof upon noting that the

σ-algebra T is P-trivial (by Kolmogorov’s 0-1 law and the independence of ξk), so
in particular, a.s. X−∞ equals a non-random constant (see Proposition 1.2.47). �

In this context, you find next that while any RMG X−m is U.I., it is not necessarily
dominated by an integrable variable, and its a.s. convergence may not translate to
conditional expectations E[X−m|H].

Exercise 5.5.23. Consider integrable i.i.d. copies of ξ1, having distribution func-
tion Fξ1(x) = 1 − x−1(log x)−2 for x ≥ e and P(ξ1 = −e/(e − 1)) = 1 − e−1, so
Eξ1 = 0. Let H = σ(An, n ≥ 3) for An = {ξn ≥ en/(log n)} and recall Theorem
5.5.22 that for m → ∞ the U.I. RMG X−m = (m + 1)−1Sm+1 converges a.s. to
zero.

(a) Verify that m−1E[ξm|H] ≥ IAm − c
m logmIAcm for some c < ∞ and all

m ≥ 3, then deduce that a.s. lim supm→∞m−1E[ξm|H] ≥ 1.
(b) Conclude that E[X−m|H] does not converge to zero a.s. and supm |X−m|

is not integrable.

In preparation for the Hewitt-Savage 0-1 law and de-Finetti’s theorem we now
define the exchangeable σ-algebra and random variables.

Definition 5.5.24 (exchangeable σ-algebra and random variables). Con-
sider the measurable space (SN,Sc) of infinite S-valued sequences, as in Corollary
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1.4.25. Let Em ⊆ Sc denote the σ-algebra of events that are invariant under permu-
tations of the first m coordinates; that is, A ∈ Em if (ωπ(1), . . . , ωπ(m), ωm+1, . . .) ∈
A for any permutation π of {1, . . . ,m} and all (ω1, ω2, . . .) ∈ A. The exchange-
able σ-algebra E =

⋂
m Em consists of all events that are invariant under all finite

permutations of coordinates. Similarly, we say that an infinite sequence of (S,S)-
valued random variables {ξk}k≥1 on the same probability space is exchangeable, or

has an exchangeable law, if (ξ1, . . . , ξm)
D
= (ξπ(1), . . . , ξπ(m)) for any m and any

permutation π of {1, . . . ,m}; that is, their joint law is invariant under any finite
permutation of coordinates.

With bX ⊆ mX denoting the collection of all bounded (R,BR)-valued measurable
mappings on (X,X ), our next lemma summarizes the use of RMG-s in this context.

Lemma 5.5.25. Suppose the sequence ξk(ω) = ωk of R.V.-s in (SN,Sc,P) is ex-

changeable. For any ϕ ∈ bS` and m ≥ ` let Ŝm(ϕ) = 1
(m)`

∑
i ϕ(ξi1 , . . . , ξi`), where

i = (i1, . . . , i`) is an `-tuple of distinct integers from {1, . . . ,m} and (m)` = m!
(m−`)!

is the number of such `-tuples. Then,

(5.5.5) Ŝm(ϕ)→ E[ϕ(ξ1, . . . , ξ`)|E ]

a.s. and in L1 when m→∞.

Proof. Fixing m ≥ ` since the value of Ŝm(ϕ) is invariant under any permu-

tation of the first m coordinates of ω we have that Ŝm(ϕ) is measurable on Em.
Further, this bounded R.V. is obviously integrable, so

(5.5.6) Ŝm(ϕ) = E[Ŝm(ϕ)|Em] =
1

(m)`

∑
i

E[ϕ(ξi1 , . . . , ξi`)|Em] .

Fixing any `-tuple of distinct integers i1, . . . , i` from {1, . . . ,m}, by our exchange-
ability assumption, the probability measure on (SN,Sc) is invariant under any per-
mutation π of the first m coordinates of ω. Considering such a permutation with
π(ik) = k for k = 1, . . . , `, yields that E[ϕ(ξi1 , . . . , ξi`)IA] = E[ϕ(ξ1, . . . , ξ`)IA]
for any A ∈ Em. Consequently, E[ϕ(ξi1 , . . . , ξi`)|Em] = E[ϕ(ξ1, . . . , ξ`)|Em]. Since
this applies for any `-tuple of distinct integers from {1, . . . ,m} it follows by (5.5.6)

that Ŝm(ϕ) = E[ϕ(ξ1, . . . , ξ`)|Em] for all m ≥ `. In conclusion, considering the
filtration Fn = E`−n, n ≤ 0 for which F−∞ = E , we have in view of the remark

following Lévy’s downward theorem that (Ŝ`−n(ϕ), E`−n), n ≤ 0 is a RMG and the
convergence in (5.5.5) holds a.s. and in L1. �

Remark. Noting that any sequence of i.i.d. random variables has an exchangeable
law, our first application of Lemma 5.5.25 is the following zero-one law.

Theorem 5.5.26 (Hewitt-Savage 0-1 law).
(a). If (S,S)-valued random variables ξk = ωk are exchangeable in (SN,Sc,P), then

E[ϕ(ξ1, . . . , ξ`)|E ] = E[ϕ(ξ1, . . . , ξ`)|T ξ] , ∀` ≥ 1, ϕ ∈ bS` ,

for the exchangeable and tail σ-algebras E and T ξ (as in Definition 1.4.9).
(b). In particular, the exchangeable σ-algebra E is P-trivial (that is, P(A) ∈ {0, 1}
for any A ∈ E), for any product probability measure P on (SN,Sc) under which
ξk(ω) = ωk are i.i.d.
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Remark. See Exercise 1.4.27 for the existence of such product measures whenever
(S,S) is B-isomorphic. In addition, given the Hewitt-Savage 0-1 law (for S = R), we
can simplify the proof of Theorem 5.5.22 upon noting that for each m the σ-algebra
F−m is contained in Em+1, hence F−∞ ⊆ E must also be P-trivial.

Proof. (a). From Lemma 5.5.25 we have that for any ϕ ∈ bS`, almost surely

Ŝm(ϕ)→ Ŝ∞(ϕ) = E[ϕ(ξ1, . . . , ξ`)|E ]. Now, fixing a finite integer r ≤ m let

Ŝm,r(ϕ) =
1

(m)`

∑
{i: i1>r,...,i`>r}

ϕ(ξi1 , . . . , ξi`)

denote the contribution of the `-tuples i that do not intersect {1, . . . , r}. Since
there are exactly (m− r)` such `-tuples and ϕ is bounded, it follows that

|Ŝm(ϕ)− Ŝm,r(ϕ)| ≤ [1− (m− r)`
(m)`

]‖ϕ(·)‖∞ ≤
c

m

for some c = c(r, `, ϕ) finite and all m. Consequently, for any r,

(5.5.7) Ŝ∞(ϕ) = lim
m→∞

Ŝm(ϕ) = lim
m→∞

Ŝm,r(ϕ) .

As Ŝm,r(ϕ) are measurable on σ(ξk, k > r), the same applies for their limit Ŝ∞(ϕ),
which thus must also be measurable on the tail σ-algebra T ξ of {ξk}. In particular,

Ŝ∞(ϕ) = E[Ŝ∞(ϕ)|T ξ] and since T ξ ⊆ E , we deduce by the tower property that

Ŝ∞(ϕ) = E[ϕ(ξ1, . . . , ξ`)|E ] = E[ϕ(ξ1, . . . , ξ`)|T ξ], as claimed.
(b). Since i.i.d. ξk(ω) = ωk have an exchangeable law, we deduce from part (a)
and Kolmogorov 0-1 law about the P-triviality of T ξ (cf. Corollary 1.4.10), that
E[ϕ(ξ1, . . . , ξ`)|E ] = E[ϕ(ξ1, . . . , ξ`)] for any ϕ ∈ S` and ` ≥ 1. Adapting the
proof of Theorem 1.2.26 to the setting of (S,S)-R.V.-s we see that IG must be, for

each G ∈ Fξ
` , a bounded measurable function of (ξ1, . . . , ξ`). Hence, E[IG|E ] =

E[IG]. Thus, by the tower property and taking out what is known, P(A ∩ G) =

E[IAE[IG|E ]] = E[IA]E[IG] for any A ∈ E . That is, E and Fξ
` are independent for

each finite `, so by Lemma 1.4.8 we conclude that E is a P-trivial σ-algebra, as
claimed. �

The proof of de Finetti’s theorem requires the following algebraic identity which
we leave as an exercise for the reader.

Exercise 5.5.27. For f ∈ bS`−1, g ∈ bS and j = 1, . . . , `, let hj(x1, . . . , x`) =
f(x1, . . . , x`−1)g(xj). Show that for any (S,S)-valued ξk and all m ≥ `,

Ŝm(h`) =
m

m− `+ 1
Ŝm(f)Ŝm(g)− 1

m− `+ 1

`−1∑
j=1

Ŝm(hj) .

Theorem 5.5.28 (de Finetti’s theorem). Suppose (S,S) is B-isomorphic and
the sequence ξk(ω) = ωk of R.V.-s in (SN,Sc,P) is exchangeable. Then, conditional
on E the (S,S)-valued the R.V.-s ξk, k ≥ 1 are mutually independent and identically
distributed.

Remark. For example, if the exchangeable {ξk} are {0, 1}-valued, then by de
Finetti’s theorem these are i.i.d. Bernoulli variables of parameter p, conditional
on E . The joint (unconditional) law of {ξk} is thus that of a mixture of i.i.d.
Bernoulli(p) sequences with p a [0, 1]-valued random variable (measurable on E).
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Proof. In view of Exercise 5.5.27, upon applying (5.5.5) of Lemma 5.5.25 for
the exchangeable sequence {ξk} and bounded measurable functions f , g and h`, we
deduce that

E[f(ξ1, . . . , ξ`−1)g(ξ`)|E ] = E[f(ξ1, . . . , ξ`−1)|E ]E[g(ξ`)|E ] .

Considring this for f(x1, . . . , x`−1) =
∏
k<` gk(xk) and g = g`, leads by induction

on `, to the identity

E
[ ∏̀
k=1

gk(ξk)|E
]

=
∏̀
k=1

E[gk(ξk)|E ]

for all ` ≥ 1 and any gk ∈ bS, k = 1, . . . , `. Taking gk = IBk for Bk ∈ S we have

P[(ξ1, . . . , ξ`) ∈ B1 × · · · ×B`|E ] =
∏̀
k=1

P(ξk ∈ Bk|E)

which implies that conditional on E the (S,S)-valued random variables {ξk} are mu-
tually independent. Indeed, since (S,S) is B-isomorphic, upon considering Propo-
sition 1.4.28 (for the Borel subset T` and M = R`), so is (S`,S`) and in view
of Exercise 4.4.4 we have the existence of R.C.P.D. for the S`-valued (ξ1, . . . , ξ`)
given E . By the preceding these are for any ` ≥ 1 of a product form, yielding
the conditional independence of {ξk} (see part (a) of Exercise 1.4.27). Further,
E[g(ξ1)IA] = E[g(ξr)IA] for any A ∈ E , g ∈ bS, positive integer r and exchangeable
variables ξk(ω) = ωk, from which it follows that conditional on E these variables
are also identically distributed. �

We conclude this section with exercises detailing further applications of RMG-s
for the study of a certain U -statistics, for solving the ballot’s problem and in the
context of mixing conditions.

Exercise 5.5.29. Suppose {ξk} are i.i.d. random variables and h : R2 7→ R a
Borel function such that E[|h(ξ1, ξ2)|] <∞. For each m ≥ 2 let

W2−m =
1

m(m− 1)

∑
1≤i 6=j≤m

h(ξi, ξj) .

For example, note that W2−m = 1
m−1

∑m
k=1(ξk − m−1

∑m
i=1 ξi)

2 is of this form,

corresponding to h(x, y) = (x− y)2/2.

(a) Show that Wn = E[h(ξ1, ξ2)|FW
n ] for n ≤ 0 hence (Wn,FW

n ) is a RMG
and determine its almost sure limit as n→ −∞.

(b) Assuming in addition that v = E[h(ξ1, ξ2)2] is finite, find the limit of
E[W 2

n ] as n→ −∞.

Exercise 5.5.30 (The ballot problem). Let Sk =
∑k
i=1 ξi for i.i.d. integrable,

integer valued ξj ≥ 0 and for n ≥ 2 consider the event Γn = {Sj < j for 1 ≤ j ≤ n}.
(a) Show that X−k = k−1Sk is a RMG for the filtration F−k = σ(Sj , j ≥ k)

and that τ = inf{` ≥ −n : X` ≥ 1} ∧ −1 is a stopping time for it.
(b) Show that IΓn = 1−Xτ whenever Sn ≤ n, hence P(Γn|Sn) = (1−Sn/n)+.

The name ballot problem is attached to Exercise 5.5.30 since for ξj ∈ {0, 2} we
interpret 0’s and 2’s as n votes for two candidates A and B in a ballot, with Γn = {A
leads B throughout the counting} and P(Γn|B gets r votes) = (1− 2r/n)+.
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As you find next, the ballot problem yields explicit formulas for the probability
distributions of the stopping times τb = inf{n ≥ 0 : Sn = b} associated with the
srw {Sn}.

Exercise 5.5.31. Let R = inf{` ≥ 1 : S` = 0} denote the first visit to zero by the
srw {Sn}. Using a path reversal counting argument followed by the ballot problem,
show that for any positive integers n, b,

P(τb = n|Sn = b) = P(R > n|Sn = b) =
b

n
and deduce that for any k ≥ 0,

P(τb = b+ 2k) = b
(b+ 2k − 1)!

k!(k + b)!
pb+kqk .

Exercise 5.5.32. Show that for any A ∈ F and σ-algebra G ⊆ F
sup
B∈G

|P(A ∩B)−P(A)P(B)| ≤ E[|P(A|G)−P(A)|] .

Next, deduce that if Gn ↓ G as n ↓ −∞ and G is P-trivial, then

lim
m→∞

sup
B∈G−m

|P(A ∩B)−P(A)P(B)| = 0 .



CHAPTER 6

Markov chains

The rich theory of Markov processes is the subject of many text books and one can
easily teach a full course on this subject alone. Thus, we limit ourselves here to the
discrete time Markov chains and to their most fundamental properties. Specifically,
in Section 6.1 we provide definitions and examples, and prove the strong Markov
property of such chains. Section 6.2 explores the key concepts of recurrence, tran-
sience, invariant and reversible measures, as well as the asymptotic (long time)
behavior for time homogeneous Markov chains of countable state space. These con-
cepts and results are then generalized in Section 6.3 to the class of Harris Markov
chains.

6.1. Canonical construction and the strong Markov property

We start with the definition of a Markov chain.

Definition 6.1.1. Given a filtration {Fn}, an Fn-adapted stochastic process {Xn}
taking values in a measurable space (S,S) is called an Fn-Markov chain with state
space (S,S) if for any A ∈ S,

(6.1.1) P[Xn+1 ∈ A|Fn] = P[Xn+1 ∈ A|Xn] ∀n, a.s.

Remark. We call {Xn} a Markov chain in case Fn = σ(Xk, k ≤ n), noting that
if {Xn} is an Fn-Markov chain then it is also a Markov chain. Indeed, FX

n =
σ(Xk, k ≤ n) ⊆ Fn since {Xn} is adapted to {Fn}, so by the tower property we
have that for any Fn-Markov chain, any A ∈ S and all n, almost surely,

P[Xn+1 ∈ A|FX
n ] = E[E[IXn+1∈A|Fn]|FX

n ] = E[E[IXn+1∈A|Xn]|FX
n ]

= E[IXn+1∈A|Xn] = P[Xn+1 ∈ A|Xn] .

The key object in characterizing an Fn-Markov chain are its transition probabili-
ties, as defined next.

Definition 6.1.2. A set function p : S× S 7→ [0, 1] is a transition probability if

(a) For each x ∈ S, A 7→ p(x,A) is a probability measure on (S,S).
(b) For each A ∈ S, x 7→ p(x,A) is a measurable function on (S,S).

We say that an Fn-Markov chain {Xn} has transition probabilities pn(x,A), if
almost surely P[Xn+1 ∈ A|Fn] = pn(Xn, A) for every n ≥ 0 and every A ∈ S and
call it a homogeneous Fn-Markov chain if pn(x,A) = p(x,A) for all n, x ∈ S and
A ∈ S.

With bS ⊆ mS denoting the collection of all bounded (R,BR)-valued measurable
mappings on (S,S), we next express E[h(Xk+1)|Fk] for h ∈ bS in terms of the
transition probabilities of the Fn-Markov chain {Xn}.

229
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Lemma 6.1.3. If {Xn} is an Fn-Markov chain with state space (S,S) and transi-
tion probabilities pn(· , ·), then for any h ∈ bS and all k ≥ 0

(6.1.2) E[h(Xk+1)|Fk] = (pkh)(Xk) ,

where h 7→ (pkh) : bS 7→ bS and (pkh)(x) =
∫
pk(x, dy)h(y) denotes the Lebesgue

integral of h(·) under the probability measure pk(x, ·) per fixed x ∈ S.

Proof. Let H ⊆ bS denote the collection of bounded, measurable R-valued
functions h(·) for which (pkh)(x) ∈ bS and (6.1.2) holds for all k ≥ 0. Since pk(·, ·)
are transition probabilities of the chain, IA ∈ H for all A ∈ S (c.f. Definition
6.1.2). Thus, we complete the proof of the lemma upon checking thatH satisfies the
conditions of the (bounded version of the) monotone class theorem (i.e. Theorem
1.2.7). To this end, for a constant h we have that pkh is also constant and evidently
(6.1.2) then holds. Further, with bS a vector space over R, due to the linearity of
both the conditional expectation on the left side of (6.1.2) and the expectation on
its right side, so is H. Next, suppose hm ∈ H, hm ≥ 0 and hm ↑ h ∈ bS. Then,
by monotone convergence (pkhm)(x) ↑ (pkh)(x) for each x ∈ S and all k ≥ 0. In
particular, with pkhm ∈ bS and pkh bounded by the bound on h, it follows that
pkh ∈ bS. Further, by the monotone convergence of conditional expectations and
the boundedness of h(Xk+1) also E[hm(Xk+1)|Fk] ↑ E[h(Xk+1)|Fk]. It thus follows
that h ∈ H and with all conditions of the monotone class theorem holding for H
and the π-system S, we have that bS ⊆ H, as stated. �

Our construction of product measures extends to products of transition probabili-
ties. Indeed, you should check at this point that the proof of Theorem 1.4.19 easily
adapts to yield the following proposition.

Proposition 6.1.4. Given a σ-finite measure ν1 on (X,X) and ν2 : X×S 7→ [0, 1]
such that B 7→ ν2(x,B) is a probability measure on (S,S) for each fixed x ∈ X
and x 7→ ν2(x,B) is measurable on (X,X) for each fixed B ∈ S, there exists a
unique σ-finite measure µ on the product space (X×S,X×S), denoted hereafter by
µ = ν1 ⊗ ν2, such that

µ(A×B) =

∫
A

ν1(dx)ν2(x,B), ∀A ∈ X, B ∈ S .

We turn to show how relevant the preceding proposition is for Markov chains.

Proposition 6.1.5. To any σ-finite measure ν on (S,S) and any sequence of
transition probabilities pn(·, ·) there correspond unique σ-finite measures µk = ν ⊗
p0 · · · ⊗ pk−1 on (Sk+1,Sk+1), k = 1, 2, . . . such that

µk(A0 × · · · ×Ak) =

∫
A0

ν(dx0)

∫
A1

p0(x0, dx1) · · ·
∫
Ak

pk−1(xk−1, dxk)

for any Ai ∈ S, i = 0, . . . , k. If ν is a probability measure, then µk is a consistent
sequence of probability measures (that is, µk+1(A×S) = µk(A) for any k finite and
A ∈ Sk+1).
Further, if {Xn} is a Markov chain with state space (S,S), transition probabilities
pn(· , ·) and initial distribution ν(A) = P(X0 ∈ A) on (S,S), then for any k ≥ 0
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and h` ∈ bS, ` = 0, 1 . . . , k,

E[

k∏
`=0

h`(X`)] =

∫
ν(dx0)h0(x0) · · ·

∫
pk−1(xk−1, dxk)hk(xk)

= µk(

k∏
`=0

h`(x`)) ,(6.1.3)

so in particular, {Xn} has the finite dimensional distributions (f.d.d.)

(6.1.4) P(X0 ∈ A0, . . . , Xn ∈ An) = ν ⊗ p0 · · · ⊗ pn−1(A0 × . . .×An) .

Proof. Starting at a σ-finite measure ν1 = ν on (S,S) and applying Propo-
sition 6.1.4 for ν2(x,B) = p0(x,B) on S × S yields the σ-finite measure µ1 =
ν ⊗ p0 on (S2,S2). Applying this proposition once more, now with ν1 = µ1 and
ν2((x0, x1), B) = p1(x1, B) for x = (x0, x1) ∈ S × S yields the σ-finite measure
µ2 = ν ⊗ p0 ⊗ p1 on (S3,S3) and upon repeating this procedure k times we arrive
at the σ-finite measure µk = ν ⊗ p0 · · · ⊗ pk−1 on (Sk+1,Sk+1). Since pn(x,S) = 1
for all n and x ∈ S, it follows that if ν is a probability measure, so are µk which by
construction are also consistent.
Next note that by definition of µk, the right-side of (6.1.3) holds for indicator

functions h` = IA` , A` ∈ S, ` = 0, . . . , k. Fixing such indicators for ` < k, this
identity extends by linearity of the expectation to hk ∈ SF+, then by monotone
convergence to hk ∈ bS+. Fixing hk ∈ bS+, the same two steps extend the right-
side of (6.1.3) to all h` ∈ bS+, first for ` = k − 1, then ` = k − 2, up to ` = 0.
Finally, combining the representation h` = (h`)+−(h`)−, ` = 0, . . . , k with linearity
of the expectation, yields the right-side of (6.1.3) at any h` ∈ bS and all k ≥ 0.
Proceeding to establish the left-side of (6.1.3), suppose that the Markov chain {Xn}
has transition probabilities pn(·, ·) and initial distribution ν. Fixing k and h` ∈ bS
we have by the tower property and (6.1.2) that

E[

k∏
`=0

h`(X`)] = E[

k−1∏
`=0

h`(X`)E(hk(Xk)|FX
k−1)] = E[

k−1∏
`=0

h`(X`)(pk−1hk)(Xk−1)] .

Further, with pk−1hk ∈ bS (see Lemma 6.1.3), also hk−1(pk−1hk) ∈ bS and we get
the left-side of (6.1.3) by induction on k, starting at Eh0(X0) =

∫
ν(dx0)h0(x0).

The formula (6.1.4) for the f.d.d. is merely the special case of the left-side of (6.1.3)
for indicator functions h` = IA` . �

Remark 6.1.6. Using (6.1.1) we deduce from Exercise 4.4.5 that any Fn-Markov
chain with a B-isomorphic state space has transition probabilities. We proceed to
define the law of such a Markov chain and building on Proposition 6.1.5 show that
it is uniquely determined by the initial distribution and transition probabilities of
the chain.

Definition 6.1.7. The law of a Markov chain {Xn} with a B-isomorphic state
space (S,S) and initial distribution ν is the unique probability measure Pν on
(S∞,Sc) with S∞ = SZ+ , per Corollary 1.4.25, with the specified f.d.d.

Pν({s : si ∈ Ai, i = 0, . . . , n}) = P(X0 ∈ A0, . . . , Xn ∈ An) ,

for Ai ∈ S. We denote by Px the law Pν in case ν(A) = Ix∈A (i.e. when X0 = x
is non-random).
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Remark. Definition 6.1.7 provides the (joint) law for any stochastic process {Xn}
with a B-isomorphic state space (that is, it applies for any sequence of (S,S)-valued
R.V. on the same probability space).

Here is our canonical construction of Markov chains out of their transition prob-
abilities and initial distributions.

Theorem 6.1.8. If (S,S) is B-isomorphic, then to any collection of transition
probabilities pn : S × S 7→ [0, 1] and any probability measure ν on (S,S) there
corresponds a Markov chain Yn(s) = sn on the measurable space (S∞,Sc) with
state space (S,S), transition probabilities pn(·, ·), initial distribution ν and f.d.d.

(6.1.5) Pν({s : (s0, . . . , sk) ∈ A}) = ν ⊗ p0 · · · ⊗ pk−1(A) ∀A ∈ Sk+1, k <∞.

Remark. In particular, this construction implies that for any probability measure
ν on (S,S) and all A ∈ Sc

(6.1.6) Pν(A) =

∫
ν(dx)Px(A) .

We shall use the latter identity as an alternative definition for Pν , that is applicable
even for a non-finite initial measure (namely, when ν(S) = ∞), noting that if ν is
σ-finite then Pν is also the unique σ-finite measure on (S∞,Sc) for which (6.1.5)
holds (see the remark following Corollary 1.4.25).

Proof. The given transition probabilities pn(·, ·) and probability measure ν
on (S,S) determine the consistent probability measures µk = ν ⊗ p0 · · · ⊗ pk−1

per Proposition 6.1.5 and thereby via Corollary 1.4.25 yield the stochastic process
Yn(s) = sn on (S∞,Sc), of law Pν , state space (S,S) and f.d.d. µk. Taking k = 0
in (6.1.5) confirms that its initial distribution is indeed ν. Further, fixing k ≥ 0
finite, let Y = (Y0, . . . , Yk) and note that for any A ∈ Sk+1 and B ∈ S

E[I{Y∈A}I{Yk+1∈B}] = µk+1(A×B) =

∫
A

µk(dy)pk(yk, B) = E[I{Y∈A}pk(Yk, B)]

(the first and last equalities are due to (6.1.5), whereas due to the right-side of
(6.1.3) the middle equality holds for the π-system of product sets A = A0×· · ·×Ak,
which by the π−λ theorem extends to all A ∈ Sk+1). Consequently, for any B ∈ S
and k ≥ 0 finite, pk(Yk, B) is a version of the C.E. E[I{Yk+1∈B}|FY

k ] for FY
k =

σ(Y0, . . . , Yk), thus showing that {Yn} is a Markov chain of transition probabilities
pn(·, ·). �

Remark. Conversely, given a Markov chain {Xn} of state space (S,S), apply-
ing this construction for its transition probabilities and initial distribution yields a
Markov chain {Yn} that has the same law as {Xn}. To see this, recall (6.1.4) that
the f.d.d. of a Markov chain are uniquely determined by its transition probabili-
ties and initial distribution, and further for a B-isomorphic state space, the f.d.d.
uniquely determine the law Pν of the corresponding stochastic process. For this
reason we consider (S∞,Sc,Pν) to be the canonical probability space for Markov
chains, with Xn(ω) = ωn given by the coordinate maps.

The evaluation of the f.d.d. of a Markov chain is considerably more explicit when
the state space S is a countable set (in which case S = 2S), as then

pn(x,A) =
∑
y∈A

pn(x, y) ,
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for any A ⊆ S, so the transition probabilities are determined by pn(x, y) ≥ 0 such
that

∑
y∈S pn(x, y) = 1 for all n and x ∈ S (and all Lebesgue integrals are in this case

merely sums). In particular, if S is a finite set and the chain is homogeneous, then
identifying S with {1, . . . ,m} for some m <∞, we view p(x, y) as the (x, y)-th entry
of an m×m dimensional transition probability matrix, and express probabilities of
interest in terms of powers of the latter matrix.
For homogeneous Markov chains whose state space is S = Rd (or a product of

closed intervals thereof), equipped with the corresponding Borel σ-algebra, compu-
tations are relatively explicit when for each x ∈ S the transition probability p(x, ·)
is absolutely continuous with respect to (the completion of) Lebesgue measure on
S. Its non-negative Radon-Nikodym derivative p(x, y) is then called the transition
probability kernel of the chain. In this case (ph)(x) =

∫
h(y)p(x, y)dy and the right

side of (6.1.4) amounts to iterated integration of the kernel p(x, y) with respect to
Lebesgue measure on S.

Here are few homogeneous Markov chains of considerable interest in probability
theory and its applications.

Example 6.1.9 (Random walk). The random walk Sn = S0 +
n∑
k=1

ξk, where {ξk}

are i.i.d. Rd-valued random variables that are also independent of S0 is an example
of a homogeneous Markov chain. Indeed, Sn+1 = Sn + ξn+1 with ξn+1 independent
of FS

n = σ(S0, . . . , Sn). Hence, P[Sn+1 ∈ A|FS
n ] = P[Sn + ξn+1 ∈ A|Sn]. With

ξn+1 having the same law as ξ1, we thus get that P[Sn + ξn+1 ∈ A|Sn] = p(Sn, A)
for the transition probabilities p(x,A) = P(ξ1 ∈ {y − x : y ∈ A}) (c.f. Exercise
4.2.2) and the state space S = Rd (with its Borel σ-algebra).

Example 6.1.10 (Branching process). Another homogeneous Markov chain
is the branching process {Zn} of Definition 5.5.1 having the countable state space
S = {0, 1, 2, . . .} (and the σ-algebra S = 2S). The transition probabilities are in this
case p(x,A) = P(

∑x
j=1Nj ∈ A), for integer x ≥ 1 and p(0, A) = 10∈A.

Example 6.1.11 (Renewal Markov chain). Suppose qk ≥ 0 and
∑∞
k=1 qk = 1.

Taking S = {0, 1, 2, . . .} (and S = 2S), a homogeneous Markov chain with transition
probabilities p(0, j) = qj+1 for j ≥ 0 and p(i, i−1) = 1 for i ≥ 1 is called a renewal
chain.

As you are now to show, in a renewal (Markov) chain {Xn} the value of Xn is
the amount of time from n to the first of the (integer valued) renewal times {Tk}
in [n,∞), where τm = Tm − Tm−1 are i.i.d. and P(τ1 = j) = qj (compare with
Example 2.3.7).

Exercise 6.1.12. Suppose {τk} are i.i.d. positive integer valued random variables
with P(τ1 = j) = qj. Let Tm = T0 +

∑m
k=1 τk for non-negative integer random

variable T0 which is independent of {τk}.
(a) Show that N` = inf{k ≥ 0 : Tk ≥ `}, ` = 0, 1, . . ., are finite stopping

times for the filtration Gn = σ(T0, τk, k ≤ n).
(b) Show that for each fixed non-random `, the random variable τN`+1 is

independent of the stopped σ-algebra GN` and has the same law as τ1.
(c) Let Xn = min{Tk−n : Tk ≥ n}. Show that Xn+1 = Xn+τNn+1IXn=0−1

is a homogeneous Markov chain whose transition probabilities are given
in Example 6.1.11.
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Example 6.1.13 (Birth and death chain). A homogeneous Markov chain {Xn}
whose state space is S = {0, 1, 2, . . .} and for which Xn+1−Xn ∈ {−1, 0, 1} is called
a birth and death chain.

Exercise 6.1.14 (Bayesian estimator). Let θ and {Uk} be independent random
variables, each of which is uniformly distributed on (0, 1). Let Sn =

∑n
k=1Xk for

Xk = sgn(θ − Uk). That is, first pick θ according to the uniform distribution and
then generate a srw Sn with each of its increments being +1 with probability θ and
−1 otherwise.

(a) Compute P(Xn+1 = 1|X1, . . . , Xn).
(b) Show that {Sn} is a Markov chain. Is it a homogeneous chain?

Exercise 6.1.15 (First order auto-regressive process). The first order
auto-regressive process {Xk} is defined via Xn = αXn−1 + ξn for n ≥ 1, where α is
a non-random scalar constant and {ξk} are i.i.d. Rd-valued random variables that
are independent of X0.

(a) With Fn = σ(X0, ξk, k ≤ n) verify that {Xn} is a homogeneous Fn-
Markov chain of state space S = Rd (equipped with its Borel σ-algebra),
and provide its transition probabilities.

(b) Suppose |α| < 1 and X0 = βξ0 for non-random scalar β, with each ξk
having the multivariate normal distribution N (0,V) of zero mean and
covariance matrix V. Find the values of β for which the law of Xn is
independent of n.

As we see in the sequel, our next result, the strong Markov property, is extremely
useful. It applies to any homogeneous Fn-Markov chain and allows us to handle
expectations of bounded random variables with respect to FX, which are shifted
by any Fn-stopping time τ .

Proposition 6.1.16 (Strong Markov property). Fix a homogeneous Fn-
Markov chain {Xn} with transition probabilities p(·, ·). Identifying via Xn(ω) 7→ ωn
the restriction of P to FX = σ(Xk, k ≥ 1) with the probability space (S∞,Sc,Pν),
set the shift operator θ : S∞ 7→ S∞ such that (θω)k = ωk+1 for all k ≥ 0 (with the
corresponding iterates (θnω)k = ωk+n for k, n ≥ 0). Then, for any {hn} ⊆ bFX

with supn,ω |hn(ω)| finite, and any Fn-stopping time τ

(6.1.7) E[hτ (θτω) | Fτ ]I{τ<∞} = EXτ [hτ ] I{τ<∞} .

Remark. Here Fτ is the stopped σ-algebra associated with the stopping time
τ (c.f. Definition 5.1.34) and Ex indicates expectation taken with respect to Px.
Both sides of (6.1.7) are set to zero when τ(ω) = ∞ and otherwise its right hand
side is g(n, x) = Ex[hn] evaluated at n = τ(ω) and x = Xτ(ω)(ω).

The strong Markov property is a significant extension of the Markov property :

(6.1.8) E[h(θnω) | Fn] = EXn [h] ,

holding almost surely for any non-negative integer n and fixed h ∈ bFX (that is,
the identity (6.1.7) with τ = n non-random). This in turn generalizes Lemma 6.1.3
where (6.1.8) is proved in the special case of h(ω1) and h ∈ bS.
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Proof. We first prove that x 7→ Ex[h] ∈ bS and (6.1.8) holds, for h =
k∏
`=0

g`(X`) with g` ∈ bS, ` = 0, . . . , k. To this end, the measurability of Ex[h]

follows here from that of x 7→ (pg`)(x) (see Lemma 6.1.3 for the latter). Further,

under the identification Xn 7→ ωn, we get by definition that h(θnω) =
k∏
`=0

g`(Xn+`),

so by the tower-property, upon taking-out what is known and utilizing Lemma 6.1.3,
we get that

E[h(θnω)|Fn] = E
{ k−1∏
`=0

g`(Xn+`)E[gk(Xn+k)|Fn+k−1]|Fn
}

= E[

k−1∏
`=0

g`(Xn+`)(pgk)(Xn+k−1)|Fn] .

Iterating this, first with gk−1(pgk) instead of gk, then with gk−2p(gk−1(pgk)), etc.,
results thanks to the left-side of (6.1.3), with

E[h(θnω)|Fn] = E[EXn(h)|Fn] .

Now, since EXn(h) ∈ bFn it follows that (6.1.8) holds for any such h.
The collection H ⊆ bFX for which x 7→ Ex[h] ∈ bS and (6.1.8) holds, clearly

contains the constant functions and is a vector space over R (by linearity of the
expectation and the conditional expectation). Moreover, by the monotone conver-
gence theorem for conditional expectations, if hm ∈ H are non-negative and hm ↑ h
which is bounded, then also h ∈ H. Taking in the preceding g` = IB` we see that
IA ∈ H whenever A = {X0 ∈ B0, . . . , Xk ∈ Bk} for some k finite and B` ∈ S. With
the latter collection being a π-system which generates FX, we thus deduce by the
(bounded version of the) monotone class theorem that H = bFX.
Having established the measureability of Ex[h] and the Markov property (6.1.8),

fixing {hn} ⊆ bFX and Fn-stopping time τ , we proceed to prove (6.1.7) by decom-
posing both sides of the latter identity according to the value of τ . Specifically, the
bounded random variables Yn = hn(θnω) are integrable and applying (6.1.8) for
h = hn we have that E[Yn|Fn] = g(n,Xn). Hence, by part (c) of Exercise 5.1.35,
for any finite integer k ≥ 0,

E[hτ (θτω)I{τ=k}|Fτ ] = g(k,Xk)I{τ=k} = g(τ,Xτ )I{τ=k}

The identity (6.1.7) is then established by taking out the Fτ -measurable indicator
on {τ = k} and summing over k = 0, 1, . . . (where the finiteness of supn,ω |hn(ω)|
provides the required integrability). �

Exercise 6.1.17. Modify the last step of the proof of Proposition 6.1.16 to show
that (6.1.7) holds as soon as

∑
k E
[
EXk( |hk| )I{τ=k}

]
is finite.

Here are few applications of the Markov and strong Markov properties.

Exercise 6.1.18. Consider a homogeneous Markov chain {Xn} with B-isomorphic
state space (S,S). Fixing {Bl} ⊆ S, let Γn =

⋃
l>n{Xl ∈ Bl} and Γ = {Xl ∈ Bl

i.o.}.
(a) Using the Markov property and Lévy’s upward theorem (Theorem 5.3.15),

show that P(Γn|Xn)
a.s.→ IΓ.
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(b) Show that P({Xn ∈ An i.o.} \ Γ) = 0 for any {An} ⊆ S such that for
some η > 0 and all n, with probability one,

P(Γn|Xn) ≥ ηI{Xn∈An} .

(c) Suppose A,B ∈ S are such that Px(Xl ∈ B for some l ≥ 1) ≥ η for some
η > 0 and all x ∈ A. Deduce that

P({Xn ∈ A finitely often} ∪ {Xn ∈ B i.o.}) = 1 .

Exercise 6.1.19 (Reflection principle). Consider a symmetric random walk

Sn =
∑n
k=1 ξk, that is, {ξk} are i.i.d. real-valued and such that ξ1

D
= −ξ1. Fixing

n <∞ and b > 0, let ω` = S`, ` ≥ 0 and h`(ω) = I{ωn−`>b} for ` = 0, . . . , n. Using
the strong Markov property for such {h`} and the stopping time τ = inf{k ≤ n :
ωk > b}, show that

P(max
k≤n

Sk > b) ≤ 2P(Sn > b) .

Derive also the following, more precise result for the symmetric srw, where for any
integer b > 0,

P(max
k≤n

Sk ≥ b) = 2P(Sn > b) + P(Sn = b) .

The concept of invariant measure for a homogeneous Markov chain, which we now
introduce, plays an important role in our study of such chains throughout Sections
6.2 and 6.3.

Definition 6.1.20. A measure ν on (S,S) such that ν(S) > 0 is called a positive
or non-zero measure. An event A ∈ Sc is called shift invariant if A = θ−1A (i.e.
A = {ω : θ(ω) ∈ A}), and a positive measure ν on (S∞,Sc) is called shift invariant
if ν ◦ θ−1(·) = ν(·) (i.e. ν(A) = ν({ω : θ(ω) ∈ A}) for all A ∈ Sc). We say
that a stochastic process {Xn} with a B-isomorphic state space (S,S) is (strictly)
stationary if its joint law ν is shift invariant. A positive σ-finite measure µ on
a B-isomorphic space (S,S) is called an invariant measure for a transition proba-
bility p(·, ·) if it defines via (6.1.6) a shift invariant measure Pµ(·). In particular,
starting at X0 chosen according to an invariant probability measure µ results with
a stationary Markov chain {Xn}.

Lemma 6.1.21. Suppose a σ-finite measure ν and transition probability p0(·, ·) on
(S,S) are such that ν ⊗ p0(S× A) = ν(A) for any A ∈ S. Then, for all k ≥ 1 and
A ∈ Sk+1,

ν ⊗ p0 ⊗ · · · ⊗ pk(S×A) = ν ⊗ p1 ⊗ · · · ⊗ pk(A) .

Proof. Our assumption that ν((p0f)) = ν(f) for f = IA and any A ∈ S
extends by the monotone class theorem to all f ∈ bS. Fixing Ai ∈ S and k ≥ 1
let fk(x) = IA0(x)p1 ⊗ · · · ⊗ pk(x,A1 × · · · ×Ak) (where p1 ⊗ · · · ⊗ pk(x, ·) are the
probability measures of Proposition 6.1.5 in case ν = δx is the probability measure
supported on the singleton {x} and p0(y, {y}) = 1 for all y ∈ S). Since (pjh) ∈ bS
for any h ∈ bS and j ≥ 1 (see Lemma 6.1.3), it follows that fk ∈ bS as well.
Further, ν(fk) = ν ⊗ p1 ⊗ · · · ⊗ pk(A) for A = A0 × A1 · · · × Ak. By the same
reasoning also

ν((p0fk)) =

∫
S
ν(dy)

∫
A0

p0(y, dx)p1⊗· · ·⊗pk(x,A1×· · ·×Ak) = ν⊗p0 · · ·⊗pk(S×A) .
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Thus, the stated identity holds for the π-system of product sets A = A0 × · · · ×Ak
which generates Sk+1 and since ν ⊗ p1 ⊗ · · · ⊗ pk(Bn × Sk) = ν(Bn) <∞ for some
Bn ↑ S, this identity extends to all of Sk+1 (see the remark following Proposition
1.1.39). �

Remark 6.1.22. Let µk = ν⊗k p denote the σ-finite measures of Proposition 6.1.5
in case pn(·, ·) = p(·, ·) for all n (with µ0 = ν⊗0p = ν). Specializing Lemma 6.1.21 to
this setting we see that if µ1(S×A) = µ0(A) for anyA ∈ S then µk+1(S×A) = µk(A)
for all k ≥ 0 and A ∈ Sk+1.

Building on the preceding remark we next characterize the invariant measures for
a given transition probability.

Proposition 6.1.23. A positive σ-finite measure µ(·) on B-isomorphic (S,S) is an
invariant measure for transition probability p(·, ·) if and only if µ⊗p(S×A) = µ(A)
for all A ∈ S.

Proof. With µ a positive σ-finite measure, so are the measures Pµ and Pµ ◦
θ−1 on (S∞,Sc) which for a B-isomorphic space (S,S) are uniquely determined by
their finite dimensional distributions (see the remark following Corollary 1.4.25).
By (6.1.5) the f.d.d. of Pµ are the σ-finite measures µk(A) = µ⊗kp(A) for A ∈ Sk+1

and k = 0, 1, . . . (where µ0 = µ). By definition of θ the corresponding f.d.d. of
Pµ ◦ θ−1 are µk+1(S× A). Therefore, a positive σ-finite measure µ is an invariant
measure for p(·, ·) if and only if µk+1(S×A) = µk(A) for any non-negative integer
k and A ∈ Sk+1, which by Remark 6.1.22 is equivalent to µ⊗ p(S×A) = µ(A) for
all A ∈ S. �

6.2. Markov chains with countable state space

Throughout this section we restrict our attention to homogeneous Markov chains
{Xn} on a countable (finite or infinite), state space S, setting as usual S = 2S and
p(x, y) = Px(X1 = y) for the corresponding transition probabilities. Noting that
such chains admit the canonical construction of Theorem 6.1.8 since their state
space is B-isomorphic (c.f. Proposition 1.4.28 for M = S equipped with the metric
d(x, y) = 1x 6=y), we start with a few useful consequences of the Markov and strong
Markov properties that apply for any homogeneous Markov chain on a countable
state space.

Proposition 6.2.1 (Chapman-Kolmogorov). For any x, y ∈ S and non-negative
integers k ≤ n,

(6.2.1) Px(Xn = y) =
∑
z∈S

Px(Xk = z)Pz(Xn−k = y)

Proof. Using the canonical construction of the chain whereby Xn(ω) = ωn,
we combine the tower property with the Markov property for h(ω) = I{ωn−k=y}
followed by a decomposition according to the value z of Xk to get that

Px(Xn = y) = Ex[h(θkω)] = Ex

{
Ex

[
h(θkω) | FX

k

]}
= Ex[EXk(h)] =

∑
z∈S

Px(Xk = z)Ez(h) .

This concludes the proof as Ez(h) = Pz(Xn−k = y). �
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Remark. The Chapman-Kolmogorov equations of (6.2.1) are a concrete special
case of the more general Chapman-Kolmogorov semi-group representation pn =
pkpn−k of the n-step transition probabilities pn(x, y) = Px(Xn = y). See [Dyn65]
for more on this representation, which is at the core of the analytic treatment of
general Markov chains and processes (and beyond our scope).

We proceed to derive some results about first hitting times of subsets of the state
space by the Markov chain, where by convention we use τA = inf{n ≥ 0 : Xn ∈ A}
in case the initial state matters and the strictly positive TA = inf{n ≥ 1 : Xn ∈ A}
when it does not, with τy = τ{y} and Ty = T{y}. To this end, we start with the first
entrance decomposition of {Xn = y} according to the value of Ty (which serves as
an alternative to the Chapman-Kolmogorov decomposition of the same event via
the value in S of Xk).

Exercise 6.2.2 (First entrance decomposition).
For a homogeneous Markov chain {Xn} on (S,S), let Ty,r = inf{n ≥ r : Xn = y}
(so Ty = Ty,1 and τy = Ty,0).

(a) Show that for any x, y ∈ S, B ∈ S and positive integers r ≤ n,

Px(Xn ∈ B, Ty,r ≤ n) =

n−r∑
k=0

Px(Ty,r = n− k)Py(Xk ∈ B) .

(b) Deduce that in particular,

Px(Xn = y) =

n∑
k=r

Px(Ty,r = k)Py(Xn−k = y).

(c) Conclude that for any y ∈ S and non-negative integers r, `,∑̀
j=0

Py(Xj = y) ≥
`+r∑
n=r

Py(Xn = y).

In contrast, here is an application of the last entrance decomposition.

Exercise 6.2.3 (Last entrance decomposition). Show that for a homoge-
neous Markov chain {Xn} on state space (S,S), all x, y ∈ S, B ∈ S and n ≥ 1,

Px(Xn ∈ B, Ty ≤ n) =

n−1∑
k=0

Px(Xn−k = y)Py(Xk ∈ B, Ty > k) .

Hint: With Ln = max{1 ≤ ` ≤ n : X` = y} denoting the last visit of y by the
chain during {1, . . . , n}, observe that {Ty ≤ n} is the union of the disjoint events
{Ln = n− k}, k = 0, . . . , n− 1.

Next, we express certain hitting probabilities for Markov chains in terms of har-
monic functions for these chains.

Definition 6.2.4. Extending Definition 5.1.25 we say that f : S 7→ R which is
either bounded below or bounded above is super-harmonic for the transition probabil-
ity p(x, y) at x ∈ S when f(x) ≥

∑
y∈S p(x, y)f(y). Likewise, f(·) is sub-harmonic

at x when this inequality is reversed and harmonic at x in case an equality holds.
Such a function is called super-harmonic (or sub-harmonic, harmonic, respectively)
for p(·, ·) (or for the corresponding chain {Xn}), if it is super-harmonic (or, sub-
harmonic, harmonic, respectively), at all x ∈ S. Equivalently, f(·) which is either
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bounded below or bounded above is harmonic provided {f(Xn)} is a martingale
whenever the initial distribution of the chain is such that f(X0) is integrable. Simi-
larly, f(·) bounded below is super-harmonic if {f(Xn)} is a super-martingale when-
ever f(X0) is integrable.

Exercise 6.2.5. Suppose S \ C is finite, infx/∈C Px(τC < ∞) > 0 and A ⊂ C,
B = C \A are both non-empty.

(a) Show that there exist N <∞ and ε > 0 such that Py(τC > kN) ≤ (1−ε)k
for all k ≥ 1 and y ∈ S.

(b) Show that g(x) = Px(τA < τB) is harmonic at every x /∈ C.
(c) Show that if a bounded function g(·) is harmonic at every x /∈ C then

g(Xn∧τC ) is a martingale.
(d) Deduce that g(x) = Px(τA < τB) is the only bounded function harmonic

at every x /∈ C for which g(x) = 1 when x ∈ A and g(x) = 0 when x ∈ B.
(e) Show that if f : S 7→ R+ satisfies f(x) = 1 +

∑
y∈S p(x, y)f(y) at every

x /∈ C then Mn := n ∧ τC + f(Xn∧τC ) is a martingale, provided P(X0 ∈
C) = 0. Deduce that if in addition f(x) = 0 for x ∈ C then f(x) = ExτC
for all x ∈ S.

The next exercise demonstrates few of the many interesting explicit formulas one
may find for finite state Markov chains.

Exercise 6.2.6. Throughout, {Xn} is a Markov chain on S = {0, 1, . . . , N} of
transition probability p(x, y).

(a) Use induction to show that in case N = 1, p(0, 1) = α and p(1, 0) = β
such that α+ β > 0,

Pν(Xn = 0) =
β

α+ β
+ (1− α− β)n

{
ν(0)− β

α+ β

}
.

(b) Fixing ν(0) and θ1 6= θ0 non-random, suppose α = β and conditional
on {Xn} the variables Bk are independent Bernoulli(θXk). Evaluate the
mean and variance of the additive functional Sn =

∑n
k=1Bk.

(c) Verify that Ex[(Xn−N/2)] = (1−2/N)n(x−N/2) for the Ehrenfest chain
whose transition probabilities are p(x, x− 1) = x/N = 1− p(x, x+ 1).

6.2.1. Classification of states, recurrence and transience. We start
with the partition of a countable state space of a homogeneous Markov chains
to its intercommunicating (equivalence) classes, as defined next.

Definition 6.2.7. Let ρxy = Px(Ty < ∞) denote the probability that starting
at x the chain eventually visits the state y. State y is said to be accessible from
state x 6= y if ρxy > 0 (or alternatively, we then say that x leads to y). Two
states x 6= y, each accessible to the other, are said to intercommunicate, denoted
by x↔ y. A non-empty collection of states C ⊆ S is called irreducible if each two
states in C intercommunicate, and closed if there is no y /∈ C and x ∈ C such that
y is accessible from x.

Remark. Evidently an irreducible set C may be a non-closed set and vice verse.
For example, if p(x, y) > 0 for any x, y ∈ S then S\{z} is irreducible and non-closed
(for any z ∈ S). More generally, adopting hereafter the convention that x ↔ x,
any non-empty proper subset of an irreducible set is irreducible and non-closed.
Conversely, when there exists y ∈ S such that p(x, y) = 0 for all x ∈ S \ {y}, then S
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is closed and reducible. More generally, a closed set that has a closed proper subset
is reducible. Note however the following elementary properties.

Exercise 6.2.8.

(a) Show that if ρxy > 0 and ρyz > 0 then also ρxz > 0.
(b) Deduce that intercommunication is an equivalence relation (that is, x↔

x, if x ↔ y then also y ↔ x and if both x ↔ y and y ↔ z then also
x↔ z).

(c) Explain why its equivalence classes partition S into maximal irreducible
sets such that the directed graph indicating which one leads to each other
is both transitive (i.e. if C1 leads to C2 and C2 leads to C3 then also C1

leads to C3), and acyclic (i.e. if C1 leads to C2 then C2 does not lead to
C1).

For our study of the qualitative behavior of such chains we further classify each
state as either a transient state, visited only finitely many times by the chain or as
a recurrent state to which the chain returns with certainty (infinitely many times)
once it has been reached by the chain. To this end, we make use of the following
formal definition and key proposition.

Definition 6.2.9. A state y ∈ S is called recurrent (or persistent) if ρyy = 1 and
transient if ρyy < 1.

Proposition 6.2.10. With T 0
y = 0, let T ky = inf{n > T k−1

y : Xn = y} for k ≥ 1

denote the time of the k-th return to state y ∈ S (so T 1
y = Ty > 0 regardless of X0).

Then, for any x, y ∈ S and k ≥ 1,

(6.2.2) Px(T ky <∞) = ρxyρ
k−1
yy .

Further, let N∞(y) denote the number of visits to state y by the Markov chain at
positive times. Then, ExN∞(y) =

ρxy
1−ρyy is positive if and only if ρxy > 0, in which

case it is finite when y is transient and infinite when y is recurrent.

Proof. The identity (6.2.2) is merely the observation that starting at x, in
order to have k visits to y, one has to first reach y and then to have k−1 consecutive
returns to y. More formally, the event {Ty < ∞} =

⋃
n{Ty ≤ n} is in Sc so fixing

k ≥ 2 the strong Markov property applies for the stopping time τ = T k−1
y and the

indicator function h = I{Ty<∞}. Further, τ <∞ implies that h(θτω) = I{Tky<∞}(ω)

and Xτ = y so EXτh = Py(Ty < ∞) = ρyy. Combining the tower property with
the strong Markov property we thus find that

Px(T ky <∞) = Ex[h(θτω)Iτ<∞] = Ex[Ex[h(θτω) | FX
τ ]Iτ<∞]

= Ex[ρyyIτ<∞] = ρyyPx(T k−1
y <∞) ,

and (6.2.2) follows by induction on k, starting with the trivial case k = 1.
Next note that if the chain makes at least k visits to state y, then the k-th return

to y occurs at finite time, and vice verse. That is, {T ky <∞} = {N∞(y) ≥ k}, and
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from the identity (6.2.2), we get that

ExN∞(y) =

∞∑
k=1

Px(N∞(y) ≥ k) =

∞∑
k=1

Px(T ky <∞)

=

∞∑
k=1

ρxyρ
k−1
yy =

{
ρxy

1−ρyy , ρxy > 0

0, ρxy = 0
(6.2.3)

as claimed. �

In the same spirit as the preceding proof you next show that successive returns to
the same state by a Markov chain are renewal times.

Exercise 6.2.11. Fix a recurrent state y ∈ S of a Markov chain {Xn}. Let
Rk = T ky and rk = Rk − Rk−1 the number of steps between consecutive returns to
y.

(a) Deduce from the strong Markov property that under Py the random vec-
tors Y k = (rk, XRk−1

, . . . , XRk−1) for k = 1, 2, . . . are independent and
identically distributed.

(b) Show that for any probability measure ν, under Pν and conditional on the
event {Ty < ∞}, the random vectors Y k are independent of each other

and further Y k
D
= Y 2 for all k ≥ 2, with Y 2 having then the law of Y 1

under Py.

Here is a direct consequence of Proposition 6.2.10.

Corollary 6.2.12. Each of the following characterizes a recurrent state y:

(a) ρyy = 1;
(b) Py(T ky <∞) = 1 for all k;
(c) Py(Xn = y, i.o.) = 1;
(d) Py(N∞(y) =∞) = 1;
(e) EyN∞(y) =∞.

Proof. Considering (6.2.2) for x = y we have that (a) implies (b). Given
(b) we have w.p.1. that Xnk = y for infinitely many nk = T ky , k = 1, 2, . . .,
which is (c). Clearly, the events in (c) and (d) are identical, and evidently (d)
implies (e). To complete the proof simply note that if ρyy < 1 then by (6.2.3)
EyN∞(y) = ρyy/(1− ρyy) is finite. �

We are ready for the main result of this section, a decomposition of the recurrent
states to disjoint irreducible closed sets.

Theorem 6.2.13 (Decomposition theorem). A countable state space S of a
homogeneous Markov chain can be partitioned uniquely as

S = T ∪R1 ∪R2 ∪ . . .
where T is the set of transient states and the Ri are disjoint, irreducible closed sets
of recurrent states with ρxy = 1 whenever x, y ∈ Ri.

Remark. An alternative statement of the decomposition theorem is that for any
pair of recurrent states ρxy = ρyx ∈ {0, 1} while ρxy = 0 if x is recurrent and y
is transient (so x 7→ {y ∈ S : ρxy > 0} induces a unique partition of the recurrent
states to irreducible closed sets).
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Proof. Suppose x ↔ y. Then, ρxy > 0 implies that Px(XK = y) > 0 for
some finite K and ρyx > 0 implies that Py(XL = x) > 0 for some finite L. By the
Chapman-Kolmogorov equations we have for any integer n ≥ 0,

Px(XK+n+L = x) =
∑
z,v∈S

Px(XK = z)Pz(Xn = v)Pv(XL = x)

≥ Px(XK = y)Py(Xn = y)Py(XL = x) .(6.2.4)

As EyN∞(y) =
∑∞
n=1 Py(Xn = y), summing the preceding inequality over n ≥ 1

we find that ExN∞(x) ≥ cEyN∞(y) with c = Px(XK = y)Py(XL = x) positive.
If x is a transient state then ExN∞(x) is finite (see Corollary 6.2.12), hence the
same applies for y. Reversing the roles of x and y we conclude that any two
intercommunicating states x and y are either both transient or both recurrent.
More generally, an irreducible set of states C is either transient (i.e. every x ∈ C
is transient) or recurrent (i.e. every x ∈ C is recurrent).
We thus consider the unique partition of S to (disjoint) maximal irreducible equiv-

alence classes of ↔ (see Exercise 6.2.8), with Ri denoting those equivalence classes
that are recurrent and proceed to show that if x is recurrent and ρxy > 0 for y 6= x,
then ρyx = 1. The latter implies that any y accessible from x ∈ R` must intercom-
municate with x, so with R` a maximal irreducible set, necessarily such y is also
in R`. We thus conclude that each R` is closed, with ρxy = 1 whenever x, y ∈ R`,
as claimed.
To complete the proof fix a state y 6= x that is accessible by the chain from

a recurrent state x, noting that then L = inf{n ≥ 1 : Px(Xn = y) > 0} is
finite. Further, because L is the minimal such value there exist y0 = x, yL = y

and yi 6= x for 1 ≤ i ≤ L such that
∏L
k=1 p(yk−1, yk) > 0. Consequently, if

Py(Tx =∞) = 1− ρyx > 0, then

Px(Tx =∞) ≥
L∏
k=1

p(yk−1, yk)(1− ρyx) > 0 ,

in contradiction of the assumption that x is recurrent. �

The decomposition theorem motivates the following definition, as an irreducible
chain is either a recurrent chain or a transient chain.

Definition 6.2.14. A homogeneous Markov chain is called an irreducible Markov
chain (or in short, irreducible), if S is irreducible, a recurrent Markov chain (or in
short, recurrent), if every x ∈ S is recurrent and a transient Markov chain (or in
short, transient), if every x ∈ S is transient.

By definition once the chain enters a closed set, it remains forever in this set.
Hence, if X0 ∈ R` we may as well take R` to be the whole state space. The case
of X0 ∈ T is more involved, for then the chain either remains forever in the set of
transient states, or it lies eventually in the first irreducible set of recurrent states
it entered. As we next show, the first of these possibilities does not occur when T
(or S) is finite (and any irreducible chain of finite state space is recurrent).

Proposition 6.2.15. If F is a finite set of transient states then for any initial
distribution Pν(Xn ∈ F i.o.) = 0. Hence, any finite closed set C contains at least
one recurrent state, and if C is also irreducible then C is recurrent.
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Proof. Let N∞(F ) =
∑
y∈F N∞(y) denote the totality of positive time the

chain spends at a set F . If F is a finite set of transient states then by Proposition
6.2.10 and linearity of the expectation ExN∞(F ) is finite, hence Px(N∞(F ) =
∞) = 0. With S countable and x arbitrary, it follows that Pν(N∞(F ) = ∞) = 0
for any initial distribution ν. This is precisely our first claim (as N∞(F ) is infinite
if and only if Xn ∈ F for infinitely many values of n). If C is a closed set then
starting at x ∈ C the chain stays in C forever. Thus, Px(N∞(C) =∞) = 1 and to
not contradict our first claim, if such C is finite, then it must contain at least one
recurrent state, which is our second claim. Finally, while proving the decomposition
theorem we showed that if an irreducible set contains a recurrent state then all its
states are recurrent, thus yielding our third and last claim. �

We proceed to study the recurrence versus transience of states for some homo-
geneous Markov chains we have encountered in Section 6.1. To this end, starting
with the branching process we make use of the following definition.

Definition 6.2.16. If a singleton {x} is a closed set of a homogeneous Markov
chain, then we call x an absorbing state for the chain. Indeed, once the chain visits
an absorbing state it remains there (so an absorbing state is recurrent).

Example 6.2.17 (Branching Processes). By our definition of the branching
process {Zn} we have that 0 is an absorbing state (as p(0, 0) = 1, hence ρ0k = 0
for all k ≥ 1). If P(N = 0) > 0 then clearly ρk0 ≥ p(k, 0) = P(N = 0)k > 0 and
ρkk ≤ 1− ρk0 < 1 for all k ≥ 1, so all states other than 0 are transient.

Exercise 6.2.18. Suppose a homogeneous Markov chain {Xn} with state space
S = {0, 1, . . . , N} is a martingale for any initial distribution.

(a) Show that 0 and N are absorbing states, that is, p(0, 0) = p(N,N) = 1.
(b) Show that if also Px(τ{0,N} < ∞) > 0 for all x then all other states are

transient and ρxN = Px(τN < τ0) = x/N .
(c) Check that this applies for the symmetric srw on S (with absorption at

0 and N), in which case also Exτ{0,N} = x(N − x).

Example 6.2.19 (Renewal Markov chain). The renewal Markov chain of Ex-
ample 6.1.11 has p(i, i − 1) = 1 for i ≥ 1 so evidently ρi0 = 1 for all i ≥ 1 and
hence also ρ00 = 1, namely 0 is a recurrent state. Recall that p(0, j) = qj+1, so if
{k : qk > 0} is unbounded, then ρ0j > 0 for all j so the only closed set containing
0 is S = Z+. Consequently, in this case the renewal chain is recurrent. If on the
other hand K = sup{k : qk > 0} <∞ then R = {0, 1, . . . ,K − 1} is an irreducible
closed set of recurrent states and all other states are transient. Indeed, starting at
any positive integer j this chain enters its recurrent class of states after at most j
steps and stays there forever.

Your next exercise pursues another approach to the classification of states, ex-
pressing the return probabilities ρxx in terms of limiting values of certain generating
functions. Applying this approach to the asymmetric srw on the integers provides
us with an example of a transient (irreducible) chain.

Exercise 6.2.20. Given a homogeneous Markov chain of countable state space S
and x ∈ S, consider for −1 < s < 1 the generating functions f(s) = Ex[sTx ] and

u(s) =
∑
k≥0

Ex[sT
k
x ] =

∑
n≥0

Px(Xn = x)sn .
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(a) Show that u(s) = u(s)f(s) + 1.
(b) Show that u(s) ↑ 1 + Ex[N∞(x)] as s ↑ 1, while f(s) ↑ ρxx and deduce

that Ex[N∞(x)] = ρxx/(1− ρxx).
(c) Consider the srw on Z with p(i, i + 1) = p and p(i, i − 1) = q = 1 − p.

Show that in this case u(s) = (1−4pqs2)−1/2 is independent of the initial
state x.
Hint: Recall that (1− t)−1/2 =

∑∞
m=0

(
2m
m

)
2−2mtm for any 0 ≤ t < 1.

(d) Deduce that the srw on Z has ρxx = 2 min(p, q) for all x so for 0 < p < 1,
p 6= 1/2 this irreducible chain is transient, whereas for p = 1/2 it is
recurrent.

Our next proposition explores a powerful method for proving recurrence of an
irreducible chain by the construction of super-harmonic functions (per Definition
6.2.4).

Proposition 6.2.21. Suppose S is irreducible for a chain {Xn} and there exists
h : S 7→ [0,∞) of finite level sets Gr = {x : h(x) < r} that is super-harmonic at
S \Gr for this chain and some finite r. Then, the chain {Xn} is recurrent.

Proof. If S is finite then the chain is recurrent by Proposition 6.2.15. As-
suming hereafter that S is infinite, fix r0 large enough so the finite set F = Gr0 is
non-empty and h(·) is super-harmonic at x /∈ F . By Proposition 6.2.15 and part
(c) of Exercise 6.1.18 (for B = F = S \A), if Px(τF <∞) = 1 for all x ∈ S then F
contains at least one recurrent state, so by irreducibility of S the chain is recurrent,
as claimed. Proceeding to show that Px(τF <∞) = 1 for all x ∈ S, fix r > r0 and
C = Cr = F ∪ (S \Gr). Note that h(·) super-harmonic at x /∈ C, hence h(Xn∧τC )
is a non-negative sup-MG under Px for any x ∈ S. Further, S \C is a subset of Gr
hence a finite set, so it follows by irreducibility of S that Px(τC < ∞) = 1 for all
x ∈ S (see part (a) of Exercise 6.2.5). Consequently, from Proposition 5.3.8 we get
that

h(x) ≥ Exh(XτC ) ≥ rPx(τC < τF )

(since h(XτC ) ≥ r when τC < τF ). Thus,

Px(τF <∞) ≥ Px(τF ≤ τC) ≥ 1− h(x)/r

and taking r →∞ we deduce that Px(τF <∞) = 1 for all x ∈ S, as claimed. �

Here is a concrete application of Proposition 6.2.21.

Exercise 6.2.22. Suppose {Sn} is an irreducible random walk on Z with zero-
mean increments {ξk} such that |ξk| ≤ r for some finite integer r. Show that {Sn}
is a recurrent chain.

The following exercises complement Proposition 6.2.21.

Exercise 6.2.23. Suppose that S is irreducible for some homogeneous Markov
chain. Show that this chain is recurrent if and only if the only non-negative super-
harmonic functions for it are the constant functions.

Exercise 6.2.24. Suppose {Xn} is an irreducible birth and death chain with
pi = p(i, i + 1), qi = p(i, i − 1) and ri = 1 − pi − qi = p(i, i) ≥ 0, where pi and qi
are positive for i > 0, q0 = 0 and p0 > 0. Let

h(m) =

m−1∑
k=0

k∏
j=1

qj
pj
,
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for m ≥ 1 and h(0) = 0.

(a) Check that h(·) is harmonic for the chain at all positive integers.
(b) Fixing a < x < b in S = Z+ verify that Px(τC < ∞) = 1 for C = {a, b}

and that h(Xn∧τC ) is a bounded martingale under Px. Deduce that

Px(Ta < Tb) =
h(b)− h(x)

h(b)− h(a)

(c) Considering a = 0 and b → ∞ show that the chain is transient if and
only if h(·) is bounded above.

(d) Suppose i(pi/qi − 1) → c as i → ∞. Show that the chain is recurrent if
c < 1 and transient if c > 1, so in particular, when pi = p = 1 − qi for
all i > 0 the chain is recurrent if and only if p ≤ 1

2 .

6.2.2. Invariant, excessive and reversible measures. Recall Proposition
6.1.23 that an invariant measure for the transition probability p(x, y) is uniquely
determined by a non-zero µ : S 7→ [0,∞) such that

(6.2.5) µ(y) =
∑
x∈S

µ(x)p(x, y) , ∀y ∈ S .

To simplify our notations we thus regard such a function µ as the corresponding
invariant measure. Similarly, we say that µ : S 7→ [0,∞) is a finite, positive, or
probability measure, when

∑
x µ(x) is finite (positive, or equals one, respectively),

and call {x : µ(x) > 0} the support of the measure µ.

Definition 6.2.25. Relaxing the notion of invariance we say that a non-zero
µ : S 7→ [0,∞] is an excessive measure if

µ(y) ≥
∑
x∈S

µ(x)p(x, y) , ∀y ∈ S .

Example 6.2.26. Some chains do not have any invariant measure. For example,
in a birth and death chain with pi = 1, i ≥ 0 the identity (6.2.5) is merely µ(0) = 0
and µ(i) = µ(i − 1) for i ≥ 1, whose only solution is the zero function. However,
the totally asymmetric srw on Z with p(x, x + 1) = 1 at every integer x has an
invariant measure µ(x) = 1, although just as in the preceding birth and death chain
all its states are transient with the only closed set being the whole state space.

Nevertheless, as we show next, to every recurrent state corresponds an invariant
measure.

Proposition 6.2.27. Let Tz denote the possibly infinite return time to a state z
by a homogeneous Markov chain {Xn}. Then,

µz(y) = Ez

[ Tz−1∑
n=0

I{Xn=y}

]
,

is an excessive measure for {Xn}, the support of which is the closed set of all states
accessible from z. If z is recurrent then µz(·) is an invariant measure, whose support
is the closed and recurrent ↔ equivalence class of z.

Remark. We have by the second claim of Proposition 6.2.15 (for the closed set
S), that any chain with a finite state space has at least one recurrent state. Further,
recall that any invariant measure is σ-finite, which for a finite state space amounts
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to being a finite measure. Hence, by Proposition 6.2.27 any chain with a finite state
space has at least one invariant probability measure.

Example 6.2.28. For a transient state z the excessive measure µz(y) may be
infinite at some y ∈ S. For example, the transition probability p(x, 0) = 1 for all
x ∈ S = {0, 1} has 0 as an absorbing (recurrent) state and 1 as a transient state,
with T1 =∞ and µ1(1) = 1 while µ1(0) =∞.

Proof. Using the canonical construction of the chain, we set

hk(ω, y) =

Tz(ω)−1∑
n=0

I{ωn+k=y} ,

so that µz(y) = Ezh0(ω, y). By the tower property and the Markov property of the
chain,

Ezh1(ω, y) = Ez

[ ∞∑
n=0

I{Tz>n}I{Xn+1=y}
∑
x∈S

I{Xn=x}

]
=
∑
x∈S

∞∑
n=0

Ez

[
I{Tz>n}I{Xn=x}Pz(Xn+1 = y|FX

n )
]

=
∑
x∈S

∞∑
n=0

Ez

[
I{Tz>n}I{Xn=x}

]
p(x, y) =

∑
x∈S

µz(x)p(x, y) .

The key to the proof is the observation that if ω0 = z then h0(ω, y) ≥ h1(ω, y) for
any y ∈ S, with equality when y 6= z or Tz(ω) < ∞ (in which case ωTz(ω) = ω0).
Consequently, for any state y,

µz(y) = Ezh0(ω, y) ≥ Ezh1(ω, y) =
∑
x∈S

µz(x)p(x, y) ,

with equality when y 6= z or z is recurrent (in which case Pz(Tz < ∞) = 1).
By definition µz(z) = 1, so µz(·) is an excessive measure. Iterating the preceding
inequality k times we further deduce that µz(y) ≥

∑
x µz(x)Px(Xk = y) for any

k ≥ 1 and y ∈ S, with equality when z is recurrent. If ρzy = 0 then clearly
µz(y) = 0, while if ρzy > 0 then Pz(Xk = y) > 0 for some k finite, hence µz(y) ≥
µz(z)Pz(Xk = y) > 0. The support of µz is thus the closed set of states accessible
from z, which for z recurrent is its ↔ equivalence class. Finally, note that if x↔ z
then Px(Xk = z) > 0 for some k finite, so 1 = µz(z) ≥ µz(x)Px(Xk = z) implying
that µz(x) < ∞. That is, if z is recurrent then µz is a σ-finite, positive invariant
measure, as claimed. �

What about uniqueness of the invariant measure for a given transition probability?
By definition the set of invariant measures for p(·, ·) is a convex cone (that is, if µ1

and µ2 are invariant measures, possibly the same, then for any positive c1 and c2
the measure c1µ1 +c2µ2 is also invariant). Thus, hereafter we say that the invariant
measure is unique whenever it is unique up to multiplication by a positive constant.
The first negative result in this direction comes from Proposition 6.2.27. Indeed,

the invariant measures µz and µx are clearly mutually singular (and in particular,
not constant multiple of each other), whenever the two recurrent states x and z do
not intercommunicate. In contrast, your next exercise yields a positive result, that
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the invariant measure supported within each recurrent equivalence class of states
is unique (and given by Proposition 6.2.27).

Exercise 6.2.29. Suppose µ : S 7→ (0,∞) is a strictly positive invariant measure
for the transition probability p(·, ·) of a Markov chain {Xn} on the countable set S.

(a) Verify that q(x, y) = µ(y)p(y, x)/µ(x) is a transition probability on S.
(b) Verify that if ν : S 7→ [0,∞) is an excessive measure for p(·, ·) then

h(x) = ν(x)/µ(x) is super-harmonic for q(·, ·).
(c) Show that if p(·, ·) is irreducible and recurrent, then so is q(·, ·). Deduce

from Exercise 6.2.23 that then h(x) is a constant function, hence ν(x) =
cµ(x) for some c > 0 and all x ∈ S.

Proposition 6.2.30. If R is a recurrent ↔ equivalence class of states then the
invariant measure whose support is contained in R is unique (and has R as its
support). In particular, the invariant measure of an irreducible, recurrent chain is
unique (up to multiplication by a constant) and strictly positive.

Proof. Recall the decomposition theorem that R is closed, hence the restric-
tion of p(·, ·) to R is also a transition probability and when considering invariant
measures supported within R we may as well take S = R. That is, hereafter we
assume that the chain is recurrent. In this case we have by Proposition 6.2.27 a
strictly positive invariant measure µ = µz on S = R. To complete the proof re-
call the conclusion of Exercise 6.2.29 that any σ-finite excessive measure (and in
particular any invariant measure), is then a constant multiple of µ. �

Propositions 6.2.27 and 6.2.30 provide a complete picture of the invariant measures
supported outside the set T of transient states, as the convex cone generated by
the mutually singular, unique invariant measures µz(·) supported on each closed
recurrent ↔ equivalence class. Complementing it, your next exercise shows that
an invariant measure must be zero at all transient states that lead to at least one
recurrent state and if it is positive at some v ∈ T then it is also positive at any
y ∈ T accessible from v.

Exercise 6.2.31. Let µ(·) be an invariant measure for a Markov chain {Xk} on
S.

(a) Iterating (6.2.5) verify that µ(y) =
∑
x µ(x)Px(Xk = y) for all k ≥ 1

and y ∈ S.
(b) Deduce that if µ(v) > 0 for some v ∈ S then µ(y) > 0 for any y accessible

from v.
(c) Show that if R is a recurrent ↔ equivalence class then µ(x)p(x, y) = 0

for all x /∈ R and y ∈ R.
Hint: Exercise 6.2.29 may be handy here.

(d) Deduce that if such R is accessible from v 6∈ R then µ(v) = 0.

We complete our discussion of (non)-uniqueness of the invariant measure with an
example of a transient chain having two strictly positive invariant measures that
are not constant multiple of each other.

Example 6.2.32 (srw on Z). Consider the srw, a homogeneous Markov chain
with state space Z and transition probability p(x, x + 1) = 1 − p(x, x − 1) = p for

some 0 < p < 1. You can easily verify that both the counting measure λ̃(x) ≡ 1
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and µ0(x) = (p/(1− p))x are invariant measures for this chain, with µ0 a constant

multiple of λ̃ only in the symmetric case p = 1/2. Recall Exercise 6.2.20 that this
chain is transient for p 6= 1/2 and recurrent for p = 1/2 and observe that neither

λ̃ nor µ0 is a finite measure. Indeed, as we show in the sequel, a finite invariant
measure of a Markov chain must be zero at all transient states.

Remark. Evidently, having a uniform (or counting) invariant measure (i.e. µ(x) ≡
c > 0 for all x ∈ S), as in the preceding example, is equivalent to the transition
probability being doubly stochastic, that is,

∑
x∈S p(x, y) = 1 for all y ∈ S.

Example 6.2.32 motivates our next subject, which are the conditions under which
a Markov chain is reversible, starting with the relevant definitions.

Definition 6.2.33. A non-zero µ : S 7→ [0,∞) is called a reversible measure
for the transition probability p(·, ·) if the detailed balance relation µ(x)p(x, y) =
µ(y)p(y, x) holds for all x, y ∈ S. We say that a transition probability p(·, ·) (or the
corresponding Markov chain) is reversible if it has a reversible measure.

Remark. Every reversible measure is an invariant measure, for summing the
detailed balance relation over x ∈ S yields the identity (6.2.5), but there are non-
reversible invariant measures. For example, the uniform invariant measure of a
doubly stochastic transition probability p(·, ·) is non-reversible as soon as p(x, y) 6=
p(y, x) for some x, y ∈ S. Indeed, for the asymmetric srw of Example 6.2.32 (i.e.,

when p 6= 1/2), the (constant) counting measure λ̃ is non-reversible while µ0 is a
reversible measure (as you can easily check on your own).

As their name suggest, reversible measures have to do with the time reversed chain
(and the corresponding adjoint transition probability), which we now define.

Definition 6.2.34. If µ(·) is an invariant measure for transition probability p(x, y),
then q(x, y) = µ(y)p(y, x)/µ(x) is a transition probability on the support of µ(·),
which we call the adjoint (or dual) of p(·, ·) with respect to µ. The corresponding
chain of law Qµ is called the time reversed chain (with respect to µ).

It is not hard, and left to the reader, to check that for any invariant probability
measure µ the stationary Markov chains {Yn} of law Qµ and {Xn} of law Pµ are

such that (Yk, . . . , Y`)
D
= (X`, . . . , Xk) for any k ≤ ` finite. Indeed, this is why {Yn}

is called the time reversed chain.
Also note that µ(·) is a reversible measure if and only if p(·, ·) is self-adjoint with

respect to µ(·) (that is, q(x, y) = p(x, y) on the support of µ(·)). Alternatively put,
µ(·) is a reversible measure if and only if Pµ = Qµ, that is, the shift invariant law
of the chain induced by µ is the same as that of its time reversed chain.

By Definition 6.2.33 the set of reversible measures for p(·, ·) is a convex cone.
The following exercise affirms that reversible measures are zero outside the closed
↔ equivalence classes of the chain and uniquely determined by it within each such
class. It thus reduces the problem of characterizing reversible chains (and measures)
to doing so for irreducible chains.

Exercise 6.2.35. Suppose µ(x) is a reversible measure for the transition proba-
bility p(x, y) of a Markov chain {Xn} with a countable state space S.

(a) Show that µ(x)Px(Xk = y) = µ(y)Py(Xk = x) for any x, y ∈ S and all
k ≥ 1.
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(b) Deduce that if µ(x) > 0 then any y accessible from x must intercommu-
nicate with x.

(c) Conclude that the support of µ(·) is a disjoint union of closed ↔ equiva-
lence classes, within each of which the measure µ is uniquely determined
by p(·, ·) up to a non-negative constant multiple.

We proceed to characterize reversible irreducible Markov chains as random walks
on networks.

Definition 6.2.36. A network (or weighted graph) consists of a countable (finite
or infinite) set of vertices V with a symmetric weight function w : V× V 7→ [0,∞)
(i.e. wxy = wyx for all x, y ∈ V). Further requiring that µ(x) =

∑
y∈V wxy is

finite and positive for each x ∈ V, a random walk on the network is a homogeneous
Markov chain of state space V and transition probability p(x, y) = wxy/µ(x). That
is, when at state x the probability of the chain moving to state y is proportional to
the weight wxy of the pair {x, y}.
Remark. For example, an undirected graph is merely a network the weights wxy

of which are either one (indicating an edge in the graph whose ends are x and y)
or zero (no such edge). Assuming such graph has positive and finite degrees, the
random walker moves at each time step to a vertex chosen uniformly at random
from those adjacent in the graph to its current position.

Exercise 6.2.37. Check that a random walk on a network has a strictly positive
reversible measure µ(x) =

∑
y wxy and that a Markov chain is reversible if and only

if there exists an irreducible closed set V on which it is a random walk (with weights
wxy = µ(x)p(x, y)).

Example 6.2.38 (Birth and death chain). We leave for the reader to check
that the irreducible birth and death chain of Exercise 6.2.24 is a random walk on
the network Z+ with weights wx,x+1 = pxµ(x) = qx+1µ(x + 1), wxx = rxµ(x) and
wxy = 0 for |x− y| > 1, and the unique reversible measure µ(x) =

∏x
i=1

pi−1

qi
(with

µ(0) = 1).

Remark. Though irreducibility does not imply uniqueness of the invariant mea-
sure (c.f. Example 6.2.32), if µ is an invariant measure of the preceding birth and
death chain then µ(x + 1) is determined by (6.2.5) from µ(x) and µ(x − 1), so
starting at µ(0) = 1 we conclude that the reversible measure of Example 6.2.38 is
also the unique invariant measure for this chain.

We conclude our discussion of reversible measures with an explicit condition for
reversibility of an irreducible chain, whose proof is left for the reader (for example,
see [Dur10, Theorem 6.5.1]).

Exercise 6.2.39 (Kolmogorov’s cycle condition). Show that an irreducible
chain of transition probability p(x, y) is reversible if and only if p(x, y) > 0 whenever
p(y, x) > 0 and

k∏
i=1

p(xi−1, xi) =

k∏
i=1

p(xi, xi−1) ,

for any k ≥ 3 and any cycle x0, x1, . . . , xk = x0.

Remark. The renewal Markov chain of Example 6.1.11 is one of the many recur-
rent chains that fail to satisfy Kolmogorov’s condition (and thus are not reversible).
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Turning to investigate the existence and support of finite invariant measures (or
equivalently, that of invariant probability measures), we further partition the re-
current states of the chain according to the integrability (or lack thereof) of the
corresponding return times.

Definition 6.2.40. With Tz denoting the first return time to state z, a recurrent
state z is called positive recurrent if Ez(Tz) <∞ and null recurrent otherwise.

Indeed, invariant probability measures require the existence of positive recurrent
states, on which they are supported.

Proposition 6.2.41. If π(·) is an invariant probability measure then all states z
with π(z) > 0 are positive recurrent. Further, if the support of π(·) is an irreducible
set R of positive recurrent states then π(z) = 1/Ez(Tz) for all z ∈ R.

Proof. Recall Proposition 6.2.10 that for any initial probability measure π(·)
the number of visits N∞(z) =

∑
n≥1 IXn=z to a state z by the chain is such that

∞∑
n=1

Pπ(Xn = z) = EπN∞(z) =
∑
x∈S

π(x)ExN∞(z) =
∑
x∈S

π(x)
ρxz

1− ρzz
≤ 1

1− ρzz

(since ρxz ≤ 1 for all x). Starting at X0 chosen according to an invariant proba-
bility measure π(·) results with a stationary Markov chain {Xn} and in particular
Pπ(Xn = z) = π(z) for all n. The left side of the preceding inequality is thus
infinite for positive π(z) and invariant probability measure π(·). Consequently, in
this case ρzz = 1, or equivalently z must be a recurrent state of the chain. Since
this applies for any z ∈ S we conclude that π(·) is supported outside the set T of
transient states.
Next, recall that for any z ∈ S,

µz(S) =
∑
y∈S

µz(y) = Ez

[∑
y∈S

Tz−1∑
n=0

I{Xn=y}

]
= EzTz ,

so µz is a finite measure if and only if z is a positive recurrent state of the chain.
If the support of π(·) is an irreducible ↔ equivalence class R then we deduce from
Propositions 6.2.27 and 6.2.30 that µz is a finite measure and π(z) = µz(z)/µz(S) =
1/EzTz for any z ∈ R. Consequently, R must be a positive recurrent equivalence
class, that is, all states of R are positive recurrent.
To complete the proof, note that by the decomposition theorem any invariant

probability measure π(·) is a mixture of such invariant probability measures, each
supported on a different closed recurrent class Ri, which by the preceding argument
must all be positive recurrent. �

In the course of proving Proposition 6.2.41 we have shown that positive and null
recurrence are ↔ equivalence class properties. That is, an irreducible set of states
C is either positive recurrent (i.e. every z ∈ C is positive recurrent), null recurrent
(i.e. every z ∈ C is null recurrent), or transient. Further, recall the discussion
after Proposition 6.2.27, that any chain with a finite state space has an invariant
probability measure, from which we get the following corollary.

Corollary 6.2.42. For an irreducible Markov chain the existence of an invariant
probability measure is equivalent to the existence of a positive recurrent state, in
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which case every state is positive recurrent. We call such a chain positive recurrent
and note that any irreducible chain with a finite state space is positive recurrent.

For the remainder of this section we consider the existence and non-existence of
invariant probability measures for some Markov chains of interest.

Example 6.2.43. Since the invariant measure of a recurrent chain is unique up to
a constant multiple (see Proposition 6.2.30) and a transient chain has no invariant
probability measure (see Corollary 6.2.42), if an irreducible chain has an invariant
measure µ(·) for which

∑
x µ(x) =∞ then it has no invariant probability measure.

For example, since the counting measure λ̃ is an invariant measure for the (irre-
ducible) srw of Example 6.2.32, this chain does not have an invariant probability
measure, regardless of the value of p. For the same reason, the symmetric srw on
Z (i.e. where p = 1/2), is a null recurrent chain.
Similarly, the irreducible birth and death chain of Exercise 6.2.24 has an invariant

probability measure if and only if its reversible measure µ(x) =
∏x
i=1

pi−1

qi
is finite

(c.f. Example 6.2.38). In particular, if pj = 1− qj = p for all j ≥ 1 then this chain
is positive recurrent with an invariant probability measure when p < 1/2 but null
recurrent for p = 1/2 (and transient when 1 > p > 1/2).
Finally, a random walk on a graph is irreducible if and only if the graph is con-

nected. With µ(v) ≥ 1 for all v ∈ V (see Definition 6.2.36), it is positive recurrent
only for finite graphs.

Exercise 6.2.44. Check that µ(j) =
∑
k>j qk is an invariant measure for the

recurrent renewal Markov chain of Example 6.1.11 in case {k : qk > 0} is unbounded
(see Example 6.2.19). Conclude that this chain is positive recurrent if and only if∑
k kqk is finite.

In the next exercise you find how the invariant probability measure is modified by
the introduction of holding times.

Exercise 6.2.45. Let π(·) be the unique invariant probability measure of an ir-
reducible, positive recurrent Markov chain {Xn} with transition probability p(x, y)
such that p(x, x) = 0 for all x ∈ S. Fixing r(x) ∈ (0, 1), consider the Markov chain
{Yn} whose transition probability is q(x, x) = 1− r(x) and q(x, y) = r(x)p(x, y) for
all y 6= x. Show that {Yn} is an irreducible, recurrent chain of invariant measure
µ(x) = π(x)/r(x) and deduce that {Yn} is further positive recurrent if and only if∑
x π(x)/r(x) <∞.

Though we have established the next result in a more general setting, the proof
we outline here is elegant, self-contained and instructive.

Exercise 6.2.46. Suppose g(·) is a strictly concave bounded function on [0,∞)
and π(·) is a strictly positive invariant probability measure for irreducible transition
probability p(x, y). For any ν : S 7→ [0,∞) let (νp)(y) =

∑
x∈S ν(x)p(x, y) and

E(ν) =
∑
y∈S

g

(
ν(y)

π(y)

)
π(y) .

(a) Show that E(νp) ≥ E(ν).
(b) Assuming p(x, y) > 0 for all x, y ∈ S deduce from part (a) that any

invariant measure µ(·) for p(x, y) is a constant multiple of π(·).
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(c) Extend this conclusion to any irreducible p(x, y) by checking that

p̂(x, y) =

∞∑
n=1

2−nPx(Xn = y) > 0 , ∀x, y ∈ S ,

and that invariant measures for p(x, y) are also invariant for p̂(x, y).

Here is an introduction to the powerful method of Lyapunov (or energy) functions.

Exercise 6.2.47. Let τz = inf{n ≥ 0 : Zn = z} and FZ
n = σ(Zk, k ≤ n), for

Markov chain {Zn} of transition probabilities p(x, y) on a countable state space S.

(a) Show that Vn = Zn∧τz is a FZ
n -Markov chain and compute its transition

probabilities q(x, y).
(b) Suppose h : S 7→ [0,∞) is such that h(z) = 0, the function (ph)(x) =∑

y p(x, y)h(y) is finite everywhere and h(x) ≥ (ph)(x) + δ for some

δ > 0 and all x 6= z. Show that (Wn,FZ
n ) is a sup-MG under Px for

Wn = h(Vn) + δ(n ∧ τz) and any x ∈ S.
(c) Deduce that Exτz ≤ h(x)/δ for any x ∈ S and conclude that z is positive

recurrent in the stronger sense that ExTz is finite for all x ∈ S.
(d) Fixing δ > 0 consider i.i.d. random vectors vk = (ξk, ηk) such that

P(v1 = (1, 0)) = P(v1 = (0, 1)) = 0.25 − δ and P(v1 = (−1, 0)) =
P(v1 = (0,−1)) = 0.25 + δ. The chain Zn = (Xn, Yn) on Z2 is such
that Xn+1 = Xn + sgn(Xn)ξn+1 and Yn+1 = Yn + sgn(Yn)ηn+1, where
sgn(0) = 0. Prove that (0, 0) is positive recurrent in the sense of part (c).

Exercise 6.2.48. Consider the Markov chain Zn = ξn + (Zn−1 − 1)+, n ≥ 1,
on S = {0, 1, 2, . . .}, where ξn are i.i.d. S-valued such that P(ξ1 > 1) > 0 and
Eξ1 = 1− δ for some δ > 0.

(a) Show that {Zn} is positive recurrent.
(b) Find its invariant probability measure π(·) in case P(ξ1 = k) = p(1−p)k,

k ∈ S, for some p ∈ (1/2, 1).
(c) Is this Markov chain reversible?

6.2.3. Aperiodicity and limit theorems. Building on our classification of
states and study of the invariant measures of homogeneous Markov chains with
countable state space S, we focus here on the large n asymptotics of the state
Xn(ω) of the chain and its law.
We start with the asymptotic behavior of the occupation time

Nn(y) =

n∑
`=1

IX`=y ,

of state y by the Markov chain during its first n steps.

Proposition 6.2.49. For any probability measure ν on S and all y ∈ S,

(6.2.6) lim
n→∞

n−1Nn(y) =
1

Ey(Ty)
I{Ty<∞} Pν-a.s.

Remark. This special case of the strong law of large numbers for Markov additive
functionals (see Exercise 6.2.62 for its generalization), tells us that if a Markov chain
visits a positive recurrent state then it asymptotically occupies it for a positive
fraction of time, while the fraction of time it occupies each null recurrent or transient
state is zero (hence the reason for the name null recurrent).
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Proof. First note that if y is transient then ExN∞(y) is finite by (6.2.3) for
any x ∈ S. Hence, Pν-a.s. N∞(y) is finite and consequently n−1Nn(y) → 0 as
n → ∞. Furthermore, since Py(Ty = ∞) = 1 − ρyy > 0, in this case Ey(Ty) = ∞
and (6.2.6) follows.
Turning to consider recurrent y ∈ S, note that if Ty(ω) = ∞ then Nn(y)(ω) = 0

for all n and (6.2.6) trivially holds. Thus, assuming hereafter that Ty(ω) < ∞,
we have by recurrence of y that a.s. T ky (ω) < ∞ for all k (see Corollary 6.2.12).
Recall part (b) of Exercise 6.2.11, that under Pν and conditional on {Ty < ∞},
the positive, finite random variables τk = T ky −T k−1

y are independent of each other,
with {τk, k ≥ 2} further identically distributed and of mean value Ey(Ty). Since
Nn(y) = sup{k ≥ 0 : T ky ≤ n}, as you have showed in part (b) of Exercise 2.3.8,

it follows from the strong law of large numbers that n−1Nn(y)
a.s.→ 1/Ey(Ty) for

n → ∞. This completes the proof, as by assumption I{Ty<∞} = 1 in the present
case. �

Here is a direct application of Proposition 6.2.49.

Exercise 6.2.50. Consider the positions {Xn} of a particle starting at X0 = x ∈ S
and moving in S = {0, . . . , r} according to the following rules. From any position
1 ≤ y ≤ r − 1 the particle moves to y − 1 or y + 1, and each such move is made
with probability 1/2 independently of all other moves, whereas from positions 0 and
r the particle moves in one step to position k ∈ S.

(a) Fixing y ∈ S and k ∈ {1, . . . , r − 1} find the almost sure limit π(k, y) of
n−1Nn(y) as n→∞.

(b) Find the almost sure limit π(y) of n−1Nn(y) in case upon reaching either
0 or r the particle next moves to an independently and uniformly chosen
position K ∈ {1, . . . , r − 1}.

Your next task is to prove the following ratio limit theorem for the occupation
times Nn(y) within each irreducible, closed recurrent set of states. In particular,
it refines the limited information provided by Proposition 6.2.49 in case y is a null
recurrent state.

Exercise 6.2.51. Suppose y ∈ S is a recurrent state for the chain {Xn}. Let µy(·)
denote the invariant measure of the chain per Proposition 6.2.27, whose support is
the closed and recurrent ↔ equivalence class Ry of y. Decomposing the path {X`}
at the successive return times T ky show that for any x,w ∈ Ry,

lim
n→∞

Nn(w)

Nn(y)
= µy(w), Px-a.s.

Hint: Use Exercise 6.2.11 and the monotonicity of n 7→ Nn(w).

Proceeding to study the asymptotics of Px(Xn = y) we start with the following
consequence of Proposition 6.2.49.

Corollary 6.2.52. For all x, y ∈ S,

(6.2.7) lim
n→∞

1

n

n∑
`=1

Px(X` = y) =
ρxy

Ey(Ty)
.

Further, for any transient state y ∈ T

(6.2.8) lim
n→∞

Px(Xn = y) =
ρxy

Ey(Ty)
.
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Proof. Since supn n
−1Nn(y) ≤ 1, the convergence in (6.2.7) follows from

Proposition 6.2.49 by bounded convergence (i.e. Corollary 1.3.46).
For a transient state y the sequence Px(Xn = y) is summable (to the finite value

ExN∞(y), c.f. Proposition 6.2.10), hence Px(Xn = y) → 0 as n → ∞. Further,
this amounts to (6.2.8) as in this case Ey(Ty) =∞. �

Corollary 6.2.52 tells us that for every Markov chain the Cesàro averages of
Px(Xn = y) converge. In contrast, our next example shows that even for an
irreducible chain of finite state space the sequence n 7→ Px(Xn = y) may fail to
converge pointwise.

Example 6.2.53. Consider the Markov chain {Xn} on state space S = {0, 1}
with transition probabilities p(x, y) = 1x 6=y. Then, Px(Xn = y) = 1{n even} when
x = y and Px(Xn = y) = 1{n odd} when x 6= y, so the sequence n 7→ Px(Xn = y)

alternates between zero and one, having no limit for any fixed (x, y) ∈ S2.

Nevertheless, as we prove in the sequel (more precisely, in Theorem 6.2.59), peri-
odicity of the state y is the only reason for such non-convergence of Px(Xn = y).

Definition 6.2.54. The period dx of a state x ∈ S of a Markov chain {Xn} is
the greatest common divisor (g.c.d.) of the set Ix = {n ≥ 1 : Px(Xn = x) > 0},
with dx = 0 in case Ix is empty. Similarly, we say that the chain is of period d if
dx = d for all x ∈ S. A state x is called aperiodic if dx ≤ 1 and a Markov chain is
called aperiodic if every x ∈ S is aperiodic.

As the first step in this program, we show that the period is constant on each
irreducible set.

Lemma 6.2.55. The set Ix contains all large enough integer multiples of dx and
if x↔ y then dx = dy.

Proof. Considering (6.2.4) for x = y and L = 0 we find that Ix is closed
under addition. Hence, this set contains all large enough integer multiples of dx
because every non-empty set I of positive integers which is closed under addition
must contain all large enough integer multiples of its g.c.d. d. Indeed, it suffices
to prove this fact when d = 1 since the general case then follows upon considering
the non-empty set I ′ = {n ≥ 1 : nd ∈ I} whose g.c.d. is one (and which is
also closed under addition). Further, note that any integer n ≥ `2 is of the form
n = `2 + k` + r = r(` + 1) + (` − r + k)` for some k ≥ 0 and 0 ≤ r < `. Hence, if
two consecutive integers ` and ` + 1 are in I then so are all integers n ≥ `2. We
thus complete the proof by showing that K = inf{m− ` : m, ` ∈ I,m > ` > 0} > 1
is in contradiction with I having g.c.d. d = 1. Indeed, both m0 and m0 + K are
in I for some positive integer m0 and if d = 1 then I must contain also a positive
integer of the form m1 = sK + r for some 0 < r < K and s ≥ 0. With I closed
under addition, (s + 1)(m0 + K) > (s + 1)m0 + m1 must then both be in I but
their difference is (s+ 1)K −m1 = K − r < K, in contradiction with the definition
of K.
If x↔ y then in view of the inequality (6.2.4) there exist finite K and L such that
K + n + L ∈ Ix whenever n ∈ Iy. Moreover, K + L ∈ Ix so every n ∈ Iy must
also be an integer multiple of dx. Consequently, dx is a common divisor of Iy and
therefore dy, being the greatest common divisor of Iy, is an integer multiple of dx.
Reversing the roles of x and y we likewise have that dx is an integer multiple of dy
from which we conclude that in this case dx = dy. �
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The key for determining the asymptotics of Px(Xn = y) is to handle this question
for aperiodic irreducible chains, to which end the next lemma is most useful.

Lemma 6.2.56. Consider two independent copies {Xn} and {Yn} of an aperiodic,
irreducible chain on a countable state space S with transition probabilities p(·, ·). The
Markov chain Zn = (Xn, Yn) on S2 of transition probabilities p2((x′, y′), (x, y)) =
p(x′, x)p(y′, y) is then also aperiodic and irreducible. If {Xn} has invariant prob-
ability measure π(·) then {Zn} is further positive recurrent and has the invariant
probability measure π2(x, y) = π(x)π(y).

Remark. Example 6.2.53 shows that for periodic p(·, ·) the chain of transition
probabilities p2(·, ·) may not be irreducible.

Proof. Fix states z′ = (x′, y′) ∈ S2 and z = (x, y) ∈ S2. Since p(·, ·) are the
transition probabilities of an irreducible chain, there exist K and L finite such that
Px′(XK = x) > 0 and Py′(YL = y) > 0. Further, by the aperiodicity of this chain
we have from Lemma 6.2.55 that both Px(Xn+L = x) > 0 and Py′(YK+n = y′) > 0
for all n large enough, in which case from (6.2.4) we deduce that Pz′(ZK+n+L =
z) > 0 as well. As this applies for any z′, z ∈ S2, the chain {Zn} is irreducible.
Further, considering z′ = z we see that Iz contains all large enough integers, hence
{Zn} is also aperiodic. Finally, it is easy to verify that if π(·) is an invariant
probability measure for p(·, ·) then π2(x, y) = π(x)π(y) is an invariant probability
measure for p2(·, ·), whose existence implies positive recurrence of the chain {Zn}
(see Corollary 6.2.42). �

The following Markovian coupling complements Lemma 6.2.56.

Theorem 6.2.57. Let {Xn} and {Yn} be two independent copies of an aperiodic,
irreducible Markov chain. Suppose further that the irreducible chain Zn = (Xn, Yn)
is recurrent. Then, regardless of the initial distribution of (X0, Y0), the first meeting
time τ = min{` ≥ 0 : X` = Y`} of the two processes is a.s. finite and for any n,

(6.2.9) ‖PXn − PYn‖tv ≤ 2P(τ > n) ,

where ‖ · ‖tv denotes the total variation norm of Definition 3.2.22.

Proof. Recall Lemma 6.2.56 that the Markov chain Zn = (Xn, Yn) on S2 is
irreducible. We have further assumed that {Zn} is recurrent, hence τz = min{` ≥
0 : Z` = z} is a.s. finite (for any z ∈ S × S), regardless of the initial measure of
Z0 = (X0, Y0). Consequently,

τ = inf{τz : z = (x, x) for some x ∈ S}

is also a.s. finite, as claimed.
Turning to prove the inequality (6.2.9), fixing g ∈ bS bounded by one, recall

that the chains {Xn} and {Yn} have the same transition probabilities and further
Xτ = Yτ . Thus, for any k ≤ n,

I{τ=k}EXk [g(Xn−k)] = I{τ=k}EYk [g(Yn−k)] .

By the Markov property and taking out the known I{τ=k} it thus follows that

E[I{τ=k}g(Xn)] = E(I{τ=k}EXk [g(Xn−k)])

= E(I{τ=k}EYk [g(Yn−k)]) = E[I{τ=k}g(Yn)] .
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Summing over 0 ≤ k ≤ n we deduce that E[I{τ≤n}g(Xn)] = E[I{τ≤n}g(Yn)] and
hence

Eg(Xn)−Eg(Yn) = E[I{τ>n}g(Xn)]−E[I{τ>n}g(Yn)]

= E[I{τ>n}(g(Xn)− g(Yn))] .

Since |g(Xn) − g(Yn)| ≤ 2, we conclude that |Eg(Xn) − Eg(Yn)| ≤ 2P(τ > n) for
any g ∈ bS bounded by one, which is precisely what is claimed in (6.2.9). �

Remark. Another Markovian coupling corresponds to replacing the transition
probabilities p2((x′, y′), (x, y)) with p(x′, x)1y=x whenever x′ = y′. Doing so ex-
tends the identity Yτ = Xτ to Yn = Xn for all n ≥ τ , thus yielding the bound
P(Xn 6= Yn) ≤ P(τ > n) while each coordinate of the coupled chain evolves as
before according to the original transition probabilities p(·, ·).

The tail behavior of the first meeting time τ controls the rate of convergence of
n 7→ Px(Xn = y). As you are to show next, this convergence is exponentially fast
when the state space is finite.

Exercise 6.2.58. Show that if the aperiodic, irreducible Markov chain {Xn} has
finite state space, then P(τ > n) ≤ exp(−δn) for the first meeting time τ of Theo-
rem 6.2.57, some δ > 0 and any n large enough.
Hint: First assume that p(x, y) > 0 for all x, y ∈ S. Then show that Px(Xr = y) > 0
for some finite r and all x, y and consider the chain {Znr}.

The following consequence of Theorem 6.2.57 is a major step in our analysis of
the asymptotics of Px(Xn = y).

Theorem 6.2.59. The convergence (6.2.8) holds whenever y is an aperiodic state
of the Markov chain {Xn}. In particular, if this Markov chain is irreducible, positive
recurrent and aperiodic then for any x ∈ S,

lim
n→∞

‖Px(Xn ∈ ·)− π(·)‖tv = 0 .

Proof. If ρxy = 0 then Px(Xn = y) = 0 for all n and (6.2.8) trivially holds.
Otherwise,

ρxy =

∞∑
k=1

Px(Ty = k) ,

is finite. Hence, in view of the first entrance decomposition

Px(Xn = y) =

n∑
k=1

Px(Ty = k)Py(Xn−k = y)

(see part (b) of Exercise 6.2.2), the asymptotics (6.2.8) follows by bounded conver-
gence (with respect to the law of Ty conditional on {Ty <∞}), from

(6.2.10) lim
n→∞

Py(Xn = y) =
1

Ey(Ty)
.

Turning to prove (6.2.10), in view of Corollary 6.2.52 we may and shall assume
hereafter that y is an aperiodic recurrent state. Further, recall that by Theorem
6.2.13 it then suffices to consider the aperiodic, irreducible, recurrent chain {Xn}
obtained upon restricting the original Markov chain to the closed ↔ equivalence
class of y, which with some abuse of notation we denote hereafter also by S.
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Suppose first that {Xn} is positive recurrent and so it has the invariant probability
measure π(w) = 1/Ew(Tw) (see Proposition 6.2.41). The irreducible chain Zn =
(Xn, Yn) of Lemma 6.2.56 is then recurrent, so we apply Theorem 6.2.57 for X0 = y
and Y0 chosen according to the invariant probability measure π. Since Yn is a

stationary Markov chain (see Definition 6.1.20), in particular Yn
D
= Y0 has the law

π for all n. Moreover, the corresponding first meeting time τ is a.s. finite. Hence,
P(τ > n) ↓ 0 as n → ∞ and by (6.2.9) the law of Xn converges in total variation
to π. This convergence in total variation further implies that Py(Xn = y)→ π(y)
when n→∞ (c.f. Example 3.2.25), which is precisely the statement of (6.2.10).
Next, consider a null recurrent aperiodic, irreducible chain {Xn}, in which case our

thesis is that Py(Xn = y) → 0 when n → ∞. This clearly holds if the irreducible
chain {Zn} of Lemma 6.2.56 is transient, for setting z = (y, y) we then have upon
applying Corollary 6.2.52 for the chain {Zn}, that as n→∞

Pz(Zn = z) = Py(Xn = y)2 → 0 .

Proceeding to prove our thesis when the chain {Zn} is recurrent, suppose to the
contrary that the sequence n 7→ Py(Xn = y) has a limit point ν(y) > 0. Then,
mapping S in a one to one manner into Z we deduce from Helly’s theorem that
along a further sub-sequence n` the distributions of Xn` under Py converge vaguely,
hence pointwise (see Exercise 3.2.3), to some finite, positive measure ν on S. We
complete the proof of the theorem by showing that ν is an excessive measure for
the irreducible, recurrent chain {Xn}. Indeed, By part (c) of Exercise 6.2.29 this
would imply the existence of a finite invariant measure for {Xn}, in contradiction
with our assumption that this chain is null recurrent (see Corollary 6.2.42).
To prove that ν is an excessive measure, note first that considering Theorem

6.2.57 for Z0 = (x, y) we get from (6.2.9) that |Px(Xn = w) − Py(Xn = w)| → 0
as n → ∞, for any x,w ∈ S. Consequently, Px(Xn` = w) → ν(w) as ` → ∞, for
every x,w ∈ S. Moreover, from the Chapman-Kolmogorov equations we have that
for any w ∈ S, any finite set F ⊂ S and all ` ≥ 1,∑

z∈S
p(x, z)Pz(Xn` = w) = Px(Xn`+1 = w) ≥

∑
z∈F

Px(Xn` = z)p(z, w) .

In the limit `→∞ this yields by bounded convergence (with respect to the prob-
ability measure p(x, ·) on S), that for all w ∈ S

ν(w) =
∑
z∈S

p(x, z)ν(w) ≥
∑
z∈F

ν(z)p(z, w) .

Taking F ↑ S we conclude by monotone convergence that ν(·) is an excessive mea-
sure on S, as we have claimed before. �

Turning to the behavior of Px(Xn = y) for periodic state y, we start with the
following consequence of Theorem 6.2.59.

Corollary 6.2.60. The convergence (6.2.8) holds whenever y is a null recurrent
state of the Markov chain {Xn} and if y is a positive recurrent state of {Xn} having
period d = dy, then

(6.2.11) lim
n→∞

Py(Xnd = y) =
d

Ey(Ty)
.
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Proof. If y ∈ S has period d ≥ 1 for the chain {Xn} then Py(Xn = y) = 0
whenever n is not an integer multiple of d. Hence, the expected return time to such
state y by the Markov chain Yn = Xnd is precisely 1/d of the expected return time
Ey(Ty) for {Xn}. Therefore, (6.2.11) is merely a reformulation of the limit (6.2.10)
for the chain {Yn} at its aperiodic state y ∈ S.
If y is a null recurrent state of {Xn} then Ey(Ty) =∞ so we have just established

that Py(Xn = y)→ 0 as n→∞. It thus follows by the first entrance decomposition
at Ty that in this case Px(Xn = y) → 0 for any x ∈ S (as in the opening of the
proof of Theorem 6.2.59). �

In the next exercise, you extend (6.2.11) to the asymptotic behavior of Px(Xn = y)
for any two states x, y in a recurrent chain (which is not necessarily aperiodic).

Exercise 6.2.61. Suppose {Xn} is an irreducible, recurrent chain of period d. For
each x, y ∈ S let Ix,y = {n ≥ 1 : Px(Xn = y) > 0}.

(a) Fixing z ∈ S show that there exist integers 0 ≤ ry < d such that if n ∈ Iz,y
then d divides n− ry.

(b) Show that if n ∈ Ix,y then n = (ry − rx) mod d and deduce that Si =
{y ∈ S : ry = i}, i = 0, . . . , d−1 are the irreducible ↔ equivalence classes
of the aperiodic chain {Xnd} (Si are called the cyclic classes of {Xn}).

(c) Show that for all x, y,∈ S,

lim
n→∞

Px(Xnd+ry−rx = y) =
d

Ey(Ty)
.

Remark. It is not always true that if a recurrent state y has period d then
Px(Xnd+r = y) → dρxy/Ey(Ty) for some r = r(x, y) ∈ {0, . . . , d − 1}. Indeed, let
p(x, y) be the transition probabilities of the renewal chain with q1 = 0 and qk > 0
for k ≥ 2 (see Example 6.1.11), except for setting p(1, 2) = 1 (instead of p(1, 0) = 1
in the renewal chain). The corresponding Markov chain has precisely two recurrent
states, y = 1 and y = 2, both of period d = 2 and mean return times E1(T1) =
E2(T2) = 2. Further, ρ02 = 1 but P0(Xnd = 2) → η and P0(Xnd+1 = 2) → 1− η,
where η =

∑
k q2k is strictly between zero and one.

We next consider the large n asymptotic behavior of the Markov additive functional
Afn =

∑n
`=1 f(X`), where {X`} is an irreducible, positive recurrent Markov chain.

In the following two exercises you establish first the strong law of large numbers
(thereby generalizing Proposition 6.2.49), and then the central limit theorem for
such Markov additive functionals.

Exercise 6.2.62. Suppose {Xn} is an irreducible, positive recurrent chain of ini-
tial probability measure ν and invariant probability measure π(·). Let f : S 7→ R be
such that π(|f |) <∞.

(a) Fixing y ∈ S let Rk = T ky . Show that the random variables

Zfk =

Rk−1∑
`=Rk−1

f(X`) , k ≥ 1 ,

are mutually independent and moreover Zfk , k ≥ 2 are identically dis-

tributed with EZ
|f |
2 finite.

Hint: Consider Exercise 6.2.11.
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(b) With Sfn =
∑Nn(y)
k=1 Zfk+1 show that

lim
n→∞

n−1Sfn =
EZf2

Ey(Ty)
= π(f) Pν-a.s.

(c) Show that Pν-a.s. max{n−1Z
|f |
k : k ≤ n} → 0 when n → ∞ and deduce

that n−1Afn → π(f) with Pν probability one.

Exercise 6.2.63. For {Xn} as in Exercise 6.2.62 suppose that f : S 7→ R is such

that π(f) = 0 and v|f | = Ey[(Z
|f |
1 )2] is finite.

(a) Show that n−1/2Sfn
D−→
√
uG as n → ∞, for u = vf/Ey(Ty) finite and

G a standard normal variable.
Hint: See part (a) of Exercise 3.2.9.

(b) Show that max{n−1/2Z
|f |
k : k ≤ n} p→ 0 and deduce that n−1/2Afn

D−→√
uG.

Your next task is to show that for any irreducible, recurrent chain and initial
measure ν, the σ-algebra of shift invariant events is Pν-trivial.

Exercise 6.2.64. Suppose homogeneous Markov chain {Xn} has the initial mea-
sure ν and law Pν on (S∞,Sc) (as in Definition 6.1.7).

(a) Combining the Markov property and Lévy’s 0-1 law, show that PXn(A)
a.s.→

IA for any shift invariant A ∈ Sc (i.e. A = θ−1A, see Definition 6.1.20).
(b) Deduce that if R is a recurrent ↔ equivalence class, then Px(A) ∈ {0, 1}

does not depend on x ∈ R. In particular, the σ-algebra Iθ of all shift
invariant events is Pν-trivial for any irreducible, recurrent chain.

The preceding exercise motivates our next example of a shift invariant, null recur-
rent chain where Birkhoff’s ergodic theorem does not work as one may expect.

Example 6.2.65 (symmetric srw on Z). The symmetric srw on S = Z, as in
Example 6.2.32 is an irreducible, null recurrent chain (see Exercise 6.2.20(d)).

Starting this chain at the counting measure λ̃ yields a shift invariant law Pλ̃ on S∞
(see Example 6.2.43), with a Pλ̃-trivial σ-algebra Iθ (in view of Exercise 6.2.64).

However, Proposition 6.2.49 implies that the relative occupation time n−1Nn(y) of
each state y ∈ Z converges Pλ̃-a.e. to zero, even though the invariant measure

λ̃(y) = 1 of that state is positive.

In contrast, as the following exercise shows, an irreducible, recurrent chain has
Pν-trivial tail σ-algebra (as in the i.i.d. setting of Corollary 1.4.10), if and only if
ν is supported on a single cyclic class. In view of Proposition 6.2.30, this implies
that a stationary, irreducible and (positive) recurrent chain has a Pµ-trivial tail
σ-algebra if and only if it is also aperiodic.

Exercise 6.2.66. Suppose A ∈ T X, with T X the tail σ-algebra of an irreducible,
recurrent chain {Xn}, whose countable state space (S,S) splits into the cyclic classes
Si, i = 0, . . . , d− 1 (c.f. Exercise 6.2.61).

(a) Show that Px(A) ∈ {0, 1} for any x ∈ S.
Hint: Recall part (a) of Exercise 6.2.11 and the Hewitt-Savage 0-1 law.

(b) Upon showing that x 7→ Px(A) is constant within each Si, deduce that
T X is Pν-trivial whenever the initial measure ν is supported within a
single Si.
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(c) Explain why a.s. if {X0 ∈ Si} then the event {Xnd ∈ Si i.o. in n} from
T X holds, for each 0 ≤ i ≤ d− 1.

Building upon their strong law of large number, you are next to show that the laws
of any two irreducible, positive recurrent chains are mutually singular (see Remark
5.5.14 for the analogous result for i.i.d. variables).

Exercise 6.2.67. Suppose {Xn} is an irreducible, positive recurrent chain of tran-
sition probability p(x, y), initial and invariant probability measures ν(·) and π(·),
respectively.

(a) Show that {Xn, Xn+1} is an irreducible, positive recurrent chain on S2
+ =

{(x, y) : x, y ∈ S, p(x, y) > 0}, of initial and invariant measures ν(x)p(x, y)
and π(x)p(x, y), respectively.

(b) Let Pν and P′µ denote the laws of two irreducible, positive recurrent
chains on the same countable state space S, whose transition probabil-
ities p(x, y) and p′(x, y) are not identical. Show that Pν and P′µ are
mutually singular measures (per Definition 4.1.9).
Hint: Consider the conclusion of Exercise 6.2.62 (for f(·) = 1x(·), or, if
the invariant measures π and π′ are identical, then for f(·) = 1(x,y)(·)
and the induced pair-chains of part (a)).

Exercise 6.2.68. Fixing 1 > α > β > 0 let Pα,β
n denote the law of (X0, . . . , Xn)

for the Markov chain {Xk} of state space S = {−1, 1} starting from X0 = −1
and evolving according to transition probability p(−1,−1) = α = 1 − p(−1, 1) and
p(1, 1) = β = 1 − p(1,−1). Fixing an integer b > 0 consider the stopping time
τb = inf{n ≥ 0 : An = b} where An =

∑n
k=1Xk.

(a) Setting λ∗ = log(α/β), h(−1) = 1 and h(1) = β(1− β)/(α(1−α)), show
that the Radon-Nikodym derivative Mn = dPβ,α

n /dPα,β
n is of the form

Mn = exp(λ∗An)h(Xn).
(b) Deduce that Pα,β(τb <∞) = exp(−λ∗b)/h(1).

Exercise 6.2.69. Suppose {Xn} is a Markov chain of transition probability p(x, y)
and g(·) = (ph)(·)− h(·) for some bounded function h(·) on S. Show that h(Xn)−∑n−1
`=0 g(X`) is then a martingale.

6.3. General state space: Doeblin and Harris chains

The refined analysis of homogeneous Markov chains with countable state space
is possible because such chains hit states with positive probability. This does not
happen in many important applications where the state space is uncountable. How-
ever, most proofs require only having one point of the state space that the chain
hits with probability one. As we shall see, subject to the rather mild irreducibil-
ity and recurrence properties of Section 6.3.1, it is possible to create such a point
(called a recurrent atom), even in an uncountable state space, by splitting the chain
transitions. Guided by successive visits of the recurrent atom for the split chain, we
establish in Section 6.3.2 the existence and attractiveness of invariant (probability)
measures for the split chain (which then yield such results about the original chain).

6.3.1. Minorization, splitting, irreducibility and recurrence. Consid-
ering hereafter homogeneous Markov chains, we start by imposing a minorization
property of the transition probability p(·, ·) which yields the splitting of these tran-
sitions.
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Definition 6.3.1. Consider a B-isomorphic state space (S,S). Suppose there
exists a non-zero measurable function v : S 7→ [0, 1] and a probability measure q(·)
on (S,S) such that the transition probability of the chain {Xn} is of the form

(6.3.1) p(x, ·) = (1− v(x))p̂(x, ·) + v(x)q(·) ,

for some transition probability p̂(x, ·) and v(x)q(·) � p̂(x, ·). Amending the state
space to S = S ∪ {α} with the corresponding σ-algebra S = {A,A ∪ {α} : A ∈ S},
we then consider the split chain {Xn} on (S,S) with transition probability

p(x,A) = (1− v(x))p̂(x,A) x ∈ S, A ∈ S
p(x, {α}) = v(x) x ∈ S

p(α, B) =

∫
q(dy)p(y,B) B ∈ S .

The transitions of {Xn} on S have been split by moving to the pseudo-atom α
with probability v(x). The random times in which the split chain is at state α are
regeneration times for {Xn}. That is, stopping times where future transitions are
decoupled from the past. Indeed, the event Xn = α corresponds to Xn moving to
a second copy of S where it is distributed according to the so called regeneration
measure q(·), independently of Xn−1.
As the transitions of the split chain outside α occur according to the excess proba-

bility (1−v(x))p̂(x, ·), we can further merge the split chain to get back the original.
That is,

Definition 6.3.2. The merge transition probability m(·, ·) on (S,S) is such that
m(x, {x}) = 1 for all x ∈ S and m(α, ·) = q(·). Associated with it is the split
mapping f 7→ f : bS 7→ bS such that f(·) = (mf)(·) =

∫
m(·, dy)f(y).

We note in passing that f(x) = f(x) for all x ∈ S and f(α) = q(f), and fur-
ther use in the sequel the following elementary fact about the closure of transition
probabilities under composition.

Corollary 6.3.3. Given any transition probabilities νi : X×X 7→ [0, 1], i = 1, 2,
the set function ν1ν2 : X×X 7→ [0, 1] such that ν1ν2(x,A) =

∫
ν1(x, dy)ν2(y,A) for

all x ∈ X and A ∈ X is a transition probability.

Proof. From Proposition 6.1.4 we see that

ν1ν2(x,A) = (ν1(x, ·)⊗ ν2)(X×A) = (ν1ν2(·, A))(x) .

Now, by the first equality, A 7→ ν1ν2(x,A) is a probability measure on (S,S) for
each x ∈ S, and by the second equality, x 7→ ν1ν2(x,A) is a measurable function on
(S,S) for each A ∈ S, as required in Definition 6.1.2. �

Equipped with these notations we have the following coupling of {Xn} and {Xn}.

Proposition 6.3.4. Consider the setup of Definitions 6.3.1 and 6.3.2.
(a). mp = p and the restriction of pm to (S,S) equals to p.
(b). Suppose {Zn} is an inhomogeneous Markov chain on (S,S) with transition
probability p2k = m and p2k+1 = p. Then, Xn = Z2n is a Markov chain of transi-
tion probability p and Xn = Z2n+1 ∈ S is a Markov chain of transition probability p.
Setting an initial measure ν for Z0 = X0 corresponds to having the initial measure
ν(A) = ν(A) + ν({α})q(A) for X0 ∈ S.
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(c). Eν [f(Xn)] = Eν [f(Xn)] for any f ∈ bS, any initial distribution ν on (S,S)
and all n ≥ 0.

Proof. (a). Since m(x, {x}) = 1 it follows that mp(x,B) = p(x,B) for all
x ∈ S and B ∈ S. Further, m(α, ·) = q(·) so mp(α, B) =

∫
q(dy)p(y,B) which by

definition of p equals p(α, B) (see Definition 6.3.1). Similarly, if either B = A ∈ S
or B = A∪{α}, then by definition of the mergem and split p transition probabilities
we have as claimed that for any x ∈ S,

pm(x,B) = p(x,A) + p(x, {α})q(A) = p(x,A) .

(b). As m(x, {α}) = 0 for all x ∈ S, this follows directly from part (a). Indeed,
Z0 = X0 of measure ν is mapped by transition m to X0 = Z1 ∈ S of measure
ν = νm, then by transition p to X1 = Z2, followed by transition m to X1 = Z3 ∈ S
and so on. Therefore, the transition probability between Xn−1 and Xn is mp = p
and the one between Xn−1 and Xn is pm restricted to (S,S), namely p.
(c). Constructing Xn and Xn as in part (b), if the initial distribution ν of X0

assigns zero mass to α then ν = ν with X0 = X0. Further, by construction
Eν [f(Xn)] = Eν [(mf)(Xn)] which by definition of the split mapping is precisely
Eν [f(Xn)], as claimed. �

We plan to study existence and attractiveness of invariant (probability) measures
for the split chain {Xn}, then apply Proposition 6.3.4 to transfer such results to
the original chain {Xn}. This however requires the recurrence of the atom α. To
this end, we must restrict the so called small function v(x) of (6.3.1), motivating
the next definition.

Definition 6.3.5. A homogeneous Markov chain {Xn} on (S,S) is called a strong
Doeblin chain if the minorization condition (6.3.1) holds with a constant small
function. That is, when infx p(x,A) ≥ δq(A) for some probability measure q on
(S,S), a positive constant δ > 0 and all A ∈ S. We call {Xn} a Doeblin chain in
case Yn = Xrn is a strong Doeblin chain for some finite r, namely when Px(Xr ∈
A) ≥ δq(A) for all x ∈ S and A ∈ S.

The Doeblin condition allows us to construct a split chain {Y n} that visits its
atom α at each time step with probability η ∈ (0, δ). Considering part (c) of
Exercise 6.1.18 (with A = S), it follows that Pν(Y n = α i.o.) = 1 for any initial
distribution ν. So, in any Doeblin chain the atom α is a recurrent state of the split
chain. Further, since Tα = inf{n ≥ 1 : Y n = α} is such that Px(Tα = 1) = η
for all x ∈ S, by the Markov property of Y n (and Exercise 5.1.15), we deduce that
Eν [Tα] ≤ 1/η is finite and uniformly bounded (in terms of the initial distribution
ν). Consequently, the atom α is a positive recurrent, aperiodic state of the split
chain, which is accessible with probability one from each of its states.
As we see in Section 6.3.2, this is more than enough to assure that starting at

any initial state, PYn converges in total variation norm to the unique invariant
probability measure for {Yn}.
You are next going to examine which Markov chains of countable state space are

Doeblin chains.

Exercise 6.3.6. Suppose S = 2S with S a countable set.

(a) Show that a Markov chain of state space (S,S) is a Doeblin chain if and
only if there exists a ∈ S and r finite such that infx Px(Xr = a) > 0.
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(b) Deduce that for any Doeblin chain S = T ∪R, where R = {y ∈ S : ρay >
0} is a non-empty irreducible, closed set of positive recurrent, aperiodic
states and T = {y ∈ S : ρay = 0} consists of transient states, all of which
lead to R.

(c) Verify that a Markov chain on a finite state space is a Doeblin chain if
and only if it has an aperiodic state a ∈ S that is accessible from any
other state.

(d) Check that branching processes with 0 < P(N = 0) < 1, renewal Markov
chains and birth and death chains are never Doeblin chains.

The preceding exercise shows that the Doeblin (recurrence) condition is too strong
for many chains of interest. We thus replace it by the weaker H-irreducibility
condition whereby the small function v(x) is only assumed bounded below on a
“small”, accessible set C. To this end, we start with the definitions of an accessible
set and weakly irreducible Markov chain.

Definition 6.3.7. We say that A ∈ S is accessible by the Markov chain {Xn} if
Px(TA <∞) > 0 for all x ∈ S.
Given a non-zero σ-finite measure ϕ on (S,S), the chain is ϕ-irreducible if any set
A ∈ S with ϕ(A) > 0 is accessible by it. Finally, a homogeneous Markov chain on
(S,S) is called weakly irreducible if it is ϕ-irreducible for some non-zero σ-finite
measure ϕ (in particular, any Doeblin chain is weakly irreducible).

Remark. Modern texts on Markov chains typically refer to the preceding as the
standard definition of irreducibility but we use here the term weak irreducibility to
clearly distinguish it from the elementary definition for a countable S. Indeed, in

case S is a countable set, let λ̃ denote the corresponding counting measure of S.

A Markov chain of state space S is then λ̃-irreducible if and only if ρxy > 0 for
all x, y ∈ S, matching our Definition 6.2.14 of irreducibility, whereas a chain on S
countable is weakly irreducible if and only if ρxa > 0 for some a ∈ S and all x ∈ S.
In particular, a weakly irreducible chain of a countable state space S has exactly one
non-empty equivalence class of intercommunicating states (i.e. {y ∈ S : ρay > 0}),
which is further accessible by the chain.

As we show next, a weakly irreducible chain has a maximal irreducibility measure
ψ such that ψ(A) > 0 if and only if A ∈ S is accessible by the chain.

Proposition 6.3.8. Suppose {Xn} is a weakly irreducible Markov chain on (S,S).
Then, there exists a probability measure ψ on (S,S) such that for any A ∈ S,

(6.3.2) ψ(A) > 0 ⇐⇒ Px(TA <∞) > 0 ∀x ∈ S .

We call such ψ a maximal irreducibility measure for the chain.

Remark. Clearly, if a chain is ϕ-irreducible, then any non-zero σ-finite measure
absolutely continuous with respect to ϕ (per Definition 4.1.4), is also an irreducibil-
ity measure for this chain. The converse holds in case of a maximal irreducibility
measure. That is, unraveling Definition 6.3.7 it follows from (6.3.2) that {Xn} is
ϕ-irreducible if and only if the non-zero σ-finite measure ϕ is absolutely continuous
with respect to ψ.

Proof. Let ν be a non-zero σ-finite irreducibility measure of the given weakly
irreducible chain {Xn}. Taking D ∈ S such that ν(D) ∈ (0,∞) we see that {Xn} is
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also q-irreducible for the probability measure q(·) = ν(· ∩D)/ν(D). We claim that
(6.3.2) holds for the probability measure ψ(A) =

∫
S q(dx)k(x,A) on (S,S), where

(6.3.3) k(x,A) =

∞∑
n=1

2−nPx(Xn ∈ A) .

Indeed, with {TA < ∞} = ∪n≥1{Xn ∈ A}, clearly Px(TA < ∞) > 0 if and only
if k(x,A) > 0. Consequently, if Px(TA < ∞) is positive for all x ∈ S then so is
k(x,A) and hence ψ(A) > 0. Conversely, if ψ(A) > 0 then necessarily q(C) > 0
for C = {x ∈ S : k(x,A) ≥ η} and some η > 0 small enough. In particular,
fixing x ∈ S, as {Xn} is q-irreducible, also Px(TC < ∞) > 0. That is, there exists
positive integer m = m(x) such that Px(Xm ∈ C) > 0. It now follows by the
Markov property at m (for h(ω) =

∑
`≥1 2−`Iω`∈A), that

k(x,A) ≥ 2−m
∞∑
`=1

2−`Px(Xm+` ∈ A)

= 2−mEx[k(Xm, A)] ≥ 2−mPx(Xm ∈ C)η > 0 .

Since this is equivalent to Px(TA < ∞) > 0 and applies for all x ∈ S, we have
established the identity (6.3.2). �

We next define the notions of a small set and an H-irreducible chain.

Definition 6.3.9. An accessible set C ∈ S of a Markov chain {Xn} on (S,S) is
called r-small set if the transition probability (x,A) 7→ Px(Xr ∈ A) satisfies the
minorization condition (6.3.1) with a small function that is constant and positive
on C. That is, when Px(Xr ∈ ·) ≥ δIC(x)q(·) for some positive constant δ > 0 and
probability measure q on (S,S).
We further use small set for 1-small set, and call the chain H-irreducible if it has

an r-small set for some finite r ≥ 1 and strong H-irreducible in case r = 1.

Clearly, a chain is Doeblin if and only if S is an r-small set for some r ≥ 1, and is
further strong Doeblin in case r = 1. In particular, a Doeblin chain is H-irreducible
and a strong Doeblin chain is also strong H-irreducible.

Exercise 6.3.10. Prove the following properties of H-irreducible chains.

(a) Show that an H-irreducible chain is q-irreducible, hence weakly irreducible.
(b) Show that if {Xn} is strong H-irreducible then the atom α of the split

chain {Xn} is accessible by {Xn} from all states in S.
(c) Show that in a countable state space every weakly irreducible chain is

strong H-irreducible.
Hint: Try C = {a} and q(·) = p(a, ·) for some a ∈ S.

Actually, the converse to part (a) of Exercise 6.3.10 holds as well. That is, weak
irreducibility is equivalent to H-irreducibility (for the proof, see [Num84, Propo-
sition 2.6]), and weakly irreducible chains can be analyzed via the study of an
appropriate split chain. For simplicity we focus hereafter on the somewhat more
restricted setting of strong H-irreducible chains. The following example shows that
it still applies for many Markov chains of interest.

Example 6.3.11 (Continuous transition densities). Let S = Rd with S =
BS. Suppose that for each x ∈ Rd the transition probability has a density p(x, y) with
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respect to Lebesgue measure λd(·) on Rd such that (x, y) 7→ p(x, y) is continuous
jointly in x and y. Picking u and v such that p(u, v) > 0, there exists a neighborhood
C of u and a bounded neighborhood K of v, such that inf{p(x, y) : x ∈ C, y ∈
K} > 0. Hence, setting q(·) to be the uniform measure on K (i.e. q(A) = λd(A ∩
K)/λd(K) for any A ∈ S), such a chain is strong H-irreducible provided C is an
accessible set. For example, this occurs whenever p(x, u) > 0 for all x ∈ Rd.

Remark 6.3.12. Though our study of Markov chains has been mostly concerned
with measure theoretic properties of (S,S) (e.g. being B-isomorphic), quite often
S is actually a topological state space with S its Borel σ-algebra. As seen in the
preceding example, continuity properties of the transition probability are then of
much relevance in the study of Markov chains on S. In this context, we say that
p : S×BS 7→ [0, 1] is a strong Feller transition probability, when the linear operator
(ph)(·) =

∫
p(·, dy)h(y) of Lemma 6.1.3 maps every bounded BS-measurable func-

tion h to ph ∈ Cb(S), a continuous bounded function on S. In case of continuous
transition densities, as in Example 6.3.11, the transition probability is strong Feller
whenever the collection of probability measures {p(x, ·), x ∈ S} is uniformly tight
(per Definition 3.2.31).

In case S = BS we further have the following topological notions of reachability
and irreducibility.

Definition 6.3.13. Suppose {Xn} is a Markov chain on a topological space S
equipped with its Borel σ-algebra S = BS. We call x ∈ S a reachable state of {Xn}
if any neighborhood of x is accessible by this chain and call the chain O-irreducible
(or open set irreducible), if every x ∈ S is reachable, that is, every open set is
accessible by {Xn}.

Remark. Equipping a countable state space S with its discrete topology yields
the Borel σ-algebra S = 2S, in which case O-irreducibility is equivalent to our
earlier Definition 6.2.14 of irreducibility.
For more general topological state spaces (such as S = Rd), by their definitions,

a weakly irreducible chain is O-irreducible if and only if its maximal irreducibility
measure ψ is such that ψ(O) > 0 for any open subset O of S. Conversely,

Exercise 6.3.14. Show that if a strong Feller transition probability p(·, ·) has a
reachable state x ∈ S, then it is weakly irreducible.
Hint: Try the irreducibility measure ϕ(·) = p(x, ·).

Remark. The minorization (6.3.1) may cause the maximal irreducibility measure
for the split chain to be supported on a smaller subset of the state space than the
one for the original chain. For example, consider the trivial Doeblin chain of i.i.d.
{Xn}, that is, p(x, ·) = q(·). In this case, taking v(x) = 1 results with the split
chain Xn = α for all n ≥ 1, so the maximal irreducibility measures ψ = δα and
ψ = q of {Xn} and {Xn} are then mutually singular.
This is of course precluded by our additional requirement that v(x)q(·)� p̂(x, ·).

For a strong H-irreducible chain {Xn} it is easily accommodated by, for example,
setting v(x) = ηIC(x) with η = δ/2 > 0, and then the restriction of ψ to S is a
maximal irreducibility measure for {Xn}.

Strong H-irreducible chains with a recurrent atom are called H-recurrent chains.
That is,
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Definition 6.3.15. A strong H-irreducible chain {Xn} is called H-recurrent if
Pα(Tα < ∞) = 1. By the strong Markov property of Xn at the consecutive visit
times T kα of α, H-recurrence further implies that Pα(T kα finite for all k) = 1, or
equivalently Pα(Xn = α i.o.) = 1.

Here are a few examples and exercises to clarify the concept of H-recurrence.

Example 6.3.16. Many strong H-irreducible chains are not H-recurrent. For ex-
ample, combining part (c) of Exercise 6.3.10 with the remark following Definition
6.3.7 we see that such are all irreducible transient chains on a countable state space.
By the same reasoning, a Markov chain of countable state space S is H-recurrent if

and only if S = T∪R with R a non-empty irreducible, closed set of recurrent states
and T a collection of transient states that lead to R (c.f. part (b) of Exercise 6.3.6
for such a decomposition in case of Doeblin chains). In particular, such chains are
not necessarily recurrent in the sense of Definition 6.2.14. For example, the chain
on S = {1, 2, . . .} with transitions p(k, 1) = 1− p(k, k+ 1) = k−s for some constant
s > 0, is H-recurrent but has only one recurrent state, i.e. R = {1}. Further,
ρk1 < 1 for all k 6= 1 when s > 1, while ρk1 = 1 for all k when s ≤ 1.

Remark. Advanced texts on Markov chains refer to what we call H-recurrence
as the standard definition of recurrence and call such chains Harris recurrent when
in addition Px(Tα < ∞) = 1 for all x ∈ S. As seen in the preceding example,
both notions are weaker than the elementary notion of recurrence for countable
S, per Definition 6.2.14. For this reason, we adopt here the convention of call-
ing H-recurrence (with H after Harris), what is not the usual definition of Harris
recurrence.

Exercise 6.3.17. Verify that any strong Doeblin chain is also H-recurrent. Con-
versely show that for any H-recurrent chain {Xn} there exists C ∈ S and a proba-
bility distribution q on (S,S) such that Pq(T

k
C finite for all k) = 1 and the Markov

chain Zk = XTk+1
C

for k ≥ 0 is then a strong Doeblin chain.

The next proposition shows that similarly to the elementary notion of recurrence,
H-recurrence is transferred from the atom α to all sets that are accessible from
it. Building on this proposition, you show in Exercise 6.3.19 that the same applies
when starting at any irreducibility probability measure of the split chain and that
every set in S is either almost surely visited or almost surely never reached from α
by the split chain.

Proposition 6.3.18. For an H-recurrent chain {Xn} consider the probability mea-
sure

(6.3.4) ψ(B) =

∞∑
n=1

2−nPα(Xn ∈ B) .

Then, Pα(Xn ∈ B i.o.) = 1 whenever ψ(B) > 0.

Proof. Clearly, ψ(B) > 0 if and only if Pα(TB < ∞) > 0. Further, if
η = Pα(TB < ∞) > 0, then considering the split chain starting at X0 = α, we
have from part (c) of Exercise 6.1.18 that

Pα({Xn = α finitely often } ∪ {Xn ∈ B i.o.}) = 1 .

As Pα(Xn = α i.o.) = 1 by the assumed H-recurrence, our thesis that Pα(Xn ∈ B
i.o.) = 1 follows. �
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Exercise 6.3.19. Suppose ψ is the probability measure of (6.3.4) for an H-recurrent
chain.

(a) Argue that {α} is accessible by the split chain {Xn} and show that ψ is
a maximal irreducibility measure for it.

(b) Show that Pψ(D) = Pα(D) for any shift invariant D ∈ Sc (i.e. where

D = θ−1D).
(c) In case B ∈ S is such that ψ(B) > 0 explain why Px(Xn ∈ B i.o.) = 1

for ψ-a.e. x ∈ S and Pν(Xn ∈ B i.o.) = 1 for any probability measure
ν � ψ.

(d) Show that Pα(TB <∞) ∈ {0, 1} for all B ∈ S.

Given a strong H-irreducible chain {Xn} there is no unique way to select the small
set C, regeneration measure q(·) and δ > 0 such that p(x, ·) ≥ δIC(x)q(·). Conse-
quently, there are many different split chains for each chain {Xn}. Nevertheless, as
you show next, H-recurrence is determined by the original chain {Xn}.

Exercise 6.3.20. Suppose {Xn} and X
′
n} are two different split chains for the

same strong H-irreducible chain {Xn} with the corresponding atoms α and α′.
Relying on Proposition 6.3.18 prove that Pα(Tα <∞) = 1 if and only if Pα′(T

′
α′ <

∞) = 1.

The concept of H-recurrence builds on measure theoretic properties of the chain,
namely the minorization associated with strong H-irreducibility. In contrast, for
topological state space we have the following topological concept of O-recurrence,
built on reachability of states.

Definition 6.3.21. A state x of a Markov chain {Xn} on (topological) state space
(S,BS) is called O-recurrent (or open set recurrent), if Px(Xn ∈ O i.o.) = 1 for
any neighborhood O of x in S. All states x ∈ S which are not O-recurrent are called
O-transient. Such a chain is then called O-recurrent if every x ∈ S is O-recurrent
and O-transient if every x ∈ S is O-transient.

Remark. As was the case with O-irreducibility versus irreducibility, for a count-
able state space S equipped with its discrete topology, being O-recurrent (or O-
transient), is equivalent to being recurrent (or transient, respectively), per Defini-
tions 6.2.9 and 6.2.14.

The concept of O-recurrence is in particular suitable for the study of random
walks. Indeed,

Exercise 6.3.22. Suppose Sn = S0 +
∑n
k=1 ξk is a random walk on Rd.

(a) Show that if {Sn} has one reachable state, then it is O-irreducible.
(b) Show that either {Sn} is an O-recurrent chain or it is an O-transient

chain.
(c) Show that if {Sn} is O-recurrent, then

S = {x ∈ Rd : Px(‖Xn‖ < r i.o. ) > 0, for all r > 0} ,

is a closed sub-group of Rd (i.e. 0 ∈ S and if x, y ∈ S then also x−y ∈ S),
with respect to which {Sn} is O-irreducible (i.e. Py(TB(x,r) < ∞) > 0
for all r > 0 and x, y ∈ S).
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In case of one-dimensional random walks, you are to recover next the Chung-Fuchs
theorem, stating that if n−1Sn converges to zero in probability, then this Markov
chain is O-recurrent.

Exercise 6.3.23 (Chung-Fuchs theorem). Suppose {Sn} is a random walk on
S ⊆ R.

(a) Show that such random walk is O-recurrent if and only if for each r > 0,

∞∑
n=0

P0(|Sn| < r) =∞ .

(b) Show that for any r > 0 and k ∈ Z,

∞∑
n=0

P0(Sn ∈ [kr, (k + 1)r)) ≤
∞∑
m=0

P0(|Sm| < r) ,

and deduce that suffices to check divergence of the series in part (a) for
large r.

(c) Conclude that if n−1Sn
p→ 0 as n→∞, then {Sn} is O-recurrent.

6.3.2. Invariant measures, aperiodicity and asymptotic behavior. We
consider hereafter an H-recurrent Markov chain {Xn} of transition probability p(·, ·)
on the B-isomorphic state space (S,S) with its recurrent pseudo-atom α and the
corresponding split and merge chains p(·, ·), m(·, ·) on (S,S) per Definitions 6.3.1
and 6.3.2.
The following lemma characterizes the invariant measures of the split chain p(·, ·)

and their relation to the invariant measures for p(·, ·). To this end, we use hereafter
ν1ν2 also for the measure ν1ν2(A) = ν1(ν2(·, A)) on (X,X ) in case ν1 is a measure
on (X,X ) and ν2 is a transition probability on this space and let pn(x,B) denote
the transition probability Px(Xn ∈ B) on (S, S).

Lemma 6.3.24. A measure µ̄ on (S,S) is invariant for the split chain p(·, ·) of a
strong H-irreducible chain if and only if µ̄ = µ̄p and 0 < µ̄({α}) < ∞. Further,
µ̄m is then an invariant measure for the original chain p(·, ·). Conversely, if µ is
an invariant measure for p(·, ·) then the measure µp is invariant for the split chain.

Proof. Recall Proposition 6.1.23 that a measure µ̄ is invariant for the split
chain if and only if µ̄ is positive, σ-finite and

µ̄(B) = µ̄⊗ p(S×B) = µ̄p(B) ∀B ∈ S .
Likewise, a measure µ is invariant for p if and only if µ is positive, σ-finite and
µ(A) = µp(A) for all A ∈ S.
We first show that if µ̄ is invariant for p then µ = µ̄m is invariant for p. Indeed,

note that from Definition 6.3.2 it follows that

(6.3.5) µ(A) = µ̄(A) + µ̄({α})q(A) ∀A ∈ S
and in particular, such µ is a positive, σ-finite measure on (S,S) for any σ-finite
µ̄ on (S,S), and any probability measure q(·) on (S,S). Further, starting the
inhomogeneous Markov chain {Zn} of Proposition 6.3.4 with initial measure µ̄ for
Z0 = X0 yields the measure µ for Z1 = X0. By construction, the measure of
Z2 = X1 is then µp and that of Z3 = X1 is (µp)m = µ(pm). Next, the invariance
of µ̄ for p implies that the measure of X1 equals that of X0. Consequently, the
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measure of X1 must equal that of X0, namely µ = µ(pm). With m(·, {α}) ≡ 0
necessarily µ({α}) = 0 and the identity µ = µ(pm) holds also for the restrictions
to (S,S) of both µ and pm. Since the latter equals to p (see part (a) of Proposition
6.3.4), we conclude that µ = µp, as claimed.
Conversely, let µ̄ = µp where µ is an invariant measure for p (and we set µ({α}) =

0). Since µ is σ-finite, there exist An ↑ S such that µ(An) < ∞ for all n and
necessarily also q(An) > 0 for all n large enough (by monotonicity from below
of the probability measure q(·)). Further, the invariance of µ implies that µ̄m =
(µp)m = µ, i.e. the relation (6.3.5) holds. In particular, µ̄(S) = µ(S) so µ̄ inherits
the positivity of µ. Moreover, both µ̄({α}) = ∞ and µ̄(An) = ∞ contradict the
finiteness of µ(An) for all n, so the measure µ̄ is σ-finite on (S,S). Next, start
the chain {Zn} at Z0 = X0 ∈ S of initial measure µ. It yields the same measure
µ = µm for Z1 = X0, with measure µ̄ = µp for Z2 = X1 followed by µ̄m = µ for
Z3 = X1 and µ̄p for Z4 = X2. As the measure of X1 equals that of X0, it follows
that the measure µ̄p of X2 equals the measure µ̄ of X1, i.e. µ̄ is invariant for p.
Finally, suppose the measure µ̄ satisfies µ̄ = µ̄p. Iterating this identity we deduce

that µ̄ = µ̄pn for all n ≥ 1, hence also µ̄ = µ̄k for the transition probability

(6.3.6) k(x,B) =

∞∑
n=1

2−n pn (x,B) .

Due to its strong H-irreducibility, the atom {α} of the split chain is an accessible
set for the transition probability p (see part (b) of Exercise 6.3.10). So, from (6.3.6)
we deduce that k(x, {α}) > 0 for all x ∈ S. Consequently, as n ↑ ∞,

Bn = {x ∈ S : k(x, {α}) ≥ n−1} ↑ S ,
whereas by the identity µ̄({α}) = (µ̄k)({α}) also µ̄({α}) ≥ n−1µ̄(Bn). This proves
the first claim of the lemma. Indeed, we have just shown that when µ̄ = µ̄p it
follows that µ̄ is positive if and only if µ̄({α}) > 0 and σ-finite if and only if
µ̄({α}) <∞. �

Our next result shows that, similarly to Proposition 6.2.27, the recurrent atom α
induces an invariant measure for the split chain (and hence also one for the original
chain).

Proposition 6.3.25. If {Xn} is H-recurrent of transition probability p(·, ·) then

(6.3.7) ν̄α(B) = Eα

( Tα−1∑
n=0

I{Xn∈B}

)
is an invariant measure for p(·, ·).

Proof. Let ν̄α,n(B) = Pα(Xn ∈ B, Tα > n), noting that

(6.3.8) ν̄α(B) =

∞∑
n=0

ν̄α,n(B) ∀B ∈ S

and ν̄α,n(g) = Eα[I{Tα>n}g(Xn)] for all g ∈ bS. Since {Tα > n} ∈ FX
n =

σ(Xk, k ≤ n), we have by the tower and Markov properties that, for each n ≥ 0,

Pα(Xn+1 ∈ B, Tα > n) = Eα[I{Tα>n}Pα(Xn+1 ∈ B|FX
n ) ]

= Eα[I{Tα>n}p̄(Xn, B) ] = ν̄α,n(p(·, B)) = (ν̄α,np)(B) .
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Hence,

(ν̄αp)(B) =

∞∑
n=0

(ν̄α,np)(B) =

∞∑
n=0

Pα(Xn+1 ∈ B, Tα > n)

= Eα

( Tα∑
n=1

I{Xn∈B}

)
= ν̄α(B)

since Pα(Tα < ∞, X0 = XTα) = 1. We thus established that ν̄αp = ν̄α and as
ν̄α({α}) = 1 we conclude from Lemma 6.3.24 that it is an invariant measure for
the split chain. �

Building on Lemma 6.3.24 and Proposition 6.3.25 we proceed to the uniqueness of
the invariant measure for an H-recurrent chain, namely the extension of Proposition
6.2.30 to a typically uncountable state space.

Theorem 6.3.26. Up to a constant multiple, the unique invariant measure for
H-recurrent transition probability p(·, ·) is the restriction to (S,S) of ν̄αm, where
ν̄α is per (6.3.7).

Remark. As ν̄α(S) = Eα Tα, it follows from the theorem that an H-recurrent
chain has an invariant probability measure if and only if Eα (Tα) = Eq (Tα) < ∞.
In accordance with Definition 6.2.40 we call such chains positive H-recurrent. While
the value of Eα (Tα) depends on the specific split chain one associates with {Xn}, it
follows from the preceding that positive H-recurrence, i.e. the finiteness of Eα (Tα),
is determined by the original chain. Further, in view of the relation (6.3.5) between
ν̄αm and ν̄α and the decomposition (6.3.8) of ν̄α, the unique invariant probability
measure for {Xn} is then

(6.3.9) π(A) =
1

Eq(Tα)

∞∑
n=0

Pq(Xn ∈ A, Tα > n) ∀A ∈ S .

Proof. By Lemma 6.3.24, to any invariant measure µ for p (with µ({α}) = 0),
corresponds the invariant measure µ̄ = µp for the split chain p. It is also shown
there that 0 < µ̄({α}) <∞. Hence, with no loss of generality we assume hereafter
that the given invariant measure µ for p has already been divided by this positive,
finite constant, and so µ̄({α}) = 1. Recall that while proving Lemma 6.3.24 we
further noted that µ = µ̄m, due to the invariance of µ for p. Consequently, to prove
the theorem it suffices to show that µ̄ = ν̄α (for then µ = µ̄m = ν̄αm).
To this end, fix B ∈ S and recall from the proof of Lemma 6.3.24 that µ̄ is also

invariant for pn and any n ≥ 1. Using the latter invariance property and applying
Exercise 6.2.3 for y = α and the split chain {Xn}, we find that

µ̄(B) = (µ̄pn)(B) =

∫
S
µ̄(dx)Px(Xn ∈ B) ≥

∫
S
µ̄(dx)Px(Xn ∈ B, Tα ≤ n)

=

n−1∑
k=0

(µ̄pn−k)({α})Pα(Xk ∈ B, Tα > k) =

n−1∑
k=0

ν̄α,k(B) ,

with ν̄α,k(·) per the decomposition (6.3.8) of ν̄α(·). Taking n→∞, we thus deduce
that

(6.3.10) µ̄(B) ≥
∞∑
k=0

ν̄α,k(B) = ν̄α(B) ∀B ∈ S .
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We proceed to show that this inequality actually holds with equality, namely, that
µ̄ = ν̄α. To this end, recall that while proving Lemma 6.3.24 we showed that
invariant measures for p, such as µ̄ and ν̄α are also invariant for the transition
probability k(·, ·) of (6.3.6), and by strong H-irreducibility the measurable function
g(·) = k(·, {α}) is strictly positive on S. Therefore,

µ̄(g) = (µ̄k)({α}) = µ̄({α}) = 1 = ν̄α({α}) = (ν̄αk)({α}) = ν̄α(g) .

Recall Exercise 4.1.13 that identity such as µ̄(g) = ν̄α(g) = 1 for a strictly positive
g ∈ mS, strengthens the inequality (6.3.10) between two σ-finite measures µ̄ and
ν̄α on (S,S) into the claimed equality µ̄ = ν̄α. �

The next result is a natural extension of Theorem 6.2.57.

Theorem 6.3.27. Suppose {Xn} and {Yn} are independent copies of a strong
H-irreducible chain. Then, for any initial distribution of (X0, Y0) and all n,

(6.3.11) ‖PXn − PYn‖tv ≤ 2P(τ > n) ,

where ‖ · ‖tv denotes the total variation norm of Definition 3.2.22 and τ = min{` ≥
0 : X` = Y ` = α} is the time of the first joint visit of the atom by the corresponding
copies of the split chain under the coupling of Proposition 6.3.4.

Proof. Fixing g ∈ bS bounded by one, recall that the split mapping yields
g ∈ bS of the same bound, and by part (c) of Proposition 6.3.4

E g(Xn)−E g(Yn) = E g(Xn)−E g(Y n)

for any joint initial distribution of (X0, Y0) on (S2,S × S) and all n ≥ 0. Further,
since Xτ = Y τ in case τ ≤ n, following the proof of Theorem 6.2.57 one finds that
|E g(Xn) − E g(Y n)| ≤ 2P(τ > n). Since this applies for all g ∈ bS bounded by
one, we are done. �

Our goal is to extend the scope of the convergence result of Theorem 6.2.59 to the
setting of positive H-recurrent chains. To this end, we first adapt Definition 6.2.54
of an aperiodic chain.

Definition 6.3.28. The period of a strongly H-irreducible chain is the g.c.d. dα
of the set Iα = {n ≥ 1 : Pα(Xn = α) > 0}, of return times to its pseudo-atom and
such chain is called aperiodic if it has period one. For example, q(C) > 0 implies
aperiodicity of the chain.

Remark. Recall that being (strongly) H-irreducible amounts for a countable state
space to having exactly one non-empty equivalence class of intercommunicating
states (which is accessible from any other state). The preceding definition then
coincides with the common period of these intercommunicating states per Definition
6.2.54.
More generally, our definition of the period of the chain seems to depend on which

small set and regeneration measure one chooses. However, in analogy with Exercise
6.3.20, after some work it can be shown that any two split chains for the same strong
H-irreducible chain induce the same period.

Theorem 6.3.29. Let π(·) denote the unique invariant probability measure of an
aperiodic positive H-recurrent Markov chain {Xn}. If x ∈ S is such that Px(Tα <
∞) = 1, then

(6.3.12) lim
n→∞

‖Px(Xn ∈ ·)− π(·)‖tv = 0 .
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Remark. It follows from (6.3.9) that π(·) is absolutely continuous with respect
to ψ(·) of Proposition 6.3.18. Hence, by parts (a) and (c) of Exercise 6.3.19, both

(6.3.13) Pπ(Tα <∞) = 1 ,

and Px(Tα < ∞) = 1 for π-a.e. x ∈ S. Consequently, the convergence result
(6.3.12) holds for π-a.e. x ∈ S.

Proof. Consider independent copies Xn and Y n of the split chain starting
at X0 = x and at Y 0 whose law is the invariant probability measure π = πp of
the split chain. The corresponding Xn and Yn per Proposition 6.3.4 have the laws
Px(Xn ∈ ·) and π(·), respectively. Hence, in view of Theorem 6.3.27, to establish
(6.3.12) it suffices to show that with probability one Xn = Y n = α for some finite,
possibly random value of n. Proceeding to prove the latter fact, recall (6.3.13)
and the H-recurrence of the chain, in view of which we have with probability one
that Y n = α for infinitely many values of n, say at random times {Rk}. Similarly,
our assumption that Px(Tα < ∞) = 1 implies that with probability one Xn = α

for infinitely many values of n, say at another sequence of random times {R̃k}
and it remains to show that these two random subsets of {1, 2, . . .} intersect with
probability one. To this end, note that upon adapting the argument used in solving

Exercise 6.2.11 you find that R1, R̃1, rk = Rk+1 − Rk and r̃k = R̃k+1 − R̃k for
k ≥ 1 are mutually independent, with {rk, r̃k, k ≥ 1} identically distributed, each

following the law of Tα under Pα. Let Wn+1 = Wn + Zn and W̃n+1 = W̃n + Z̃n,

starting at W0 = W̃0 = 1, where the i.i.d. {Z,Z`, Z̃`} are independent of {Xn}
and {Y n} and such that P(Z = k) = 2−k for k ≥ 1. It then follows by the strong

Markov property of the split chains that Sn = RWn − R̃W̃n
, n ≥ 0, is a random

walk on Z, whose i.i.d. increments {ξn} have each the law of the difference between
two independent copies of TZα under Pα. As mentioned already, our thesis follows
from P(Sn = 0 i.o.) = 1, which in view of Corollary 6.2.12 and Theorem 6.2.13 is in
turn an immediate consequence of our claim that {Sn} is an irreducible, recurrent
Markov chain.
Turning to prove that {Sn} is irreducible, note that since Z is independent of
{T kα}, for any n ≥ 1

Pα(TZα = n) =

∞∑
k=1

2−kPα(T kα = n) =

∞∑
k=1

2−kPα(Nn(α) = k,Xn = α) .

Consequently, Pα(TZα = n) > 0 if and only if Pα(Xn = α) > 0. That is, the
support of the law of TZα is the set Iα of possible return times to α. By the
assumed aperiodicity of the chain, the g.c.d. of Iα is one (see Definition 6.3.28).
Further, by definition this subset of positive integers is closed under addition, hence
as we have seen in the course of proving Lemma 6.2.55, the set Iα contains all large
enough integers. As ξ1 is the difference between two independent copies of TZα , the
law of each of which is strictly positive for all large enough positive integers, clearly
P(ξ1 = z) > 0 for all z ∈ Z, out of which the irreducibility of {Sn} follows.
As for the recurrence of {Sn}, note that by the assumed positive H-recurrence of
{Xn} and the independence of Z and this chain,

Eα (TZα ) =

∞∑
k=1

Eα (T kα)P(Z = k) = Eα (Tα)

∞∑
k=1

kP(Z = k) = Eα (Tα)E(Z) <∞ .
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Hence, the increments ξn of the irreducible random walk {Sn} on Z are integrable

and of zero mean. Consequently, n−1Sn
p→ 0 as n→∞ which by the Chung-Fuchs

theorem implies the recurrence of {Sn} (see Exercise 6.3.23). �

Exercise 6.3.30. Suppose {Xk} is the first order auto-regressive process Xn =
βXn−1 + ξn, n ≥ 1 with |β| < 1 and where the integrable i.i.d. {ξn} have a strictly
positive, continuous density fξ(·) with respect to Lebesgue measure on Rd.

(a) Show that {Xk} is a strong H-irreducible chain.
(b) Show that Vn =

∑n
k=0 β

kξk converges a.s. to V∞ =
∑
k≥0 β

kξk whose

law π(·) is an invariant probability measure for {Xk}.
(c) Show that {Xk} is positive H-recurrent.
(d) Explain why {Xk} is aperiodic and deduce that starting at any fixed x ∈

Rd the law of Xn converges in total variation to π(·).

Exercise 6.3.31. Show that if {Xn} is an aperiodic, positive H-recurrent chain
and x, y ∈ S are such that Px(Tα <∞) = Py(Tα <∞) = 1, then for any A ∈ S,

lim
n→∞

|Px(Xn ∈ A)−Py(Xn ∈ A)| = 0 .

Exercise 6.3.32. Suppose {ξn} are i.i.d. with P(ξ1 = 1) = 1 − P(ξ1 = −1) = b
and {Un} are i.i.d. uniform on [−5, 5] and independent of {ξn}. Consider the
Markov chain {Xn} with state space S = R such that Xn = Xn−1 + ξnsign(Xn−1)
when |Xn−1| > 5 and Xn = Xn−1 + Un otherwise.

(a) Show that this chain is strongly H-irreducible for any 0 ≤ b < 1.
(b) Show that it has a unique invariant measure (up to a constant multiple),

when 0 ≤ b ≤ 1/2.
(c) Show that if 0 ≤ b < 1/2 the chain has a unique invariant probability

measure π(·) and that Px(Xn ∈ B) → π(B) as n → ∞ for any x ∈ R
and every Borel set B.





CHAPTER 7

Ergodic theory

As we see in this chapter, the strong law of large numbers such as that of Theorem
2.3.3, hold in much generality, without any independence or orthogonality condi-
tions on the variables, and the measure space need not even be finite. For example,
as shown in Section 7.2 such results hold for a Markov chain on B-isomorphic state
space, starting at any invariant initial measure ν, as soon as the shift-invariant
σ-algebra Iθ is Pν-trivial (in the sense of Definition 1.2.46). Among the many con-
sequences of ergodic theory are recurrence properties for partial sums of stationary
stochastic processes, which we explore in Section 7.3. Section 7.4 concludes this
chapter, by providing the powerful sub-additive ergodic theorem alongside a few of
its many interesting applications.

7.1. Measure preserving and ergodic maps

We associate with each measurable map T : X→ X on a measurable space (X,X),
the T-invariant σ-algebra, as defined next.

Definition 7.1.1. We say that A ∈ X is a T-invariant set if A = T−1(A). The
collection IT of all T-invariant sets is a σ-algebra, called the T-invariant σ-algebra.

Remark 7.1.2. Note that A ∈ IT if and only if T−m(A) = A for all m ≥ 0.
Alternatively, if and only if A+ :=

⋃
m≥0 T

−m(A) equals A− :=
⋂
m≥0 T

−m(A).

Fixing (X,X) and a measurable map T on it, we are interested in σ-finite measures
ν on (X,X) which are invariant under the application of T.

Definition 7.1.3. We say that a measurable map T : X → X is ν-measure-
preserving if ν ◦ T−1 = ν.

As you show next, in a measure preserving setting one may relax wlog the pre-
ceding definition of (strict) T-invariance, to that of ν-almost T-invariance.

Exercise 7.1.4. Fix a measurable map T : (X,X) 7→ (X,X).

(a) Check that if T−1(C) ⊆ C then C− of Remark 7.1.2 is in IT.
(b) Considering C = B+, deduce that {T−n(B) i.o.} and {T−n(B) ev.} of

Definition 2.2.1 are T-invariant for any B ∈ X.
(c) We call B ∈ X a ν-almost T-invariant if ν(B∆T−1(B)) = 0. Show that

if T is measure-preserving for some σ-finite ν, then ν(B+ \ B−) = 0 for
any T-almost-invariant B ∈ X, hence ν(A∆B) = 0 for the T-invariant
A = {T−n(B) i.o.}.

We proceed with the generic example of measure preserving maps.

275
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Example 7.1.5 (Stationary processes). Consider B-isomorphic (S,S) and the shift
operator θ : S∞ 7→ S∞ on (S∞,Sc), such that θ(ω) = (ω1, ω2, . . . , ωk+1, . . .), for
ω = (ω0, . . . , ωk, . . .). Recall Definition 6.1.20 that the shift is ν-measure preserv-
ing for the joint law ν of any (strictly) stationary (S,S)-valued stochastic process
Xn(ω) = ωn. Alternatively, thanks to Corollary 1.4.25 such stationarity is equiv-

alent to (X0, . . . , Xn)
D
= (X1, . . . , Xn+1) for any n ≥ 0. In particular, as shown

in Proposition 6.1.23, this applies for ν = Pµ and the (stationary) homogeneous
Markov chain constructed via Theorem 6.1.8, provided the initial measure µ on S
and the transition probability p(·, ·) are such that µ⊗ p(S× ·) = µ(·).

Remark 7.1.6. Considering the transition probability p(x,A) = 1{T(x)∈A} one
may represent any µ-measure preserving T : S 7→ S via the shift θ of Example 7.1.5
on a stationary Markov chain of law ν = Pµ (which for such a transition probability
will be supported on the collection of orbits {Tn(x), n ≥ 0} of T).

We further have the following closure properties of stationary stochastic processes
(i.e. random sequences).

Proposition 7.1.7. Suppose {Xk, k ≥ 0} is a stationary process taking values in
(S∞,Sc).

(a) For any measurable g : S∞ → S the sequence {Yk = g(Xk, Xk+1, . . .), k ≥
0}, is also a stationary stochastic process.

(b) There exist a two-sided random sequence {Zn, n ∈ Z} of shift-invariant

law, such that (Z−m, . . . , Zn)
D
= (X0, . . . , Xm+n) for all m,n ≥ 0.

Proof.
(a). Setting gk = g ◦ θk for the shift θ, note that Yk = gk(ω). Consequently,
{Yk, k ≥ 0} ∈ B if and only if {Xk, k ≥ 0} ∈ A for A = {ω : (g0, g1, . . .)(ω) ∈ B}. In
particular, having {Yk} ∈ θ−1(B) amounts to {Xk} ∈ θ−1(A), hence by stationarity
of {Xk},

P((Y0, Y1, . . .) ∈ B) = P((X0, X1, . . .) ∈ A)

= P((X1, X2, . . .) ∈ A) = P((Y1, Y2, . . .) ∈ B) .

(b). Given the shift-invariance of the joint law of {Xk}, the specified finite dimen-
sional distributions of {Zk, k ∈ Z} are consistent (for the index set Z). From Kol-
mogorov’s extension theorem (see Corollary 1.4.25), there exists a unique joint law ν

on SZ with such finite dimensional distributions. By definition (Z−m+1, . . . , Zn+1)
D
=

(Z−m, . . . , Zn) for any m,n ≥ 0, hence ν ◦ θ−1 = ν on the collection R of cylinder
subsets of SZ. Recall that the π-system R generates the product σ-algebra Sc of
SZ. Hence, by the π-λ theorem, the identity ν ◦ θ−1(A) = ν(A) extends to all
A ∈ Sc. �

In the context of Example 7.1.5, as in Remark 7.1.2 we have that for any A ∈ Iθ
A = θ−m(A) = {s : θm(s) ∈ A} ∈ σ(Xr, r ≥ m) = T X

m−1, ∀m ≥ 1 .

That is, Iθ ⊆ T X, the tail σ-algebra of the process {Xn} (see Definition 1.4.9).
In particular, for a Markov chain corresponding to i.i.d. variables, we know from
Kolmogorov 0-1 law (cf. Corollary 1.4.10), that T X is Pµ-trivial. Hence, so is
then the invariant σ-algebra Iθ. This is precisely the setting for which we have
established the strong law of large numbers, motivating more generally our next
definition of ergodic measure preserving maps.
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Definition 7.1.8. A ν-measure-preserving map T is ergodic if IT is ν-trivial
(that is, either ν(A) = 0 or ν(Ac) = 0 for any A ∈ IT).

Our next result, due to Poincaré is about recurrence of measure preserving maps
(compare to Exercise 6.2.2 about return times for Markov chains).

Proposition 7.1.9 (Poincaré recurrence). Suppose T is measure preserving on
probability space (Ω,F ,P). Consider the first return time TA(ω) = inf{n ≥ 1 : ω ∈
T−n(A)} to some A ∈ F . Then,

(a) P(A and TA =∞) = 0.
(b) P(T−n(A) f.o. and A) = 0.
(c) P(T−n(A) i.o.) > 0 if and only if P(A) > 0.
(d) Map T ergodic if and only if P(T−n(A) i.o.) = 1 whenever P(A) > 0.

Proof. (a). Setting B = {A and TA = ∞}, note that {ω ∈ T−m(B)} if and
only if m = max{n ≥ 0 : Tn(ω) ∈ A}. Consequently, {T−m(B),m ≥ 0} are disjoint
events. Since T is measure preserving, P(T−m(B)) = P(B) for all m ≥ 0, so with∑
m P(T−m(B)) finite, we conclude that P(B) = 0, as claimed.

(b). Fixing k ≥ 1, we deduce from part (a) for the measure preserving Tk, that

0 = P(A,
⋂
n≥1

T−nk(Ac)) ≥ P(A,
⋂
m≥k

{T−m(Ac)}) .

Considering the union over k ≥ 1 of the events of zero probability on the right side,
yields the claim of part (b).
(c). From part (b), one has that P(A) = P(A∩A∞) ≤ P(A∞) for A∞ := {T−n(A)
i.o.}. Moreover, with T measure preserving, P(A) = 0 implies that P(T−n(A)) = 0
for all n, hence P(A+) = 0 and the same must also apply for A− ⊆ A∞ ⊆ A+.
(d). Recall Exercise 7.1.4(b) that A∞ is T-invariant, so if T is ergodic, necessarily
P(A∞) = 1 whenever P(A) > 0. Conversely, recall Remark 7.1.2 that A+ = A−
and hence A∞ = A, for any A ∈ IT. Thus, if P(A∞) = 1 whenever P(A) > 0 (for
all A ∈ IT), then IT must be P-trivial (namely, T is ergodic). �

We proceed to examine ergodicy within a few examples.

Example 7.1.10 (Bernoulli shift). Consider ([0, 1),B[0,1)) equipped with the uni-
form probability measure U . The measurable map T : [0, 1) 7→ [0, 1) given by
T(y) = (2y) mod 1 is then U -measure-preserving and ergodic. Indeed, representing
y ∈ [0, 1) as an infinite sequence of binary digits

y =

∞∑
k=0

2−(k+1)bk ,

yields under the uniform measure of y that {bk, k ≥ 0} are i.i.d. Bernoulli(1/2).
Further, in this representation T(y) corresponds to the shift θ of the binary se-
quence (b0, b1, . . .), which by the preceding discussion is both measure preserving
and ergodic.

Example 7.1.11. Consider the law Pµ of Example 7.1.5 for a homogeneous Markov
chain {Xn} on a countable state space S, with µ an invariant measure supported
on a set R of recurrent states. Recall Propositions 6.2.27 and 6.2.30 that the sup-
port of µ must be a union of disjoint, closed, recurrent ↔ equivalence classes Ri.
The events R∞i := {ω ∈ S∞ : ωn ∈ Ri i.o. in n}, are shift invariant and with
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each Ri closed (as in Definition 6.2.7), clearly Pµ(R∞i ) = µ(Ri). Thus, the shift
is non-ergodic unless Pµ induces an irreducible chain (namely, µ is supported on
a single class). Conversely, recall Exercise 6.2.64(b) that Iθ is Pµ-trivial for an
irreducible, recurrent, stationary chain, hence any such chain is ergodic. However,
from Exercise 6.2.66 we see that the corresponding tail σ-algebra will be Pµ-trivial
only if the chain is also aperiodic.

Example 7.1.12 (Rotation of the circle). Given a non-random α ∈ (0, 1) consider
the measurable map Tα(ω) = (ω + α) mod 1 on [0, 1). Identifying [0, 1) with the
unit circle {z ∈ C : |z| = 1}, via ω 7→ ei2πω, yields Tα(z) = ei2παz that rotates the
unit circle by angle α. The uniform measure (on [0, 1), or equivalently on the unit
circle), is clearly preserved by any rotation. For rational α = j/` ∈ Q the map Tα
is non-ergodic, since (Tα)` is the identity map, hence

`−1⋃
k=0

(B + k/`) ∈ ITα , ∀B ∈ B[0,1/`) .

In contrast, as you show in Exercise 7.1.13, for α /∈ Q the map Tα is ergodic.

Exercise 7.1.13. Consider Tα of Example 7.1.12 for α /∈ Q.

(a) Show that any x0 ∈ [0, 1) is part of an orbit {Tmα (x0),m ≥ 0} which is
dense in [0, 1).

(b) Deduce that Tα is ergodic.

Hint: Show that Lebesgue measure λ(B) > 0 for B ∈ B[0,1), implies the existence
of intervals Jε of length at most ε, with λ(Jε ∩B) ≥ (1− ε)λ(Jε).

Exercise 7.1.14.
(a) Find an ergodic measure preserving T for Ω = {0, 1}, F = 2Ω and P({0}) =
P({1}) = 1/2, such that T2 is not ergodic.
(b) Consider the rotation Tα, as in Example 7.1.12. Show that (Tα,Tα) is not
ergodic on the corresponding product space, regardless of the value of α.

Exercise 7.1.15.
(a) Suppose that for some N ≥ 2, the operator TN = θN (i.e. the N -coordinates
shift), is measure preserving and ergodic for the joint law P of {Yk(ω) = ωk, k ≥ 1}
in (S∞,Sc). Let Q denote the joint law of the stochastic process {YU+m,m ≥ 0},
for U uniformly distributed on {1, 2, . . . , N}, independently of {Yk}. Show that any
such law Q is shift invariant, with the shift θ then also ergodic for Q.
(b) Show that TN is measure preserving and ergodic for P in case (YN`+1, . . . , YN(`+1)),

` ≥ 0, are i.i.d. SN -valued random vectors.

Exercise 7.1.16. With [x] denoting the integer part of x ∈ R, consider the Borel
measurable T on X = (0, 1) ∩ Qc given by T(x) = 1/x − [1/x]. Show that T is
νG-measure preserving for the probability measure νG of density 1/((1+x) log 2) on
(0, 1) (νG is often called the Gauss measure of continued fraction).
Note the continued fraction representation

x = 1/(a0 + 1/(a1 + 1/(a2 + 1/ . . .))) ,

where an = ψ(Tn(x)), n ≥ 0 and ψ(x) = [1/x].

Exercise 7.1.17. We say that a measure preserving T on (Ω,F ,P) is mixing if
as n→∞,

P(A ∩ T−n(B))→ P(A)P(B) ∀A,B ∈ F .(7.1.1)



7.2. BIRKHOFF’S ERGODIC THEOREM 279

(a) Show that mixing implies ergodicity.
(b) Show that suffices for mixing to verify (7.1.1) for A,B ∈ P, with P a

π-system such that F = σ(P).
(c) Show that the Bernoulli shift of Example 7.1.10 is mixing.
(d) Fixing finite N ≥ 2, consider the cyclic permutation T(ω) = (ω + 1)

modN , which preserves the uniform measure P on Ω = {1, 2, 3, . . . , N}.
Show that this mapping is ergodic but not mixing.

(e) Show that Tα of Example 7.1.12 is not mixing for any α ∈ Qc.

7.2. Birkhoff’s ergodic theorem

Given a ν-measure-preserving T, our goal is to extend the scope of Theorem 2.3.3
to the ν-a.e. convergence of Sn(f) = n−1Sn(f), where f ∈ L1(X,X, ν) and

(7.2.1) S0(f) ≡ 0, Sn(f) =

n−1∑
j=0

f ◦ Tj , n = 1, 2, . . . .

Indeed, we have the following ergodic theorem.

Theorem 7.2.1 (Birkhoff’s pointwise ergodic theorem). Fix σ-finite mea-
sure space (X,X, ν), a ν-measure-preserving T and f ∈ Lp(X,X, ν), p ≥ 1.
(a). There exists S∞(f) ∈ Lp(X, IT, ν) such that ‖S∞(f)‖p ≤ ‖f‖p and

(7.2.2) lim
n→∞

Sn(f) = S∞(f) , ν − a.e.

(b). If (X,X, ν) is a probability space, then S∞(f) = E[f |IT] and Sn(f)
Lp→ E[f |IT].

Remark 7.2.2. For ergodic T the σ-algebra IT is ν-trivial, so from Proposition
1.2.47 we deduce that S∞(f) must be ν-trivial, i.e. constant (ν-a.e). In case
ν(X) = 1, this constant is precisely E[f ], with part (b) of Birkhoff’s theorem
being the promised generalization of the strong law of large numbers (compare
with Theorem 2.3.3). In contrast, when ν(X) = ∞, even for T ergodic and [0, 1]-
valued S∞(f), ν(f), often S∞(f) 6= ν(f). For example, the symmetric srw on
S = Z (with S = 2S), is a null recurrent Markov chain. As explained in Example

6.2.65, starting this chain at the σ-finite counting measure λ̃ of Z yields a shift-
invariant measure ν = Pλ̃ on (X,X) = (S∞,Sc) such that Iθ is ν-trivial, whereas

ν-a.e. Nn(0) = Sn(I{0}(ω1)) → 0, even though λ̃({0}) = 1 > 0 (of course, here

ν(X) =∞ since λ̃(S) =∞).

The key to Birkhoff’s theorem is the following lemma which is of independent
interest.

Lemma 7.2.3 (The maximal ergodic lemma). For ν-measure-preserving T,
g ∈ L1(X,X, ν), Sk(g) as in (7.2.1) and any 1 ≤ n ≤ ∞,

(7.2.3) ν(gI{S+
n (g)>0}) ≥ ν(S+

n (g)− S+
n−1(g)) ≥ 0 , S+

n (g) :=
n

max
k=0
{Sk(g)} .

Proof. Clearly g = Sk(g)− Sk−1(g) ◦ T for all k ≥ 1. Hence, by definition of
S+
n (g), for any 1 ≤ n <∞,

g =
n

max
k=1
{Sk(g)− Sk−1(g) ◦ T} ≥ n

max
k=1
{Sk(g)} − S+

n−1(g) ◦ T .
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Clearly, S+
n (g)−S+

n−1(g) ◦T equals the right side of the preceding inequality when
S+
n (g) > 0 = S0(g), and is otherwise, namely when S+

n (g) = 0, non-positive (since
S+
n−1(g) is a non-negative function). Thus, throughout X,

(7.2.4) gI{S+
n (g)>0} ≥ S

+
n (g)− S+

n−1(g) ◦ T .

Next note that S+
n (g) ≤ Sn(|g|) with ν

(
Sn(|g|)

)
= n‖g‖1 finite for any ν-measure-

preserving T. In particular, S+
n (g) ∈ L1(X,X, ν) and since ν = ν ◦T−1, integrating

(7.2.4) leads to

ν(gI{S+
n (g)>0}) ≥ ν

(
S+
n (g)

)
− ν ◦ T−1

(
S+
n−1(g)

)
= ν(S+

n (g)− S+
n−1(g)) ≥ 0 .

We have thus established (7.2.3) for all n < ∞. As S+
n (g) ↑ S+

∞(g), by dominated
convergence this extends to n =∞. �

Here is an immediate consequence of the maximal ergodic lemma.

Corollary 7.2.4 (Maximal inequality). Consider {Sn(f)} of (7.2.1) for f ∈
L1(X,X, ν), a σ-finite measure ν and ν-measure-preserving T. Then,

(7.2.5) ν
(

max
j≥1
{Sj(f)} > b

)
≤ b−1ν(f+) , ∀b > 0 .

Proof. Setting Bb := {maxj≥1{Sj(f)} > b}, we fix A ⊆ Bb such that ν(A) <
∞ and apply Lemma 7.2.3 for the integrable g = f − bIA, arriving at

ν(f+) ≥ ν(fI{S+
∞(g)>0}) ≥ bν(A ∩ {S+

∞(g) > 0}) .

Since g ≥ f−b, also Sk(g) ≥ Sk(f)−b for all k. Hence S+
∞(g) is strictly positive on

Bb and by the preceding b−1ν(f+) ≥ ν(A). Since ν is σ-finite, recall the existence of
An ↑ Bb such that ν(An) <∞, so the preceding uniform bound on ν(An) extends
to ν(Bb), as claimed. �

Equipped with Lemma 7.2.3 and Corollary 7.2.4, we turn to establish Birkhoff’s
theorem.

Proof of Theorem 7.2.1. Fixing f ∈ L1(X,X, ν) and ν-measure preserving
T, we set the R-valued candidate limit S∞(f) := lim supn Sn(f).
(a). For any n ≥ 0 and all x ∈ X,

Sn+1(f)(x) =
n

n+ 1
Sn(f)(T(x)) +

1

n+ 1
f(x) .

Considering the lim sup as n → ∞, yields that S∞(f)(x) = S∞(f)(T(x)) at all
x ∈ X. That is, σ(S∞(f)) ⊆ IT. Next, for any a < b let

Γa,b(f) := {x ∈ X : lim inf
n→∞

Sn(f)(x) < a < b < lim sup
n→∞

Sn(f)(x)} ,

noting that by the same reasoning, also Γa,b(f) ∈ IT. Fixing a < b the bulk of the
proof consists of showing that ν(Γ) = 0 for Γ = Γa,b(f). First, Γ is contained within
the event Bb on the left side of (7.2.5). Further, as Γa,b(f) = Γ−b,−a(−f) and either
b > 0 or −a > −b ≥ 0, upon changing (f, a, b) to (−f,−b,−a) if needed, wlog we
have that b > 0, so ν(Γ) ≤ ν(Bb) < ∞ (see Corollary 7.2.4), hence g = (f − b)IΓ
is integrable. Next, recall that T−k(Γ) = Γ and therefore Sk(g) = (Sk(f) − b)IΓ.
Consequently,

{S+
∞(g) > 0} = {sup

k≥1
{Sk(g)} > 0} = Γ ∩ {sup

k≥1
{Sk(f)} > b} = Γ ,
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whereby (7.2.3) at n =∞ leads to

0 ≤ ν(gI{S+
∞(g)>0}) = ν(g) =

∫
Γ

(f − b)dν .

In addition, Γ ⊆ {infk≥1{Sk(f)} < a}, so by the preceding argument also {S+
∞(g̃) >

0} = Γ for g̃ = (a − f)IΓ, with (7.2.3) at n = ∞ thereby yielding that 0 ≤∫
Γ
(a− f)dν. Adding the two inequalities, gives us that 0 ≤ (a− b)ν(Γ). We have

thus shown that ν(Γa,b(f)) = 0 for any a < b, from which (7.2.2) immediately
follows (e.g. see proof of Lemma 5.3.1).
Fixing p ≥ 1, we turn to establish that ‖S∞(f)‖p ≤ ‖f‖p. First, since |Sn(f)| ≤
Sn(|f |) it suffices to consider f ≥ 0. Further, as ν = ν ◦ T−j it follows that
‖f◦Tj‖p = ‖f‖p for all j ≥ 0, hence by the triangle inequality also ‖Sn(f)‖p ≤ ‖f‖p
for any n ≥ 0. Having shown that ν(Sn(f)p) ≤ ν(fp) for any n < ∞, we get by
Fatou’s lemma and an appeal to (7.2.2), that ν(S∞(f)p) ≤ ν(fp), as claimed.
(b). Suppose now that ν(X) = 1. For bounded f we get the convergence in Lp

out of part (a) (via bounded convergence). More generally, fixing f ∈ Lp(X,X, ν)
there exist bounded functions {f`} such that ‖f − f`‖p → 0 (for example, take
f` = max{−`, f∧`}). Since T is ν-measure-preserving, using the triangle inequality
for ‖ · ‖p we find that for any n and `,

‖Sn(f)− Sn(f`)‖p ≤
1

n

n−1∑
j=0

‖(f − f`) ◦ Tj‖p = ‖f − f`‖p .

Consequently, by yet another application of the triangle inequality, for any n,m, `,

(7.2.6) ‖Sn(f)− Sm(f)‖p ≤ 2‖f − f`‖p + ‖Sn(f`)− Sm(f`)‖p .

Per ` fixed, the Lp convergent sequence {Sn(f`)} must be a Cauchy sequence in
Lp(X,X, ν). It thus follows from (7.2.6) that

lim sup
n,m→∞

‖Sn(f)− Sm(f)‖p ≤ 2‖f − f`‖p .

Upon taking `→∞ we have that {Sn(f)} is yet another Cauchy, hence convergent,
sequence in the Banach space Lp(X,X, ν) (see Proposition 4.3.7), and its Lp limit
must coincide with the a.s. limit S∞(f) of part (a) (see Exercise 1.3.31).
Finally, to show that S∞(f) = E(f |IT) for any f ∈ L1(X,X, ν), we fix A ∈ IT

and note that (fIA) ◦ Tj = (f ◦ Tj)IA for all j ≥ 0. With ν = ν ◦ T−j it follows
upon averaging over 0 ≤ j ≤ n− 1, that for any n finite,

(7.2.7) ν(fIA) = ν(Sn(f)IA) .

We have shown already that Sn(f)
L1

→ S∞(f), from which we deduce that (7.2.7)
extends to n = ∞. Thus, recalling that S∞(f) is measurable on IT, we conclude
that S∞(f) = E(f |IT), as claimed. �

We next detail a few applications of Birkhoff’s ergodic theorem.

Example 7.2.5 (slln). Recall that in Example 7.1.5 we have Iθ ⊆ T X. By
Kolmogorov 0-1 law the shift is thus ergodic when {Xn} are integrable i.i.d. random
variables. Taking f(ω) = ω1 yields that Sn(f) = n−1

∑n
j=1Xj and specializing

Birkhoff’s theorem to this setting, recovers the strong law of large numbers.
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Example 7.2.6 (slln, positively recurrent chains). Recall Corollary 6.2.42 that
an irreducible, positive recurrent, Markov chain has a unique invariant probability
measure π(·). As explained in Example 7.1.11, the shift is ergodic for the induced
(stationary) joint law Pπ. Specializing Birkhoff’s theorem to f(ω1) with π(|f |) <∞
yields the strong law of large numbers for Markov additive functionals and any
initial distribution ν of the chain

n−1Afn := n−1
n∑
`=1

f(X`)→ π(f) , Pν − a.s. .

While Birkhoff’s theorem applies only for ν = π, with π(·) strictly positive, clearly
Pν � Pπ for any probability measure ν, hence the immediate extension to any ν
(see also Exercise 6.2.62 for a very different, direct proof of this slln). In contrast,
for an unbounded f the L1-convergence in Birkhoff’s theorem may not extend from
Pπ to any Pν .

Example 7.2.7 (Rotation of the circle). Fixing α /∈ Q consider the ergodic map
Tα : [0, 1) 7→ [0, 1) of Example 7.1.12. Applying Birkhoff’s theorem for f = IB,
B ∈ B[0,1) results with

(7.2.8) n−1
n−1∑
j=0

IB((ω + jα) mod 1)→ U(B) ,

for U -a.e. ω. We next show that if B = [a, b) for a < b, then (7.2.8) actually holds
for all ω ∈ [0, 1) (whereby taking ω = 0 recovers Weyl’s equidistribution theorem).
Indeed, fixing a < b, there exists G ⊆ [0, 1) such that (7.2.8) holds for ω ∈ G
and all non-empty B` := [a + 1/`, b − 1/`), ` ∈ N, while U(Gc) = 0 hence G is
dense in [0, 1). Fixing ω ∈ [0, 1) and ω` ∈ G such that |ω − ω`| < `−1 note that
if Tjα(ω`) ∈ B` for some j ≥ 0, then also Tjα(ω) ∈ B. Thus, for any ` ∈ N and
ω ∈ [0, 1),

lim inf
n→∞

1

n

n−1∑
j=0

IB(Tjα(ω)) ≥ b− a− 2

`
.

Taking ` → ∞ improves the lower bound to b − a = U(B) and upon applying the
same reasoning for the interval Bc we conclude that (7.2.8) holds for all ω ∈ [0, 1)
and any interval B.

Example 7.2.8 (Benford’s law). Fixing integer L ≥ 2 such that α = log10 L /∈ Q
(e.g. L = 2), consider (7.2.8) for ω = 0 and the partition of [0, 1) to disjoint
intervals J` = [log10 `, log10(` + 1)), ` = 1, . . . , 9, of length q` = U(J`) = log10(1 +
1/`), respectively. This amounts to

(7.2.9) Q
(n)
` := n−1

n−1∑
j=0

IJ`(log10(Lj) mod 1)→ q` , ` = 1, . . . , 9 .

That is, the frequencies {Q(n)
` } of numbers among {Lj , 0 ≤ j < n} with first dec-

imal digit ` converge (regardless of L), to the same Newcomb-Benford law (of the
specified {q`, 1 ≤ ` ≤ 9}).

We conclude with a few generalizations of the preceding results.

Exercise 7.2.9. Suppose T is ergodic on some probability measure (X,X, ν) and

f ≥ 0 is such that E(f) =∞. Show that then Sn(f)
a.s.−→∞ when n→∞.
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Exercise 7.2.10. Suppose T is measure preserving on a probability space (Ω,F ,P).

(a) Show that if gn are measurable, gn(ω)
a.s.−→ g(ω) and E(supk |gk|) <∞, then

lim
n→∞

1

n

n−1∑
k=0

gk(Tk(ω)) = E(g|IT) a.s.

(b). Show that having only gn
L1

→ g suffices in order to deduce an L1 convergence
in part (a).

Exercise 7.2.11. A linear operator U on a vector space of R-valued measurable
functions on (X,X, ν), is non-negative if it maps non-negative functions to non-
negative functions, and non-expanding if ν(|Uf |) ≤ ν(|f |). Fix a non-negative,
non-expanding linear operator U and set analogously to (7.2.1)

S0(f) ≡ 0, Sn(f) =
n−1∑
j=0

Ujf , n = 1, 2, . . . .

(a). Adapting the proof of the maximal ergodic lemma, establish (7.2.3) for all
g ∈ L1(X,X, ν), in this (more general) setting.
(b). Starting at T0 = 0 define for ` ≥ 0, the ladder times T`+1 = inf{n > T` :
Sn(g) > ST`(g)} and ladder heights ∆`+1 = ST`+1

(g) − ST`(g) of {Sk(g)} (setting
∆` = 0 whenever T` =∞). Re-express (7.2.3) as

ν(gh(T1)I{T1<∞}) ≥ ν(

∞∑
`=1

(h(T`)− h(T` + 1))∆`) ,

holding for any non-increasing h : N→ R+.
(c). Assuming in addition that U1 ≤ 1, show that (7.2.5) holds for any f ∈
L1(X,X, ν).
(d). Improve upon part (c), by proving that actually

(7.2.10) ν
(

max
j≥1
{Sj(f)} > b

)
≤ inf

0≤c<b
{(b− c)−1ν((f − c)+)} , ∀b > 0 .

7.3. Stationarity and recurrence

Throughout this section we consider stationary sequences Xn(ω) = ωn on the
probability space (S∞,Sc,P), as in Example 7.1.5, denoting by I the invariant
σ-algebra Iθ for the shift operator.
Let rk = T kA − T

k−1
A denote the gaps between consecutive returns of {Xn} to a

specified measurable set A ∈ S. Namely,

T 0
A = 0 , T kA = inf{n > T k−1

A : Xn ∈ A}, k ≥ 1 .

Recall that when A = {y}, for a recurrent state y of Markov chain {Xn} on a
countable state space S, starting at X0 = y, we have renewals at T kA, with {rk}
i.i.d. (see Exercise 6.2.11), whereas for a positive recurrent chain one has the
relation Ey[r1] = 1/π(y) with the invariant probability measure (c.f. Proposition
6.2.41). We next establish similar relations for stationary sequences.

Proposition 7.3.1 (Kac Lemma). For any stationary sequence {Xn} and A ∈ S,

(7.3.1) P(X0 /∈ A, T 1
A =∞) + E[T 1

A I{X0∈A}] = 1 .

Further, if P(T 1
A <∞) = 1 then {rk} is stationary, conditional on {X0 ∈ A}.
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Proof. Fix A ∈ S and utilize Proposition 7.1.7(b) to replace {Xn, n ≥ 0}
by a two-sided shift-invariant sequence {Xn, n ∈ Z} of the same finite dimensional
distributions. For ` ≥ 1 let

F`−1 =

`−1⋂
i=1

{X−i /∈ A} = θ`(T 1
A ≥ `) .

For any n ≥ 1 we have the disjoint decomposition,

F0 = Fn

n⋃
`=1

G` , G` = F`−1 \ F` = θ`(X0 ∈ A, T 1
A ≥ `) .

Further, Fn = θn(X0 /∈ A, T 1
A ≥ n) and by stationarity the preceding decomposi-

tion results with

1 = P(T 1
A ≥ 1) = P(X0 /∈ A, T 1

A ≥ n) +
n∑
`=1

P(X0 ∈ A, T 1
A ≥ `)

(note that the events on the right side are not disjoint, though their backwards
shifts are). Considering the limit as n→∞ of the last identity, results with (7.3.1).
Next, assuming that P(T 1

A =∞) = 0, implies by stationarity that P(Fn)→ 0 and
with probability one rk < ∞ for all k. For Γ = {X0 ∈ A, (r1, . . . , rm) ∈ B} and
B ⊆ Nm, m < ∞, we have that Γ ∩ G` = θ`{X0 ∈ A, r1 = `, (r2, . . . , rm+1) ∈ B}.
Thus, the disjoint decomposition,

Γ = (Γ ∩ Fn)

n⋃
`=1

(Γ ∩G`) ,

results by stationarity and taking n→∞, with

P(Γ) = P(X0 ∈ A, (r1, . . . , rm) ∈ B) =

∞∑
`=1

P(X0 ∈ A, r1 = `, (r2, . . . , rm+1) ∈ B)

= P(X0 ∈ A, (r2, . . . , rm+1) ∈ B) .

This holds for any m and B, whereby upon dividing both sides by P(X0 ∈ A) > 0
we have the stated stationarity of {rk} conditional on {X0 ∈ A}. �

Hereafter, we consider recurrence properties of the partial sums Sj =
∑j
i=1Xi

of our stationary sequence. To this end, hereafter (S,+) is a commutative group
whose identity is denoted by 0, such that x+ y : (S2,S2)→ (S,S) is measurable.

Theorem 7.3.2. Let Rn = |{S1, S2, . . . , Sn}| count distinct points visited by the
partial sums up to time n, with An = {Sr 6= 0, 1 ≤ r ≤ n} the event that these sums

do not return to zero by time n. For stationary {Xk}, one has that n−1Rn
a.s.−→

P(A∞|I) as n→∞.

Proof. Note that Rn = R0,n, where

(7.3.2) Rj,n = |{Sj+1, . . . , Sn}|, 0 ≤ j < n <∞ ,

are such that Rn−1,n = 1 and Rj−1,n = Rj,n + I∆j,n
for

∆j,n =

n−j⋂
r=1

{Sj 6= Sj+r} =

n−j⋂
r=1

{ j+r∑
i=j+1

Xi 6= 0
}

= θ−j(An−j) .
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Consequently, for any n ≥ 1,

(7.3.3) Rn = 1 +

n−1∑
j=1

I{θ−j(An−j)} .

By definition Ak+1 ⊆ Ak so we have from (7.3.3) that for any k ≥ 1,

(7.3.4)

n∑
j=1

I{θ−j(A∞)} ≤ Rn ≤ k +

n−k∑
j=1

I{θ−j(Ak)} .

We divide (7.3.4) by n and thereafter take n → ∞. Applying Birkhoff’s theorem
for f = IA∞ on the lhs and for f = IAk on the rhs, we see that a.s. for any k,

E[IA∞ |I] ≤ lim inf
n→∞

n−1Rn ≤ lim sup
n→∞

n−1Rn ≤ E[IAk |I] .

Since Ak ↓ A∞, by dominated convergence for C.E. also E[IAk |I] ↓ E[IA∞ |I],
thereby establishing the theorem. �

Remark 7.3.3. Taking the expectation on both sides of (7.3.3), we further get by
stationarity the expression

ERn = 1 +

n−1∑
k=1

P(Ak) .

In Exercise 6.3.23 you established the Chung-Fuchs theorem, showing that a ran-

dom walk {Sn} on S ⊆ R is O-recurrent whenever n−1Sn
p→ 0. In particular, if

the integrable i.i.d. increments {Xk} are Z-valued, this boils down to EX1 = 0
implying recurrence (though maybe not positive recurrence), of such homogeneous
Markov chain, namely having P(A∞) = 0 and consequently that a.s. Sn = 0 in-
finitely often. The next proposition extends the latter result to all stationary and
ergodic, integrable Z-valued sequences {Xk} (where Sn may no longer be a Markov
chain).

Proposition 7.3.4. For any stationary {Xk},
(7.3.5) P(A∞|I) = 0 =⇒ P(A∞) = 0 =⇒ P(Sn = 0 i.o.) = 1 .

Further, for Z-valued, integrable X1, if E[X1|I] = 0 then P(A∞|I) = 0 and the
conclusions of (7.3.5) hold.

Remark. The Z-valued stationary sequence Xk = X1 for all k ≥ 1, while P(X1 =
1) = P(X1 = −1) = 1/2 has E[X1] = 0 while Sn = nX1 for all n. Such examples
explain why we have instead assumed that E[X1|I] = 0.

Proof. The left side of (7.3.5) follows by taking the expectation and utilizing
the tower property. For the other implication, recall that for any j ≥ 0,

θ−j(Ac∞) =

∞⋃
r=1

{Sj = Sj+r} .

Having assumed that P(A∞) = 0, yields by stationarity that P(θ−j(A∞)) = 0 for
any j ≥ 0 and consequently that P(θ−j(Ac∞) for all j ≥ 0) = 1. The latter implies
the existence of measurable r : Z+ 7→ N such that a.s. Sj = Sj+r(j) for any j ≥ 0.
In particular, then {Stk = 0} for t0 = 0 and tk = tk−1 + r(tk−1), k ≥ 1. That is,
a.s. Sn = 0 infinitely often, as claimed.
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Next, for integrable, stationary {Xk} such that E[X1|I] = 0, we have by Birkhoff’s

theorem (with f(ω) = ω1), that n−1Sn
a.s.−→ 0. Having further Z-valued sequence

{Sk}, results with the bound

Rn = |{S1, . . . , Sn}| ≤ 1 +
n

max
k=1
{Sk} −

n
min
k=1
{Sk} .

Thus, n−1Sn
a.s.−→ 0 implies that n−1Rn

a.s.−→ 0 which in view of Theorem 7.3.2
allows us to conclude, as claimed, that P(A∞|I) = 0. �

Exercise 7.3.5. Suppose that stationary and ergodic {+1, 0,−1,−2, . . .}-valued
variables Xi are such that EX1 > 0. Show that then P(Sk 6= 0, for all k ≥ 1) =
EX1.

Exercise 7.3.6. Suppose {Xk} is stationary and A ∈ S such that T 1
A is a.s. finite.

Show that for any B ∈ S,

E
( T 1

A∑
k=1

IB(Xk)
∣∣∣X0 ∈ A

)
=

P(X0 ∈ B)

P(X0 ∈ A)
.

Indeed, this is how we construct the invariant measure µz(·) of Proposition 6.2.27
(where A = {z} is a recurrent state of a homogeneous Markov chain).

7.4. The subadditive ergodic theorem

The subadditive ergodic theorem, due to Kingman, relaxes the need for averages
of additive functions, to which Birkhoff’s theorem is restricted, thereby providing
analogous results for subadditive functions. As we later see, many interesting ap-
plications are covered by such extension, where the only downside is that we no
longer have an explicit expression for the limit (even in the ergodic case).

Theorem 7.4.1 (Subadditive ergodic theorem). Suppose T is measure pre-
serving map on (Ω,F ,P) and hk ∈ L1(Ω,F ,P), k ≥ 1 are such that

(7.4.1) hm+` ≤ hm + h` ◦ Tm , ∀m, ` ≥ 1 .

Then, for γ = infn{n−1Ehn} we have that n−1hn
a.s.−→ h a [−∞,∞)-valued function

measurable on IT such that Eh = γ. Further, if γ > −∞ then also n−1hn
L1

→ h.

In particular, for γ finite and T ergodic, we have from Theorem 7.4.1 that n−1hn →
γ a.s. and in L1.
The following re-formulation of Theorem 7.4.1 is attained upon considering the

(S,S) = (RN,Bc)-valued stationary process {Xm,m+` := h` ◦ Tm, ` ≥ 1}, for m =
0, 1, . . ., as a random element in (S∞,Sc) (see Example 7.1.5).

Corollary 7.4.2 (Subadditive ergodic theorem). Suppose {Xm,n, 0 ≤ m <
n} in L1(Ω,F ,P) are such that

(a) X0,n ≤ X0,m +Xm,n.
(b) The joint law of {Xm+`,m+n, 0 ≤ ` < n <∞} is independent of m.
(c) γ = infn{n−1E(X0,n)} is finite.

Then, n−1X0,n → X a.s. and in L1, with X ∈ L1(Ω, I,P) for the invariant σ-

algebra I of the shift θ({X`,n}) = {X`+1,n+1} and EX = γ.

If in addition I is P-trivial, then X = γ.
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Remark 7.4.3. In particular, Corollary 7.4.2 implies that n−1E(X0,n) → γ. An
improvement, due to Liggett [Lig85], yields the conclusion of Corollary 7.4.2 with
the stationarity assumption (b) relaxed to the following

(b1) {Xnk,(n+1)k, n ≥ 0} is a stationary sequence for each k.
(b2) The joint law of {Xm,m+n, n ≥ 1} in independent of m.

In this setting, X = γ once each of the stationary sequences in (b1) is ergodic.

Example 7.4.4. Birkhoff’s theorem is a special case of Theorem 7.4.2 where
Xm,n = Sn(f) − Sm(f) so (a) holds with equality, while (b) hold due to the as-
sumed stationarity of Sn(f) − Sn−1(f) and (c) follows from additivity and having
E|X0,1| <∞.

We proceed with a few additional examples, before turning to establish Theorem
7.4.1.

Example 7.4.5 (Number of distinct points). Consider Rn = R0,n and Rj,n =

|{Sj+1, . . . , Sn}| for the partial sums Sj =
∑j
i=1 ξi of a stationary sequence {ξk}

(with (S,+) a commutative group), as in (7.3.2). Clearly R0,n ≤ R0,m +Rm,n and
assumption (c) of Corollary 7.4.2 trivially holds since n−1R0,n ∈ [0, 1]. Further,
viewing Rm,n as functionals of the sequence {ξk}, we have that for any m ≥ 0 and
0 ≤ ` < n,

Rm+`,m+n = |{Sm+`+1 − Sm, . . . , Sm+n − Sm}| = R`,n ◦ θm .

Thus, assumption (b) of Corollary 7.4.2 follows by the assumed stationarity of {ξk},
resulting with n−1Rn

a.s.−→ R. In contrast with Theorem 7.3.2, we do not get from
Corollary 7.4.2 that the shift-invariant R equals to P(A∞|I) (though in the ergodic
setting R = γ = limn n

−1ERn, which as seen in Remark 7.3.3, is precisely P(A∞)).

Our next example has superadditivity instead of subadditivity.

Example 7.4.6 (Longest common subsequence). Suppose {(Xk, Yk)} is an S2-
valued, stationary sequence. Let Lm,n denote the longest common subsequence
within positions m and n. That is,

Lm,n = max{` : Xik = Yjk , 1 ≤ k ≤ `,m < i1 < · · · < i` ≤ n,m < j1 < · · · < j` ≤ n} .

Since searching for the longest common subsequence within (0, n] allows for more
options than by concatenating the results of such a search within (0,m] with another
separate search within (m,n], we have the following superadditivity:

L0,m + Lm,n ≤ L0,n .

In particular, Xm,n = −Lm,n satisfies assumption (a) of Corollary 7.4.2. Similarly
to Example 7.4.5, assumption (c) holds since n−1L0,n ∈ [0, 1], whereas Lm+`,m+n =
L`,n ◦ θm in terms of the underlying stationary sequence {(Xk, Yk)}, thus yielding

assumption (b). We thus deduce from Corollary 7.4.2 that n−1L0,n → L a.s. and

in L1. Further, for an ergodic sequence we have that L = supk≥1{k−1EL0,k}.

Exercise 7.4.7. Consider Lm,n of Example 7.4.6 in case {Xk} and {Yk} are
independent sequences of i.i.d. Bernoulli(1/2).
(a) Lower bound the a.s. limit γ of n−1L0,n by computing explicitly EL0,1 and
1
2EL0,2.

(b) Fixing b ∈ (0, 1] compute the expected number Ln(b) of common subsequences
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{Xik = Yjk , ik, jk ≤ n} of a specified length ` = [bn]. Show that for any 1 ≥ b > b?,

the sequence Ln(b)→ 0 exponentially in n and deduce that γ ≤ b? < 1.

Our next example is a celebrated result of Furstenberg and Kesten, about the top
Lyapunov exponent for products of random matrices.

Proposition 7.4.8. Let Γn = A1 · · ·An for stationary d-dimensional matrices
{Ak} of non-negative entries, such that E| logA1(i, j)| <∞ for any i, j. Then, for
the L1-operator norm

‖B‖ =
d

max
i=1

{ d∑
j=1

|B(i, j)|
}
,

both n−1 log ‖Γn‖ and n−1 log Γn(i, j) converge a.s. and in L1 to the same inte-
grable, shift-invariant variable Y . If the sequence {Ak} is further ergodic, then

Y = inf
n

1

n
E log ‖Γn‖ = sup

n

1

n
E log Γn(i, i) ,

is non-random (and the preceding provides tight upper and lower bounds on Y ).

Proof. Setting Γm,n = Am+1 · · ·An, note that

Γ0,m(i, j)Γm,n(j, `) ≤ Γ0,n(i, `) , 1 ≤ i, j, ` ≤ d ,
so upon considering i = j = `, we see that Xm,n = − log Γm,n(i, i) satisfies as-
sumption (a) of Corollary 7.4.2. Further, since Γm+`,m+n = Γ`,n ◦ θm when viewed
as a functional on {Ak}, assumption (b) about {Xm,n} is a direct consequence of
the stationarity of {Ak}. To check that the integrability of logAk(i, j) yields as-
sumption (c) of Corollary 7.4.2, we take the logarithm of both sides of the obvious
inequalities

n∏
k=1

Ak(i, i) ≤ Γ0,n(i, i) ≤ d n−1
n∏
k=1

(
max
i,j≤d

Ak(i, j)
)
,

to deduce that

n−1|X0,n| ≤ log d+ n−1
n∑
k=1

max
i,j≤d

| logAk(i, j)| .

Assumption (c) now follows upon replacing the maximum by a sum over i, j ≤ d,
and taking the expectation. By the sub-additive ergodic theorem we have thus
established the a.s. and L1 convergence n−1 log Γr,n(i, i)→ −X(i, i) for r = 0 any

1 ≤ i ≤ d and some integrable, shift-invariant X(i, i).
Considering the shifted sequences {Ak+r}, the preceding convergence extends to

any r ≥ 1 finite. Further, for any r ≥ 1,

Ar(i, j)Ar+1(j, i)Γr+1,n(i, i) ≤ Ar(i, j)Γr,n(j, i) ≤ Γr−1,n(i, i)

and with logAk(i, j) integrable, also n−1 log Γr,n(j, i) → −X(i, i). Similarly, by

(2.3.4) and Borel-Cantelli I, n−1Zn
a.s.−→ 0 for the integrable Zn = | logAn(j, k)|

which are identically distributed in n, so with

Γ1,n(j, i)An+1(i, j)An+2(j, i) ≤ Γ1,n+1(j, j)An+2(j, i) ≤ Γ1,n+2(j, i) ,

we conclude that n−1 log Γr,n(i, j) converges for any i, j to the same limit −X.
Since ‖B‖ is submultiplicative (i.e. ‖BC‖ ≤ ‖B‖‖C‖), the collection Ym,n =

log ‖Γm,n‖ satisfies the sub-additivity in (a) of Corollary 7.4.2, with (b) holding
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again by the stationarity of {Ak}. Further, for the L1-operator norm, any 0 ≤ m <
n and 1 ≤ i ≤ d,

log Γm,n(i, i) ≤ log ‖Γm,n‖ ≤ log d+ max
i,j≤d

log Γm,n(i, j) .

Hence, {Ym,n} also satisfies the integrability assumption (c) and n−1Y0,n → Y =

−X a.s. and in L1. In particular, for an ergodic (and stationary) sequence {Ak}
we get from Corollary 7.4.2 the stated formula for Y . �

Next, consider the length LIS[n] of the longest increasing subsequence in a uni-
formly chosen permutation π of {1, . . . , n}. That is, setting

LIS(π) = max{k : 1 ≤ i1 < i2 < · · · < ik ≤ n, 1 ≤ π(i1) < π(i2) < · · · < π(ik) ≤ n},

we denote by LIS[n] the (random) value of LIS(π) when the permutation π of
{1, . . . , n} is uniformly chosen. Equipping R2 with the partial order (x, y) < (x′, y′)
if and only if both x < x′ and y < y′, we first connect the asymptotic of LIS[n] to
the Poissonized quantity LIS?0,

√
n, where

LIS?s,t = max{k : Zi1 < Zi2 < · · · < Zik , {Zij} ⊂ [s, t)2}, 0 ≤ s < t ,

and {Zj} are the points of a Poisson point process on R2 (equipped with its Borel
σ-algebra and Lebesgue measure, c.f. Exercise 8.1.13).

Lemma 7.4.9. If n−1LIS?0,n
a.s.−→ γ, then also `−1/2LIS[`]

a.s.−→ γ.

Proof. Choosing i.i.d. Ui = (Xi, Yi) uniformly in a fixed two-dimensional box
of positive area, a.s. Xi 6= Xj and Yi 6= Yj whenever i 6= j. Further, re-ordering n
such points according to a strictly increasing x-projection, the relative positions of
the corresponding y-projections follow the law of a uniformly chosen permutation,
and we thus have that

LIS[n] = max{k : Ui1 < Ui2 < · · · < Uik , some 1 ≤ ij ≤ n}.

Recall from Exercise 8.1.13 that N(t) =
∑
j I[0,t)2(Zj) has the Poisson(t2) distribu-

tion, and similarly to Exercise 3.4.12, conditional on N(t) = n the relevant n points
of our Poisson point process are i.i.d. and uniformly distributed in [0, t)2, yielding

the representation LIS?0,t = LIS[N(t)]. Fixing ε ∈ (0, 1
2 ), for n`,− = d(1 − 2ε)

√
`e,

n`,+ = b(1 + 2ε)
√
`c and any ` ≥ `0(ε),

`−1/2n`,± ∈ [1± 2ε, 1± ε] .

Since t 7→ N(t) and m 7→ LIS[m] are non-decreasing, it follows that for ` ≥ `0,

(7.4.2) (1 + 2ε)n−1
`,+LIS

?
0,n`,+

≥ `−1/2LIS[`] ≥ (1− 2ε)n−1
`,−LIS

?
0,n`,−

,

provided N((1+ε)
√
`) ≥ ` ≥ N((1−ε)

√
`). With {N(b

√
`), ` ≥ 0} being the partial

sums of i.i.d. Poisson(b2) variables (see the construction of Exercise 8.1.13), by the

slln `−1N(b
√
`)

a.s.−→ b2 and considering b = 1± ε we deduce that a.s. (7.4.2) holds

for all ` large enough. Thanks to our assumption that n−1LIS?0,n
a.s.−→ γ, we thus

arrive at

(1 + 2ε)γ ≥ lim sup
`→∞

{`−1/2LIS[`]} ≥ lim inf
`→∞

{`−1/2LIS[`]} ≥ (1− 2ε)γ ,

so taking ε→ 0 completes the proof. �
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The sub-additive ergodic theorem yields the convergence a.s. of n−1LIS?0,n, which

in view of Lemma 7.4.9 implies the same for `−1/2LIS[`].

Proposition 7.4.10. n−1LIS?0,n
a.s.−→ γ = supn{n−1E(LIS?0,n)}.

Remark. By a careful analysis of exact formulas for E(LIS[n]), Vershik-Kerov
(1977) and Logan-Shepp (1977) showed that in this case γ = 2.

Proof. Concatenating a longest monotone sequence of {Zj} within [m,n)2 to
a longest monotone sequence of {Zj} within [0,m)2 provides a monotone sequence of
these points within [0, n)2. Consequently, Xm,n = −LIS?m,n satisfies assumption (a)
of Corollary 7.4.2. It is not hard to check that the law of the Poisson point process on
R2 is invariant under a common non-random translation of all points (i.e. from {Zj}
to {Zj + v}). Since such common translation by vm = (m,m) maps the collection
{X0,n, n ≥ 1} onto {Xm,m+n, n ≥ 1}, both collections have the same law, verifying
(b2) of Remark 7.4.3. Further, fixing k ≥ 1, the variables Xnk,(n+1)k for n ≥ 0,
correspond to the same functional applied on the relative configurations of points
{Zj} within disjoint squares in R2, all of whom translates (by vnk) of the same
square [0, k)2. As such, {Xnk,(n+1)k, k ≥ 0} are i.i.d. variables, and in particular,
stationary, as in (b1) of Remark 7.4.3 and further ergodic. In Exercise 7.4.11 you
find that E(LIS[n]) ≤ c

√
n for some c <∞ and all n. As we have seen while proving

Lemma 7.4.9, this implies that E(LIS?0,t) = E(LIS[N(t)]) ≤ cE
√
N(t) ≤ ct for all

t ≥ 0, namely, that assumption (c) of Corollary 7.4.2 holds, yielding the stated
conclusion of the proposition. �

We note in passing that while the preceding proof utilizes the refinement of Remark
7.4.3 (which we did not prove), a slightly less elementary argument would have
established also assumption (b) of Corollary 7.4.2.

Exercise 7.4.11. Let Ik[n] count the number of increasing subsets of length k in
a uniformly chosen permutation of {1, 2, . . . , n}.

(a) Show that P(LIS[n] ≥ k) ≤ EIk[n] = 1
k!

(
n
k

)
for any 1 ≤ k ≤ n.

(b) Deduce that P(LIS[n] ≥ α
√
n) ≤ Ce−δ

√
n, for any α > e, some δ =

δ(α) > 0 and finite C = C(α).

We next consider first passage percolation on the graph Zd, with edges connecting
each x, y ∈ Zd with |x − y| = 1. Specifically, we assign i.i.d. passage times τ(e) ≥
0 to all edges e = (x, y) of the graph, thereby inducing the travel time t(π) =∑n
i=1 τ(xi−1, xi) over any path π = {x = x0, x1, . . . , xn = y} between two vertices

x, y ∈ Zd. The first passage time T (x, y) from x to y is then the infimum of all
travel times over paths from x to y. Our next result utilizes the sub-additive ergodic

theorem to prove that n−1T (0, nz)
a.s.−→ γ for any fixed z ∈ Zd.

Proposition 7.4.12. Fix z ∈ Zd. If Eτ(e) < ∞ then n−1T (0, nz) → γ a.s. and
in L1, where γ = infn{n−1ET (0, nz)}.

Proof. Set Xm,n = T (mz, nz). Concatenating the path from mz to nz of
smallest travel time, to the path from 0 of mz of smallest travel time, produces a
path from 0 to nz. Consequently, T (0,mz)+T (mz, nz) ≥ T (0, nz), i.e. assumption
(a) of Corollary 7.4.2 holds. Further, the product law corresponding to the i.i.d.
passage times across edges, is invariant under the translation (x, y) 7→ (x+mz, y+
mz) of the graph Zd, which in turn maps the collection {X`,n} onto {Xm+`,m+n}.
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Thus, the law of the latter collection does not depend on m and assumption (b) of
Corollary 7.4.2 holds. Considering one fixed path from 0 to z we see that Eτ(e)
finite implies the same for EX0,1. With Xm,n ≥ 0, assumption (c) of Corollary
7.4.2 follows from assumptions (a) and (b) of that corollary and the integrability of
X0,1. We thus have the a.s. and L1 convergence of n−1T (0, nz) to some X. Finally,
enumerating the edges of Zd in any non-random order yields a trivial tail σ-algebra
(by Kolmogorov’s 0-1 law), with respect to which X is measurable (since changing
the values of τ(e) on a non-random finite collection of edges does not affect X).
Consequently, X = γ, as stated. �

Exercise 7.4.13. In the setting of Proposition 7.4.12 let Y = min(τ1, . . . , τ2d) for
i.i.d. copies τi of τ(e).

(a) Fixing k ≥ 1, show that EY k is finite if and only if ET (0, z)k is finite
for some z ∈ Zd.

(b) Extend the conclusion of Proposition 7.4.12 to any i.i.d. {τ(e)} such that∫∞
0

P(τ(e) > x)2ddx is finite and show that if the latter condition fails,

then lim supn n
−1T (0, nz) is a.s. infinite.

Proof of Theorem 7.4.1. First, considering (7.4.1) with ` = 1, we note
that gn := hn − Sn(h1) ≤ 0 for Sn(·) of (7.2.1). It is easy to see that the new
sequence {gk} satisfies (7.4.1) and for T measure preserving, it further inherits the
integrability of {hk}. Recall Birkhoff’s theorem that n−1Sn(h1) → E[h1|IT] a.s.
and in L1. With n−1Ehn = n−1Egn + Eh1 it thus suffices to prove Theorem 7.4.1
for hn ≤ 0, which we assume hereafter.
We proceed to show that h = lim infn{n−1hn} is measurable on the completion of
IT. Indeed, from (7.4.1) with m = 1 we have that

`−1h`+1 ≤ `−1h1 + `−1h` ◦ T ,

so taking the lim inf of both sides yields that h ≤ h ◦ T. In particular, Aq = {ω :
h(ω) > q} is contained in T−1(Aq) for any q ∈ Q and as T is measure preserving,
it follows that {Aq, q ∈ Q} are P-almost T-invariant. Recall part (c) of Exercise
7.1.4 that any such set is in the completion of IT. Thus, as {Aq, q ∈ Q} generates
σ(h), it follows that h is measurable on this completion. In particular, modifying
h on a set N of zero probability yields h ≤ 0 which is measurable on IT, namely
such that h = h ◦ Tk for any k ≥ 0. Further, hε = ε+ max(h,−ε−1) ↓ h as ε→ 0,
while by the definition of h, per fixed ε > 0, as r →∞,

Ar,ε := {x : min
`≤r
{`−1h`(x)} ≤ hε(x)} ↑ A∞,ε ⊇ N c .

We next decompose [1, n) as the union of disjoint intervals, where denoting by
k ∈ [1, n) the smallest integer not yet within such an interval, we add the interval
[k, k + `) for ` = 1 unless k ≤ n − r and Tk(x) ∈ Ar,ε in which case we take the

largest ` ≤ r so that h` ◦ Tk(x) ≤ ` hε(x) (recall the T-invariance of hε). We have
thus decomposed [1, n) to u intervals [τi, τi + `i) where h`i ◦ Tτi ≤ `i hε together
with [σj , σj + 1) when either Tσj (x) /∈ Ar,ε or σj > n− r. Going backward in time
from n to 1 while employing (7.4.1) at m = τi, ` = `i and at m = σj , ` = 1, we
deduce that

(7.4.3) hn(x) ≤
u∑
i=1

h`i ◦ Tτi(x) +
∑
j

h1 ◦ Tσj (x) ≤ hε(x)

u∑
i=1

`i
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(as h1 ≤ 0). Further, by construction,

u∑
i=1

`i ≥ n− r −
n−r∑
k=1

IAcr,ε(T
k(x)) = Sn−r(IAr,ε) ◦ T(x) ,

so by Birkhoff’s theorem, a.s.

(7.4.4) lim inf
n→∞

{n−1
u∑
i=1

`i} ≥ P(Ar,ε|IT) ,

where we have used also the T-invariance of the rhs. With hε ≤ ε and
∑
i `i ≤ n

it thus follows from (7.4.3) and (7.4.4) that for any ε > 0 and finite r ≥ 1, a.s.

lim sup
n→∞

{n−1hn} ≤ ε+ (hε − ε) lim inf
n→∞

{n−1
u∑
i=1

`i} ≤ ε+ (hε − ε)P(Ar,ε|IT) .

Taking first r → ∞ and then ε ↓ 0, upon recalling that P(Ar,ε|IT) → 1 and

hε ↓ h
a.s.
= h, we thus conclude that n−1hn

a.s.−→ h, as claimed.
Turning to show that Eh = γ, recall that hn ≤ 0, so iterating (7.4.1) at m = k`,
k ≥ 1, results with

(7.4.5) n−1hn ≤ n−1h[n/`]` ≤ n−1

[n/`]−1∑
k=0

h` ◦ Tk` , ∀n ≥ ` .

In particular, taking n → ∞ and applying Birkhoff’s theorem for the measure
preserving map T`, we deduce that for any ` ≥ 1, a.s.

h ≤ `−1E[h`|IT` ] .
Considering the expected value of the preceding, it thus follows that Eh ≤ `−1E[h`]
for all ` ≥ 1, namely, that Eh ≤ γ. To establish the converse, take now the
expected value in (7.4.5), to arrive at n−1Ehn ≤ n−1[n/`]Eh` for any n ≥ ` ≥ 1.
In particular, taking n→∞ we find that

lim sup
n→∞

{n−1Ehn} ≤ `−1Eh` ,

from which it immediate follows that n−1Ehn → γ. Applying Fatou’s lemma for
hn ≤ 0 leads in turn to the claimed converse, that is Eh ≥ lim supn{n−1Ehn} = γ.
In case γ > −∞, since h ≤ 0, having shown that Eh = γ we know that h ∈ L1.

Further, note that E|n−1hn − h| = 2bn − an for an := E(n−1hn − h) and bn :=
E(n−1hn − h)+. We have seen already that an → 0 and since n−1hn ≤ 0, clearly
(n−1hn − h)+ ≤ |h|. Thus, bn → 0 by dominated convergence, yielding the stated
L1 convergence of n−1hn to h. �



CHAPTER 8

Continuous, Gaussian and stationary processes

A discrete parameter stochastic process (S.P.) is merely a sequence of random vari-
ables. We have encountered and constructed many such processes when considering
martingales and Markov chains in Sections 5.1 and 6.1, respectively. Our focus here
is on continuous time processes, each of which consists of an uncountable collection
of random variables (defined on the same probability space).
We have successfully constructed by an ad-hoc method one such process, namely

the Poisson process of Section 3.4. In contrast, Section 8.1 provides a canonical
construction of S.P., viewed as a collection of R.V.-s {Xt(ω), t ∈ T}. This con-
struction, based on the specification of finite dimensional distributions, applies for
any index set T and any S.P. taking values in a B-isomorphic measurable space.
However, this approach ignores the sample function t 7→ Xt(ω) of the process.

Consequently, the resulting law of the S.P. provides no information about proba-
bilities such as that of continuity of the sample function, or whether it is ever zero,
or the distribution of supt∈TXt. We thus detail in Section 8.2 a way to circumvent
this difficulty, whereby we guarantee, under suitable conditions, the continuity of
the sample function for almost all outcomes ω, or at the very least, its (Borel)
measurability.
We conclude this chapter by studying in Section 8.3 the concept of stationary (of

processes and their increments), and the class of Gaussian (stochastic) processes,
culminating with the definition and construction of the Brownian motion.

8.1. Definition, canonical construction and law

We start with the definition of a stochastic process.

Definition 8.1.1. Given (Ω,F ,P), a stochastic process, denoted {Xt}, is a col-
lection {Xt : t ∈ T} of R.V.-s. In case the index set T is an interval in R we call it
a continuous time S.P. The function t 7→ Xt(ω) is called the sample function (or
sample path, realization, or trajectory), of the S.P. at ω ∈ Ω.

We shall follow the approach we have taken in constructing product measures (in
Section 1.4.2) and repeated for dealing with Markov chains (in Section 6.1). To
this end, we start with the finite dimensional distributions associated with the S.P.

Definition 8.1.2. By finite dimensional distributions (f.d.d.) of a S.P. {Xt, t ∈
T} we refer to the collection of probability measures µt1,t2,··· ,tn(·) on Bn, indexed
by n and distinct tk ∈ T, k = 1, . . . , n, where

µt1,t2,··· ,tn(B) = P((Xt1 , Xt2 , · · · , Xtn) ∈ B) ,

for any Borel subset B of Rn.

293
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Figure 1. Sample functions of a continuous time stochastic pro-
cess, corresponding to two outcomes ω1 and ω2.

Not all f.d.d. are relevant here, for you should convince yourself that the f.d.d. of
any S.P. should be consistent, as specified next.

Definition 8.1.3. We say that a collection of finite dimensional distributions is
consistent if for any Bk ∈ B, distinct tk ∈ T and finite n,

(8.1.1) µt1,··· ,tn(B1 × · · · ×Bn) = µtπ(1),··· ,tπ(n)
(Bπ(1) × · · · ×Bπ(n)) ,

for any permutation π of {1, 2, · · · , n} and

(8.1.2) µt1,··· ,tn−1
(B1 × · · · ×Bn−1) = µt1,··· ,tn−1,tn(B1 × · · · ×Bn−1 × R) .

Here is a simpler, equivalent definition of consistent f.d.d. in case T is linearly (i.e.
totally) ordered.

Lemma 8.1.4. In case T is a linearly ordered set (for example, T countable, or T ⊆
R), it suffices to define as f.d.d. the collection of probability measures µs1,...,sn(·)
running over s1 < s2 < · · · < sn in T and finite n, where such collection is
consistent if and only if for any Ai ∈ B and k = 1, . . . , n,

µs1,··· ,sn(A1 × · · · ×Ak−1 × R×Ak+1 × · · · ×An)

= µs1,··· ,sk−1,sk+1,··· ,sn(A1 × · · · ×Ak−1 ×Ak+1 × · · · ×An)(8.1.3)

Proof. Since the set T is linearly ordered, for any distinct ti ∈ T, i = 1, . . . , n
there exists a unique permutation π on {1, . . . , n} such that si = tπ(i) are in in-
creasing order and taking the random vector (Xs1 , · · · , Xsn) of (joint) distribution
µs1,··· ,sn(·), we set µt1,··· ,tn as the distribution of the vector (Xt1 , · · · , Xtn) of per-
muted coordinates. This unambiguously extends the definition of the f.d.d. from
the ordered s1 < · · · < sn to all distinct ti ∈ T. Proceeding to verify the consis-
tency of these f.d.d. note that by our definition, the identity (8.1.1) holds whenever
{tπ(i)} are in increasing order. Permutations of {1, . . . , n} form a group with re-
spect to composition, so (8.1.1) extends to {tπ(i)} of arbitrary order. Next suppose
that in the permutation π of {1, . . . , n} such that si = tπ(i) are in increasing order
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we have n = π(k) for some 1 ≤ k ≤ n. Then, setting Bn = R and Ai = Bπ(i) leads
to Ak = R and from (8.1.1) and (8.1.3) it follows that

µt1,··· ,tn(B1×· · ·×Bn−1×R) = µs1,··· ,sk−1,sk+1,··· ,sn(A1×· · ·×Ak−1×Ak+1×· · ·×An) .

Further, (t1, . . . , tn−1) is the image of (s1, . . . , sk−1, sk+1, . . . , sn) under the permu-
tation π−1 restricted to {1, . . . , k−1, k+1, . . . , n} so a second application of (8.1.1)
results with the consistency condition (8.1.2). �

Our goal is to establish the existence and uniqueness (in law) of the S.P. associ-
ated with any given consistent collection of f.d.d. We shall do so via a canonical
construction, whereby we set Ω = RT and F = BT as follows.

Definition 8.1.5. Let RT denote the collection of all functions x(t) : T 7→ R. A
finite dimensional measurable rectangle in RT is any set of the form {x(·) : x(ti) ∈
Bi, i = 1, . . . , n} for a positive integer n, Bi ∈ B and ti ∈ T, i = 1, . . . , n. The
cylindrical σ-algebra BT is the σ-algebra generated by the collection of all finite
dimensional measurable rectangles.

Note that in case T = {1, 2, . . .}, the σ-algebra BT is precisely the product σ-
algebra Bc used in stating and proving Kolmogorov’s extension theorem. Further,
enumerating C = {tk}, it is not hard to see that BC is in one to one correspondence
with Bc for any infinite, countable C ⊆ T.

The next concept is handy in studying the structure of BT for uncountable T.

Definition 8.1.6. We say that A ⊆ RT has a countable representation if

A = {x(·) ∈ RT : (x(t1), x(t2), . . .) ∈ D} ,

for some D ∈ Bc and C = {tk} ⊆ T. The set C is then called the (countable) base
of the (countable) representation (C, D) of A.

Indeed, BT consists of the sets in RT having a countable representation and FX =
σ(Xt, t ∈ T) is the pre-image of BT under the mapping X· : Ω 7→ RT.

Lemma 8.1.7. The σ-algebra BT is the collection C of all subsets of RT that have
a countable representation. Further, for any S.P. {Xt, t ∈ T}, the σ-algebra FX is
the collection G of sets of the form {ω ∈ Ω : X·(ω) ∈ A} with A ∈ BT.

Proof. First note that enumerating over a countable C maps the correspond-
ing cylindrical σ-algebra BC in a one to one manner into the product σ-algebra Bc.
Further, for any subsets T1 ⊆ T2 of T, the restriction to T1 of functions on T2 in-
duces a measurable projection p : (RT2 ,BT2) 7→ (RT1 ,BT1). Thus, if A ∈ C has the
countable representation (C, D) then A = p−1(D) for such measurable projection p
from RT to RC, hence A ∈ BT. Having just shown that C ⊆ BT we turn to show that
conversely BT ⊆ C. Since each finite dimensional measurable rectangle has a count-
able representation (of a finite base), this is an immediate consequence of the fact
that C is a σ-algebra. Indeed, RT has a countable representation (of empty base),
and if A ∈ C has the countable representation (C, D) then Ac has the countable
representation (C, Dc). Finally, if Ak ∈ C has a countable representation (Ck, Dk)
for k = 1, 2, . . . then the subset C = ∪kCk of T serves as a common countable base

for these sets. That is, Ak has the countable representation (C, D̃k), for k = 1, 2, . . .

and D̃k = p−1
k (Dk) ∈ Bc, where pk denotes the measurable projection from RC to
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RCk . Consequently, as claimed ∪kAk ∈ C for it has the countable representation

(C,∪kD̃k).
As for the second part of the lemma, temporarily imposing on Ω the σ-algebra 2Ω

makes X· : Ω 7→ RT an (S,S)-valued R.V. for S = RT and S = BT. From Exercises
1.2.10 and 1.2.11 we thus deduce that G is the σ-algebra generated by the sets of
the form {ω ∈ Ω : Xti(ω) ∈ Bi, i = 1, . . . , n} for Bi ∈ B, ti ∈ T and finite n, which
is precisely the σ-algebra FX. �

Combining Lemma 8.1.7 and Kolmogorov’s extension theorem, we proceed with
the promised canonical construction, yielding the following conclusion.

Proposition 8.1.8. For any consistent collection of f.d.d., there exists a probabil-
ity space (Ω,F ,P) and a stochastic process ω 7→ {Xt(ω), t ∈ T} on it, whose f.d.d.
are in agreement with the given collection. Further, the restriction of the probability
measure P to the σ-algebra FX is uniquely determined by the specified f.d.d.

Proof. Starting with the existence of the probability space, suppose first that
T = C is countable. In this case, enumerating over C = {sj} we further have
from the consistency condition (8.1.3) of Lemma 8.1.4 that it suffices to consider
the sequence of f.d.d. µs1,...,sn for n = 1, 2, . . . and the existence of a probability
measure PC on (RC,Bc) that agrees with the given f.d.d. follows by Kolmogorov’s
extension theorem (i.e. Theorem 1.4.22). Moving to deal with uncountable T, take
Ω = RT and F = BT with Xt(ω) = ωt. Recall Lemma 8.1.7, that any A ∈ BT has
a countable representation (C, D) so we can assign P(A) = PC(D), where PC is
defined through Kolmogorov’s extension theorem for the countable subset C of T.
We proceed to show that P(·) is well defined. That is, PC1(D1) = PC2(D2) for any
two countable representations (C1, D1) and (C2, D2) of the same set A ∈ BT. Since
C = C1 ∪ C2 is then also a countable base for A, we may and shall assume that
C1 ⊂ C2 in which case necessarily D2 = p−1

21 (D1) for the measurable projection
p21 from RC2 to RC1 . By their construction, PCi for i = 1, 2 coincide on all finite
dimensional measurable rectangles with a base in C1. Hence, PC1 = PC2 ◦ p−1

21 and
in particular PC2(D2) = PC1(D1). By construction the non-negative set function
P on (RT,BT) has the specified f.d.d. for Xt(ω) = ωt so we complete the proof
of existence by showing that P is countably additive. To this end, as shown in
the proof of Lemma 8.1.7, any sequence of disjoint sets Ak ∈ BT admits countable

representations (C, D̃k), k = 1, 2, . . . with a common base C and disjoint D̃k ∈ Bc.
Hence, by the countable additivity of PC,

P(∪kAk) = PC(∪kD̃k) =
∑
k

PC(D̃k) =
∑
k

P(Ak) .

As for uniqueness, recall Lemma 8.1.7 that every set in FX is of the form {ω :
(Xt1(ω), Xt2(ω), . . .) ∈ D} for some D ∈ Bc and C = {tj} a countable subset of T.
Fixing such C, recall Kolmogorov’s extension theorem, that the law of (Xt1 , Xt2 , . . .)
on Bc is uniquely determined by the specified laws of (Xt1 , . . . , Xtn) for n = 1, 2, . . ..
Since this applies for any countable C, we see that the whole restriction of P to
FX is uniquely determined by the given collection of f.d.d. �

Remark. Recall Corollary 1.4.25 that Kolmogorov’s extension theorem holds
when (R,B) is replaced by any B-isomorphic measurable space (S,S). Check that
thus, the same applies for the preceding proof, hence Proposition 8.1.8 holds for
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any (S,S)-valued S.P. {Xt} provided (S,S) is B-isomorphic (c.f. [Dud89, Theorem
12.1.2] for an even more general setting in which the same applies).

Motivated by Proposition 8.1.8 our definition of the law of the S.P. is as follows.

Definition 8.1.9. The law (or distribution) of a S.P. is the probability measure
PX on BT such that for all A ∈ BT,

PX(A) = P({ω : X·(ω) ∈ A}) .

Proposition 8.1.8 tells us that the f.d.d. uniquely determine the law of any S.P.
and provide the probability of any event in FX. However, for our construction to
be considered a success story, we want most events of interest be in FX. That is,
mapped via the sample function to an element of BT. Unfortunately, as we show
next, this is certainly not the case for uncountable T.

Lemma 8.1.10. Fixing γ ∈ R and I = [a, b) for some a < b, the following sets

Aγ = {x ∈ RI : x(t) ≤ γ for all t ∈ I} ,
C(I) = {x ∈ RI : t 7→ x(t) is continuous on I} ,

are not in BI.

Proof. In view of Lemma 8.1.7, if Aγ ∈ BI then Aγ has a countable base
C = {tk} and in particular the values of x(tk) determine whether x(·) ∈ Aγ or
not. But C is a strict subset of the uncountable index set I, so fixing some values
x(tk) ≤ γ for all tk ∈ C, the function x(·) on I still may or may not be in Aγ , as
by definition the latter further requires that x(t) ≤ γ for all t ∈ I \ C. Similarly, if
C(I) ∈ BI then it has a countable base C = {tk} and the values of x(tk) determine
whether x(·) ∈ C(I). However, since C 6= I, fixing x(·) continuous on I \ {t} with
t ∈ I \ C, the function x(·) may or may not be continuous on I, depending on the
value of x(t). �

Remark. With Aγ /∈ BI, the canonical construction provides minimal information
about MI = supt∈IXt, which typically is not even measurable with respect to
FX. However, note that Aγ ∈ FX in case all sample functions of {Xt} are right-
continuous. That is, for such S.P. the law of MI is uniquely determined by the f.d.d.
We return to this point in Section 8.2 when considering separable modifications.

Similarly, since C(I) /∈ BI, the canonical construction does not assign a probability
for continuity of the sample function. To further demonstrate that this type of
difficulty is generic, recall that by our ad-hoc construction of the Poisson process
out of its jump times, all sample functions of this process are in

Z↑ = {x ∈ ZI
+ : t 7→ x(t) is non-decreasing} ,

where I = [0,∞). However, convince yourself that Z↑ /∈ BI, so had we applied the
canonical construction starting from the f.d.d. of the Poisson process, we would
not have had any probability assigned to this key property of its sample functions.

You are next to extend the phenomena illustrated by Lemma 8.1.10, providing a
host of relevant subsets of RI which are not in BI.

Exercise 8.1.11. Let I ⊆ R denote an interval of positive length.
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(a) Show that none of the following collections of functions is in BI: all linear
functions, all polynomials, all constants, all non-decreasing functions, all
functions of bounded variation, all differentiable functions, all analytic
functions, all functions continuous at a fixed t ∈ I.

(b) Show that BI fails to contain the collection of functions that vanish some-
where in I, the collection of functions such that x(s) < x(t) for some
s < t, and the collection of functions with at least one local maximum.

(c) Show that C(I) has no non-empty subset A ∈ BI, but the complement of
C(I) in RI has a non-empty subset A ∈ BI.

(d) Show that the completion BI of BI with respect to any probability measure
P on BI fails to contain the set A = B(I) of all Borel measurable functions
x : I 7→ R.
Hint: Consider A and Ac.

In contrast to the preceding exercise, independence of the increments of a S.P. is
determined by its f.d.d.

Exercise 8.1.12. A continuous time S.P. {Xt, t ≥ 0} has independent increments
if Xt+h −Xt is independent of FX

t = σ(Xs, 0 ≤ s ≤ t) for any h > 0 and all t ≥ 0.
Show that if Xt1 , Xt2 − Xt1 , . . . , Xtn − Xtn−1

are mutually independent, for all
n < ∞ and 0 ≤ t1 < t2 < · · · < tn < ∞, then {Xt} has independent increments.
Hence, this property is determined by the f.d.d. of {Xt}.

Here is the canonical construction for Poisson random measures, where T is not a
subset of R (for example, the Poisson point processes where T = BRd).

Exercise 8.1.13. Let T = {A ∈ X : µ(A) < ∞} for a given measure space
(X,X , µ). Construct a S.P. {NA : A ∈ T} such that NA has the Poisson(µ(A))
law for each A ∈ T and NA =

∑n
k=1NAk with P-mutually independent NAk ,

k = 1, . . . , n, whenever A = ∪nk=1Ak and Ak, k = 1, . . . , n are disjoint sets.
Hint: Given Aj ∈ T, j = 1, 2, let Bj1 = Aj = Bcj0 and Nb1,b2 , for b1, b2 ∈ {0, 1}
such that (b1, b2) 6= (0, 0), be independent R.V. of Poisson(µ(B1b1 ∩B2b2)) law. As
the distribution of (NA1

, NA2
) take the joint law of (N1,1 +N1,0, N1,1 +N0,1).

Remark. The Poisson process N̂t of rate one is merely the restriction to sets A =
[0, t], t ≥ 0, of the Poisson random measure {NA} in case µ(·) is Lebesgue’s measure
on [0,∞). More generally, in case µ(·) has density f(·) with respect to Lebesgue’s
measure on [0,∞), we call such restriction Xt = N[0,t] the inhomogeneous Poisson
process of rate function f(t) ≥ 0, t ≥ 0. It is a counting process of independent

increments, which is a non-random time change Xt = N̂µ([0,t]) of a Poisson process
of rate one, but in general the gaps between jump times of {Xt} are neither i.i.d.
nor of exponential distribution.

8.2. Continuous and separable modifications

The canonical construction of Section 8.1 determines the law of a S.P. {Xt} on BT
(whose pre-image is FX). While in general FX is inadequate as far as properties
of the sample functions t 7→ Xt(ω) are concerned, a typical patch of this approach
is to choose among S.P. with the given f.d.d. one that has regular enough sample
functions. To illustrate this, we start with a simple explicit example in which path
properties are not entirely determined by the f.d.d.
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Example 8.2.1. consider the S.P.

Yt(ω) = 0, ∀t, ω Xt(ω) =

{
1, t = ω

0, otherwise

on the probability space ([0, 1],B[0,1], U), with U the uniform measure on I = [0, 1].
Since At = {ω : Xt(ω) 6= Yt(ω)} = {t}, clearly P(Xt = Yt) = 1 for each fixed t ∈ I.
Moreover, P(

⋃n
i=1Ati) = 0 for any t1, . . . , tn ∈ I, hence {Xt} has the same f.d.d.

as {Yt}. However, P({ω : supt∈IXt(ω) 6= 0}) = 1, whereas P({ω : supt∈I Yt(ω) 6=
0}) = 0. Similarly, P({ω : X·(ω) ∈ C(I)}) = 0, whereas P({ω : Y·(ω) ∈ C(I)}) = 1.

While the two S.P. of Example 8.2.1 have different maximal value and differ in
their sample path continuity, we would typically consider one to be merely a (small)
modification of the other, motivating our next definition.

Definition 8.2.2. Stochastic processes {Xt} and {Yt} are called versions of one
another if they have the same f.d.d. A S.P. {Yt, t ∈ T} is further called a mod-
ification of {Xt, t ∈ T} if P(Xt 6= Yt) = 0 for all t ∈ T and two such S.P. are
called indistinguishable if {ω : Xt(ω) 6= Yt(ω) for some t ∈ T} is a P-null set
(hence, upon completing the space, P(Xt 6= Yt for some t ∈ T) = 0). Similarly
to Definition 1.2.8, throughout we consider two indistinguishable S.P.-s to be the
same process, hence often omit the qualifier “a.s.” in reference to sample function
properties that apply for all t ∈ T.

For example, {Yt} is the continuous modification of {Xt} in Example 8.2.1 but
these two processes are clearly distinguishable. In contrast, modifications with a.s.
right-continuous sample functions are indistinguishable.

Exercise 8.2.3. Show that continuous time S.P.-s {Xt} and {Yt} which are mod-
ifications of each other and have w.p.1. right-continuous sample functions, must
also be indistinguishable.

You should also convince yourself at this point that as we have implied, if {Yt} is
a modification of {Xt}, then {Yt} is also a version of {Xt}. The converse fails, for
while a modification has to be defined on the same probability space as the original
S.P. this is not required of versions. Even on the same probability space it is easy
to find a pair of versions which are not modifications of each other.

Example 8.2.4. For the uniform probability measure on the finite set Ω = {H,T},
the constant in time S.P.-s Xt(ω) = IH(ω) and Yt(ω) = 1 − Xt(ω) are clearly
versions of each other but not modifications of each other.

We proceed to derive a relatively easy to check sufficient condition for the existence
of a (continuous) modification of the S.P. which has Hölder continuous sample
functions, as defined next.

Definition 8.2.5. Recall that a function f(t) on a metric space (T, d(·, ·)) is
locally γ-Hölder continuous if

sup
{t 6=s,d(t,u)∨d(s,u)<hu}

|f(t)− f(s)|
d(t, s)γ

≤ cu ,

for γ > 0, some c : T 7→ [0,∞) and h : T 7→ (0,∞], and is uniformly γ-Hölder con-
tinuous if the same applies for constant c < h = ∞. In case γ = 1 such functions
are also called locally (or uniformly) Lipschitz continuous, respectively. We say
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that a S.P. {Yt, t ∈ T} is locally/uniformly γ-Hölder/Lipschitz continuous, with
respect to a metric d(·, ·) on T if its sample functions t 7→ Yt(ω) have the corre-
sponding property (for some S.P cu(ω) < ∞ and hu(ω) > 0, further requiring c to
be a non-random constant for uniform continuity). Since local Hölder continuity
implies continuity, clearly then P({ω : Yt(ω) ∈ C(T)}) = 1. That is, such processes
have continuous sample functions. We also use the term continuous modification

to denote a modification {X̃t} of a given S.P. {Xt} such that {X̃t} has continu-
ous sample functions (and similarly define locally/uniformly γ-Hölder continuous
modifications).

Remark. The Euclidean norm d(t, s) = ‖t−s‖ is used for sample path continuity
of a random field, namely, where T ⊆ Rr for some finite r, taking d(t, s) = |t − s|
for a continuous time S.P. Also, recall that for compact metric space (T, d) there is
no difference between local and uniform Hölder continuity of f : T 7→ R, so in this
case local γ-Hölder continuity of S.P. {Yt, t ∈ T} is equivalent to

P({ω : sup
s 6=t∈T

|Yt(ω)− Ys(ω)|
d(t, s)γ

≤ c(ω)}) = 1 ,

for some finite R.V. c(ω).

Theorem 8.2.6 (Kolmogorov-Centsov continuity theorem). Suppose {Xt} is a
S.P. indexed on T = Ir, with I a compact interval. If there exist positive constants
α, β and finite c such that

(8.2.1) E[|Xt −Xs|α] ≤ c‖t− s‖r+β , for all s, t ∈ T ,
then there exists a continuous modification of {Xt, t ∈ T} which is also locally
γ-Hölder continuous for any 0 < γ < β/α.

Remark. Since condition (8.2.1) involves only the joint distribution of (Xs, Xt),
it is determined by the f.d.d. of the process. Consequently, either all versions of
the given S.P. satisfy (8.2.1) or none of them does.

Proof. We consider hereafter the case of r = 1, assuming with no loss of
generality that T = [0, 1], and leave to the reader the adaptation of the proof to
r ≥ 2 (to this end, see [KaS97, Solution of Problem 2.2.9]).
Our starting point is the bound

(8.2.2) P(|Xt −Xs| ≥ ε) ≤ ε−αE[|Xt −Xs|α] ≤ cε−α|t− s|1+β ,

which holds for any ε > 0, t, s ∈ I, where the first inequality follows from Markov’s
inequality and the second from (8.2.1). From this bound we establish the a.s.

local Hölder continuity of the sample function of {Xt} over the collection Q(2)
1 :=⋃

`≥1 Q(2,`)
1 of dyadic rationals in [0, 1], where Q(2,`)

T = {j2−` ≤ T, j ∈ Z+}. To

this end, fixing γ < β/α and considering (8.2.2) for ε = 2−γ`, we have by finite
sub-additivity that

P(
2`−1
max
j=0
|X(j+1)2−` −Xj2−` | ≥ 2−γ`) ≤ c2−`η ,

for η = β −αγ > 0. Since
∑
` 2−`η is finite, it then follows by Borel-Cantelli I that

2`−1
max
j=0
|X(j+1)2−` −Xj2−` | < 2−γ` , ∀` ≥ nγ(ω) ,

where nγ(ω) is finite for all ω /∈ Nγ and Nγ ∈ F has zero probability.
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As you show in Exercise 8.2.7 this implies the local γ-Hölder continuity of t 7→
Xt(ω) over the dyadic rationals. That is,

(8.2.3) |Xt(ω)−Xs(ω)| ≤ c(γ)|t− s|γ ,

for c(γ) = 2/(1−2−γ) finite and any t, s ∈ Q(2)
1 such that |t−s| < hγ(ω) = 2−nγ(ω).

Turning to construct the S.P. {X̃t, t ∈ T}, we fix γk ↑ β/α and set N? = ∪kNγk .

Considering the R.V. X̃s(ω) = Xs(ω)INc? (ω) for s ∈ Q(2)
1 , we further set X̃t =

limn→∞ X̃sn for some non-random {sn} ⊂ Q(2)
1 such that sn → t ∈ [0, 1] \ Q(2)

1 .

Indeed, in view of (8.2.3), by the uniform continuity of s 7→ X̃s(ω) over Q(2)
1 , the

sequence n 7→ X̃sn(ω) is Cauchy, hence convergent, per ω ∈ Ω. By construction,

the S.P. {X̃t, t ∈ [0, 1]} is such that

|X̃t(ω)− X̃s(ω)| ≤ ck|t− s|γk ,

for any k and t, s ∈ [0, 1] such that |t − s| < h̃k(ω), where h̃k = IN? + INc?hγk is

positive for all ω ∈ Ω and ck = c(γk) is finite. That is, {X̃t} is locally γ-Hölder
continuous on T = [0, 1] for any γk, hence also for all γ < β/α (and in particular,

{X̃t, t ∈ [0, 1]} has continuous sample functions).

It thus remains only to verify that {X̃t} is a modification of {Xt}. To this end,

observe first that since P(Nγk) = 0 for all k, also P(N?) = 0. Further, X̃s(ω) =

Xs(ω) for all s ∈ Q(2)
1 and ω /∈ N?. Next, from (8.2.2) we have that P(|Xt−Xsn | ≥

ε)→ 0 for any fixed ε > 0 and sn → t, that is, Xsn
p→ Xt. Hence, recall Theorem

2.2.10, also Xsn(k)

a.s.→ Xt along some subsequence k 7→ n(k). Considering an

arbitrary t ∈ [0, 1]\Q(2)
1 and the sequence sn ∈ Q(2)

1 as in the construction of {X̃t},
we have in addition that X̃sn(k)

→ X̃t. Consequently, P(X̃t 6= Xt) ≤ P(N?) = 0

from which we conclude that {X̃t} is a modification of {Xt} on T = [0, 1]. �

Exercise 8.2.7. Fixing x ∈ R[0,1], let

∆`,r(x) =
2`−r
max
j=0
|x((j + r)2−`)− x(j2−`)| .

(a) Show that for any integers k > m ≥ 0,

sup
t,s∈Q(2,k)

1
|t−s|<2−m

|x(t)− x(s)| ≤ 2

k∑
`=m+1

∆`,1(x) .

Hint: Applying induction on k consider s < t and s ≤ s′ ≤ t′ ≤ t, where

s′ = min{u ∈ Q(2,k−1)
1 : u ≥ s} and t′ = max{u ∈ Q(2,k−1)

1 : u ≤ t}.
(b) Fixing γ > 0, let cγ = 2/(1− 2−γ) and deduce that if ∆`,1(x) ≤ 2−γ` for

all ` ≥ n, then

|x(t)− x(s)| ≤ cγ |t− s|γ for all t, s ∈ Q(2)
1 such that |t− s| < 2−n .

Hint: Apply part (a) for m ≥ n such that 2−(m+1) ≤ |t− s| < 2−m.

We next identify the restriction of the cylindrical σ-algebra of RT to C(T) as the
Borel σ-algebra on the space of continuous functions, starting with T = Ir for I a
compact interval.
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Lemma 8.2.8. For T = Ir and I ⊂ R a compact interval, consider the topological
space (C(T), ‖·‖∞) of continuous functions on T, equipped with the topology induced
by the supremum norm ‖x‖∞ = supt∈T |x(t)|. The corresponding Borel σ-algebra,
denoted hereafter BC(T) coincides with {A ∩ C(T) : A ∈ BT}.

Proof. Recall that for any z ∈ C(T),

‖z‖∞ = sup
t∈T∩Qr

|z(t)| .

Hence, each open ball

B(x, r) = {y ∈ C(T) : ‖y − x‖∞ < r}

in S = (C(T), ‖ · ‖∞) is the countable intersection of Rt ∩ C(T) for the corre-
sponding one dimensional measurable rectangles Rt ∈ BT indexed by t ∈ T ∩ Qr.
Consequently, each open ball B(x, r) is in the σ-algebra C = {A ∩C(T) : A ∈ BT}.
With Γ denoting a countable dense subset of the separable metric space S, it readily
follows that S has a countable base U , consisting of the balls B(x, 1/n) for positive
integers n and centers x ∈ Γ. With every open set thus being a countable union of
elements from U , it follows that BS = σ(U). Further, U ⊆ C, hence also BS ⊆ C.
Conversely, recall that C = σ(O) for the collection O of sets of the form

O = {x ∈ C(T) : x(ti) ∈ Oi, i = 1, . . . , n} ,

with n finite, ti ∈ T and open Oi ⊆ R, i = 1, . . . , n. Clearly, each O ∈ O is an open
subset of S and it follows that C ⊆ BS. �

In the next exercise, you adapt the proof of Lemma 8.2.8 for T = [0,∞) (and the
same would apply for T ⊆ Rr which is the product of one-dimensional intervals).

Exercise 8.2.9. For T = [0,∞), equip the set C(T) of continuous functions on T
with the topology of uniform convergence on compact subsets of T. Show that the
corresponding Borel σ-algebra BC(T) coincides with {A ∩ C(T) : A ∈ BT}.
Hint: Uniform convergence on compacts is equivalent to convergence in the com-
plete, separable metric space S = (C([0,∞)), ρ(·, ·)), where ρ(x, y) =

∑∞
j=1 2−jϕ(‖x−

y‖j) for ‖x‖t = sups∈[0,t] |x(s)| and ϕ(r) = r/(1 + r) (c.f. [Dud89, Page 355]).

Combining Proposition 8.1.8, Exercise 8.2.3, Theorem 8.2.6 and Lemma 8.2.8,
yields the following useful canonical construction for continuous-time processes of
a.s. continuous sample path.

Corollary 8.2.10. Given a consistent collection of f.d.d. indexed on T = Ir (with
I ⊆ R a compact interval), such that (8.2.1) holds (for some positive α, β and finite

c), there exists a S.P. X̃·(ω) : Ω 7→ (C(T), ‖ ·‖∞), measurable with respect to BC(T),
which has the specified f.d.d. and is indistinguishable from any of its continuous
modifications.

Remark. An alternative approach is to directly construct the sample functions
of stochastic processes of interest. That is, to view the process from the start as a
random variable ω 7→ X·(ω) taking values in certain topological space of functions
equipped with its Borel σ-algebra (for example, the space C(T) with a suitable
metric). In dealing with the Brownian motion, we pursue both approaches, first
relying on the canonical construction (namely, Corollary 8.2.10), and then proving
instead an invariance principle via weak convergence in C(T) (c.f. Section 10.2).
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In contrast with Theorem 8.2.6, here is an example of a S.P. with no continuous
modification, for which (8.2.1) holds with β = 0.

Example 8.2.11. Consider the S.P. Xt(ω) = I{ω>t}, for t ∈ [0, 1] and the uniform
probability measure on Ω = (0, 1]. Then, E[|Xt − Xs|α] = U((s, t]) = |t − s| for
all 0 < s < t ≤ 1, so {Xt, t ∈ [0, 1]} satisfies (8.2.1) with c = 1, β = 0 and any

α > 0. However, if {X̃t} is a modification of {Xt} then a.s. X̃t(ω) = Xt(ω) at all

t ∈ (0, 1] ∩Q, from which it follows that s 7→ X̃s(ω) is discontinuous at s = ω.

While direct application of Theorem 8.2.6 is limited to (locally γ-Hölder) contin-
uous modifications on compact intervals, say [0, T ], it is easy to combine these to
one (locally γ-Hölder) continuous modification, valid on [0,∞).

Lemma 8.2.12. Suppose there exist Tn ↑ ∞ such that the continuous time S.P.

{Xt, t ≥ 0} has (locally γ-Hölder) continuous modifications {X̃(n)
t , t ∈ [0, Tn]}.

Then, the S.P. {Xt, t ≥ 0} also has such modification on [0,∞).

Proof. By assumption, for each positive integer n, the event

An = {ω : X̃
(n)
t (ω) = Xt(ω), ∀t ∈ Q ∩ [0, Tn]} ,

has probability one. The event A? = ∩nAn of probability one is then such that

X̃
(n)
t (ω) = X̃

(m)
t (ω) for all ω ∈ A?, positive integers n,m and any t ∈ Q∩[0, Tn∧Tm].

By continuity of t 7→ X̃
(n)
t (ω) and t 7→ X̃

(m)
t (ω) it follows that for all ω ∈ A?,

X̃
(n)
t (ω) = X̃

(m)
t (ω) , ∀n,m, t ∈ [0, Tn ∧ Tm] .

Consequently, for such ω there exists a function t 7→ X̃t(ω) on [0,∞) that coin-

cides with each of the functions X̃
(n)
t (ω) on its interval of definition [0, Tn]. By

assumption the latter are (locally γ-Hölder) continuous, so the same applies for the

sample function t 7→ X̃t(ω) on [0,∞). Setting X̃t(ω) ≡ 0 in case ω /∈ A? completes

the construction of the S.P. {X̃t, t ≥ 0} with (locally γ-Hölder) continuous sample
functions, such that for any t ∈ [0, Tn],

P(Xt 6= X̃t) ≤ P(Ac?) + P(Xt 6= X̃
(n)
t ) = 0 .

Since Tn →∞, we conclude that this S.P. is a (locally γ-Hölder) continuous modi-
fication of {Xt, t ≥ 0}. �

The following application of Kolmogorov-Centsov theorem demonstrates the im-
portance of its free parameter α.

Exercise 8.2.13. Suppose {Xt, t ∈ I} is a continuous time S.P. such that E(Xt) =
0 and E(X2

t ) = 1 for all t ∈ I, a compact interval on the line.

(a) Show that if for some finite c, p > 1 and h > 0,

(8.2.4) E[XtXs] ≥ 1− c(t− s)p for all s < t ≤ s+ h, t, s ∈ I ,
then there exists a continuous modification of {Xt, t ∈ I} which is also
locally γ-Hölder continuous, for γ < (p− 1)/2.

(b) Show that if (Xs, Xt) is a multivariate normal for each t > s, then it
suffices for the conclusion of part (a) to have E[XtXs] ≥ 1− c(t− s)p−1

instead of (8.2.4).

Hint: In part (a) use α = 2 while for part (b) try α = 2k and k � 1.
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Example 8.2.14. There exist S.P.-s satisfying (8.2.4) with p = 1 for which there
is no continuous modification. One such process is the random telegraph signal
Rt = (−1)NtR0, where P(R0 = 1) = P(R0 = −1) = 1/2 and R0 is independent of
the Poisson process {Nt} of rate one. The process {Rt} alternately jumps between
−1 and +1 at the random jump times {Tk} of the Poisson process {Nt}. Hence, by
the same argument as in Example 8.2.11 it does not have a continuous modification.
Further, for any t > s ≥ 0,

E[RsRt] = 1− 2P(Rs 6= Rt) ≥ 1− 2P(Ns < Nt) ≥ 1− 2(t− s) ,
so {Rt} satisfies (8.2.4) with p = 1 and c = 2.

Remark. The S.P. {Rt} of Example 8.2.14 is a special instance of the continuous-
time Markov jump processes, which we study in Section 9.3.3. Though the sample
function of this process is a.s. discontinuous, it has the following RCLL property,
as is the case for all continuous-time Markov jump processes.

Definition 8.2.15. Given a countable C ⊂ I we say that a function x ∈ RI is
C-separable at t if there exists a sequence sk ∈ C that converges to t such that
x(sk) → x(t). If this holds at all t ∈ I, we call x(·) a C-separable function. A
continuous time S.P. {Xt, t ∈ I} is separable if there exists a non-random, countable
C ⊂ I such that all sample functions t 7→ Xt(ω) are C-separable. Such a process is
further right-continuous with left-limits (in short, RCLL), if the sample function
t 7→ Xt(ω) is right-continuous and of left-limits at any t ∈ I (that is, for h ↓ 0
both Xt+h(ω)→ Xt(ω) and the limit of Xt−h(ω) exists). Similarly, a modification
which is a separable S.P. or one having RCLL sample functions is called a separable
modification, or RCLL modification of the S.P., respectively. As usual, suffices to
have any of these properties w.p.1 (for we do not differentiate between a pair of
indistinguishable S.P.).

Remark. Clearly, a S.P. of continuous sample functions is also RCLL and a S.P.
having right-continuous sample functions (in particular, any RCLL process), is
further separable. To summarize,

Hölder continuity ⇒ Continuity ⇒ RCLL ⇒ Separable

But, the S.P. {Xt} of Example 8.2.1 is non-separable. Indeed, C-separability of
t 7→ Xt(ω) at t = ω requires that ω ∈ C, so for any countable subset C of [0, 1] we
have that P(t 7→ Xt is C-separable) ≤ P(C) = 0.

One motivation for the notion of separability is its prevalence. Namely, to any
consistent collection of f.d.d. indexed on an interval I, corresponds a separable
S.P. with these f.d.d. This is achieved at the small cost of possibly moving from
real-valued variables to R-valued variables (each of which is nevertheless a.s. real-
valued).

Proposition 8.2.16. Any continuous time S.P. {Xt, t ∈ I} admits a separable
modification (consisting possibly of R-valued variables). Hence, to any consistent

collection of f.d.d. indexed on I corresponds an (RI
, (BR)I)-valued separable S.P.

with these f.d.d.

We prove this proposition following [Bil95, Theorem 38.1], but leave its technical
engine (i.e. [Bil95, Lemma 1, Page 529]), as your next exercise.

Exercise 8.2.17. Suppose {Yt, t ∈ I} is a continuous time S.P.
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(a) Fixing B ∈ B, consider the probabilities p(D) = P(Ys ∈ B for all s ∈ D),
for countable D ⊂ I. Show that for any A ⊆ I there exists a countable
subset D? = D?(A,B) of A such that p(D?) = inf{p(D) : countable
D ⊂ A}.
Hint: Let D? = ∪kDk where p(Dk) ≤ k−1+inf{p(D) : countable D ⊂ A}.

(b) Deduce that if t ∈ A then Nt(A,B) = {ω : Ys(ω) ∈ B for all s ∈ D?(A,B)
and Yt(ω) /∈ B} has zero probability.

(c) Let C denote the union of D?(A,B) over all A = I ∩ (q1, q2) and B =
(q3, q4)c, with qi ∈ Q. Show that at any t ∈ I there exists Nt ∈ F such
that P(Nt) = 0 and the sample functions t 7→ Yt(ω) are C-separable at t
for every ω /∈ Nt.
Hint: Let Nt denote the union of Nt(A,B) over the sets (A,B) as in the
definition of C, such that further t ∈ A.

Proof. Assuming first that {Yt, t ∈ I} is a (0, 1)-valued S.P. set Ỹ· = Y· on
the countable, dense C ⊆ I of part (c) of Exercise 8.2.17. Then, fixing non-random
{sn} ⊆ C such that sn → t ∈ I \ C we define the R.V.-s

Ỹt = YtINct + INt lim sup
n→∞

Ysn ,

for the events Nt of zero probability from part (c) of Exercise 8.2.17. The resulting

S.P. {Ỹt, t ∈ I} is a [0, 1]-valued modification of {Yt} (since P(Ỹt 6= Yt) ≤ P(Nt) = 0

for each t ∈ I). It clearly suffices to check C-separability of t 7→ Ỹt(ω) at each fixed
t /∈ C and this holds by our construction if ω ∈ Nt and by part (c) of Exercise
8.2.17 in case ω ∈ N c

t . For any (0, 1)-valued S.P. {Yt} we have thus constructed a

separable [0, 1]-valued modification {Ỹt}. To handle an R-valued S.P. {Xt, t ∈ I},
let {Ỹt, t ∈ I} denote the [0, 1]-valued, separable modification of the (0, 1)-valued
S.P. Yt = FG(Xt), with FG(·) denoting the standard normal distribution function.
Since FG(·) has a continuous inverse F−1

G : [0, 1] 7→ R (where F−1
G (0) = −∞ and

F−1
G (1) = ∞), it directly follows that X̃t = F−1

G (Ỹt) is an R-valued separable
modification of the S.P. {Xt}. �

Here are few elementary and useful consequences of separability.

Exercise 8.2.18. Suppose S.P. {Xt, t ∈ I} is C-separable and J ⊆ I with J an
open interval.

(a) Show that

sup
t∈J

Xt = sup
t∈J∩C

Xt

is in mFX, hence its law is determined by the f.d.d.
(b) Similarly, show that for any h > 0 and s ∈ I,

sup
t∈[s,s+h)

|Xt −Xs| = sup
t∈[s,s+h)∩C

|Xt −Xs|

is in mFX with its law determined by the f.d.d.

The joint measurability of sample functions is an important property to have.

Definition 8.2.19. A continuous time S.P. {Xt, t ∈ I} is measurable if Xt(ω) :
I × Ω 7→ R is measurable with respect to BI × F (that is, for any B ∈ B, the
subset {(t, ω) : Xt(ω) ∈ B} of I × Ω is in BI × F , where as usual BI denotes the
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completion of the Borel σ-algebra with respect to Lebesgue’s measure on I and F is
the completion of F with respect to P).

As we show in Proposition 9.1.8, any right-continuous S.P. (and in particular,
RCLL), is also measurable. While separability does not imply measurability, build-
ing on the obvious measurability of (simple) RCLL processes, following the proof
of [Doo53, Theorem II.2.6] we show next that to any consistent and continuous
in probability collection of f.d.d. corresponds a both separable and measurable S.P.
having the specified f.d.d.

Definition 8.2.20. A S.P. {Xt, t ∈ I} is continuous in probability if for any t ∈ I
and ε > 0,

lim
s→t

P(|Xs −Xt| > ε) = 0 .

Remark. Continuity in probability is a very mild property, which is completely
determined by the f.d.d. and has little to do with the sample functions of the
process. For example, note that the Poisson process is continuous in probability, as
are the random telegraph noise {Rt} of Example 8.2.14 and even the non-separable
S.P. {Xt} of Example 8.2.1 (which is nevertheless a measurable process).

Proposition 8.2.21. Any continuous in probability process {Xt, t ∈ I} has an

(RI
, (BR)I)-valued separable modification which is further a measurable process.

Proof. It suffices to consider I = [0, 1]. Indeed, by an affine time change the
same proof then applies for any compact interval I, and if I is unbounded, simply
decompose it to countably many disjoint bounded intervals and glue together the
corresponding separable and measurable modifications of the given process.
Further, in view of Proposition 8.2.16 and the transformation via FG(·) we have

utilized in its proof, we consider with no loss of generality a (0, 1)-valued {sk}-
separable, continuous in probability S.P. {Yt, t ∈ [0, 1]} and provide a [0, 1]-valued

measurable modification {Ỹt} of {Yt}, which we then verify to be also a separable
process. To this end, with no loss of generality, assume further that s1 = 0. Then,
for any n ∈ N set tn+1 = 2 and with 0 = t1 < · · · < tn the monotone increasing
rearrangement of {sk, k = 1, . . . , n}, consider the [0, 1]-valued, RCLL stochastic
process

Y
(n)
t =

n∑
j=1

YtjI[tj ,tj+1)(t) ,

which is clearly also a measurable S.P. By the denseness of {sk} in [0, 1], it follows

from the continuity in probability of {Yt} that Y
(n)
t

p→ Yt as n→∞, for any fixed

t ∈ [0, 1]. Hence, by bounded convergence E[|Y (n)
t − Y (m)

t |] → 0 as n,m → ∞ for
each t ∈ [0, 1]. Then, by yet another application of bounded convergence

lim
m,n→∞

E[|Y (n)
T − Y (m)

T |] = 0 ,

where the R.V. T ∈ [0, 1] is chosen independently of P, according to the uni-
form probability measure U corresponding to Lebesgue’s measure λ(·) restricted

to ([0, 1],B[0,1]). By Fubini’s theorem, this amounts to {Y (n)
t (ω)} being a Cauchy,

hence convergent, sequence in L1([0, 1] × Ω,B[0,1] × F , U × P) (recall Proposition
4.3.7 that the latter is a Banach space). In view of Theorem 2.2.10, upon passing

to a suitable subsequence nj we thus have that (t, ω) 7→ Y
(nj)
t (ω) converges to some
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B[0,1] × F-measurable function (t, ω) 7→ Y
(∞)
t (ω) for all (t, ω) /∈ N , where we may

and shall assume that {sk} × Ω ⊆ N ∈ B[0,1] ×F and U ×P(N) = 0. Taking now

Ỹt(ω) = INc(t, ω)Y
(∞)
t (ω) + IN (t, ω)Yt(ω) ,

note that Ỹt(ω) = Y
(∞)
t (ω) for a.e. (t, ω), so with Y

(∞)
t (ω) a measurable process, by

the completeness of our product σ-algebra, the S.P. {Ỹt, t ∈ [0, 1]} is also measur-

able. Further, fixing t ∈ [0, 1], if {Ỹt(ω) 6= Yt(ω)} then ω ∈ At = {ω : Y
(nj)
t (ω) →

Y
(∞)
t (ω) 6= Yt(ω)}. But, recall that Y

(nj)
t

p→ Yt for all t ∈ [0, 1], hence P(At) = 0,

i.e. {Ỹt, t ∈ [0, 1]} is a modification of the given process {Yt, t ∈ [0, 1]}.
Finally, since {Ỹt} coincides with the {sk}-separable S.P. {Yt} on the set {sk}, the

sample function t 7→ Ỹt(ω) is, by our construction, {sk}-separable at any t ∈ [0, 1]

such that (t, ω) ∈ N . Moreover, Y
(nj)
t = Ysk = Ỹsk for some k = k(j, t), with

sk(j,t) → t by the denseness of {sk} in [0, 1]. Hence, if (t, ω) /∈ N then

Ỹt(ω) = lim
j→∞

Y
(nj)
t (ω) = lim

j→∞
Ỹsk(j,t)(ω) .

Thus, {Ỹt, t ∈ [0, 1]} is {sk}-separable and as claimed, it is a separable, measurable
modification of {Yt, t ∈ [0, 1]}. �

Recall (1.4.7) that the measurability of the process, namely of (t, ω) 7→ Xt(ω),
implies that all its sample functions t 7→ Xt(ω) are Lebesgue measurable functions
on I. Measurability of a S.P. also results with well defined integrals of its sample
function. For example, if a Borel function h(t, x) is such that

∫
I E[|h(t,Xt)|]dt

is finite, then by Fubini’s theorem t 7→ E[h(t,Xt)] is in L1(I,BI, λ), the integral∫
I h(s,Xs)ds is an a.s. finite R.V. and∫

I
E[h(s,Xs)] ds = E[

∫
I
h(s,Xs) ds] .

Conversely, as you are to show next, under mild conditions the differentiability of
sample functions t 7→ Xt implies the differentiability of t 7→ E[Xt].

Exercise 8.2.22. Suppose each sample function t 7→ Xt(ω) of a continuous time
S.P. {Xt, t ∈ I} is differentiable at any t ∈ I.

(a) Verify that ∂
∂tXt is a random variable for each fixed t ∈ I.

(b) Show that if |Xt−Xs| ≤ |t− s|Y for some integrable random variable Y ,
a.e. ω ∈ Ω and all t, s ∈ I, then t 7→ E[Xt] has a finite derivative and for
any t ∈ I,

d

dt
E(Xt) = E

( ∂
∂t
Xt

)
.

We next generalize the lack of correlation of independent R.V. to the setting of
continuous time S.P.-s.

Exercise 8.2.23. Suppose square-integrable, continuous time S.P.-s {Xt, t ∈ I}
and {Yt, t ∈ I} are P-independent. That is, both processes are defined on the same
probability space and the σ-algebras FX and FY are P-independent. Show that in
this case,

E[XtYt|FZ
s ] = E[Xt|FX

s ]E[Yt|FY
s ] ,

for any s ≤ t ∈ I, where Zt = (Xt, Yt) ∈ R2, FX
s = σ(Xu, u ∈ I, u ≤ s) and FY

s ,
FZ
s are similarly defined.
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8.3. Gaussian and stationary processes

Building on Definition 3.5.13 of Gaussian random vectors, we have the following
important class of (centered) Gaussian (stochastic) processes, which plays a key
role in our construction of the Brownian motion.

Definition 8.3.1. A S.P. {Xt, t ∈ T} is a Gaussian process (or Gaussian S.P.),
if (Xt1 , . . . , Xtn) is a Gaussian random vector for any n finite and tk ∈ T, k =
1, . . . , n. Alternatively, a S.P. is Gaussian if and only if it has multivariate
normal f.d.d. We further say that a Gaussian S.P. is centered if its mean function
m(t) = E[Xt] is zero.

Recall the following notion of non-negative definiteness, based on Definition 3.5.12.

Definition 8.3.2. A symmetric function c(t, s) = c(s, t) on a product set T×T is
called non-negative definite (or positive semidefinite) if for any finite n and tk ∈ T,
k = 1, . . . , n, the n× n matrix of entries c(tj , tk) is non-negative definite. That is,
for any ak ∈ R, k = 1, . . . , n,

(8.3.1)

n∑
j=1

n∑
k=1

ajc(tj , tk)ak ≥ 0.

Example 8.3.3. Note that the auto-covariance function c(t, s) = Cov(Xt, Xs) of
a square-integrable S.P. {Xt, t ∈ T} is non-negative definite. Indeed, the left side
of (8.3.1) is in this case precisely the non-negative Var(

∑n
j=1 ajXtj ).

Convince yourself that non-negative definiteness is the only property that the auto-
covariance function of a Gaussian S.P. must have and further that the following is
an immediate corollary of the canonical construction and the definitions of Gaussian
random vectors and stochastic processes.

Exercise 8.3.4.

(a) Show that for any index set T, the law of a Gaussian S.P. is uniquely
determined by its mean and auto-covariance functions.

(b) Show that a Gaussian S.P. exists for any mean function and any non-
negative definite auto-covariance function.

Remark. An interesting consequence of Exercise 8.3.4 is the existence of an
isonormal process on any vector space H equipped with an inner product as in Defi-
nition 4.3.5. That is, a centered Gaussian process {Xh, h ∈ H} indexed by elements
of H whose auto-covariance function is given by the inner product (h1, h2) : H×H 7→
R. Indeed, the latter is non-negative definite on H×H since for h =

∑n
j=1 ajhj ∈ H,

n∑
j=1

n∑
k=1

aj(hj , hk)ak = (h, h) ≥ 0 .

One of the useful properties of Gaussian processes is their closure with respect to
L2-convergence (as a consequence of Proposition 3.5.15).

Proposition 8.3.5. If the S.P. {Xt, t ∈ T} and the Gaussian S.P. {X(k)
t , t ∈ T}

are such that E[(Xt−X(k)
t )2]→ 0 as k →∞, for each fixed t ∈ T, then {Xt, t ∈ T}

is a Gaussian S.P. whose mean and auto-covariance functions are the pointwise

limits of those for the processes {X(k)
t , t ∈ T}.
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Proof. Fix n finite and tk ∈ T, k = 1, . . . , n. Applying Proposition 3.5.15 for

the sequence of Gaussian random vectors Xk = (X
(k)
t1 , . . . , X

(k)
tn ), we deduce that

X∞ = (Xt1 , . . . , Xtn) is also a Gaussian random vector whose mean and covariance
parameters (µ,V) are the element-wise limits of the parameters of the sequence of
random vectors {Xk}. With this holding for all f.d.d. of the S.P. {Xt, t ∈ T},
by Definition 8.3.1 the latter is a Gaussian S.P. (of the stated mean and auto-
correlation functions). �

Remark. By the same reasoning, the conclusions of Proposition 8.3.5 apply also

when assuming instead that the f.d.d. of the Gaussian S.P. {X(k)
t , t ∈ T} converge

as k →∞, to those of some S.P. {Xt, t ∈ T}.

Recall Exercise 5.1.9, that for a Gaussian random vector (Yt2−Yt1 , . . . , Ytn−Ytn−1
),

with n finite and t1 < t2 < · · · < tn, having independent coordinates is equivalent
to having uncorrelated coordinates. Hence, from Exercise 8.1.12 we deduce that

Corollary 8.3.6. A continuous time, Gaussian S.P. {Yt, t ∈ I} has independent
increments if and only if Cov(Yt − Yu, Ys) = 0 for all s ≤ u < t ∈ I.

Remark. Check that the zero covariance condition in this corollary is equivalent
to the Gaussian process having auto-covariance function of the form c(t, s) = g(t∧s).

Recall Definition 6.1.20 that a discrete time stochastic process {Xn} with a B-
isomorphic state space (S,S), is (strictly) stationary if its law PX is shift invariant,
namely, PX ◦ θ−1 = PX for the shift operator (θω)k = ωk+1 on S∞. This concept
of invariance of the law of the process to translation of time, extends naturally to
continuous time S.P.

Definition 8.3.7. The (time) shifts θs : S[0,∞) → S[0,∞) are defined for s ≥ 0 via
θs(x)(·) = x(·+ s) and a continuous time S.P. {Xt, t ≥ 0} is called stationary (or
strictly stationary), if its law PX is invariant under any time shift θs, s ≥ 0. That
is, PX ◦ (θs)

−1 = PX for all s ≥ 0. For two-sided continuous time S.P. {Xt, t ∈ R}
the definition of time shifts extends to s ∈ R and stationarity is then the invariance
of the law under θs for any s ∈ R.

Recall Proposition 8.1.8 that the law of a continuous time S.P. is uniquely deter-
mined by its f.d.d. Consequently, such process is (strictly) stationary if and only if
its f.d.d. are invariant to translation of time. That is, if and only if

(8.3.2) (Xt1 , . . . , Xtn)
D
= (Xt1+s, . . . , Xtn+s)

for any n finite and s, ti ≥ 0 (or for any s, ti ∈ R in case of a two-sided continuous
time S.P.). In contrast, here is a much weaker concept of stationarity.

Definition 8.3.8. A square-integrable continuous time S.P. of constant mean
function and auto-covariance function of the form c(t, s) = r(|t−s|) is called weakly
stationary (or L2-stationary).

Indeed, considering (8.3.2) for n = 1 and n = 2, clearly any square-integrable
stationary S.P. is also weakly stationary. As you show next, the converse fails in
general, but applies for all Gaussian S.P.

Exercise 8.3.9. Show that any weakly stationary Gaussian S.P. is also (strictly)
stationary. In contrast, provide an example of a (non-Gaussian) weakly stationary
process which is not stationary.
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To gain more insight about stationary processes solve the following exercise.

Exercise 8.3.10. Suppose {Xt, t ≥ 0} is a weakly stationary S.P. of auto-covariance
function r(t).

(a) Show that |r(t)| ≤ r(0) for all t > 0 and further, if r(h) = r(0) for some

h > 0 then Xt+h
a.s.
= Xt for each t ≥ 0.

(b) Deduce that any weakly stationary process of independent increments
must be a modification of the trivial process having constant sample func-
tions Xt(ω) = X0(ω) for all t ≥ 0 and ω ∈ Ω.

Definition 8.3.11. We say that a continuous time S.P. {Xt, t ∈ I} has stationary
increments if for t, s ∈ I the law of the increment Xt −Xs depends only on t− s.

We conclude this chapter with the definition and construction of the celebrated
Brownian motion which is the most fundamental continuous time stochastic pro-
cess.

Definition 8.3.12. A S.P. {Wt, t ≥ 0} is called a Brownian motion (or a Wiener
process) starting at x ∈ R, if it is a Gaussian process of mean function m(t) = x and
auto-covariance c(t, s) = Cov(Wt,Ws) = t ∧ s, whose sample functions t 7→ Wt(ω)
are continuous. The case of x = 0 is called the standard Brownian motion (or
standard Wiener process).

In addition to constructing the Brownian motion, you are to show next that it has
stationary, independent increments.

Exercise 8.3.13.

(a) Construct a continuous time Gaussian S.P. {Bt, t ≥ 0} of the mean and
auto-covariance functions of Definition 8.3.12
Hint: Look for f.d.d. such that B0 = x and having independent incre-
ments Bt −Bs of zero mean and variance t− s.

(b) Show that there exists a Wiener process, namely a continuous modifica-
tion {Wt, t ≥ 0} of {Bt, t ≥ 0}.
Hint: Try Kolmogorov-Centsov theorem for α = 4.

(c) Deduce that for any T finite, the S.P. {Wt, t ∈ [0, T ]} can be viewed as
the random variable W· : (Ω,F) 7→ (C([0, T ]), ‖·‖∞), which is measurable
with respect to the Borel σ-algebra on C([0, T ]) and is further a.s. locally
γ-Hölder continuous for any γ < 1/2.
Hint: As in Exercise 8.2.13 try α = 2k with k � 1 in (8.2.1).

(d) Show that the S.P. {Bt, t ≥ 0} is non-stationary, but it is a process of
stationary, independent increments.

Example 8.3.14. Convince yourself that every stationary process has stationary
increments while the Brownian motion of Exercise 8.3.13 is an example of a non-
stationary process with stationary (independent) increments. The same phenomena
applies for discrete time S.P. (in which case the symmetric srw serves as an ex-
ample of a non-stationary process with stationary, independent increments).

An alternative construction of the Wiener process on I = [0, T ] is as the infinite
series

Wt = x+

∞∑
k=0

ak(t)Gk ,
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Figure 2. Three sample functions of Brownian motion. The den-
sity curves illustrate that the random variable W1 has a N (0, 1)
law, while W2 has a N (0, 2) law.

with {Gk} i.i.d. standard normal random variables and ak(·) continuous functions
on I such that

(8.3.3)

∞∑
k=0

ak(t)ak(s) = t ∧ s =
1

2
(|t+ s| − |t− s|) .

For example, taking T = 1/2 and expanding f(x) = |x| for |x| ≤ 1 into a Fourier
series, one finds that

|x| = 1

2
−
∞∑
k=0

4

(2k + 1)2π2
cos((2k + 1)πx) .

Hence, by the trigonometric identity cos(a−b)−cos(a+b) = 2 sin(a) sin(b) it follows
that (8.3.3) holds for

ak(t) =
2

(2k + 1)π
sin((2k + 1)πt) .

Though we shall not do so, the continuity w.p.1. of t 7→ Wt is then obtained by
showing that for any ε > 0

P(‖
∞∑
k=n

ak(t)Gk‖∞ ≥ ε)→ 0

as n→∞ (see [Bry95, Theorem 8.1.3]).

We turn to explore some interesting Gaussian processes of continuous sample
functions that are derived out of the Wiener process {Wt, t ≥ 0}.

Exercise 8.3.15. With {Wt, t ≥ 0} a standard Wiener process, show that each
of the following is a Gaussian S.P. of continuous sample functions, compute its
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mean and auto-covariance functions and determine whether or not it is a stationary
process.

(a) The standard Brownian bridge B̂t = Wt −min(t, 1)W1.
(b) The Ornstein-Uhlenbeck process Ut = e−t/2Wet .

(c) The Brownian motion with drift Z
(r,σ)
t = σWt+rt+x, with non-random

drift r ∈ R and diffusion coefficient σ > 0.

(d) The integrated Brownian motion It =
∫ t

0
Wsds.

Exercise 8.3.16. Suppose {Wt, t ≥ 0} is a standard Wiener process.

(a) Compute E(Ws|Wt) and Var(Ws|Wt), first for s > t, then for s < t.

(b) Show that t−1Wt
a.s.→ 0 when t→∞.

Hint: As we show in the sequel, the martingale {Wt, t ≥ 0} satisfies
Doob’s L2 maximal inequality.

(c) Show that for t ∈ [0, 1] the S.P. B̃t = (1− t)Wt/(1−t) (with B̃1 = 0), has
the same law as the standard Brownian bridge and its sample functions
are continuous w.p.1.

(d) Show that restricted to [0, 1], the law of the standard Brownian bridge
matches that of {Wt, t ∈ [0, 1], conditioned upon W1 = 0} (hence the
name Brownian bridge).

The fractional Brownian motion is another Gaussian S.P. of considerable interest
in financial mathematics and in the analysis of computer and queuing networks.

Exercise 8.3.17. For H ∈ (0, 1), the fractional Brownian motion (or in short,
fBM), of Hurst parameter H is the centered Gaussian S.P. {Xt, t ≥ 0}, of auto-
covariance function

c(t, s) =
1

2
[|t|2H + |s|2H − |t− s|2H ] , s, t ≥ 0.

(a) Show that the square-integrability with respect to Lebesgue’s measure of
g(u) = |1−u|H−1/2sgn(1−u) + |u|H−1/2sgn(u) (which you need not ver-
ify), implies that c(t, s) =

∫
gt(x)gs(x)dx for gt(x) = ‖g‖−1

2 |t|H−1/2g(x/t)
in case t > 0 and g0(x) = 0.
Hint: gt(s+ x)− gs(s+ x) = gt−s(x), hence ‖gt − gs‖22 = ‖gt−s‖22.

(b) Deduce that the fBM {Xt, t ≥ 0} exists and has a continuous modification
which is also locally γ-Hölder continuous for any 0 < γ < H.

(c) Verify that for H = 1
2 this modification is the standard Wiener process.

(d) Show that for any non-random b > 0, the S.P. {b−HXbt, t ≥ 0} is an
fBM of the same Hurst parameter H.

(e) For which values of H are the increments of the fBM stationary and for
which values are they independent?

Exercise 8.3.18. Let S denote the unit circle on the plane endowed with the
Borel σ-algebra and uniform probability measure Q (which is just the image of
[0, 1] equipped with Lebesgue’s measure, under t 7→ ei2πt ∈ S).
Construct a centered Gaussian stochastic process G(·), indexed on the collection A

of sub-arcs of S, of auto-covariance function E[G(A)G(B)] = Q(A∩B)−Q(A)Q(B)
such that its sample functions (s, u) 7→ G((s, u))(ω) are continuous with respect to
the Euclidean topology of T = [0, 1]2 \ {(s, s) : s ∈ [0, 1]}, where (s, u) denotes the
sub-arc A = {ei2πt : s < t ≤ u} in case s < u, while (u, s) stands for Ac := S \A.

Hint: Try G(A) = −G(Ac) = B̂u − B̂s for A = (s, u) such that 0 ≤ s < u ≤ 1.



CHAPTER 9

Continuous time martingales and Markov
processes

Continuous time filtrations and stopping times are introduced in Section 9.1, em-
phasizing the differences with the corresponding notions for discrete time processes
and the connections to sample path continuity. Building upon it and Chapter 5
about discrete time martingales, we review in Section 9.2 the theory of continu-
ous time martingales. Similarly, Section 9.3 builds upon Chapter 6 about Markov
chains, in providing a short introduction to the rich theory of strong Markov pro-
cesses.

9.1. Continuous time filtrations and stopping times

We start with the definitions of continuous time filtrations and S.P. adapted to
them (compare with Definitions 5.1.1 and 5.1.2, respectively).

Definition 9.1.1. A (continuous time) filtration is a non-decreasing family of
sub-σ-algebras {Ft} of the measurable space (Ω,F), indexed by t ≥ 0. By Ft ↑ F∞
we denote such filtration {Ft} and the associated minimal σ-algebra F∞ = σ(

⋃
t Ft)

such that Fs ⊆ Ft for all 0 ≤ s ≤ t ≤ ∞.

Definition 9.1.2. A (continuous time) S.P. {Xt, t ≥ 0} is adapted to a (contin-
uous time) filtration {Ft}, or in short Ft-adapted, if Xt ∈ mFt for each t ≥ 0 or
equivalently, if FX

t ⊆ Ft for all t ≥ 0.

Remark 9.1.3. To avoid cumbersome technical difficulties, we assume throughout
that the filtration is augmented so that every P-null set is in F0. That is, if N ⊆ A
for some A ∈ F with P(A) = 0 then N ∈ F0 (which is a somewhat stronger
assumption than the completion of both F and F0). In particular, this assures that
any modification of an Ft-adapted continuous time S.P. remains Ft-adapted.

When dealing with continuous time processes it helps if each new piece of informa-
tion has a definite first time of arrival, as captured mathematically by the concept
of right-continuous filtration.

Definition 9.1.4. To any continuous time filtration {Ft} we associate the corre-
sponding left-filtration Ft− = σ(Fs, s < t) at time t, consisting of all events prior
to t (where we set F0− = F0), and right-filtration Ft+ =

⋂
ε>0 Ft+ε at time t, con-

sisting of all events immediately after t. A filtration {Ft} is called right-continuous
if it coincides with its right-filtration, that is Ft = Ft+ for all t ≥ 0.

The next example ties the preceding definitions to those in the much simpler
setting of Chapter 5.

313
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Example 9.1.5. To each discrete time filtration {Gn, n ∈ Z+} corresponds the
interpolated (continuous time) filtration Ft = G[t], where [t] denotes the integer part
of t ≥ 0. Convince yourself that any interpolated filtration is right-continuous, but
usually not left-continuous. That is, Ft 6= Ft− (at any t = n integer in which Gn 6=
Gn−1), with each jump in the filtration accounting for a new piece of information
arriving at that time.
Similarly, we associate with any Gn-adapted discrete time S.P. {Yn} an inter-

polated continuous time S.P. Xt = Y[t], t ≥ 0, noting that {Xt, t ≥ 0} is then
Ft-adapted if and only if {Yn} is Gn-adapted.

Example 9.1.6. In analogy with Definition 5.1.3, another generic continuous time
filtration is the canonical filtration FX

t = σ(Xs, 0 ≤ s ≤ t) associated with each
continuous time S.P. {Xt, t ≥ 0}.
Unfortunately, sample path continuity of a S.P. {Xt} does not guarantee the right-

continuity of its canonical filtration {FX
t }. Indeed, considering the uniform prob-

ability measure on Ω = {−1, 1} note that the canonical filtration {FX
t } of the

S.P. Xt(ω) = ωt, which has continuous sample functions, is evidently not right-
continuous at t = 0 (as FX

0 = {∅,Ω} while FX
t = F = 2Ω for all t > 0).

When S.P. {Xs, s ≥ 0} is Ft-adapted, we can view {Xs, s ∈ [0, t]} as a S.P. on the
smaller measurable space (Ω,Ft), for each t ≥ 0. However, as seen in Section 8.2,
more is required in order to have Borel sample functions, prompting the following
extension of Definition 8.2.19 (and refinement of Definition 9.1.2).

Definition 9.1.7. An Ft-adapted S.P. {Xt, t ≥ 0} is called Ft-progressively mea-
surable if Xs(ω) : [0, t]× Ω 7→ R is measurable with respect to B[0,t] × Ft, for each
t ≥ 0.

Remark. In contrast to Definition 8.2.19, we have dropped the completion of the
relevant σ-algebras in the preceding definition. Indeed, the standing assumption of
Remark 9.1.3 guarantees the completeness of each σ-algebra of the filtration Ft and
as we see next, progressive measurability is in any case equivalent to adaptedness
for all RCLL processes.

Proposition 9.1.8. An Ft-adapted S.P. {Xs, s ≥ 0} of right-continuous sample
functions is also Ft-progressively measurable.

Proof. Fixing t > 0, let Q(2,`)
t+ denote the finite set of dyadic rationals of the

form j2−` ∈ [0, t] augmented by {t} and arranged in increasing order 0 = t0 < t1 <
· · · < tk` = t (where k` = dt2`e). The `-th approximation of the sample function
Xs(ω) for s ∈ [0, t], is then

X(`)
s (ω) = X0I{0}(s) +

k∑̀
j=1

Xtj (ω)I(tj−1,tj ](s) .

Note that per positive integer ` and B ∈ B,

{(s, ω) ∈ [0, t]× Ω : X(`)
s (ω) ∈ B} = {0} ×X−1

0 (B)

k⋃̀
j=1

(tj−1, tj ]×X−1
tj (B) ,

which is in the product σ-algebra B[0,t] × Ft, since each of the sets X−1
tj (B) is

in Ft (recall that {Xs, s ≥ 0} is Ft-adapted and tj ∈ [0, t]). Consequently, each
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of the maps (s, ω) 7→ X
(`)
s (ω) is a real-valued R.V. on the product measurable

space ([0, t] × Ω,B[0,t] × Ft). Further, by right-continuity of the sample functions

s 7→ Xs(ω), for each fixed (s, ω) ∈ [0, t] × Ω the sequence X
(`)
s (ω) converges as

` → ∞ to Xs(ω), which is thus a R.V. on the same (product) measurable space
(recall Corollary 1.2.23). �

Associated with any filtration {Ft} is the collection of all Ft-stopping times and
the corresponding stopped σ-algebras (compare with Definitions 5.1.11 and 5.1.34).

Definition 9.1.9. A random variable τ : Ω 7→ [0,∞] is called a stopping time for
the (continuous time) filtration {Ft}, or in short Ft-stopping time, if {ω : τ(ω) ≤
t} ∈ Ft for all t ≥ 0. Associated with each Ft-stopping time τ is the stopped
σ-algebra Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0} (which quantifies the
information in the filtration at the stopping time τ).
The Ft+-stopping times are also called Ft-Markov times (or Ft-optional times),

with the corresponding Markov σ-algebras Fτ+ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft+
for all t ≥ 0}.

Remark. As their name suggest, Markov/optional times appear both in the con-
text of Doob’s optional stopping theorem (in Section 9.2.3), and in that of the
strong Markov property (see Section 9.3.2).
Obviously, any non-random constant t ≥ 0 is a stopping time. Further, by def-

inition, every Ft-stopping time is also an Ft-Markov time and the two concepts
coincide for right-continuous filtrations. Similarly, the Markov σ-algebra Fτ+ con-
tains the stopped σ-algebra Fτ for any Ft-stopping time (and they coincide in case
of right-continuous filtrations).

Your next exercise provides more explicit characterization of Markov times and
closure properties of Markov and stopping times (some of which you saw before in
Exercise 5.1.12).

Exercise 9.1.10.

(a) Show that τ is an Ft-Markov time if and only if {ω : τ(ω) < t} ∈ Ft for
all t ≥ 0.

(b) Show that if {τn, n ∈ Z+} are Ft-stopping times, then so are τ1 ∧ τ2,
τ1 + τ2 and supn τn.

(c) Show that if {τn, n ∈ Z+} are Ft-Markov times, then in addition to τ1 +
τ2 and supn τn, also infn τn, lim infn τn and lim supn τn are Ft-Markov
times.

(d) In the setting of part (c) show that τ1 + τ2 is an Ft-stopping time when
either both τ1 and τ2 are strictly positive, or alternatively, when τ1 is a
strictly positive Ft-stopping time.

Similarly, here are some of the basic properties of stopped σ-algebras (compare
with Exercise 5.1.35), followed by additional properties of Markov σ-algebras.

Exercise 9.1.11. Suppose θ and τ are Ft-stopping times.

(a) Verify that σ(τ) ⊆ Fτ , that Fτ is a σ-algebra, and if τ(ω) = t is non-
random then Fτ = Ft.

(b) Show that Fθ∧τ = Fθ ∩ Fτ and deduce that each of the events {θ < τ},
{θ ≤ τ}, {θ = τ} belongs to Fθ∧τ .
Hint: Show first that if A ∈ Fθ then A ∩ {θ < τ} ∈ Fτ .
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(c) Show that for any integrable R.V. Z,

E[Z|Fθ]Iθ≤τ = E[Z|Fθ∧τ ]Iθ≤τ ,

and deduce that

E[E(Z|Fθ)|Fτ ] = E[Z|Fθ∧τ ] .

(d) Show that if θ ≤ ξ and ξ ∈ mFθ then ξ is an Ft-stopping time.

Exercise 9.1.12. Suppose τ, τn are Ft-Markov times.

(a) Verify that Fτ+ = {A ∈ F∞ : A ∩ {τ < t} ∈ Ft for all t ≥ 0}.
(b) Suppose τ1 is further Ft-stopping time and τ ≤ τ1 with a strict inequality

whenever τ is finite. Show that then Fτ+ ⊆ Fτ1 .
(c) Setting τ = infn τn, show that Fτ+ =

⋂
n Fτ+

n
. Deduce that if τn are

Ft-stopping times and τ < τn whenever τ is finite, then Fτ+ =
⋂
n Fτn .

In contrast to adaptedness, progressive measurability transfers to stopped pro-
cesses (i.e. the continuous time extension of Definition 5.1.31), which is essential
when dealing in Section 9.2 with stopped sub-martingales (i.e. the continuous time
extension of Theorem 5.1.32).

Proposition 9.1.13. Given Ft-progressively measurable S.P. {Xs, s ≥ 0}, the
stopped at (Ft-stopping time) τ S.P. {Xs∧τ(ω)(ω), s ≥ 0} is also Ft-progressively
measurable. In particular, if either τ < ∞ or there exists X∞ ∈ mF∞, then
Xτ ∈ mFτ .

Proof. Fixing t > 0, denote by S the product σ-algebra B[0,t] × Ft on the
product space S = [0, t]×Ω. The assumed Ft-progressive measurability of {Xs, s ≥
0} amounts to the measurability of g1 : (S,S) 7→ (R,B) such that g1(s, ω) = Xs(ω).
Further, as (s, ω) 7→ Xs∧τ(ω)(ω) is the composition g1(g2(s, ω)) for the mapping
g2(s, ω) = (s∧τ(ω), ω) from (S,S) to itself, by Proposition 1.2.18 the Ft-progressive
measurability of the stopped S.P. follows form our claim that g2 is measurable.
Indeed, recall that τ is an Ft-stopping time, so {ω : τ(ω) > u} ∈ Ft for any
u ∈ [0, t]. Hence, for any fixed u ∈ [0, t] and A ∈ Ft,

g−1
2 ((u, t]×A) = (u, t]×(A∩{ω : τ(ω) > u})∪(t,∞)×(A∩{ω : τ(ω) ∈ (u, t]}) ∈ S ,

which suffices for measurability of g2 (since the product σ-algebra S is generated
by the collection {(u, t]×A : u ∈ [0, t], A ∈ Ft}).
Turning to the second claim, since {Xs∧τ , s ≥ 0} is Ft-progressively measurable,

we have that for any fixed B ∈ B and finite t ≥ 0,

X−1
τ (B) ∩ τ−1([0, t]) = {ω : Xt∧τ(ω)(ω) ∈ B} ∩ {ω : τ(ω) ≤ t} ∈ Ft

(recall (1.4.7) that {ω : (t, ω) ∈ A} is in Ft for any set A ∈ S). Moreover, by
our assumptions X−1

∞ (B) ∩ τ−1({∞}) is in F∞, hence so is its union with the sets
X−1
τ (B) ∩ τ−1([0, n]), n ∈ Z+, which is precisely X−1

τ (B). We have thus shown
that X−1

τ (B) ∈ Fτ for any B ∈ B, namely, that Xτ ∈ mFτ . �

Recall Exercise 5.1.13 that for discrete time S.P. and filtrations, the first hitting
time τB of a Borel set B by Fn-adapted process is an Fn-stopping time. Unfortu-
nately, this may fail in the continuous time setting, even when considering an open
set B and the canonical filtration FX

t of a S.P. of continuous sample functions.



9.1. CONTINUOUS TIME FILTRATIONS AND STOPPING TIMES 317

Example 9.1.14. Indeed, consider B = (0,∞) and the S.P. Xt(ω) = ωt of Ex-
ample 9.1.6. In this case, τB(1) = 0 while τB(−1) =∞, so the event {ω : τB(ω) ≤
0} = {1} is not in FX

0 = {∅,Ω} (hence τB is not an FX
t -stopping time). As shown

next, this problem is only due to the lack of right-continuity in the filtration {FX
t }.

Proposition 9.1.15. Consider an Ft-adapted, right-continuous S.P. {Xs, s ≥ 0}.
Then, the first hitting time τB(ω) = inf{t ≥ 0 : Xt(ω) ∈ B} is an Ft-Markov
time for an open set B and further an Ft-stopping time when B is a closed set and
{Xs, s ≥ 0} has continuous sample functions.

Proof. Fixing t > 0, by definition of τB the set τ−1
B ([0, t)) is the union of

X−1
s (B) over all s ∈ [0, t). Further, if the right-continuous function s 7→ Xs(ω)

intersects an open set B at some s ∈ [0, t) then necessarily Xq(ω) ∈ B at some
q ∈ Qt− = Q ∩ [0, t). Consequently,

(9.1.1) τ−1
B ([0, t)) =

⋃
s∈Qt−

X−1
s (B) .

Now, the Ft-adaptedness of {Xs} implies that X−1
s (B) ∈ Fs ⊆ Ft for all s ≤ t,

and in particular for any s in the countable collection Qt− . We thus deduce from
(9.1.1) that {τB < t} ∈ Ft for all t ≥ 0, and in view of part (a) of Exercise 9.1.10,
conclude that τB is an Ft-Markov time in case B is open.
Assuming hereafter that B is closed and u 7→ Xu continuous, we claim that for

any t > 0,

(9.1.2) {τB ≤ t} =
⋃

0≤s≤t

X−1
s (B) =

∞⋂
k=1

{τBk < t} := At ,

where Bk = {x ∈ R : |x − y| < k−1, for some y ∈ B}, and that the left identity
in (9.1.2) further holds for t = 0. Clearly, X−1

0 (B) ∈ F0 and for Bk open, by the
preceding proof {τBk < t} ∈ Ft. Hence, (9.1.2) implies that {τB ≤ t} ∈ Ft for all
t ≥ 0, namely, that τB is an Ft-stopping time.
Turning to verify (9.1.2), fix t > 0 and recall that if ω ∈ At then |Xsk(ω)− yk| <
k−1 for some sk ∈ [0, t) and yk ∈ B. Upon passing to a sub-sequence, sk → s ∈ [0, t],
hence by continuity of the sample function Xsk(ω)→ Xs(ω). This in turn implies
that yk → Xs(ω) ∈ B (because B is a closed set). Conversely, if Xs(ω) ∈ B for some
s ∈ [0, t) then also τBk ≤ s < t for all k ≥ 1, whereas even if only Xt(ω) = y ∈ B,
by continuity of the sample function also Xs(ω)→ y for 0 ≤ s ↑ t (and once again
τBk < t for all k ≥ 1). To summarize, ω ∈ At if and only if there exists s ∈ [0, t]
such that Xs(ω) ∈ B, as claimed. Considering hereafter t ≥ 0 (possibly t = 0),
the existence of s ∈ [0, t] such that Xs ∈ B results with {τB ≤ t}. Conversely,
if τB(ω) ≤ t then Xsn(ω) ∈ B for some sn(ω) ≤ t + n−1 and all n. But then
snk → s ≤ t along some sub-sequence nk → ∞, so for B closed, by continuity of
the sample function also Xsnk

(ω)→ Xs(ω) ∈ B. �

We conclude with a technical result on which we shall later rely, for example,
in proving the optional stopping theorem and in the study of the strong Markov
property.

Lemma 9.1.16. Given an Ft-Markov time τ , let τ` = 2−`([2`τ ] + 1) for ` ≥ 1.
Then, τ` are Ft-stopping times and A ∩ {ω : τ`(ω) = q} ∈ Fq for any A ∈ Fτ+ ,

` ≥ 1 and q ∈ Q(2,`) = {k2−`, k ∈ Z+}.
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Proof. By its construction, τ` takes values in the discrete set Q(2,`) ∪ {∞}.
Moreover, with {ω : τ(ω) < t} ∈ Ft for any t ≥ 0 (see part (a) of Exercise 9.1.10),
it follows that for any q ∈ Q(2,`),

{ω : τ`(ω) = q} = {ω : τ(ω) ∈ [q − 2−`, q)} ∈ Fq .

Hence, τ` is an Ft-stopping time, as claimed. Next, fixing A ∈ Fτ+ , in view of
Definitions 9.1.4 and 9.1.9, the sets At,m = A ∩ {ω : τ(ω) ≤ t−m−1} are in Ft for

any m ≥ 1. Further, by the preceding, fixing q ∈ Q(2,`) and q′ = q − 2−` you have
that

A ∩ {ω : τ`(ω) = q} = A ∩ {ω : τ(ω) ∈ [q′, q)} = (∪m≥1Aq,m) \ (∪m≥1Aq′,m)

is the difference between an element of Fq and one of Fq′ ⊆ Fq. Consequently,
A ∩ {ω : τ`(ω) = q} is in Fq, as claimed. �

9.2. Continuous time martingales

As we show in this section, once the technical challenges involved with the conti-
nuity of time are taken care off, the results of Chapter 5 extend in a natural way
to the collection of continuous time (sub and super) martingales. Similar to the
break-up of Chapter 5, we devote Subsection 9.2.1 to the definition, examples and
closure properties of this collection of S.P. (compare with Section 5.1), followed by
Subsection 9.2.2 about tail (and upcrossing) inequalities and convergence properties
of such processes (compare with Sections 5.2.2 and 5.3, respectively). The state-
ment, proof and applications of Doob’s optional stopping theorem are explored in
Subsection 9.2.3 (compare with Section 5.4), with martingale representations being
the focus of Subsection 9.2.4 (compare with Sections 5.2.1 and 5.3.2).

9.2.1. Definition, examples and closure properties. For a continuous
filtration, it is not enough to consider the martingale property one step ahead, so
we replace Definitions 5.1.4 and 5.1.16 by the following continuous time analog of
Proposition 5.1.20.

Definition 9.2.1. The pair (Xt,Ft, t ≥ 0) is called a continuous time martingale
(in short MG), if the integrable (continuous time) S.P. {Xt, t ≥ 0} is adapted to
the (continuous time) filtration {Ft, t ≥ 0} and for any fixed t ≥ s ≥ 0, the identity
E[Xt|Fs] = Xs holds a.s. Replacing the preceding identity with E[Xt|Fs] ≥ Xs a.s.
for each t ≥ s ≥ 0, or with E[Xt|Fs] ≤ Xs a.s. for each t ≥ s ≥ 0, defines the
continuous time sub-MG and continuous time sup-MG, respectively. These three
classes of continuous time S.P. are related in the same manner as in the discrete
time setting (c.f. Remark 5.1.17).

It immediately follows from the preceding definition that t 7→ EXt is non-decreasing
for a sub-MG, non-increasing for a sup-MG, and constant (in time), for a MG.
Further, unless explicitly stated otherwise, one uses the canonical filtration when
studying MGs (or sub/sup-MGs).

Exercise 9.2.2. Suppose (Xt,Ft, t ≥ 0) is a continuous time sub-MG.

(a) Show that (Xt,FX
t , t ≥ 0) is also a sub-MG.

(b) Show that if EXt = EX0 for all t ≥ 0, then (Xt,Ft, t ≥ 0) is also a
martingale.
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The decomposition of conditional second moments, as in part (b) of Exercise 5.1.8,
applies for all continuous time square-integrable MGs.

Exercise 9.2.3. Suppose (Xt,Ft, t ≥ 0) is a square-integrable MG. Verify that

(9.2.1) E[X2
t |Fs]−X2

s = E[(Xt −Xs)
2|Fs] for any t ≥ s ≥ 0 ,

and deduce that t 7→ EX2
t is non-decreasing.

As you see next, the Wiener process and the compensated Poisson process play
the same role that the random walk of zero-mean increments plays in the discrete
time setting (with Wiener process being the prototypical MG of continuous sample
functions, and compensated Poisson process the prototypical MG of discontinuous
RCLL sample functions).

Proposition 9.2.4. Any integrable S.P. {Xt, t ≥ 0} of independent increments
(see Exercise 8.1.12), and constant mean function is a MG.

Proof. Recall that a S.P. Xt has independent increments if Xt+h − Xt is
independent of FX

t , for all h > 0 and t ≥ 0. We have also assumed that E|Xt| <∞
and EXt = EX0 for all t ≥ 0. Therefore, E[Xt+h −Xt|FX

t ] = E[Xt+h −Xt] = 0.
Further, Xt ∈ mFX

t and hence E[Xt+h|FX
t ] = Xt. That is, {Xt,FX

t , t ≥ 0} is a
MG, as claimed. �

Example 9.2.5. In view of Exercise 8.3.13 and Proposition 9.2.4 we have that the
Wiener process/ Brownian motion (Wt, t ≥ 0) of Definition 8.3.12 is a martingale.
Combining Proposition 3.4.9 and Exercise 8.1.12, we see that the Poisson process
Nt of rate λ has independent increments and mean function ENt = λt. Conse-
quently, by Proposition 9.2.4 the compensated Poisson process Mt = Nt − λt is
also a martingale (and FM

t = FN
t ).

Similarly to Exercise 5.1.9, as you check next, a Gaussian martingale {Xt, t ≥ 0}
is necessarily square-integrable and of independent increments, in which case Mt =
X2
t − 〈X〉t is also a martingale.

Exercise 9.2.6.

(a) Show that if {Xt, t ≥ 0} is a square-integrable S.P. having zero-mean
independent increments, then (X2

t−〈X〉t,FX
t , t ≥ 0) is a MG with 〈X〉t =

EX2
t −EX2

0 a non-random, non-decreasing function.
(b) Prove that the conclusion of part (a) applies to any martingale {Xt, t ≥ 0}

which is a Gaussian S.P.
(c) Deduce that if {Xt, t ≥ 0} is square-integrable, with X0 = 0 and zero-

mean, stationary independent increments, then (X2
t − tEX2

1 ,FX
t , t ≥ 0)

is a MG.

In the context of the Brownian motion {Bt, t ≥ 0}, we deduce from part (b) of
Exercise 9.2.6 that {B2

t − t, t ≥ 0} is a MG. This is merely a special case of the
following collection of MGs associated with the standard Brownian motion.

Exercise 9.2.7. Let uk+1(t, y, θ) = ∂
∂θuk(t, y, θ) for k ≥ 0 and u0(t, y, θ) =

exp(θy − θ2t/2).

(a) Show that for any θ ∈ R the S.P. (u0(t, Bt, θ), t ≥ 0) is a martingale with
respect to FB

t .
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(b) Check that for k = 1, 2, . . .,

uk(t, y, 0) =

[k/2]∑
r=0

k!

(k − 2r)!r!
yk−2r(−t/2)r .

(c) Deduce that the S.P. (uk(t, Bt, θ), t ≥ 0), k = 1, 2, . . . are also MGs
with respect to FB

t , as are B2
t − t, B3

t − 3tBt, B
4
t − 6tB2

t + 3t2 and
B6
t − 15tB4

t + 45t2B2
t − 15t3.

(d) Verify that for each k ∈ Z+ and θ ∈ R the function uk(t, y, θ) solves the
heat equation ut(t, y) + 1

2uyy(t, y) = 0.

The collection of sub-MG (equivalently, sup-MG or MG), is closed under the
addition of S.P. (compare with Exercise 5.1.19).

Exercise 9.2.8. Suppose (Xt,Ft) and (Yt,Ft) are sub-MGs and t 7→ f(t) a non-
decreasing, non-random function.

(a) Verify that (Xt + Yt,Ft) is a sub-MG and hence so is (Xt + f(t),Ft).
(b) Rewrite this, first for sup-MGs Xt and Yt, then in case of MGs.

With the same proof as in Proposition 5.1.22, you are next to verify that the
collection of sub-MGs (and that of sup-MGs), is also closed under the application
of a non-decreasing convex (concave, respectively), function (c.f. Example 5.1.23
for the most common choices of this function).

Exercise 9.2.9. Suppose the integrable S.P. {Xt, t ≥ 0} and convex function
Φ : R 7→ R are such that E[|Φ(Xt)|] < ∞ for all t ≥ 0. Show that if (Xt,Ft) is a
MG then (Φ(Xt),Ft) is a sub-MG and the same applies even when (Xt,Ft) is only
a sub-MG, provided Φ(·) is also non-decreasing.

As you show next, the martingale Bayes rule of Exercise 5.5.16 applies also for a
positive, continuous time martingale (Zt,Ft, t ≥ 0).

Exercise 9.2.10. Suppose (Zt,Ft, t ≥ 0) is a (strictly) positive MG on (Ω,F ,P),
normalized so that EZ0 = 1. For each t > 0, let Pt = P

∣∣
Ft

and consider the equiva-

lent probability measure Qt on (Ω,Ft) of Radon-Nikodym derivative dQt/dPt = Zt.

(a) Show that Qs = Qt

∣∣
Fs

for any s ∈ [0, t].

(b) Fixing u ≤ s ∈ [0, t] and Y ∈ L1(Ω,Fs,Qt) show that Qt-a.s. (hence
also P-a.s.), EQt

[Y |Fu] = E[Y Zs|Fu]/Zu.

(c) Verify that if λ̃ > 0 and Nt is a Poisson Process of rate λ > 0 then

Zt = e(λ−λ̃)t(λ̃/λ)Nt is a strictly positive martingale with EZ0 = 1 and

show that {Nt, t ∈ [0, T ]} is a Poisson process of rate λ̃ under the measure
QT , for any finite T .

Remark. Up to the re-parametrization θ = log(λ̃/λ), the martingale Zt of part (c)
of the preceding exercise is of the form Zt = u0(t,Nt, θ) for u0(t, y, θ) = exp(θy −
λt(eθ − 1)). Building on it and following the line of reasoning of Exercise 9.2.7
yields the analogous collection of martingales for the Poisson process {Nt, t ≥ 0}.
For example, here the functions uk(t, y, θ) on (t, y) ∈ R+ × Z+ solve the equation
ut(t, y) + λ[u(t, y)− u(t, y + 1)] = 0, with Mt = u1(t,Nt, 0) being the compensated
Poisson process of Example 9.2.5 while u2(t,Nt, 0) is the martingale M2

t − λt.
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Remark. While beyond our scope, we note in passing that in continuous time the
martingale transform of Definition 5.1.27 is replaced by the stochastic integral Yt =∫ t

0
Vs dXs. This stochastic integral results with stochastic differential equations and

is the main object of study of stochastic calculus (to which many texts are devoted,
among them [KaS97]). In case Vs = Xs is the Wiener process Ws, the analog

of Example 5.1.29 is Yt =
∫ t

0
WsdWs, which for the appropriate definition of the

stochastic integral (due to Itô), is merely the martingale Yt = 1
2 (W 2

t − t). Indeed,
Itô’s stochastic integral is defined via martingale theory, at the cost of deviating
from the standard integration by parts formula. The latter would have applied if
the sample functions t 7→ Wt(ω) were differentiable w.p.1., which is definitely not
the case (as we shall see in Section 10.3).

Exercise 9.2.11. Suppose S.P. {Xt, t ≥ 0} is integrable and Ft-adapted. Show
that if E[Xu] ≥ E[Xτ ] for any u ≥ 0 and Ft-stopping time τ whose range τ(Ω) is
a finite subset of [0, u], then (Xt,Ft, t ≥ 0) is a sub-MG.
Hint: Consider τ = sIA + uIAc with s ∈ [0, u] and A ∈ Fs.

We conclude this sub-section with the relations between continuous and discrete
time (sub/super) martingales.

Example 9.2.12. Convince yourself that to any discrete time sub-MG (Yn,Gn, n ∈
Z+) corresponds the interpolated continuous time sub-MG (Xt,Ft, t ≥ 0) of the in-
terpolated right-continuous filtration Ft = G[t] and RCLL S.P. Xt = Y[t] of Example
9.1.5.

Remark 9.2.13. In proving results about continuous time MGs (or sub-MGs/sup-
MGs), we often rely on the converse of Example 9.2.12. Namely, for any non-
random, non-decreasing sequence {sk} ⊂ [0,∞), if (Xt,Ft) is a continuous time
MG (or sub-MG/sup-MG), then clearly (Xsk ,Fsk , k ∈ Z+) is a discrete time MG
(or sub-MG/sup-MG, respectively), while (Xsk ,Fsk , k ∈ Z−) is a RMG (or reversed
subMG/supMG, respectively), where s0 ≥ s−1 ≥ · · · ≥ s−k ≥ · · · .

9.2.2. Inequalities and convergence. In this section we extend the tail
inequalities and convergence properties of discrete time sub-MGs (or sup-MGs), to
the corresponding results for sub-MGs (and sup-MGs) of right-continuous sample
functions, which we call hereafter in short right-continuous sub-MGs (or sup-MGs).
We start with Doob’s inequality (compare with Theorem 5.2.6).

Theorem 9.2.14 (Doob’s inequality). If {Xs, s ≥ 0} is a right-continuous
sub-MG, then for t ≥ 0 finite, Mt = sup0≤s≤t Xs, and any x > 0

(9.2.2) P(Mt ≥ x) ≤ x−1E[XtI{Mt≥x}] ≤ x
−1E[(Xt)+] .

Proof. It suffices to show that for any y > 0

(9.2.3) yP(Mt > y) ≤ E[XtI{Mt>y}] .

Indeed, by dominated convergence, taking y ↑ x yields the left inequality in (9.2.2),
and the proof is then complete since E[ZIA] ≤ E[(Z)+] for any event A and inte-
grable R.V. Z.

Turning to prove (9.2.3), fix hereafter t ≥ 0 and let Q(2,`)
t+ denote the finite set

of dyadic rationals of the form j2−` ∈ [0, t] augmented by {t}. Recall Remark

9.2.13 that enumerating Q(2,`)
t+ in a non-decreasing order produces a discrete time
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sub-MG {Xsk}. Applying Doob’s inequality (5.2.1) for this sub-MG, we find that
xP(M(`) ≥ x) ≤ E[XtI{M(`)≥x}] for

M(`) = max
s∈Q(2,`)

t+

Xs ,

and any x > 0. Considering x ↓ y, it then follows by dominated convergence that

yP(M(`) > y) ≤ E[XtI{M(`)>y}] ,

for any ` ≥ 1. Next, setting Q(2)
t+ := Q(2)

t ∪ {t}, with Q(2,`)
t+ ↑ Q(2)

t+ as ` ↑ ∞,

M(`) ↑M(∞) = sup
s∈Q(2)

t+

Xs ,

and moreover, M(∞) = Mt by the right-continuity of the sample function t 7→ Xt

(compare with part (a) of Exercise 8.2.18). Consequently, for ` ↑ ∞ both P(M(`) >
y) ↑ P(Mt > y) and E[XtI{M(`)>y}]→ E[XtI{Mt>y}], thus completing the proof of
(9.2.3). �

With (y)p+ denoting hereafter the function (max(y, 0))p, we proceed with the re-
finement of Doob’s inequality for MGs or when the positive part of a sub-MG has
finite p-th moment for some p > 1 (compare to Exercise 5.2.11).

Exercise 9.2.15.

(a) Show that in the setting of Theorem 9.2.14, for any p ≥ 1, finite t ≥ 0
and x > 0,

P(Mt ≥ x) ≤ x−pE
[
(Xt)

p
+

]
,

(b) Show that if {Ys, s ≥ 0} is a right-continuous MG, then

P( sup
0≤s≤t

|Ys| ≥ y) ≤ y−pE
[
|Yt|p

]
.

By integrating Doob’s inequality (9.2.2) you bound the moments of the supremum
of a right-continuous sub-MG over a compact time interval.

Corollary 9.2.16 (Lp maximal inequalities). With q = q(p) = p/(p− 1), for
any p > 1, t ≥ 0 and a right-continuous sub-MG {Xs, s ≥ 0},

(9.2.4) E
[
( sup
0≤u≤t

Xu)p+
]
≤ qpE[(Xt)

p
+] ,

and if {Ys, s ≥ 0} is a right-continuous MG then also

(9.2.5) E
[
( sup
0≤u≤t

|Yu|)p
]
≤ qpE[|Yt|p] .

Proof. Adapting the proof of Corollary 5.2.13, the bound (9.2.4) is just the
conclusion of part (b) of Lemma 1.4.32 for the non-negative variables X = (Xt)+

and Y = (Mt)+, with the left inequality in (9.2.2) providing its hypothesis. We
are thus done, as the bound (9.2.5) is merely (9.2.4) in case of the non-negative
sub-MG Xt = |Yt|. �

In case p = 1 we have the following extension of Exercise 5.2.15.
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Exercise 9.2.17. Suppose {Xs, s ≥ 0} is a non-negative, right-continuous sub-
MG. Show that for any t ≥ 0,

E
[

sup
0≤u≤t

Xu

]
≤ (1− e−1)−1{1 + E[Xt(logXt)+]} .

Hint: Relying on Exercise 5.2.15, interpolate as in our derivation of (9.2.2).

Doob’s fundamental up-crossing inequality (see Lemma 5.2.18), extends to the
number of up-crossings in dyadic-times, as defined next.

Definition 9.2.18. The number of up-crossings (in dyadic-times), of the interval
[a, b] by the continuous time S.P. {Xu, u ∈ [0, t]}, is the random variable Ut[a, b] =
sup` Ut,`[a, b], where Ut,`[a, b](ω) denotes the number of up-crossings of [a, b] by the

finite sequence {Xsk(ω), sk ∈ Q(2,`)
t+ }, as in Definition 5.2.17.

Remark. It is easy to check that for any right-continuous S.P. the number of
up-crossings in dyadic-times coincides with the natural definition of the number of
up-crossings U?t [a, b] = sup{UF [a, b] : F a finite subset of [0, t]}, where UF [a, b] is the
number of up-crossings of [a, b] by {Xs(ω), s ∈ F} However, for example the non-
random S.P. Xt = It∈Q has zero up-crossings in dyadic-times, while U?t [a, b] = ∞
for any 1 > b > a > 0 and t > 0. Also, U?t [a, b] may be non-measurable on (Ω,F)
in the absence of right continuity of the underlying S.P.

Lemma 9.2.19 (Doob’s up-crossing inequality). If {Xs, s ≥ 0} is a sup-MG,
then for any t ≥ 0,

(9.2.6) (b− a)E(Ut[a, b]) ≤ E[(Xt − a)−]−E[(X0 − a)−] ∀a < b .

Proof. Fix b > a and t ≥ 0. Since {Q(2,`)
t+ } is a non-decreasing sequence of

finite sets, by definition ` 7→ Ut,` is non-decreasing and by monotone convergence
it suffices to show that for all `,

(b− a)E(Ut,`[a, b] ) ≤ E[(Xt − a)−]−E[(X0 − a)−] .

Recall Remark 9.2.13 that enumerating sk ∈ Q(2,`)
t+ in a non-decreasing order pro-

duces a discrete time sup-MG {Xsk , k = 0, . . . , n} with s0 = 0 and sn = t, so this
is merely Doob’s up-crossing inequality (5.2.6). �

Since Doob’s maximal and up-crossing inequalities apply for any right-continuous
sub-MG (and sup-MG), so do most convergence results we have deduced from them
in Section 5.3. For completeness, we provide a short summary of these results (and
briefly outline how to adapt their proofs), starting with Doob’s a.s. convergence
theorem.

Theorem 9.2.20 (Doob’s convergence theorem). Suppose right-continuous

sup-MG {Xt, t ≥ 0} is such that supt{E[(Xt)−]} < ∞. Then, Xt
a.s.→ X∞ and

E|X∞| ≤ lim inft E|Xt| is finite.

Proof. Let U∞[a, b] = supn∈Z+
Un[a, b]. Paralleling the proof of Theorem

5.3.2, in view of our assumption that supt{E[(Xt)−]} is finite, it follows from Lemma
9.2.19 and monotone convergence that E(U∞[a, b]) is finite for each b > a. Hence,
w.p.1. the variables U∞[a, b](ω) are finite for all a, b ∈ Q, a < b. By sample path
right-continuity and diagonal selection, in the set

Γa,b = {ω : lim inf
t→∞

Xt(ω) < a < b < lim sup
t→∞

Xt(ω)} ,
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it suffices to consider t ∈ Q(2), hence Γa,b ∈ F . Further, if ω ∈ Γa,b, then

Xq2k−1
(ω) < a < b < Xq2k(ω) ,

for some dyadic rationals qk ↑ ∞, hence U∞[a, b](ω) = ∞. Consequently, the a.s.
convergence of Xt to X∞ follows as in the proof of Lemma 5.3.1. Finally, the stated
bound on E|X∞| is then derived exactly as in the proof of Theorem 5.3.2. �

Remark. Similarly to Exercise 5.3.3, for right-continuous sub-MG {Xt} the finite-
ness of supt E|Xt|, of supt E[(Xt)+] and of lim inft E|Xt| are equivalent to each other
and to the existence of a finite limit for E|Xt| (or equivalently, for limt E[(Xt)+]),

each of which further implies that Xt
a.s.→ X∞ integrable. Replacing (Xt)+ by (Xt)−

the same applies for sup-MGs. In particular, any non-negative, right-continuous,
sup-MG {Xt, t ≥ 0} converges a.s. to integrable X∞ such that EX∞ ≤ EX0.

Note that Doob’s convergence theorem does not apply for the Wiener process
{Wt, t ≥ 0} (as E[(Wt)+] =

√
t/(2π) is unbounded). Indeed, as we see in Exercise

9.2.35, almost surely, lim supt→∞Wt =∞ and lim inft→∞Wt = −∞. That is, the
magnitude of oscillations of the Brownian sample path grows indefinitely.

In contrast, Doob’s convergence theorem allows you to extend Doob’s inequality
(9.2.2) to the maximal value of a U.I. right-continuous sub-MG over all t ≥ 0.

Exercise 9.2.21. Let M∞ = sups≥0 Xs for a U.I. right-continuous sub-MG

{Xt, t ≥ 0}. Show that Xt
a.s.→ X∞ integrable and for any x > 0,

(9.2.7) P(M∞ ≥ x) ≤ x−1E[X∞ I{M∞≥x}] ≤ x
−1E[(X∞)+] .

Hint: Start with (9.2.3) and adapt the proof of Corollary 5.3.4.

The following integrability condition is closely related to L1 convergence of right-
continuous sub-MGs (and sup-MGs).

Definition 9.2.22. We say that a sub-MG (Xt,Ft, t ≥ 0) is right closable, or
has a last element (X∞,F∞) if Ft ↑ F∞ and X∞ ∈ L1(Ω,F∞,P) is such that
for any t ≥ 0, almost surely E[X∞|Ft] ≥ Xt. A similar definition applies for a
sup-MG, but with E[X∞|Ft] ≤ Xt and for a MG, in which case we require that
E[X∞|Ft] = Xt, namely, that {Xt} is a Doob’s martingale of X∞ with respect to
{Ft} (see Definition 5.3.13).

Building upon Doob’s convergence theorem, we extend Theorem 5.3.12 and Corol-
lary 5.3.14, showing that for right-continuous MGs the properties of having a last
element, uniform integrability and L1 convergence, are equivalent to each other.

Proposition 9.2.23. The following conditions are equivalent for a right-continuous
non-negative sub-MG {Xt, t ≥ 0}:

(a) {Xt} is U.I.;

(b) Xt
L1

→ X∞;

(c) Xt
a.s.→ X∞ a last element of {Xt}.

Further, even without non-negativity (a) =⇒ (b) =⇒ (c) and a right-continuous
MG has any, hence all, of these properties, if and only if it is a Doob martingale.

Remark. By definition, any non-negative sup-MG has a last element X∞ = 0
(and obviously, the same applies for any non-positive sub-MG), but many non-
negative sup-MGs are not U.I. (for example, any non-degenerate critical branching
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process is such, as explained in the remark following the proof of Proposition 5.5.5).
So, whereas a MG with a last element is U.I. this is not always the case for sub-MGs
(and sup-MGs).

Proof. (a) =⇒ (b): U.I. implies L1-boundedness which for a right-continuous
sub-MG yields by Doob’s convergence theorem the convergence a.s., and hence
in probability of Xt to integrable X∞. Since {Xt} is U.I. the corresponding L1

convergence then follows (see Theorem 1.3.49). We further note that for a right-
continuous sub-MGs, the L1 convergence of (b) suffices for the corresponding a.s.
convergence.
(b) yields a last element: With X∞ denoting the L1 limit of the collection {Xt}, it
is left to show that E[X∞|Fs] ≥ Xs for any s ≥ 0. Fixing t > s and A ∈ Fs, by the
definition of sub-MG we have E[XtIA] ≥ E[XsIA]. Further, E[XtIA] → E[X∞IA]
(recall part (c) of Exercise 1.3.55). Consequently, E[X∞IA] ≥ E[XsIA] for all
A ∈ Fs. That is, E[X∞|Fs] ≥ Xs.
Last element and non-negative =⇒ (a): Since Xt ≥ 0 and EXt ≤ EX∞ finite, it
follows that for any finite t ≥ 0 and M > 0, by Markov’s inequality P(Xt > M) ≤
M−1EXt ≤ M−1EX∞ → 0 as M ↑ ∞. It then follows that E[X∞I{Xt>M}] con-
verges to zero as M ↑ ∞, uniformly in t (recall part (b) of Exercise 1.3.43). Further,
by definition of the last element we have that E[XtI{Xt>M}] ≤ E[X∞I{Xt>M}].
Therefore, E[XtI{Xt>M}] also converges to zero as M ↑ ∞, uniformly in t, i.e.
{Xt} is U.I.
Equivalence for MGs: For a right-continuous U.I. MG we have by the preceding the
a.s. and L1 convergence to X∞ such that for any fixed t ≥ 0, a.s. Xt ≤ E[X∞|Ft].
Applying such reasoning also for the right-continuous U.I. MG {−Xt} we deduce
that X∞ is a last element of the Doob’s martingale Xt = E[X∞|Ft]. Conversely,
recall Definition 9.2.22 that a MG with a last element must be a Doob’s martingale,
and thereby also U.I. (see Proposition 4.2.33). �

Finally, paralleling the proof of Proposition 5.3.23, upon combining Doob’s con-
vergence theorem 9.2.20 with Doob’s Lp maximal inequality (9.2.5) we arrive at
Doob’s Lp MG convergence.

Proposition 9.2.24 (Doob’s Lp martingale convergence).
If right-continuous MG {Xt, t ≥ 0} is Lp-bounded for some p > 1, then Xt → X∞
a.s. and in Lp (in particular, ‖Xt‖p → ‖X∞‖p).

Throughout we rely on right continuity of the sample functions to control the tails
of continuous time sub/sup-MGs and thereby deduce convergence properties. Of
course, the interpolated MGs of Example 9.2.12 and the MGs derived in Exercise
9.2.7 out of the Wiener process are right-continuous. More generally, as shown
next, for any MG the right-continuity of the filtration translates (after a modifica-
tion) into RCLL sample functions, and only a little more is required for an RCLL
modification in case of a sup-MG (or a sub-MG).

Theorem 9.2.25. Suppose (Xt,Ft, t ≥ 0) is a sup-MG with right-continuous fil-
tration {Ft, t ≥ 0} and t 7→ EXt is right-continuous. Then, there exists an RCLL

modification {X̃t, t ≥ 0} of {Xt, t ≥ 0} such that (X̃t,Ft, t ≥ 0) is a sup-MG.

Proof. Step 1. To construct {X̃t, t ≥ 0} recall Lemma 9.2.19 that any sup-
MG {Xt, t ≥ 0} has a finite expected number of up-crossings E(Un[a, b]) for each
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b > a and n ∈ Z+. Hence, P(Γ) = 0, where

Γ = {ω : Un[a, b](ω) =∞, for some n ∈ Z+, a, b ∈ Q, b > a} .

Further, if ω ∈ Ω is such that for some 0 ≤ t < n,

lim inf
q↓t,q∈Q(2)

Xq(ω) < lim sup
q↓t,q∈Q(2)

Xq(ω),

then there exist a, b ∈ Q, b > a, and a decreasing sequence qk ∈ Q(2)
n such that

Xq2k(ω) < a < b < Xq2k−1
(ω), which in turn implies that Un[a, b](ω) is infinite.

Thus, if ω /∈ Γ then the limits Xt+(ω) of Xq(ω) over dyadic rationals q ↓ t exist at

all t ≥ 0. Considering the R.V.-s M±n = sup{(Xq)± : q ∈ Q(2)
n } and the event

Γ? = Γ
⋃
{ω : M±n (ω) =∞, for some n ∈ Z+} ,

observe that if ω /∈ Γ? then Xt+(ω) are finite valued for all t ≥ 0. Further, setting

X̃t(ω) = Xt+(ω)IΓc?(ω), note that ω 7→ X̃t(ω) is measurable and finite for each
t ≥ 0. We conclude the construction by verifying that P(Γ?) = 0. Indeed, recall
that right-continuity was applied only at the end of the proof of Doob’s inequality
(9.2.2), so using only the sub-MG property of (Xt)− we have that for all y > 0,

P(M−n > y) ≤ y−1E[(Xn)−] .

Hence, M−n is a.s. finite. Starting with Doob’s second inequality (5.2.3) for the
sub-MG {−Xt}, by the same reasoning P(M+

n > y) ≤ y−1(E[(Xn)−] + E[X0]) for
all y > 0. Thus, M+

n is also a.s. finite and as claimed P(Γ?) = 0.
Step 2. Recall that our convention, as in Remark 9.1.3, implies that the P-null
event Γ? ∈ F0. It then follows by the Ft-adaptedness of {Xt} and the preceding

construction of Xt+ , that {X̃t} is Ft+ -adapted, namely Ft-adapted (by the assumed
right-continuity of {Ft, t ≥ 0}). Clearly, our construction of Xt+ yields right-

continuous sample functions t 7→ X̃t(ω). Further, a re-run of part of Step 1 yields
the RCLL property, by showing that for any ω ∈ Γc? the sample function t 7→ Xt+(ω)
has finite left limits at each t > 0. Indeed, otherwise there exist a, b ∈ Q, b > a and
sk ↑ t such that Xs+2k−1

(ω) < a < b < Xs+2k
(ω). By construction of Xt+ this implies

the existence of qk ∈ Q(2)
n such that qk ↑ t and Xq2k−1

(ω) < a < b < Xq2k(ω).
Consequently, in this case Un[a, b](ω) =∞, in contradiction with ω ∈ Γc?.
Step 3. Fixing s ≥ 0, we show that Xs+ = Xs for a.e. ω /∈ Γ?, hence the Ft-
adapted S.P. {X̃t, t ≥ 0} is a modification of the sup-MG (Xt,Ft, t ≥ 0) and as

such, (X̃t,Ft, t ≥ 0) is also a sup-MG. Turning to show that Xs+
a.s.
= Xs, fix

non-random dyadic rationals qk ↓ s as k ↓ −∞ and recall Remark 9.2.13 that
(Xqk ,Fqk , k ∈ Z−) is a reversed sup-MG. Further, from the sup-MG property, for
any A ∈ Fs,

sup
k

E[XqkIA] ≤ E[XsIA] <∞ .

Considering A = Ω, we deduce by Exercise 5.5.21 that the collection {Xqk} is U.I.
and thus, the a.s. convergence of Xqk to Xs+ yields that E[XqkIA] → E[Xs+IA]
(recall part (c) of Exercise 1.3.55). Moreover, E[Xqk ] → E[Xs] in view of the
assumed right-continuity of t 7→ E[Xt]. Consequently, taking k ↓ −∞ we deduce
that E[Xs+IA] ≤ E[XsIA] for all A ∈ Fs, with equality in case A = Ω. With both
Xs+ and Xs measurable on Fs, it thus follows that a.s. Xs+ = Xs, as claimed. �
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9.2.3. The optional stopping theorem. We are ready to extend the very
useful Doob’s optional stopping theorem (see Theorem 5.4.1), to the setting of
right-continuous sub-MGs.

Theorem 9.2.26 (Doob’s optional stopping).
If (Xt,Ft, t ∈ [0,∞]) is a right-continuous sub-MG with a last element (X∞,F∞)

in the sense of Definition 9.2.22, then for any Ft-Markov times τ ≥ θ, the integrable
Xθ and Xτ are such that EXτ ≥ EXθ, with equality in case of a MG.

Remark. Recall Proposition 9.1.8 that right-continuous, Ft-adapted {Xs, s ≥ 0}
is Ft-progressively measurable, hence also Ft+ -progressively measurable. With the
existence of X∞ ∈ mF∞, it then follows from Proposition 9.1.13 that Xθ ∈ mFθ+
is a R.V. for any Ft-Markov time θ (and by the same argument Xθ ∈ mFθ in case
θ is an Ft-stopping time).

Proof. Fixing ` ≥ 1 and setting sk = k2−` for k ∈ Z+ ∪ {∞}, recall Remark
9.2.13 that (Xsk ,Fsk , k ∈ Z+) is a discrete time sub-MG. Further, the assumed
existence of a last element (X∞,F∞) for the sub-MG (Xt,Ft, t ≥ 0) implies that
a.s. E[Xs∞ |Fsk ] ≥ Xsk for any k ∈ Z+. With a slight abuse of notations we
call {sk}-valued R.V. τ an Fsk -stopping time if {τ ≤ sk} ∈ Fsk for all k ∈ Z+.
Then, as explained in Remark 5.4.2, it thus follows from Theorem 5.4.1 that for
any Fsk -stopping times τ` ≥ θ`, the R.V. Xτ` and Xθ` are integrable, with

(9.2.8) E[Xτ` ] ≥ E[Xθ` ] ≥ E[X0] .

In Lemma 9.1.16 we have constructed an Fsk -stopping time τ` = 2−`([2`τ ] + 1)
for the given Ft-Markov time τ . Similarly, we have the Fsk -stopping time θ` =
2−`([2`θ] + 1) corresponding to the Ft-Markov time θ. Our assumption that τ ≥ θ
translates to τ` ≥ θ`, hence the inequality (9.2.8) holds for any positive integer
`. By their construction τ`(ω) ↓ τ(ω) and θ`(ω) ↓ θ(ω) as ` ↑ ∞. Thus, by the
assumed right-continuity of t 7→ Xt(ω), we have the a.s. convergence of Xθ` to Xθ

and of Xτ` to Xτ (when `→∞).
We claim that (Xτ−n ,Fτ−n , n ∈ Z−) is a discrete time reversed sub-MG. Indeed,

fixing ` ≥ 2, note that Q(2,`−1)∪{∞} is a subset of Q(2,`)∪{∞} = {sk}. Appealing
once more to Remark 5.4.2, we can thus apply Lemma 5.4.3 for the pair τ`−1 ≥ τ`
of Fsk -stopping times and deduce that a.s.

E[Xτ`−1
|Fτ` ] ≥ Xτ` .

The latter inequality holds for all ` ≥ 2, amounting to the claimed reversed sub-
MG property. Since in addition infn EXτ−n ≥ EX0 is finite (see (9.2.8)), we deduce
from Exercise 5.5.21 that the sequence {Xτ`}∞`=1 is U.I. The same argument shows
that {Xθ`}∞`=1 is U.I. Hence, both sequences converge in L1 to their respective limits
Xτ and Xθ. In particular, both variables are integrable and in view of (9.2.8) they
further satisfy the stated inequality EXτ ≥ EXθ. �

We proceed with a few of the consequences of Doob’s optional theorem, starting
with the extension of Lemma 5.4.3 to our setting.

Corollary 9.2.27. If (Xt,Ft, t ∈ [0,∞]) is a right-continuous sub-MG with a last
element, then E[Xτ |Fθ+ ] ≥ Xθ w.p.1. for any Ft-Markov times τ ≥ θ (with equality
in case of a MG), and if θ is an Ft-stopping time, then further E[Xτ |Fθ] ≥ Xθ

w.p.1. (again with equality in case of a MG).
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Proof. Fixing A ∈ Fθ+ , it follows as in the proof of Lemma 5.4.3 that η =
θIA + τIAc is an Ft+ -stopping time. Thus, applying Theorem 9.2.26 for τ ≥ η we
deduce that E[Xτ ] ≥ E[Xη]. Further, Xτ and Xθ are integrable, so proceeding as
in the proof of Lemma 5.4.3 we get that E[(Z+ −Xθ)IA] ≥ 0 for Z+ = E[Xτ |Fθ+ ]
and all A ∈ Fθ+ . Recall as noted just after the statement Theorem 9.2.26, that
Xθ ∈ mFθ+ for the Ft+ -stopping time θ, and consequently, a.s. Z+ ≥ Xθ, as
claimed.
In case θ is an Ft-stopping time, note that by the tower property (and taking out

the known IA), also E[(Z − Xθ)IA] ≥ 0 for Z = E[Z+|Fθ] = E[Xτ |Fθ] and all
A ∈ Fθ. Here, as noted before, we further have that Xθ ∈ mFθ and consequently,
in this case, a.s. Z ≥ Xθ as well. Finally, if (Xt,Ft, t ≥ 0) is further a MG, combine
the statement of the corollary for sub-MGs (Xt,Ft) and (−Xt,Ft) to find that a.s.
Xθ = Z+ (and Xθ = Z for an Ft-stopping time θ). �

Remark 9.2.28. We refer hereafter to both Theorem 9.2.26 and its refinement
in Corollary 9.2.27 as Doob’s optional stopping. Clearly, both apply if the right-
continuous sub-MG (Xt,Ft, t ≥ 0) is such that a.s. E[Y |Ft] ≥ Xt for some inte-
grable R.V. Y and each t ≥ 0 (for by the tower property, such sub-MG has the
last element X∞ = E[Y |F∞]). Further, note that if τ is a bounded Ft-Markov
time, namely τ ∈ [0, T ] for some non-random finite T , then you dispense of the re-
quirement of a last element by considering these results for Yt = Xt∧T (whose last
element Y∞ is the integrable XT ∈ mFT ⊆ mF∞ and where Yτ = Xτ , Yθ = Xθ).
As this applies whenever both τ and θ are non-random, we deduce from Corollary
9.2.27 that if Xt is a right-continuous sub-MG (or MG) for some filtration {Ft},
then it is also a right-continuous sub-MG (or MG, respectively), for the correspond-
ing filtration {Ft+}.

The latter observation leads to the following result about the stopped continuous
time sub-MG (compare to Theorem 5.1.32).

Corollary 9.2.29. If η is an Ft-stopping time and (Xt,Ft, t ≥ 0) is a right-
continuous subMG (or supMG or a MG), then Xt∧η = Xt∧η(ω)(ω) is also a right-
continuous subMG (or supMG or MG, respectively), for this filtration.

Proof. Recall part (b) of Exercise 9.1.10, that τ = u ∧ η is a bounded Ft-
stopping time for each u ∈ [0,∞). Further, fixing s ≤ u, note that for any A ∈ Fs,

θ = (s ∧ η)IA + (u ∧ η)IAc ,

is an Ft-stopping time such that θ ≤ τ . Indeed, as Fs ⊆ Ft when s ≤ t, clearly

{θ ≤ t} = {η ≤ t} ∪ (A ∩ {s ≤ t}) ∪ (Ac ∩ {s ≤ u ≤ t}) ∈ Ft ,

for all t ≥ 0. In view of Remark 9.2.28 we thus deduce, upon applying Theorem
9.2.26, that E[IAXu∧η] ≥ E[IAXs∧η] for all A ∈ Fs. From this we conclude that
the sub-MG condition E[Xu∧η | Fs] ≥ Xs∧η holds a.s. whereas the right-continuity
of t 7→ Xt∧η is an immediate consequence of right-continuity of t 7→ Xt. �

In the discrete time setting we have derived Theorem 5.4.1 also for U.I. {Xn∧τ}
and mostly used it in this form (see Remark 5.4.2). Similarly, you now prove
Doob’s optional stopping theorem for right-continuous sub-MG (Xt,Ft, t ≥ 0) and
Ft-stopping time τ such that {Xt∧τ} is U.I.
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Exercise 9.2.30. Consider a right-continuous sub-MG (Xt,Ft, t ≥ 0) and Ft-
stopping times τ ≥ θ.
(a) Fixing finite, non-random u ≥ 0, show that a.s. E[Xu∧τ |Fθ] ≥ Xu∧θ (with
equality in case of a MG).
Hint: Apply Corollary 9.2.27 for the stopped sub-MG (Xt∧u,Ft, t ≥ 0).
(b) Show that if (Xu∧τ , u ≥ 0) is U.I. then Xθ and Xτ (defined as lim suptXt for
τ =∞), are integrable and E[Xτ |Fθ] ≥ Xθ a.s. (with equality for a MG).
Hint: Show that Yu = Xu∧τ has a last element.

Relying on Corollary 9.2.27 you can now also extend Corollary 5.4.5.

Exercise 9.2.31. Suppose (Xt,Ft, t ≥ 0) is a right-continuous sub-MG and {τk}
is a non-decreasing sequence of Ft-stopping times. Show that if (Xt,Ft, t ≥ 0) has a
last element or supk τk ≤ T for some non-random finite T , then (Xτk ,Fτk , k ∈ Z+)
is a discrete time sub-MG.

Next, restarting a right-continuous sub-MG at a stopping time yields another
sub-MG and an interesting formula for the distribution of the supremum of certain
non-negative MGs.

Exercise 9.2.32. Suppose (Xt,Ft, t ≥ 0) is a right-continuous sub-MG and that
τ is a bounded Ft-stopping time.

(a) Verify that if Ft is a right-continuous filtration, then so is Gt = Ft+τ .
(b) Taking Yt = Xτ+t − Xτ , show that (Yt,Gt, t ≥ 0) is a right-continuous

sub-MG.

Exercise 9.2.33. Consider a non-negative MG {Zt, t ≥ 0} of continuous sample

functions, such that Z0 = 1 and Zt
a.s.→ 0 as t→∞. Show that for any x > 1,

P(sup
t>0

Zt ≥ x) = x−1 .

Exercise 9.2.34. Using Doob’s optional stopping theorem re-derive Doob’s in-
equality. Namely, show that for t, x > 0 and right-continuous sub-MG {Xs, s ≥ 0},

P( sup
0≤s≤t

Xs > x) ≤ x−1E[(Xt)+] .

Hint: Consider the sub-MG ((Xu∧t)+,FX
u ), the FX

u -Markov time θ = inf{s ≥ 0 :
Xs > x}, and τ =∞.

We conclude this sub-section with concrete applications of Doob’s optional stop-
ping theorem in the context of first hitting times for the Wiener process (Wt, t ≥ 0)
of Definition 8.3.12.

Exercise 9.2.35. For r ≤ 0 consider Z
(r)
t = Wt + rt, the Brownian motion with

drift (and continuous sample functions), starting at Z
(r)
0 = 0.

(a) Check that the first hitting time τ
(r)
b = inf{t ≥ 0 : Z

(r)
t ≥ b} of level

b > 0, is an FW
t -stopping time.

(b) For s > 0 set θ(r, s) =
√
r2 + 2s− r and show that

E[exp(−sτ (r)
b )] = exp(−θ(r, s)b) .

Hint: Check that 1
2θ

2 +rθ−s = 0 at θ = θ(r, s), then stop the martingale

u0(t,Wt, θ(r, s)) of Exercise 9.2.7 at τ
(r)
b .
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(c) Letting s ↓ 0 deduce that P(τ
(r)
b <∞) = exp(2rb).

(d) Considering now r = 0 and b ↑ ∞, deduce that a.s. lim supt→∞Wt =∞
and lim inft→∞Wt = −∞.

Exercise 9.2.36. Consider the exit time τ
(r)
a,b = inf{t ≥ 0 : Z

(r)
t /∈ (−a, b)} of an

interval, for the S.P. Z
(r)
t = Wt+rt of continuous sample functions, where W0 = 0,

r ∈ R and a, b > 0 are finite non-random.

(a) Check that τ
(r)
a,b is a.s. finite FW

t -stopping time and show that for any
r 6= 0,

P(Z
(r)

τ
(r)
a,b

= −a) = 1−P(Z
(r)

τ
(r)
a,b

= b) =
1− e−2rb

e2ra − e−2rb
,

while P(W
τ
(0)
a,b

= −a) = b/(a+ b).

Hint: For r 6= 0 consider u0(t,Wt,−2r) of Exercise 9.2.7 stopped at τ
(r)
a,b .

(b) Show that for all s ≥ 0

E(e−sτ
(0)
a,b ) =

sinh(a
√

2s) + sinh(b
√

2s)

sinh((a+ b)
√

2s)
.

Hint: Stop the MGs u0(t,Wt,±
√

2s) of Exercise 9.2.7 at τa,b = τ
(0)
a,b .

(c) Deduce that Eτa,b = ab and Var(τa,b) = ab
3 (a2 + b2).

Hint: Recall part (b) of Exercise 3.2.40.

Exercise 9.2.37. (a). Utilize some of the MGs from Exercise 9.2.7 part (c), to
show that for a standard Wiener process (Wt, t ≥ 0), any FW

t -stopping time τ and
finite non-random u ≥ 0,

(9.2.9) E[Wτ∧u] = 0, E[τ ∧ u] = E[W 2
τ∧u] E[(τ ∧ u)2] ≤ 4E[W 4

τ∧u] .

(b). Deduce that the relations in (9.2.9) extend to u =∞, provided {W k
τ∧u, u ≥ 0}

are U.I. for k = 1, 2, 4, respectively.

Here is a related result about first hitting time of spheres by a standard d-
dimensional Brownian motion.

Definition 9.2.38. The standard d-dimensional Brownian motion is the Rd-
valued S.P. {W (t), t ≥ 0} such that W (t) = (W1(t), . . . ,Wd(t)) with {Wi(t), t ≥ 0},
i = 1, 2, . . . , d mutually independent, standard (one-dimensional) Wiener processes.
It is clearly a MG and a centered Rd-valued Gaussian S.P. of continuous sample
functions and stationary, independent increments.

Exercise 9.2.39. Let FW
t = σ(W (s), s ≤ t) denote the canonical filtration of

a standard k-dimensional Brownian motion, Rt = ‖W (t)‖2 its Euclidean distance
from the origin and θb = inf{t ≥ 0 : Rt ≥ b} the corresponding first hitting time of
a sphere of radius b > 0 centered at the origin.

(a) Show that Mt = R2
t − kt is an FW

t -martingale of continuous sample
functions and that θb is an a.s. finite FW

t -stopping time.
(b) Deduce that E[θb] = b2/k.

Remark. The S.P. {Rt, t ≥ 0} of the preceding exercise is called the Bessel
process with dimension k. Though we shall not do so, it can be shown that the

S.P. Bt = Rt − ν
∫ t

0
R−1
s ds is well-defined and in fact is a standard Wiener process
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(c.f. [KaS97, Proposition 3.3.21]), with ν = (k − 1)/2 the corresponding index of
the Bessel process. The Bessel process is thus defined for all ν ≥ 1/2 (and starting
at R0 = r > 0, also for 0 < ν < 1/2). One can then further show that if R0 = r > 0
then Pr(inft≥0Rt > 0) = I{ν>1/2} (hence the k-dimensional Brownian motion is
O-transient for k ≥ 3, see Definition 6.3.21), and Pr(Rt > 0, for all t ≥ 0) = 1 even
for the critical case of ν = 1/2 (so by translation, for any given point z ∈ R2, the
two-dimensional Brownian path, starting at any position other than z ∈ R2 w.p.1.
enters every disc of positive radius centered at z but never reaches the point z).

9.2.4. Doob-Meyer decomposition and square-integrable martingales.
In this section we study the structure of square-integrable martingales and in
particular the roles of the corresponding predictable compensator and quadratic
variation. In doing so, we fix throughout the probability space (Ω,F ,P) and a
right-continuous filtration {Ft} on it, augmented so that every P-null set is in F0

(see Remark 9.1.3).

Definition 9.2.40. We denote by M2 the vector space of all square-integrable
martingales {Xt, t ≥ 0} for the fixed right-continuous filtration, which start at
X0 = 0 and have right-continuous sample functions. We further denote by Mc

2

the linear subspace of M2 consisting of those square-integrable martingales whose
sample functions are continuous (and as before X0 = 0).

As in the discrete time setting of Section 5.3.2, the key to the study of a square-
integrable martingale X ∈M2 is the Doob-Meyer decomposition of X2

t to the sum
of a martingale and the predictable quadratic variation 〈X〉t. More generally, the
Doob-Meyer decomposition is the continuous time analog of Doob’s decomposition
of any discrete time integrable process as the sum of a martingale and a predictable
sequence. The extension of the concept of predictable S.P. to the continuous time
setting is quite subtle and outside our scope, but recall Exercise 5.2.2 that when
decomposing a sub-MG, the non-martingale component should be an increasing
process, as defined next.

Definition 9.2.41. An Ft-adapted, integrable S.P. {At, t ≥ 0} of right-continuous,
non-decreasing sample functions starting at A0 = 0, is called an increasing process
(or more precisely, an Ft-increasing process).

Remark. An increasing process is obviously a non-negative, right-continuous,
sub-MG. By monotonicity, A∞ = limt→∞At is a well defined random variable,
and due to Proposition 9.2.23, integrability of A∞ is equivalent to {At} being U.I.
which in turn is equivalent to this sub-MG having a last-element (i.e. being right
closable).

Recall the notion of q-th variation of a function f : [a, b] 7→ R, with q > 0 a
parameter, which we next extend to the q-th variation of continuous time S.P.-s.

Definition 9.2.42. For any finite partition π = {a = s
(π)
0 < s

(π)
1 < · · · < s

(π)
k =

b} of [a, b], let ‖π‖ = maxki=1{s
(π)
i − s(π)

i−1} denote the length of the longest interval
in π and

V
(q)
(π) (f) =

k∑
i=1

|f(s
(π)
i )− f(s

(π)
i−1)|q
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denote the q-th variation of the function f(·) on the partition π. The q-th variation
of f(·) on [a, b] is then the [0,∞]-valued

(9.2.10) V (q)(f) = lim
‖π‖→0

V
(q)
(π) (f) ,

provided such limit exists (namely, the same R-valued limit exists along each se-
quence {πn, n ≥ 1} such that ‖πn‖ → 0). Similarly, the q-th variation on [a, b]

of a S.P. {Xt, t ≥ 0}, denoted V (q)(X) is the limit in probability of V
(q)
(π) (X·(ω))

per (9.2.10), if such a limit exists, and when this occurs for any compact interval
[0, t], we have the q-th variation, denoted V (q)(X)t, as a stochastic process with
non-negative, non-decreasing sample functions, such that V (q)(X)0 = 0.

Remark. As you are soon to find out, of most relevance here is the case of q-
th variation for q = 2, which is also called the quadratic variation. Note also

that V
(1)
(π) (f) is bounded above by the total variation of the function f , namely

V (f) = sup{V (1)
(π) (f) : π a finite partition of [a, b]} (which induces at each interval a

norm on the linear subspace of functions of finite total variation, see also the related
Definition 3.2.22 of total variation norm for finite signed measures). Further, as
you show next, if V (1)(f) exists then it equals to V (f) (but beware that V (1)(f)
may not exist, for example, in case f(t) = 1Q(t)).

Exercise 9.2.43.

(a) Show that if f : [a, b] 7→ R is monotone then V
(1)
(π) (f) = maxt∈[a,b]{f(t)}−

mint∈[a,b]{f(t)} for any finite partition π, so in this case V (1)(f) = V (f)
is finite.

(b) Show that π 7→ V
(1)
(π) (·) is non-decreasing with respect to a refinement

of the finite partition π of [a, b] and hence, for each f there exist finite

partitions πn such that ‖πn‖ ↓ 0 and V
(1)
(πn)(f) ↑ V (f).

(c) For f : [0,∞) 7→ R and t ≥ 0 let V (f)t denote the value of V (f) for
the interval [0, t]. Show that if f(·) is left-continuous, then so is the
non-decreasing function t 7→ V (f)t.

(d) Show that if t 7→ Xt is left-continuous, then V (X)t is FX
t -progressively

measurable, and τn = inf{t ≥ 0 : V (X)t ≥ n} are non-decreasing FX
t -

Markov times such that V (X)t∧τn ≤ n for all n and t.
Hint: Show that enough to consider for V (X)t the countable collection

of finite partitions for which s
(π)
i ∈ Q(2)

t+ , then note that {τn < t} =
∪k≥1{V (X)t−k−1 ≥ n}.

From the preceding exercise we see that any increasing process At has finite total
variation, with V (A)t = V (1)(A)t = At for all t. This is certainly not the case for
non-constant continuous martingales, as shown in the next lemma (which is also
key to the uniqueness of the Doob-Meyer decomposition for sub-MGs of continuous
sample path).

Lemma 9.2.44. A martingale Mt of continuous sample functions and finite total
variation on each compact interval, is indistinguishable from a constant.
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Remark. Sample path continuity is necessary here, for in its absence we have
the compensated Poisson process Mt = Nt − λt which is a martingale (see Exam-
ple 9.2.5), of finite total variation on compact intervals (since V (M)t ≤ V (N)t +
V (λt)t = Nt + λt by part (a) of Exercise 9.2.43).

Proof. Considering the martingale M̃t = Mt−M0 such that V (M̃)t = V (M)t
for all t, we may and shall assume hereafter that M0 = 0. Suppose first that
V (M)t ≤ K is bounded, uniformly in t and ω by a non-random finite constant. In
particular, |Mt| ≤ K for all t ≥ 0 and fixing a finite partition π = {0 = s0 < s1 <
· · · < sk = t}, the discrete time martingale Msi is square integrable and as shown
in part (b) of Exercise 5.1.8

E[M2
t ] = E[

k∑
i=1

(Msi −Msi−1
)2] = E[V

(2)
(π) (M)] .

By the definition of the q-th variation and our assumption that V (M)t ≤ K, it
follows that

V
(2)
(π) (M) ≤ K k

sup
i=1
|Msi −Msi−1

| =: KDπ .

Taking expectation on both sides we deduce in view of the preceding identity that
E[M2

t ] ≤ KEDπ where 0 ≤ Dπ ≤ V (M)t ≤ K for all finite partitions π of [0, t].
Further, by the uniform continuity of t 7→Mt(ω) on [0, T ] we have that Dπ(ω)→ 0
when ‖π‖ ↓ 0, hence E[Dπ]→ 0 as ‖π‖ ↓ 0 and consequently E[M2

t ] = 0.
We have thus shown that if the continuous martingale Mt is such that supt V (M)t

is bounded by a non-random constant, then Mt(ω) = 0 for any t ≥ 0 and a.e.
ω ∈ Ω. To deal with the general case, recall Remark 9.2.28 that (Mt,FM

t+ , t ≥ 0) is
a continuous martingale, hence by Corollary 9.2.29 and part (d) of Exercise 9.2.43
so is (Mt∧τn ,FM

t+ , t ≥ 0), where τn = inf{t ≥ 0 : V (M)t ≥ n} are non-decreasing
and V (M)t∧τn ≤ n for all n and t. Consequently, for any t ≥ 0, w.p.1. Mt∧τn = 0
for n = 1, 2, . . .. The assumed finiteness of V (M)t(ω) implies that τn ↑ ∞, hence
Mt∧τn → Mt as n → ∞, resulting with Mt(ω) = 0 for a.e. ω ∈ Ω. Finally, by the
continuity of t 7→ Mt(ω), the martingale M must then be indistinguishable from
the zero stochastic process (see Exercise 8.2.3). �

Considering a bounded, continuous martingale Xt, the next lemma allows us to

conclude in the sequel that V
(2)
(π) (X) converges in L2 as ‖π‖ ↓ 0 and its limit can be

set to be an increasing process.

Lemma 9.2.45. Suppose X ∈ Mc
2. For any partition π = {0 = s0 < s1 < · · · }

of [0,∞) with a finite number of points on each compact interval, the S.P. M
(π)
t =

X2
t − V

(π)
t (X) is an Ft-martingale of continuous sample path, where

(9.2.11) V
(π)
t (X) =

k∑
i=1

(Xsi −Xsi−1
)2 + (Xt −Xsk)2 , ∀t ∈ [sk, sk+1) .

If in addition supt |Xt| ≤ K for some finite, non-random constant K, then V
(2)
(πn)(X)

is a Cauchy sequence in L2(Ω,F ,P) for any fixed b and finite partitions πn of [0, b]
such that ‖πn‖ → 0.
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Proof. (a). With FX
t ⊆ Ft, the Ft-adapted process Mt = M

(π)
t of continuous

sample paths is integrable (by the assumed square integrability of Xt). Noting that
for any k ≥ 0 and all sk ≤ s < t ≤ sk+1,

Mt −Ms = X2
t −X2

s − (Xt −Xsk)2 + (Xs −Xsk)2 = 2Xsk(Xt −Xs) ,

clearly then E[Mt−Ms|Fs] = 2XskE[Xt−Xs|Fs] = 0, by the martingale property
of (Xt,Ft), which suffices for verifying that {Mt,Ft, t ≥ 0} is a martingale.

(b). Utilizing these martingales, we now turn to prove the second claim of the
lemma. To this end, fix two finite partitions π and π′ of [0, b] and let π̂ denote

the partition based on the collection of points π ∪ π′. With U ′t = V
(π′)
t (X) and

Ut = V
(π)
t (X), applying part (a) of the proof for the martingale Zt = M

(π)
t −

M
(π′)
t = U ′t − Ut (which is square-integrable by the assumed boundedness of Xt),

we deduce that Z2
t −V

(π̂)
t (Z), t ∈ [0, b] is a martingale whose value at t = 0 is zero.

Noting that Zb = V
(2)
(π′)(X)− V (2)

(π) (X), it then follows that

E
[(
V

(2)
(π′)(X)− V (2)

(π) (X)
)2]

= E[Z2
b ] = E[V

(π̂)
b (Z)] .

Next, recall (9.2.11) that V
(π̂)
b (Z) is a finite sum of terms of the form (U ′u−U ′s−Uu+

Us)
2 ≤ 2(U ′u−U ′s)2 + 2(Uu−Us)2. Consequently, V (π̂)(Z) ≤ 2V (π̂)(U ′) + 2V (π̂)(U)

and to conclude that V
(2)
(πn)(X) is a Cauchy sequence in L2(Ω,F ,P) for any finite

partitions πn of [0, b] such that ‖πn‖ → 0, it suffices to show that E[V
(π̂)
b (U)]→ 0

as ‖π′‖ ∨ ‖π‖ → 0.
To establish the latter claim, note first that since π̂ is a refinement of π, each

interval [tj , tj+1] of π̂ is contained within some interval [si, si+1] of π, and then

Utj+1 − Utj = (Xtj+1 −Xsi)
2 − (Xtj −Xsi)

2 = (Xtj+1 −Xtj )(Xtj+1 +Xtj − 2Xsi)

(see (9.2.11)). Since tj+1 − si ≤ ‖π‖, this implies in turn that

(Utj+1
− Utj )2 ≤ 4(Xtj+1

−Xtj )
2[osc‖π‖(X)]2 ,

where oscδ(X) = sup{|Xt −Xs| : |t− s| ≤ δ, t, s ∈ [0, b]}. Consequently,

V
(π̂)
b (U) ≤ 4V

(π̂)
b (X)[osc‖π‖(X)]2

and by the Cauchy-Schwarz inequality[
EV

(π̂)
b (U)

]2
≤ 16E

[(
V

(π̂)
b (X)

)2]
E
[(

osc‖π‖(X)
)4]

.

The random variables oscδ(X) are uniformly (in δ and ω) bounded (by 2K) and
converge to zero as δ ↓ 0 (in view of the uniform continuity of t 7→ Xt on [0, b]).
Thus, by bounded convergence the right-most expectation in the preceding inequal-

ity goes to zero as ‖π‖ → 0. To complete the proof simply note that V
(π̂)
b (X) is of

the form
∑`
j=1D

2
j for the differences Dj = Xtj −Xtj−1 of the uniformly bounded

discrete time martingale {Xtj}, hence E[
(
V

(π̂)
b (X)

)2
] ≤ 6K4 by part (c) of Exercise

5.1.8. �

Building on the preceding lemma, the following decomposition is an important
special case of the more general Doob-Meyer decomposition and a key ingredient
in the theory of stochastic integration.
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Theorem 9.2.46. For X ∈ Mc
2, the continuous modification of V (2)(X)t is the

unique Ft-increasing process At = 〈X〉t of continuous sample functions, such that
Mt = X2

t −At is an Ft-martingale (also of continuous sample functions), and any
two such decompositions of X2

t as the sum of a martingale and increasing process
are indistinguishable.

Proof. Step 1. Uniqueness. If X2
t = Mt+At = Nt+Bt with At, Bt increasing

processes of continuous sample paths and Mt, Nt martingales, then Yt = Nt−Mt =
At −Bt is a martingale of continuous sample paths, starting at Y0 = A0 −B0 = 0,
such that V (Y )t ≤ V (A)t+V (B)t = At+Bt is finite for any t finite. From Lemma
9.2.44 we then deduce that w.p.1. Yt = 0 for all t ≥ 0 (i.e. {At} is indistinguishable
of {Bt}), proving the stated uniqueness of the decomposition.

Step 2. Existence of V (2)(X)t when X is uniformly bounded.
Turning to construct such a decomposition, assume first that X ∈Mc

2 is uniformly

(in t and ω) bounded by a non-random finite constant. Let V`(t) = V
(π`)
t (X) of

(9.2.11) for the partitions π` of [0,∞) whose elements are the dyadic Q(2,`) =

{k2−`, k ∈ Z+}. By definition, V`(t) = V
(2)
(π′`)

(X) for the partitions π′` of [0, t] whose

elements are the finite collections Q(2,`)
t+ of dyadic from π` ∩ [0, t] augmented by

{t}. Since ‖π′`‖ ≤ ‖π`‖ = 2−`, we deduce from Lemma 9.2.45 that per t ≥ 0 fixed,
{V`(t), ` ≥ 1} is a Cauchy sequence in L2(Ω,F ,P). Recall Proposition 4.3.7 that
any Cauchy sequence in L2(Ω,F ,P) has a limit. So, in particular V`(t) converges
in L2, for `→∞, to some U(t, ω). For any (other) sequence π̃2n of finite partitions
of [0, t] such that ‖π̃2n‖ ↓ 0, upon interlacing π̃2n+1 = π′n we further have by

Lemma 9.2.45 that V
(2)
(π̃n)(X) is a Cauchy, hence convergent in L2, sequence. Its

limit coincides with the sub-sequential limit U(t, ω) along n` = 2` + 1, which also

matches the L2 limit of V
(2)
(π̃2n)(X). As this applies for any finite partitions π̃2n

of [0, t] such that ‖π̃2n‖ ↓ 0, we conclude that (t, ω) 7→ U(t, ω) is the quadratic
variation of {Xt}.
Step 3. Constructing At. Turning to produce a continuous modification At(ω) of
U(t, ω), recall Lemma 9.2.45 that for each ` the process M`,t = X2

t − V`(t) is an
Ft-martingale of continuous sample path. The same applies for Vn(t) − Vm(t) =
Mm,t−Mn,t, so fixing an integer j ≥ 1 we deduce by Doob’s L2 maximal inequality
(see (9.2.5) of Corollary 9.2.16), that

E[‖Vn − Vm‖2j ] ≤ 4E[(Vn(j)− Vm(j))2] ,

where ‖f‖j = sup{|f(t)| : t ∈ [0, j]} makes Y = C([0, j]) into a Banach space (see
part (b) of Exercise 4.3.8). In view of the L2 convergence of Vn(j) we have that
E[(Vn(j) − Vm(j))2] → 0 as n,m → ∞, hence Vn : Ω 7→ Y is a Cauchy sequence
in L2(Ω,F ,P;Y), which by part (a) of Exercise 4.3.8 converges in this space to
some Uj(·, ω) ∈ C([0, j]). By the preceding we further deduce that Uj(t, ω) is a
continuous modification on [0, j] of the pointwise L2 limit function U(t, ω). In view
of Exercise 8.2.3, for any j′ > j the S.P.-s Uj and Uj′ are indistinguishable on [0, j],
so there exists one square-integrable, continuous modification A : Ω 7→ C([0,∞))
of U(t, ω) whose restriction to each [0, j] coincides with Uj (up to one P-null set).
Step 4. The decomposition: At increasing and Mt = X2

t −At martingale.
First, as V`(0) = 0 for all `, also A0 = U(0, ω) = 0. We saw in Step 3 that
‖V`−A‖j → 0 in L2, hence also in L1 and consequently E[ϕ(‖V`−A‖j)]→ 0 when



336 9. CONTINUOUS TIME MARTINGALES AND MARKOV PROCESSES

`→∞, for ϕ(r) = r/(1 + r) ≤ r and any fixed positive integer j. Hence,

E[ρ(V`, A)] =

∞∑
j=1

2−jE[ϕ(‖V` −A‖j)]→ 0 ,

as ` → ∞, where ρ(·, ·) is a metric on C([0,∞)) for the topology of uniform
convergence on compact intervals (see Exercise 8.2.9). To verify that At is an

Ft-increasing process, recall Theorem 2.2.10 that ρ(Vnk , A)
a.s.→ 0 along some non-

random subsequence nk. That is, with F0 augmented as usual by all P-null sets,
Vnk(t, ω)→ At(ω) as k →∞, for all t ≥ 0 and ω /∈ N , where N ∈ F0 is such that
P(N) = 0. Setting At ≡ 0 when ω ∈ N , the Ft-adaptedness of Vnk(t) transfers to

At. Also, by construction t 7→ V
(π)
t is non-decreasing when restricted to the times

in π. Moreover, if q < q′ ∈ Q(2) then for all k large enough q, q′ ∈ πnk implying
that Vnk(q) ≤ Vnk(q′). Taking k →∞ it follows that Aq(ω) ≤ Aq′(ω) for all ω ∈ Ω,
thus by sample path continuity, At is an Ft-increasing process.
Finally, since the Ft-martingales M`,t converge in L1 for `→∞ (and t ≥ 0 fixed),

to the Ft-adapted process Mt = X2
t −At, it is easy to check that {Mt,Ft, t ≥ 0} is

a martingale.

Step 5. Localization. Having established the stated decomposition in case X ∈Mc
2

is uniformly bounded by a non-random constant, we remove the latter condition
by localizing via the stopping times τr = inf{t ≥ 0 : |Xt| ≥ r} for positive inte-
gers r. Indeed, note that since Xt(ω) is bounded on any compact time interval,

τr ↑ ∞ when r → ∞ (for each ω ∈ Ω). Further, with X
(r)
t = Xt∧τr a uniformly

bounded (by r), continuous martingale (see Corollary 9.2.29), by the preceding

proof we have Ft-increasing processes A
(r)
t , each of which is the continuous mod-

ification of the quadratic variation V (2)(X(r))t, such that M
(r)
t = X2

t∧τr − A
(r)
t

are continuous Ft-martingales. Since E[ρ(V (π`)(X(r)), A(r))] → 0 for ` → ∞ and
each positive integer r, in view of Theorem 2.2.10 we get by diagonal selection the
existence of a non-random sub-sequence nk → ∞ and a P-null set N? such that
ρ(V (πnk )(X(r)), A(r)) → 0 for k → ∞, all r and ω /∈ N?. From (9.2.11) we note

that V
(π)
t (X(r)) = V

(π)
t∧τr (X) for any t, ω, r and π. Consequently, if ω /∈ N? then

A
(r)
t = A

(r)
t∧τr for all t ≥ 0 and A

(r)
t = A

(r′)
t as long as r ≤ r′ and t ≤ τr. Since

t 7→ A
(r)
t (ω) are non-decreasing, necessarily A

(r)
t ≤ A

(r′)
t for all t ≥ 0. We thus

deduce that A
(r)
t ↑ At for any ω /∈ N? and all t ≥ 0. Further, with A

(r)
t inde-

pendent of r as soon as τr(ω) ≥ t, the non-decreasing sample function t 7→ At(ω)

inherits the continuity of t 7→ A
(r)
t (ω). Taking At(ω) ≡ 0 for ω ∈ N? we proceed

to show that At is integrable, hence an Ft-increasing process of continuous sample
functions. To this end, fixing u ≥ 0 and setting Zr = X2

u∧τr , by monotone con-

vergence EZr = EM
(r)
u + EA

(r)
u ↑ EAu when r → ∞ (as M

(r)
t are martingales,

starting at M
(r)
0 = 0). Since u ∧ τr ↑ u and the sample functions t 7→ Xt are con-

tinuous, clearly Zr → X2
u. Moreover, supr |Zr| ≤ (sup0≤s≤u |Xs|)2 is integrable (by

Doob’s L2 maximal inequality (9.2.5)), so by dominated convergence EZr → EX2
u.

Consequently, EAu = EX2
u is finite, as claimed.
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Next, fixing t ≥ 0, ε > 0, r ∈ Z+ and a finite partition π of [0, t], since V
(2)
(π) (X) =

V
(2)
(π) (X(r)) whenever τr ≥ t, clearly,

{|V (2)
(π) (X)−At| ≥ 2ε} ⊆ {τr < t} ∪ {|V (2)

(π) (X(r))−A(r)
t | ≥ ε} ∪ {|A

(r)
t −At| ≥ ε} .

We have shown already that V
(2)
(π) (X(r))

p→ A
(r)
t as ‖π‖ → 0. Hence,

lim sup
‖π‖→0

P(|V (2)
(π) (X)−At| ≥ 2ε) ≤ P(τr < t) + P(|A(r)

t −At| ≥ ε)

and considering r → ∞ we deduce that V
(2)
(π) (X)

p→ At. That is, the process {At}
is a modification of the quadratic variation of {Xt}.
We complete the proof by verifying that the integrable, Ft-adapted process Mt =
X2
t −At of continuous sample functions satisfies the martingale condition. Indeed,

since M
(r)
t are Ft-martingales, we have for each s ≤ u and all r that w.p.1

E[X2
u∧τr |Fs] = E[A(r)

u |Fs] +M (r)
s .

Considering r → ∞ we have already seen that X2
u∧τr → X2

u and a.s. A
(r)
u ↑

Au, hence also M
(r)
s

a.s.→ Ms. With supr{X2
u∧τr} integrable, we get by dominated

convergence of C.E. that E[X2
u∧τr |Fs]→ E[X2

u|Fs] (see Theorem 4.2.26). Similarly,

E[A
(r)
u |Fs] ↑ E[Au|Fs] by monotone convergence of C.E. hence w.p.1 E[X2

u|Fs] =
E[Au|Fs] +Ms for each s ≤ u, namely, (Mt,Ft) is a martingale. �

The following exercise shows that X ∈ Mc
2 has zero q-th variation for all q > 2.

Moreover, unless Xt ∈Mc
2 is zero throughout an interval of positive length, its q-th

variation for 0 < q < 2 is infinite with positive probability and its sample path are
then not locally γ-Hölder continuous for any γ > 1/2.

Exercise 9.2.47.

(a) Suppose S.P. {Xt, t ≥ 0} of continuous sample functions has an a.s.
finite r-th variation V (r)(X)t for each fixed t > 0. Show that then for
each t > 0 and q > r a.s. V (q)(X)t = 0 whereas if 0 < q < r, then
V (q)(X)t =∞ for a.e. ω for which V (r)(X)t > 0.

(b) Show that if X ∈ Mc
2 and Ãt is a S.P. of continuous sample path and

finite total variation on compact intervals, then the quadratic variation

of Xt + Ãt is 〈X〉t.
(c) Suppose X ∈ Mc

2 and Ft-stopping time τ are such that 〈X〉τ = 0. Show
that P(Xt∧τ = 0 for all t ≥ 0) = 1.

(d) Show that if a S.P. {Xt, t ≥ 0} is locally γ-Hölder continuous on [0, T ]
for some γ > 1/2, then its quadratic variation on this interval is zero.

Remark. You may have noticed that so far we did not need the assumed right-
continuity of Ft. In contrast, the latter assumption plays a key role in our proof of
the more general Doob-Meyer decomposition, which is to follow next.

We start by stating the necessary and sufficient condition under which a sub-
MG has a Doob-Meyer decomposition, namely, it is the sum of a martingale and
increasing part.
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Definition 9.2.48. An Ft-progressively measurable (and in particular Ft-adapted,
right-continuous), S.P. {Yt, t ≥ 0} is of class DL if the collection {Yu∧θ, θ an Ft-
stopping time} is U.I. for each finite, non-random u.

Theorem 9.2.49 (Doob-Meyer decomposition). A right-continuous, sub-MG
{Yt, t ≥ 0} for {Ft} admits the decomposition Yt = Mt + At with Mt a right-
continuous Ft-martingale and At an Ft-increasing process, if and only if {Yt, t ≥ 0}
is of class DL.

Remark 9.2.50. To extend the uniqueness of Doob-Meyer decomposition beyond
sub-MGs with continuous sample functions, one has to require At to be a natural
process. While we do not define this concept here, we note in passing that every
continuous increasing process is a natural process and a natural process is also
an increasing process (c.f. [KaS97, Definition 1.4.5]), whereas the uniqueness is
attained since if a finite linear combination of natural processes is a martingale,
then it is indistinguishable from zero (c.f. proof of [KaS97, Theorem 1.4.10]).

Proof outline. We focus on constructing the Doob-Meyer decomposition
for {Yt, t ∈ I} in case I = [0, 1]. To this end, start with the right-continuous
modification of the non-positive Ft-sub-martingale Zt = Yt−E[Y1|Ft], which exists
since t 7→ EZt is right-continuous (see Theorem 9.2.25). Suppose you can find
A1 ∈ L1(Ω,F1,P) such that

(9.2.12) At = Zt + E[A1|Ft] ,
is Ft-increasing on I. Then, Mt = Yt−At must be right-continuous, integrable and
Ft-adapted. Moreover, for any t ∈ I,

Mt = Yt −At = Yt − Zt −E[A1|Ft] = E[M1|Ft] .
So, by the tower property (Mt,Ft, t ∈ I) satisfies the martingale condition and we
are done.
Proceeding to construct such A1, fix ` ≥ 1 and for the (ordered) finite set Q(2,`)

1

of dyadic rationals recall Doob’s decomposition (in Theorem 5.2.1), of the discrete

time sub-MG {Zsj ,Fsj , sj ∈ Q(2,`)
1 } as the sum of a discrete time U.I. martingale

{M (`)
sj , sj ∈ Q(2,`)

1 } and the predictable, non-decreasing (in view of Exercise 5.2.2),

finite sequence {A(`)
sj , sj ∈ Q(2,`)

1 }, starting with A
(`)
0 = 0. Noting that Z1 = 0, or

equivalently M
(`)
1 = −A(`)

1 , it follows that for any q ∈ Q(2,`)
1

(9.2.13) A(`)
q = Zq −M (`)

q = Zq −E[M
(`)
1 |Fq] = Zq + E[A

(`)
1 |Fq] .

Relying on the fact that the sub-MG {Yt, t ∈ I} is of class DL, this representation

allows one to deduce that the collection {A(`)
1 , ` ≥ 1} is U.I. (for details see [KaS97,

proof of Theorem 1.4.10]). This in turn implies by the Dunford-Pettis compactness
criterion that there exists an integrable A1 and a non-random sub-sequence nk →∞
such that A

(nk)
1

wL1

→ A1, as in Definition 4.2.31. Now consider the Ft-adapted,
integrable S.P. defined via (9.2.12), where by Theorem 9.2.25 (and the assumed
right continuity of the filtration {Ft}), we may and shall assume that the U.I. MG
E[A1|Ft] has right-continuous sample functions (and hence, so does t 7→ At). Since

Q(2,`)
1 ↑ Q(2)

1 , upon comparing (9.2.12) and (9.2.13) we find that for any q ∈ Q(2)
1

and all ` large enough

A(`)
q −Aq = E[A

(`)
1 −A1|Fq] .
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Consequently, A
(nk)
q

wL1

→ Aq for all q ∈ Q(2)
1 (see Exercise 4.2.32). In particular,

A0 = 0 and setting q < q′ ∈ Q(2)
1 , V = I{Aq>Aq′} we deduce by the monotonicity

of j 7→ A
(`)
sj for each ` and ω, that

E[(Aq −Aq′)V ] = lim
k→∞

E[(A(nk)
q −A(nk)

q′ )V ] ≤ 0 .

So, by our choice of V necessarily P(Aq > Aq′) = 0 and consequently, w.p.1. the

sample functions t 7→ At(ω) are non-decreasing over Q(2)
1 . By right-continuity the

same applies over I and we are done, for {At, t ∈ I} of (9.2.12) is thus indistinguish-
able from an Ft-increasing process.
The same argument applies for I = [0, r] and any r ∈ Z+. While we do not

do so here, the Ft-increasing process {At, t ∈ I} can be further shown to be a
natural process. By the uniqueness of such decompositions, as alluded to in Re-
mark 9.2.50, it then follows that the restriction of the process {At} constructed on
[0, r′] to a smaller interval [0, r] is indistinguishable from the increasing process one
constructed directly on [0, r]. Thus, concatenating the processes {At, t ≤ r} and
{Mt, t ≤ r} yields the stated Doob-Meyer decomposition on [0,∞).
As for the much easier converse, fixing non-random u ∈ R, by monotonicity of
t 7→ At the collection {Au∧θ, θ an Ft-stopping time} is dominated by the integrable
Au hence U.I. Applying Doob’s optional stopping theorem for the right-continuous
MG (Mt,Ft), you further have that Mu∧θ = E[Mu|Fθ] for any Ft-stopping time θ
(see part (a) of Exercise 9.2.30), so by Proposition 4.2.33 the collection {Mu∧θ, θ
an Ft-stopping time} is also U.I. In conclusion, the existence of such Doob-Meyer
decomposition Yt = Mt +At implies that the right-continuous sub-MG {Yt, t ≥ 0}
is of class DL (recall part (b) of Exercise 1.3.55). �

Your next exercise provides a concrete instance in which Doob-Meyer decomposi-
tion applies, connecting it with the decomposition in Theorem 9.2.46 of the non-
negative sub-MG Yt = X2

t of continuous sample path, as the sum of the quadratic
variation 〈X〉t and the continuous martingale X2

t − 〈X〉t.

Exercise 9.2.51. Suppose {Yt, t ≥ 0} is a non-negative, right-continuous, sub-MG
for {Ft}.

(a) Show that Yt is in class DL.
(b) Show that if Yt further has continuous sample functions then the processes

Mt and At in its Doob-Meyer decomposition also have continuous sample
functions (and are thus unique).

Remark. From the preceding exercise and Remark 9.2.50, we associate to each
X ∈M2 a unique natural process, denoted 〈X〉t and called the predictable quadratic
variation of X, such that X2

t − 〈X〉t is a right-continuous martingale. However,
when X /∈ Mc

2, it is no longer the case that the predictable quadratic variation
matches the quadratic variation of Definition 9.2.42 (as a matter of fact, the latter
may not exist).

Example 9.2.52. A standard Brownian Markov process consists of a standard
Wiener process {Wt, t ≥ 0} and filtration {Ft, t ≥ 0} such that FW

s ⊆ Fs for any
s ≥ 0 while σ(Wt−Ws, t ≥ s) is independent of Fs (see also Definition 9.3.7 for its
Markov property). For right-continuous augmented filtration Ft, such process Wt

is in Mc
2 and further, Mt = W 2

t − t is a martingale of continuous sample path. We
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thus deduce from Theorem 9.2.46 that its (predictable) quadratic variation is the
non-random 〈W 〉t = t, which by Exercise 9.2.47 implies that the total variation of
the Brownian sample path is a.s. infinite on any interval of positive length. More
generally, recall part (b) of Exercise 9.2.6 that 〈X〉t is non-random for any Gauss-
ian martingale, hence so is the quadratic variation of any Gaussian martingale of
continuous sample functions.

As you show next, the type of convergence to the quadratic variation may be
strengthened (e.g. to convergence in L2 or a.s.) for certain S.P. by imposing some
restrictions on the partitions considered.

Exercise 9.2.53. Let V
(2)
(πn)(W ) denote the quadratic variations of the Wiener

process on a sequence of finite partitions πn of [0, t] such that ‖πn‖ → 0 as n→∞.

(a) Show that V
(2)
(πn)(W )

L2

→ t.

(b) Show that V
(2)
(πn)(W )

a.s.→ t whenever
∑∞
n=1 ‖πn‖ <∞.

Remark. However, beware that for a.e. ω ∈ Ω there exist random finite partitions

πn of [0, 1] such that ‖πn‖ → 0 and V
(2)
(πn)(W )→∞ (see [Fre71, Page 48]).

Example 9.2.54. While we shall not prove it, Lévy’s martingale characterization
of the Brownian motion states the converse of Example 9.2.52, that any X ∈ Mc

2

of quadratic variation 〈X〉t = t must be a standard Brownian Markov process (c.f.
[KaS97, Theorem 3.3.16]). However, recall Example 9.2.5 that for a Poisson pro-
cess Nt of rate λ, the compensated process Mt = Nt−λt is inM2 and you can easily
check that M2

t −λt is then a right-continuous martingale. Since the continuous in-
creasing process λt is natural, we deduce from the uniqueness of the Doob-Meyer
decomposition that 〈M〉t = λt. More generally, by the same argument we deduce
from part (c) of Exercise 9.2.6 that 〈X〉t = tE(X2

1 ) for any square-integrable S.P.
with X0 = 0 and zero-mean, stationary independent increments. In particular,
this shows that sample path continuity is necessary for Lévy’s characterization of
the Brownian motion and that the standard Wiener process is the only zero-mean,
square-integrable stochastic process Xt of continuous sample path and stationary
independent increments, such that X0 = 0.

Building upon Lévy’s characterization, you can now prove the following special
case of the extremely useful Girsanov’s theorem.

Exercise 9.2.55. Suppose (Wt,Ft, t ≥ 0) is a standard Brownian Markov process
on a probability space (Ω,F ,P) and fixing a non-random parameters θ ∈ R and
T > 0 consider the exponential Ft-martingale Zt = exp(θWt − θ2t/2) and the
corresponding probability measure QT (A) = E(IAZT ) on (Ω,FT ).

(a) Show that V (2)(Z)t = θ2
∫ t

0
Z2
udu.

(b) Show that W̃u = Wu − θu is for u ∈ [0, T ] an Fu-martingale on the
probability space (Ω,FT ,QT ).

(c) Deduce that (W̃t,Ft, t ≤ T ) is a standard Brownian Markov process on
(Ω,FT ,QT ).

Here is the extension to the continuous time setting of Lemma 5.2.7, Proposition
5.3.32 and Theorem 5.3.34.
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Exercise 9.2.56. Let Vt = sups∈[0,t] Ys and At be the increasing process of con-
tinuous sample functions in the Doob-Meyer decomposition of a non-negative, con-
tinuous, Ft-submartingale {Yt, t ≥ 0} with Y0 = 0.

(a) Show that P(Vτ ≥ x,Aτ < y) ≤ x−1E(Aτ ∧ y) for all x, y > 0 and any
Ft-stopping time τ .

(b) Setting c1 = 4 and cq = (2 − q)/(1 − q) for q ∈ (0, 1), conclude that
E[sups |Xs|2q] ≤ cqE[〈X〉q∞] for any X ∈ Mc

2 and q ∈ (0, 1], hence
{|Xt|2q, t ≥ 0} is U.I. when 〈X〉q∞ is integrable.

(c) For X ∈ Mc
2, let ΓX = {ω : 〈X〉∞(ω) < ∞}. Show that Xt(ω) has a

finite limit for a.e. ω ∈ ΓX , whereas Xt(ω)/f(〈X〉t(ω))→ 0 for any f(·)
as in Theorem 5.3.34 and for a.e. ω /∈ ΓX .

Taking X,Y ∈M2 we deduce from the Doob-Meyer decomposition of X±Y ∈M2

that (X ± Y )2
t − 〈X ± Y 〉t are right-continuous Ft-martingales. Considering their

difference we deduce that XY − 〈X,Y 〉 is a martingale for

〈X,Y 〉t =
1

4

[
〈X + Y 〉t − 〈X − Y 〉t

]
(this is an instance of the more general polarization technique). In particular, XY is
a right-continuous martingale whenever 〈X,Y 〉 = 0, prompting our next definition.

Definition 9.2.57. For any pair X,Y ∈M2, we call the S.P. 〈X,Y 〉t the bracket
of X and Y and say that X,Y ∈ M2 are orthogonal if for any t ≥ 0 the bracket
〈X,Y 〉t is a.s. zero.

Remark. It is easy to check that 〈X,X〉 = 〈X〉 for any X ∈ M2. Further, for
any s ∈ [0, t], w.p.1.

E[(Xt −Xs)(Yt − Ys)|Fs] = E[XtYt −XsYs|Fs] = E[〈X,Y 〉t − 〈X,Y 〉s|Fs],

so the orthogonality of X,Y ∈ M2 amounts to X and Y having uncorrelated
increments over [s, t], conditionally on Fs. Here is more on the structure of the
bracket as a bi-linear form onM2, which onMc

2 coincides with the cross variation
of X and Y .

Exercise 9.2.58. Show that for all X,Xi, Y ∈M2:

(a) 〈c1X1 + c2X2, Y 〉 = c1〈X1, Y 〉+ c2〈X2, Y 〉 for any ci ∈ R, i = 1, 2.

Hint: Recall Remark 9.2.50 that a martingale of the form
∑`
j=1±〈Uj〉

for Uj ∈M2 and ` finite, is zero.
(b) 〈X,Y 〉 = 〈Y,X〉.
(c) |〈X,Y 〉|2 ≤ 〈X〉〈Y 〉.
(d) With Zt = V (〈X,Y 〉)t, for a.e. ω ∈ Ω and all 0 ≤ s < t <∞,

Zt − Zs ≤
1

2
[〈X〉t − 〈X〉s + 〈Y 〉t − 〈Y 〉s] .

(e) Show that for X,Y ∈ Mc
2 the bracket 〈X,Y 〉t is also the limit in proba-

bility as ‖π‖ → 0 of

k∑
i=1

[X
t
(π)
i
−X

t
(π)
i−1

][Y
t
(π)
i
− Y

t
(π)
i−1

] ,

where π = {0 = t
(π)
0 < t

(π)
1 < · · · < t

(π)
k = t} is a finite partition of [0, t].
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We conclude with a brief introduction to stochastic integration (for more on this
topic, see [KaS97, Section 3.2]). Following our general approach to integration, the

Itô stochastic integral It =
∫ t

0
XsdWs is constructed first for simple processes Xt,

i.e. those having sample path that are piecewise constant on non-random intervals,
as you are to do next.

Exercise 9.2.59. Suppose (Wt,Ft) is a standard Brownian Markov process and
Xt is a bounded, Ft-adapted, left-continuous simple process. That is,

Xt(ω) = η0(ω)1{0}(t) +

∞∑
i=0

ηi(ω)1(ti,ti+1](t) ,

where 0 = t0 < t1 < · · · < tk < · · · is a non-random unbounded sequence and the
Ftn-adapted sequence {ηn(ω)} is bounded uniformly in n and ω.

(a) With At =
∫ t

0
X2
udu, show that both

It =

k−1∑
j=0

ηj(Wtj+1 −Wtj ) + ηk(Wt −Wtk), when t ∈ [tk, tk+1) ,

and I2
t −At are martingales with respect to Ft.

(b) Deduce that It ∈Mc
2 with At = 〈I〉t being its quadratic variation, and in

particular EI2
t =

∫ t
0

E[X2
u]du.

9.3. Markov and Strong Markov processes

In Subsection 9.3.1 we define Markov semi-groups and the corresponding Markov
processes. We also extend the construction of Markov chains from Subsection 6.1
to deal with these S.P. This is followed in Subsection 9.3.2 with the study of the
strong Markov property and the related Feller property, showing in particular that
both the Brownian motion and the Poisson process are strong Markov processes.
We then devote Subsection 9.3.3 to the study of Markov jump processes, which are
the natural extension of both Markov chains and (compound) Poisson processes.

9.3.1. Markov semi-groups, processes and the Markov property. We
start with the definition of a Markov process, focusing on (time) homogeneous
processes having (stationary, regular) transition probabilities (compare with Defi-
nitions 6.1.1 and 6.1.2).

Definition 9.3.1 (Markov processes). A collection {ps,t(·, ·), t ≥ s ≥ 0} of
transition probabilities on a measurable space (S,S) (as in Definition 6.1.2), is
consistent if it satisfies the Chapman-Kolmogorov equations

(9.3.1) pt1,t3(x,B) = pt1,t2pt2,t3(x,B) , ∀x ∈ S, B ∈ S,

for any t3 ≥ t2 ≥ t1 ≥ 0 (c.f. Corollary 6.3.3 for the composition of transition
probabilities). In particular, pt,t(x,B) = IB(x) = δx(B) for any t ≥ 0. Such
collection is called a Markov semi-group (of stationary transition probabilities), if
in addition ps,t = pt−s for all t ≥ s ≥ 0. The Chapman-Kolmogorov equations are
then

(9.3.2) ps+u(x,B) = pspu(x,B) , ∀x ∈ S, B ∈ S, u, s ≥ 0 ,

with p0(x,B) = IB(x) = δx(B) being the semi-group identity element.



9.3. MARKOV AND STRONG MARKOV PROCESSES 343

An Ft-adapted S.P. {Xt, t ≥ 0} taking values in (S,S) is an Ft-Markov process
of (consistent) transition probabilities {ps,t, t ≥ s ≥ 0} and state space (S,S) if for
any t ≥ s ≥ 0 and B ∈ S, almost surely

(9.3.3) P(Xt ∈ B|Fs) = ps,t(Xs, B) .

It is further a (time) homogeneous Ft-Markov process of semi-group {pu, u ≥ 0} if
for any u, s ≥ 0 and B ∈ S, almost surely

(9.3.4) P(Xs+u ∈ B|Fs) = pu(Xs, B) .

Remark. Recall that a Gn-Markov chain {Yn} is a discrete time S.P. Hence, in this
case one considers only t, s ∈ Z+ and (9.3.1) is automatically satisfied by setting
ps,t = ps,s+1ps+1,s+2 · · · pt−1,t to be the composition of the (one-step) transition
probabilities of the Markov chain (see Definition 6.1.2, with ps,s+1 = p independent
of s when the chain is homogeneous). Further, the interpolated process Xt = Y[t]

is then a right-continuous Ft-Markov process for the right-continuous interpolated
filtration Ft = G[t] of Example 9.1.5, but {Xt} is in general an inhomogeneous
Markov process, even in case the Markov chain {Yn} is homogeneous.
Similarly, if Ft-adapted S.P. (Xt, t ≥ 0) satisfies (9.3.4) for pt(x,B) = P(Xt ∈
B|X0 = x) and x 7→ pt(x,B) is measurable per fixed t ≥ 0 and B ∈ S, then
considering the tower property for IB(Xs+u)I{x}(X0) and σ(X0) ⊆ Fs, one easily
verifies that (9.3.2) holds, hence (Xt, t ≥ 0) is a homogeneous Ft-Markov process.
More generally, in analogy with our definition of Markov chains via (6.1.1), one
may opt to say that Ft-adapted S.P. (Xt, t ≥ 0) is an Ft-Markov process provided
for each B ∈ S and t ≥ s ≥ 0,

P(Xt ∈ B|Fs)
a.s.
= P(Xt ∈ B|Xs) .

Indeed, as noted in Remark 6.1.6 (in view of Exercise 4.4.5), for B-isomorphic
(S,S) this suffices for the existence of transition probabilities which satisfy (9.3.3).
However, this simpler to verify plausible definition of Markov processes results with
Chapman-Kolmogorov equations holding only up to a null set per fixed t3 ≥ t2 ≥
t1 ≥ 0. The study of such processes is consequently made more cumbersome, which
is precisely why we, like most texts, do not take this route.

By Lemma 6.1.3 we deduce from Definition 9.3.1 that for any f ∈ bS and all
t ≥ s ≥ 0,

(9.3.5) E[f(Xt)|Fs] = (ps,tf)(Xs) ,

where f 7→ (ps,tf) : bS 7→ bS and (ps,tf)(x) =
∫
ps,t(x, dy)f(y) denotes the

Lebesgue integral of f(·) under the probability measure ps,t(x, ·) per fixed x ∈ S.

The Chapman-Kolmogorov equations are necessary and sufficient for generating
consistent Markovian f.d.d. out of a given collection of transition probabilities and
a specified initial probability distribution. As outlined next, we thus canonically
construct the Markov process, following the same approach as in proving Theorem
6.1.8 (for Markov chain), and Proposition 8.1.8 (for continuous time S.P.).

Theorem 9.3.2. Suppose (S,S) is B-isomorphic. Given any (S,S)-valued consis-
tent transition probabilities {ps,t, t ≥ s ≥ 0}, the probability distribution ν on (S,S)
uniquely determines the linearly ordered consistent f.d.d.

(9.3.6) µ0,s1,...,sn = ν ⊗ p0,s1 ⊗ · · · ⊗ psn−1,sn
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for 0 = s0 < s1 < · · · < sn, and there exists a Markov process of state space (S,S)
having these f.d.d. Conversely, the f.d.d. of any Markov process having initial
probability distribution ν(B) = P(X0 ∈ B) and satisfying (9.3.3), are given by
(9.3.6).

Proof. Recall Proposition 6.1.5 that ν ⊗ p0,s1 ⊗ · · · ⊗ psn−1,sn denotes the
Markov-product-like measures, whose evaluation on product sets is by iterated in-
tegration over the transition probabilities psk−1,sk , in reverse order k = n, . . . , 1,
followed by a final integration over the initial measure ν. As shown in this proposi-
tion, given any transition probabilities {ps,t, t ≥ s ≥ 0}, the probability distribution
ν on (S,S) uniquely determines ν ⊗ p0,s1 ⊗ · · · ⊗ psn−1,sn , namely, the f.d.d. spec-
ified in (9.3.6). We then uniquely specify the remaining f.d.d. as the probability
measures µs1,...,sn(D) = µs0,s1,...,sn(S × D). Proceeding to check the consistency
of these f.d.d. note that ps,u ⊗ pu,t(·,S × ·) = ps,t(·, ·) for any s < u < t (by the
Chapman-Kolmogorov identity (9.3.1)). Thus, considering s = sk−1, u = sk and
t = sk+1 we deduce that if D = A0×· · ·×An with Ak = S for some k = 1, . . . , n−1,
then

ν ⊗ ps0,s1 · · · ⊗ psn−1,sn(D) = ν ⊗ · · · ⊗ psk−1,sk+1
⊗ · · · ⊗ psn−1,sn(Dk)

for Dk = A0 × · · · × Ak−1 × Ak+1 × · · · × An, which are precisely the consistency
conditions of (8.1.3) for the f.d.d. {µs0,...,sn}. These consistency requirements are
further handled in case of a product set D with An = S by observing that for all
x ∈ S and any transition probability psn−1,sn(x, S) = 1, whereas our definition of
µs1,...,sn already dealt with A0 = S. Having shown that this collection of f.d.d. is
consistent, recall that Proposition 8.1.8 applies even with (R,B) replaced by the B-
isomorphic measurable space (S,S). Setting T = [0,∞), it provides the construction
of a S.P. {Yt(ω) = ω(t), t ∈ T} via the coordinate maps on the canonical probability
space (ST,ST,Pν) with the f.d.d. of (9.3.6). Turning next to verify that (Yt,FY

t , t ∈
T) satisfies the Markov condition (9.3.3), fix t ≥ s ≥ 0, B ∈ S and recall that, for
t > s as in the proof of Theorem 6.1.8, and by definition in case t = s,

(9.3.7) E[I{Y·∈A}IB(Yt)] = E[I{Y·∈A}ps,t(Ys, B)]

for any finite dimensional measurable rectangle A = {x(·) : x(ti) ∈ Bi, i = 1, . . . , n}
such that ti ∈ [0, s] and Bi ∈ S. Thus, the collection

L = {A ∈ S [0,s] : (9.3.7) holds for A} ,

contains the π-system of finite dimensional measurable rectangles which generates
S [0,s], and in particular, S ∈ L. Further, by linearity of the expectation L is closed
under proper difference and by monotone convergence if An ∈ L is such that An ↑ A
then A ∈ L as well. Consequently, L is a λ-system and by Dynkin’s π−λ theorem,
(9.3.7) holds for every set in S [0,s] = FY

s (see Lemma 8.1.7). It then follows that
P(Yt ∈ B|FY

s ) = ps,t(Ys, B) a.s. for each t ≥ s ≥ 0 and B ∈ S. That is, {Yt, t ≥ 0}
is an FY

t -Markov process.
Conversely, suppose {Xt, t ≥ 0} satisfies (9.3.3) and has initial probability distri-

bution ν(·). Then, for any t0 > · · · > tn ≥ s ≥ 0, and f` ∈ bS, ` = 0, . . . , n, almost
surely,

(9.3.8) E[

n∏
`=0

f`(Xt`)|Fs] =

∫
ps,tn(Xs, dyn)fn(yn) · · ·

∫
pt1,t0(y1, dy0)f0(y0) .
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The latter identity is proved by induction on n, where denoting its right side by
gn+1,s(Xs), we see that gn+1,s = ps,tn(fngn,tn) and the case n = 0 is merely (9.3.5).
In the induction step we have from the tower property and Ft-adaptedness of {Xt}
that

E[

n∏
`=0

f`(Xt`)|Fs] = E[fn(Xtn)E[

n−1∏
`=0

f`(Xt`)|Ftn ]|Fs]

= E[fn(Xtn)gn,tn(Xtn)|Fs] = gn+1,s(Xs) ,

where the induction hypothesis is used in the second equality and (9.3.5) in the
third. In particular, considering the expected value of (9.3.8) for s = 0 and indicator
functions f`(·) it follows that the f.d.d. of this process are given by (9.3.6), as
claimed. �

Remark 9.3.3. As in Lemma 8.1.7, for B-isomorphic state space (S,S) any F ∈
FX is of the form F = (X·)

−1(A) for some A ∈ ST, where X·(ω) : Ω 7→ ST denote
the collection of sample functions of the given Markov process {Xt, t ≥ 0}. Then,
P(F ) = Pν(A), so while proving Theorem 9.3.2 we have defined the law Pν(·) of
Markov process {Xt, t ≥ 0} as the unique probability measure on S [0,∞) such that

Pν({ω : ω(s`) ∈ B`, ` = 0, . . . , n}) = P(Xs0 ∈ B0, . . . , Xsn ∈ Bn) ,

for B` ∈ S and distinct s` ≥ 0 (compare with Definition 6.1.7 for the law of a
Markov chain). We denote by Px the law Pν in case ν(B) = Ix∈B , namely, when
X0 = x is non-random and note that Pν(A) =

∫
S Px(A)ν(dx) for any probability

measure ν on (S,S) and all A ∈ ST, with Px uniquely determined by the specified
(consistent) transition probabilities {ps,t, t ≥ s ≥ 0}.
The evaluation of the f.d.d. of a Markov process is more explicit when S is a

countable set, as then ps,t(x,B) =
∑
y∈B ps,t(x, y) for any B ⊆ S (and all Lebesgue

integrals are merely sums). Likewise, in case S = Rd (equipped with S = BS),
computations are relatively explicit if for each t > s ≥ 0 and x ∈ S the probability
measure ps,t(x, ·) is absolutely continuous with respect to Lebesgue measure on S,
in which case (ps,tf)(x) =

∫
ps,t(x, y)f(y)dy and the right side of (9.3.8) amounts

to iterated integration of the transition probability kernel ps,t(x, y) of the process
with respect to Lebesgue measure on S.
The next exercise is about the closure of the collection of Markov processes under

certain invertible non-random measurable mappings.

Exercise 9.3.4. Suppose (Xt,FX
t , t ≥ 0) is a Markov process of state space (S,S),

u : [0,∞) 7→ [0,∞) is an invertible, strictly increasing function and for each t ≥ 0

the measurable mapping Φt : (S,S) 7→ (S̃, S̃) is invertible, with Φ−1
t measurable.

(a) Setting Yt = Φt(Xu(t)), verify that FY
t = FX

u(t) and that (Yt,FY
t , t ≥ 0)

is a Markov process of state space (S̃, S̃).
(b) Show that if (Xt,FX

t , t ≥ 0) is a homogeneous Markov process then so is
Zt = Φ0(Xt).

Of particular note is the following collection of Markov processes.

Proposition 9.3.5. If real-valued S.P. {Xt, t ≥ 0} has independent increments,
then (Xt,FX

t , t ≥ 0) is a Markov process of transition probabilities ps,t(y,B) =
PXt−Xs({z : y + z ∈ B}), and if {Xt, t ≥ 0} further has stationary, independent
increments, then this Markov process is homogeneous.
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Proof. Considering Exercise 4.2.2 for G = FX
s , Y = Xs ∈ mG and the R.V.

Z = Zt,s = Xt − Xs which is independent of G, you find that (9.3.3) holds for
ps,t(y,B) = P(y+Z ∈ B), which in case of stationary increments depends only on
t− s. Clearly, B 7→ P(y+Z ∈ B) is a probability measure on (R,B), for any t ≥ s
and y ∈ R. Further, if B = (−∞, b] then ps,t(y,B) = FZ(b− y) is a Borel function
of y (see Exercise 1.2.27). As the λ-system L = {B ∈ B : y 7→ P(y + Z ∈ B)
is a Borel function} contains the π-system {(−∞, b] : b ∈ R} generating B, it
follows that L = B, hence ps,t(·, ·) is a transition probability for each t ≥ s ≥ 0.
To verify that the Chapman-Kolmogorov equations hold, fix u ∈ [s, t] noting that
Zs,t = Zs,u + Zu,t, with Zu,t = Xt −Xu independent of Zs,u = Xu −Xs. Hence,
by the tower property,

ps,t(y,B) = E[P(y + Zs,u + Zu,t ∈ B|Zs,u)]

= E[pu,t(y + Zs,u, B)] = (ps,u(pu,tIB))(y) = ps,upu,t(y,B) ,

and this relation, i.e. (9.3.1), holds for all y ∈ R and B ∈ B, as claimed. �

Among the consequences of Proposition 9.3.5 is the fact that both the Brownian
motion and the Poisson process (potentially starting at N0 = x ∈ R), are homoge-
neous Markov processes of explicit Markov semi-groups.

Example 9.3.6. Recall Proposition 3.4.9 and Exercise 8.3.13 that both the Pois-
son process and the Brownian motion are processes of stationary independent in-
crements. Further, this property clearly extends to the Brownian motion with drift

Z
(r)
t = Wt+ rt+x, and to the Poisson process with drift N

(r)
t = Nt+ rt+x, where

the drift r ∈ R is a non-random constant, x ∈ R is the specified (under Px), initial

value of N
(r)
0 (or Z

(r)
0 ), and Nt −N0 is a Poisson process of rate λ. Consequently,

both {Z(r)
t , t ≥ 0} and {N (r)

t , t ≥ 0} are real-valued homogeneous Markov processes.
Specifically, from the preceding proposition we have that the Markov semi-group of
the Brownian motion with drift is pt(x+ rt, B), where for t > 0,

(9.3.9) pt(x,B) =

∫
B

e−(y−x)2/2t

√
2πt

dy ,

having the transition probability kernel pt(x, y) = exp(−(y − x)2/2t)/
√

2πt. Sim-
ilarly, the Markov semi-group of the Poisson process with drift is qt(x + rt, B),
where

(9.3.10) qt(x,B) = e−λt
∞∑
k=0

(λt)k

k!
IB(x+ k) .

Remark. Homogeneous Markov chains are characterized by their (one-step) tran-
sition probabilities, whereas each homogeneous Markov process has a full semi-
group pt(·), t ≥ 0. While outside our scope, we note in passing that the semi-group
relation (9.3.2) can be rearranged as s−1(ps+t−pt) = s−1(ps−p0)pt, which subject
to the appropriate regularity conditions should yield for s ↓ 0 the celebrated back-
ward Kolmogorov equation ∂tpt = Lpt. The operator L = lims↓0 s

−1(ps−p0) is then
called the generator of the Markov process (or its semi-group). For example, the
transition probability kernel pt(x+ rt, y) of the Brownian motion with drift solves
the partial differential equation (pde), ut = 1

2uxx + rux and the generator of this

semi-group is Lu = 1
2uxx + rux (c.f. [KaS97, Chapter 5]). For this reason, many
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computations about Brownian motion can also be done by solving rather simple
elliptic or parabolic pde-s.

We saw in Proposition 9.3.5 that the Wiener process (Wt, t ≥ 0) is a homogeneous
FW
t -Markov process of continuous sample functions and the Markov semi-group

of (9.3.9). This motivates the following definition of a Brownian Markov process
(Wt,Ft), where our accommodation of possible enlargements of the filtration and
different initial distributions will be useful in future applications.

Definition 9.3.7 (Brownian Markov process). We call (Wt,Ft) a Brownian
Markov process if {Wt, t ≥ 0} of continuous sample functions is a homogeneous Ft-
Markov process with the Brownian semi-group {pt, t ≥ 0} of (9.3.9). If in addition
W0 = 0, we call such process a standard Brownian Markov process.

Stationarity of Markov processes, in the sense of Definition 8.3.7, is related to the
important concept of invariant probability measures which we define next (compare
with Definition 6.1.20).

Definition 9.3.8. A probability measure ν on a B-isomorphic space (S,S) is
called an invariant (probability) measure for a semi-group of transition probabili-
ties {pu, u ≥ 0}, if the induced law Pν(·) =

∫
S Px(·)ν(dx) (see Remark 9.3.3), is

invariant under any time shift θs, s ≥ 0.

You can easily check that if Markov process is also a stationary process under an
initial probability measure ν, then it is effectively a homogeneous Markov process,
in the sense that ps,t(x, ·) = pt−s(x, ·) for any t ≥ s ≥ 0 and ν-a.e. x ∈ S.
However, many homogeneous Markov processes are non-stationary (for example,
recall Examples 8.3.14 and 9.3.6, that the Brownian motion is non-stationary yet
homogeneous, Markov process).
Here is the explicit characterization of invariant measures for a given Markov

semi-group and their connection to stationary Markov processes.

Exercise 9.3.9. Adapting the proof of Proposition 6.1.23 show that a probability
measure ν on B-isomorphic (S,S) is an invariant measure for a Markov semi-
group {pu, u ≥ 0}, if and only if ν ⊗ pt(S × ·) = ν(·) for any t ≥ 0 (note that
a homogeneous Markov process {Xt, t ≥ 0} is a stationary S.P. if and only if the
initial distribution ν(B) = P(X0 ∈ B) is an invariant probability measure for the
corresponding Markov semi-group).

Pursuing similar themes, your next exercise examines some of the most fundamen-
tal S.P. one derives out of the Brownian motion.

Exercise 9.3.10. With {Wt, t ≥ 0} a Wiener process, consider the Geometric
Brownian motion Yt = eWt , Ornstein-Uhlenbeck process Ut = e−t/2Wet , Brownian

motion with drift Z
(r,σ)
t = σWt + rt and the standard Brownian bridge on [0, 1] (as

in Exercises 8.3.15-8.3.16).

(a) Determine which of these four S.P. is a Markov process with respect to
its canonical filtration, and among those, which are also homogeneous.

(b) Find among these S.P. a homogeneous Markov process whose increments
are neither independent nor stationary.

(c) Find among these S.P. a Markov process of stationary increments, which
is not a homogeneous Markov process.
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Figure 1. Illustration of sample paths for processes in Exercise 9.3.10.

Homogeneous Markov processes possess the following Markov property, extending
the invariance (9.3.4) of the process under the time shifts θs of Definition 8.3.7 to
any bounded S [0,∞)-measurable function of its sample path (compare to (6.1.8) in
case of homogeneous Markov chains).

Proposition 9.3.11 (Markov property). Suppose (Xt, t ≥ 0) is a homoge-
neous Ft-Markov process on a B-isomorphic state space (S,S) and let Px denote
the corresponding family of laws associated with its semi-group. Then, x 7→ Ex [h]
is measurable on (S,S) for any h ∈ bS [0,∞), and further for any s ≥ 0, almost
surely

(9.3.11) E[h ◦ θs(X·(ω))|Fs] = EXs [h] .

Remark 9.3.12. From Lemma 8.1.7 you can easily deduce that any V ∈ bFX

is of the form V = h(X·) with h ∈ bS [0,∞). Further, in view of Exercises 1.2.32
and 8.2.9, any bounded Borel function h(·) on the space C([0,∞)) of continuous
functions equipped with the topology of uniform convergence on compact intervals

is the restriction to C([0,∞)) of some h̃ ∈ bR[0,∞). In particular, for a real-valued

Markov process {Xt, t ≥ 0} of continuous sample functions, Ex[h̃] = Ex[h] and

h◦θs(X·) = h̃◦θs(X·), hence (9.3.11) applies for any bounded, BC([0,∞))-measurable
function h.

Proof. Fixing s ≥ 0, in case h(x(·)) =
∏n
`=0 f`(x(u`)) for finite n, f` ∈ bS

and u0 > · · · > un ≥ 0, we have by (9.3.8) for t` = s + u` and the semi-group
pr,t = pt−r of (Xt, t ≥ 0), that

E[

n∏
`=0

f`(Xt`)|Fs] = pun(fnpun−1−un(· · · (f1pu0−u1
f0)))(Xs) = EXs [

n∏
`=0

f`(Xu`)] .



9.3. MARKOV AND STRONG MARKOV PROCESSES 349

The measurability of x 7→ Ex[h] for such functionals h(·) is verified by induction on
n, where if n = 0 then for f0 ∈ bS by Lemma 6.1.3 also Exh = g1(x) = pu0f0(x)
is in bS and by the same argument, in the induction step gn+1(x) = pun(fngn)(x)
are also in bS.
To complete the proof consider the collection H of functionals h ∈ bS [0,∞) such

that x 7→ Ex[h] is S-measurable and (9.3.11) holds. The linearity of the (condi-
tional) expectation and the monotone convergence theorem result with H a vector-
space that is closed under monotone limits, respectively. Further, as already shown,
H contains the indicators h(·) = IA(·) with A = {x(·) : x(u`) ∈ B` ∈ S, ` =
0, . . . , n} a finite dimensional measurable rectangle. Thus, H satisfies the condi-
tions of the monotone class theorem. Consequently H = bS [0,∞), that is, for each
h ∈ S [0,∞) both x 7→ Ex[h] ∈ bS and (9.3.11) holds w.p.1. �

9.3.2. Strong Markov processes and Feller semi-groups. Given a homo-
geneous Ft-Markov process (Xt, t ≥ 0), we seek to strengthen its Markov property
about the shift of the sample path by non-random s ≥ 0 (see Proposition 9.3.11),
to the strong Markov property, whereby shifting by any Ft-Markov time τ is ac-
commodated (see Proposition 6.1.16 about Markov chains having this property).

Definition 9.3.13 (strong Markov process). We say that an Ft-progressively
measurable, homogeneous Markov process {Xt, t ≥ 0} on B-isomorphic state space
(S,S), has the strong Markov property (or that (Xt,Ft) is a strong Markov pro-
cess), if for any bounded h(s, x(·)) measurable on the product σ-algebra U = B[0,∞)×
S [0,∞), and any Ft-Markov time τ , almost surely

(9.3.12) I{τ<∞}E[h(τ,Xτ+·(ω))|Fτ+ ] = gh(τ,Xτ )I{τ<∞} ,

where gh(s, x) = Ex[h(s, ·)] is bounded and measurable on B[0,∞) × S, x 7→ Px are
the laws associated with the semi-group of (Xt,Ft), Fτ+ is the Markov σ-algebra
associated with τ (c.f. Definition 9.1.9), and both sides of (9.3.12) are set to zero
when τ(ω) =∞.

As noted in Remark 9.3.12, every V ∈ bFX is of the form V = h(X·), with h(·)
in the scope of the strong Markov property, which for a real-valued homogeneous
Markov process {Xt, t ≥ 0} of continuous sample functions, contains all bounded
Borel functions h(·, ·) on [0,∞) × C([0,∞)). In applications it is often handy to
further have a time varying functional h(s, x(·)) (for example, see our proof of the
reflection principle, in Proposition 10.1.10).

Remark. Recall that the Markov time τ is an Ft+ -stopping time (see Definition
9.1.9), hence the assumed Ft-progressive measurability of {Xt} guarantees that on
the event {τ < ∞} the R.V. τ and Xτ are measurable on Fτ+ (see Proposition
9.1.13), hence by our definition so is gh(τ,Xτ ). While we have stated and proved
Proposition 9.1.13 only in case of real-valued S.P. {Xt, t ≥ 0}, the same proof (and
conclusion), applies for any state space (S,S). We lose nothing by assuming pro-
gressive measurability of {Xt} since for a right-continuous process this is equivalent
to its adaptedness (see Proposition 9.1.8, whose proof and conclusion extend to any
topological state space).

Here is an immediate consequence of Definition 9.3.13.
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Corollary 9.3.14. If (Xt,Ft) is a strong Markov process and τ is an Ft-stopping
time, then for any h ∈ bU , almost surely

(9.3.13) I{τ<∞}E[h(τ,Xτ+·(ω))|Fτ ] = gh(τ,Xτ )I{τ<∞} .

In particular, if (Xt,Ft) is a strong Markov process, then {Xt, t ≥ 0} is a homoge-
neous Ft+-Markov process and for any s ≥ 0 and h ∈ bS [0,∞), almost surely

(9.3.14) E[h(X·)|Fs+ ] = E[h(X·)|Fs] .

Proof. By the preceding remark, having an Ft-stopping time τ results with
gh(τ,Xτ )I{τ<∞} which is measurable on Fτ . Thus, applying the tower property
for the expectation of (9.3.12) conditional on Fτ ⊆ Fτ+ , results with (9.3.13).
Comparing (9.3.13) and (9.3.12) for constant in time h(x(·)) and the non-random,
finite stopping time τ = s we deduce that (9.3.14) holds whenever h = h0 ◦ θs
for some h0 ∈ bS [0,∞). Since (Xt,Ft) is a homogeneous Markov process, con-
sidering h0(x(·)) = IB(x(u)) for u ≥ 0 and B ∈ S, it follows that (9.3.4) holds
also for (Xt,Ft+), namely, that {Xt, t ≥ 0} is a homogeneous Ft+ -Markov pro-
cess. With H denoting the collection of functionals h ∈ bS [0,∞) for which (9.3.14)
holds, by the monotone class theorem it suffices to check that this is the case when

h(x(·)) =
∏k
m=1 IBm(x(um)), with k finite, um ≥ 0 and Bm ∈ S. Representing

such functionals as h(·) = h1(·)h0 ◦ θs(·) with h0(x(·)) =
∏
um≥s IBm(x(um − s))

and h1(x(·)) =
∏
um<s

IBm(x(um)), we complete the proof by noting that h1(X·))
is measurable with respect to Fs ⊆ Fs+ , so can be taken out of both conditional
expectations in (9.3.14) and thus eliminated. �

To make the most use of the strong Markov property, Definition 9.3.13 calls for
an arbitrary h ∈ bU . As we show next, for checking that a specific S.P. is a strong
Markov process, it suffices to verify (9.3.12) only for h(s, x(·)) = IB(x(u)) and
bounded Markov times (compare with the definition of a homogeneous Markov
process via (9.3.4)), which is way more manageable task.

Proposition 9.3.15. An Ft-progressively measurable, homogeneous Markov pro-
cess {Xt, t ≥ 0} with a semi-group {pu, u ≥ 0} on B-isomorphic state space (S,S),
has the strong Markov property if for any u ≥ 0, B ∈ S and bounded Ft-Markov
times τ , almost surely

(9.3.15) P[Xτ+u ∈ B|Fτ+ ] = pu(Xτ , B) .

Proof. Step 1. We start by extending the validity of (9.3.15) to any a.s.
finite Markov time. To this end, fixing u ≥ 0, B ∈ S, n ∈ Z+ and a [0,∞]-
valued Ft-Markov time τ , recall that τn = τ ∧ n is a bounded Ft+ -stopping time
(c.f. part (c) of Exercise 9.1.10). Further, the bounded I{τ≤n} and pu(Xτn , B) are
both measurable on Fτ+

n
(see part (a) of Exercise 9.1.11 and Proposition 9.1.13,

respectively). Hence, multiplying the identity (9.3.15) in case of τn by I{τ≤n}, and
taking in, then out, what is known, we find that a.s.

0 = E[I{τ≤n}(IB(Xτn+u)− pu(Xτn , B))|Fτ+
n

] = I{τ≤n}E[Z|Fτ+
n

] ,

for the bounded R.V.

Z = I{τ<∞}[IB(Xτ+u)− pu(Xτ , B)] .

By part (c) of Exercise 9.1.11 it then follows that w.p.1. I{τ≤n}E[Z|Fτ+ ] = 0.
Taking n ↑ ∞ we deduce that a.s. E[Z|Fτ+ ] = 0. Upon taking out the known
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I{τ<∞}pu(Xτ , B) we represent this as

(9.3.16) E[I{τ<∞}f(Xτ+u)|Fτ+ ] = I{τ<∞}(puf)(Xτ ) , almost surely

for f(·) = IB(·). By linearity of the expectation and conditional expectation, this
identity extends from indicators to all S-measurable simple functions, whereby it
follows by monotone convergence that it holds for all f ∈ bS.
Step 2. We are ready to prove that (9.3.12) holds for any Ft-Markov time τ , in case
h(s, x(·)) = f0(s)

∏n
`=1 f`(x(u`)), with bounded Borel f0 : [0,∞)→ R, f` ∈ bS and

u1 > · · · > un ≥ 0 = un+1. As f0(τ) ∈ bFτ+ , one can always take this (known)
part of h(·, ·) out of the conditional expectation in (9.3.12) and thereafter eliminate
it. Thus, setting f0 = 1 we proceed to prove by induction on n that (9.3.12) holds,
namely, that for any Ft-Markov time τ , f` ∈ bS and u1 > · · · > un ≥ 0, almost
surely,

E[I{τ<∞}

n∏
`=1

f`(Xτ+u`)|Fτ+ ] = I{τ<∞}gn(Xτ ) ,

for the bounded, S-measurable functions g1 = pu1−u2
f1 and

g` = pu`−u`+1
(f`g`−1) , ` = 2, . . . , n.

The identity (9.3.16) is the n = 1 basis of the proof. To carry out the induction
step, recall part (c) of Exercise 9.1.10 that τ` = τ +u` ≥ τ is a decreasing sequence
of Ft-Markov times, which are finite if and only if τ is, and further, Fτ+ ⊆ Fτ+

n

(see part (b) of Exercise 9.1.11). It thus follows by the tower property and taking
out the known term fn(Xτ+

n
) ∈ bFτ+

n
(when τ <∞, see Proposition 9.1.13), that

E[I{τ<∞}

n∏
`=1

f`(Xτ`)|Fτ+ ] = E[fn(Xτn)E[I{τn<∞}

n−1∏
`=1

f`(Xτ`)|Fτ+
n

]|Fτ+ ]

= E[I{τ<∞}fn(Xτn)gn−1(Xτn)|F+
τ ] = I{τ<∞}gn(Xτ ) .

Indeed, since τ` − τn = u` − un are non-random and positive, the induction hy-
pothesis applies for the Ft-Markov time τn to yield the second equality, whereas
the third equality is established by considering the identity (9.3.16) for f = fngn−1

and u = un.
Step 3. Similarly to the proof of Proposition 9.3.11, fixing A ∈ Fτ+ , yet another
application of the monotone class theorem shows that any h ∈ bU is in the collection
H ⊆ bU for which gh(s, x) = Ex[h(s, ·)] is measurable on B[0,∞) × S and

(9.3.17) E[I{τ<∞}IAh(τ,Xτ+·)] = E[gh(τ,Xτ )I{τ<∞}IA] .

Indeed, in Step 2 we have shown that H contains the indicators on the π-system

P = {B ×D : B ∈ B[0,∞), D ∈ S [0,∞) a finite dimensional measurable rectangle} ,

such that U = σ(P). Further, constants are in H which by the linearity of the
expectation (and hence of h 7→ gh), is a vector space. Finally, if hn ↑ h bounded
and hn ∈ H are non-negative, then h ∈ bU and by monotone convergence ghn ↑
gh bounded and measurable, with the pair (h, gh) also satisfying (9.3.17). Since
gh(τ,Xτ )I{τ<∞} is in bFτ+ and the preceding argument applies for all A ∈ Fτ+ ,
we conclude that per τ and h the identity (9.3.12) holds w.p.1., as claimed. �

As you are to show now, the Markov property applies for product laws of finitely
many independent processes, each of which has the corresponding property.
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Exercise 9.3.16. Suppose on some probability space (Ω,F ,P) we have homo-

geneous Markov processes (X
(i)
t ,F (i)

t ) of B-isomorphic state spaces (Si,Si) and

Markov semi-groups p
(i)
t (·, ·), such that F (i)

∞ , i = 1, . . . , ` are P-mutually indepen-

dent. Let Xt = (X
(1)
t , . . . , X

(`)
t ) and Ft = σ(F (1)

t , . . . ,F (`)
t ). Show that (Xt,Ft) is

a homogeneous Markov process, of the Markov semi-group

pt(x,B1 × · · · ×B`) =
∏̀
i=1

p
(i)
t (xi, Bi)

on the B-isomorphic state space (S,S), where S = S1×· · ·×S` and S = S1×· · ·×S`.

Recall Proposition 6.1.16 that every homogeneous Markov chain of a B-isomorphic
state space has the strong Markov property and that in this context every Markov
time is a stopping time and takes only countably many possible values. As expected,
you are to show next that any homogeneous Markov process has the strong Markov
property (9.3.13) for such stopping times.

Exercise 9.3.17. Suppose (Xt,Ft) is a homogeneous Markov process, (S,S) its
B-isomorphic state space and τ : Ω 7→ C is an Ft-stopping time with countable
C = {sk} ⊂ [0,∞].

(a) Show that A ∩ {ω : τ(ω) = sk} ∈ Fsk for any finite sk ∈ C and A ∈ Fτ .
(b) Deduce that h(τ,Xτ+·)I{τ<∞} is a R.V. and gh(τ,Xτ )I{τ<∞} ∈ bFτ pro-

vided h(sk, ·) are S [0,∞)-measurable and uniformly bounded on C×S[0,∞).
(c) Conclude that (9.3.13) holds a.s. for any such τ and h.

For the Feller semi-groups we define next (compare with the strong Feller property
of Remark 6.3.12), the right-continuity of sample functions yields the strong Markov
property.

Definition 9.3.18. A Feller semi-group is a Markov semi-group {pu, u ≥ 0} on
(R,B) such that pt : Cb(R) 7→ Cb(R) for any t ≥ 0. That is, x 7→ (ptf)(x) is
continuous for any fixed bounded, continuous function f and t ≥ 0.

Proposition 9.3.19. Any right-continuous homogeneous Markov process (Xt,Ft)
with a Feller semi-group (of transition probabilities), is a strong Markov process.

Proof. Fixing u ≥ 0, a bounded Ft-Markov time τ , A ∈ Fτ+ and f ∈ Cb(R),
we proceed to show that

(9.3.18) E[f(Xτ+u)IA] = E[(puf)(Xτ )IA] .

Indeed, recall that in Lemma 9.1.16 we have constructed a sequence of finite Ft-
stopping times τ` = 2−`([2`τ ]+1) taking values in the countable set of non-negative
dyadic rationals, such that τ` ↓ τ . Further, for any ` we have that A ∈ Fτ` (see
part (b) of Exercise 9.1.12), hence as shown in Exercise 9.3.17,

E[f(Xτ`+u)IA] = E[(puf)(Xτ`)IA] .

Due to the sample path right-continuity, both Xτ`+u → Xτ+u and Xτ` → Xτ .
Since f ∈ Cb(R) and puf ∈ Cb(R) (by the assumed Feller property), as ` → ∞
both f(Xτ`+u) → f(Xτ+u) and (puf)(Xτ`) → (puf)(Xτ ). We thus deduce by
bounded convergence that (9.3.18) holds.
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Next, consider non-negative fk ∈ Cb(R) such that fk ↑ I(−∞,b) (see Lemma 3.1.6
for an explicit construction of such). By monotone convergence pufk ↑ puI(−∞,b)
and hence

(9.3.19) E[IB(Xτ+u)IA] = E[pu(Xτ , B)IA] ,

for any B in the π-system {(−∞, b) : b ∈ R} which generates the Borel σ-algebra
B. The collection of L of sets B ∈ B for which the preceding identity holds is a λ-
system (by linearity of the expectation and monotone convergence), so by Dynkin’s
π−λ theorem it holds for any Borel set B. Since this applies for any A ∈ Fτ+ , the
strong Markov property of (Xt,Ft) follows from Proposition 9.3.15, upon noting
that the right-continuity of t 7→ Xt implies that Xt is Ft-progressively measurable,
with pu(Xτ , B) ∈ mFτ+ (see Propositions 9.1.8 and 9.1.13, respectively). �

Taking advantage of the preceding result, you can now verify that any right-
continuous S.P. of stationary, independent increments is a strong Markov process.

Exercise 9.3.20. Suppose {Xt, t ≥ 0} is a real-valued process of stationary, inde-
pendent increments.

(a) Show that {Xt, t ≥ 0} has a Feller semi-group.
(b) Show that if {Xt, t ≥ 0} is also right-continuous, then it is a strong

Markov process. Deduce that this applies in particular for the Poisson
process (starting at N0 = x ∈ R as in Example 9.3.6), as well as for any
Brownian Markov process (Xt,Ft).

(c) Suppose the right-continuous {Xt, t ≥ 0} is such that limt↓0 E|Xt| = 0
and X0 = 0. Show that Xt is integrable for all t ≥ 0 and Mt = Xt−tEX1

is a martingale. Deduce that then E[Xτ ] = E[τ ]E[X1] for any integrable
FX
t -stopping time τ .

Hint: Show the last claim first for the FX
t -stopping times τ` = 2−`([2`τ ]+

1).

Our next example demonstrates that some regularity of the semi-group is needed
when aiming at the strong Markov property (i.e., merely considering the canonical
filtration of a homogeneous Markov process with continuous sample functions is
not enough).

Example 9.3.21. Suppose X0 is independent of the standard Wiener process
{Wt, t ≥ 0} and q = P(X0 = 0) ∈ (0, 1). The S.P. Xt = X0 + WtI{X0 6=0} has
continuous sample functions and for any fixed s ≥ 0, a.s. I{X0=0} = I{Xs=0} (as
the difference occurs on the event {Ws = −X0 6= 0} which is of zero probabil-
ity). Further, the independence of increments of {Wt} implies the same for {Xt}
conditioned on X0, hence for any u ≥ 0 and Borel set B, almost surely,

P(Xs+u ∈ B|FX
s ) = I0∈BI{X0=0} + P(Ws+u −Ws +Xs ∈ B|Xs)I{X0 6=0}

= p̂u(Xs, B) ,

where p̂u(x,B) = p0(x,B)Ix=0 + pu(x,B)Ix 6=0 for the Brownian semi-group pu(·).
Clearly, per u fixed, p̂u(·, ·) is a transition probability on (R,B) and p̂0(x,B) is
the identity element for the semi-group relation p̂u+s = p̂up̂s which is easily shown
to hold (but this is not a Feller semi-group, since x 7→ (p̂tf)(x) is discontinuous
at x = 0 whenever f(0) 6= Ef(Wt)). In view of Definition 9.3.1, we have just
shown that p̂u(·, ·) is the Markov semi-group associated with the FX

t -progressively
measurable homogeneous Markov process {Xt, t ≥ 0} (regardless of the distribution
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of X0). However, (Xt,FX
t ) is not a strong Markov process. Indeed, note that

τ = inf{t ≥ 0 : Xt = 0} is an FX
t -stopping time (see Proposition 9.1.15), which

is finite a.s. (since if X0 6= 0 then Xt = Wt + X0 and τ = τ
(0)
−X0

of Exercise
9.2.35, whereas for X0 = 0 obviously τ = 0). Further, by continuity of the sample
functions, Xτ = 0 whenever τ < ∞, so if (Xt,FX

t ) was a strong Markov process,
then in particular, a.s.

P(Xτ+1 > 0|FX
τ ) = p̂1(0, (0,∞)) = 0

(this is merely (9.3.15) for the stopping time τ , u = 1 and B = (0,∞)). However,
the latter identity fails whenever X0 6= 0 (i.e. with probability 1− q > 0), for then
the left side is merely p1(0, (0,∞)) = 1/2 (since {Wt,FX

t } is a Brownian Markov
process, hence a strong Markov process, see Exercise 9.3.20).

Here is an alternative, martingale based, proof that any Brownian Markov process
is a strong Markov process.

Exercise 9.3.22. Suppose (Xt,Ft) is a Brownian Markov process.

(a) Let Rt and It denote the real and imaginary parts of the complex-valued
S.P. Mt = exp(iθXt + tθ2/2). Show that both (Rt,Ft) and (It,Ft) are
MG-s.

(b) Fixing a bounded Ft-Markov time τ , show that E[Mτ+u|Fτ+ ] = Mτ

w.p.1.
(c) Deduce that w.p.1. the R.C.P.D. of Xτ+u given Fτ+ matches the normal

distribution of mean Xτ (ω) and variance u.
(d) Conclude that the Ft-progressively measurable homogeneous Markov pro-

cess {Xt, t ≥ 0} is a strong Markov process.

9.3.3. Markov jump processes. This section is about the following Markov
processes which in many respects are very close to Markov chains.

Definition 9.3.23. A function x : R+ 7→ S is called a step function if it is
constant on each of the intervals [sk−1, sk), for some countable (possibly finite), set
of isolated points 0 = s0 < s1 < s2 < · · · . A continuous-time stochastic process
(Xt, t ≥ 0) taking values in some measurable space (S,S) is called a pure jump
process if its sample functions are step functions. A Markov pure jump process is
a homogeneous Markov process which, starting at any non-random X0 = x ∈ S, is
also a pure jump process on its B-isomorphic state space (S,S).

Remark. We often use Markov jump process for Markov pure jump process and
note in passing that these processes are sometimes also called continuous time
Markov chains.

The relatively explicit analysis of Markov jump processes, as provided here, owes
much to the fact that the jump times in their sample functions are isolated. Many
interesting, and harder to analyze Markov processes have piecewise constant sample
functions, but with accumulation points of jump times.
We start by showing that the strong Markov property applies for all Markov jump

processes.

Proposition 9.3.24. Any Markov jump process (Xt,Ft) is a strong Markov pro-
cess.
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Proof. Though we did not even endow the state space (S,S) with a topology,
the sample functions t 7→ Xt, being step functions, are trivially right continuous,
hence the Markov jump process is Ft-progressively measurable (see Proposition
9.1.8). Fixing u ≥ 0, a bounded Ft-Markov time τ , A ∈ Fτ+ and B ∈ S, as
in the proof of Proposition 9.3.19 the identity (9.3.19) holds for some sequence
{τ`} of Ft-stopping times such that τ` ↓ τ . Since the right-continuous sample
functions t 7→ Xt of a jump process are constant except possibly for isolated jump
times, both Xτ = Xτ` and Xτ+u = Xτ`+u for all ` large enough. Consequently,
IB(Xτ+u) = IB(Xτ`+u) and pu(Xτ , B) = pu(Xτ` , B) for all ` large enough, so by
bounded convergence the identity (9.3.19) also holds for the Ft-Markov time τ .
Since this applies for any A ∈ Fτ+ , as explained while proving Proposition 9.3.19,
the strong Markov property of (Xt,Ft) then follows from Proposition 9.3.15. �

Example 9.3.25. The semi-group of a Markov jump process is often not a Feller
semi-group (so Proposition 9.3.24 is not a special case of Proposition 9.3.19). For
example, setting sgn(0) = 0 it is easy to check that pt(x,A) = e−tI{x∈A} + (1 −
e−t)I{sgn(x)∈A} is a Markov semi-group on R, which is not a Feller semi-group (as

(p1h)(x) = e−1h(x) + (1 − e−1)1x6=0 is discontinuous for h(x) = x2 ∧ 1 ∈ Cb(R)).
This semi-group corresponds to a Markov jump process {Xt} with at most one jump
per sample function, such that starting at any state X0 other than the (absorbing)
states −1, 0 and 1, it jumps to sgn(X0) ∈ {−1, 0, 1} at a random time τ having the
exponential distribution of parameter one.

In view of Lemma 8.1.7, the law of a homogeneous Markov process does not tell us
directly whether or not it is a Markov jump process. In fact, a Markov jump process
corresponds to the piecewise constant RCLL modification of the given Markov law
(and such modification is essentially unique, see Exercise 8.2.3), so one of the central
issues here is to determine when such a modification exists.
With the Poisson process as our prototypical example of a Markov jump process,

we borrow from the treatment of the Poisson process (in Subsection 3.4.2), and
proceed to describe the jump parameters of Markov jump processes. These pa-
rameters then serve as a convenient alternative to the general characterization of a
homogeneous Markov process via its (Markov) semi-group.

Proposition 9.3.26. Suppose (Xt, t ≥ 0) is a right-continuous, homogeneous
Markov process.

(a) Under Py, the FX
t -Markov time τ = inf{t ≥ 0 : Xt 6= X0} has the expo-

nential distribution of parameter λy, for all y ∈ S and some measurable
λ : S 7→ [0,∞].

(b) If λy > 0 then τ is Py-almost-surely finite and Py-independent of the
S-valued random variable Xτ .

(c) If (Xt, t ≥ 0) is a strong Markov process and λy > 0 is finite, then
Py-almost-surely Xτ 6= y.

(d) If (Xt, t ≥ 0) is a Markov jump process, then τ is a strictly positive,
FX
t -stopping time.

Proof. (a). From Proposition 9.1.15 we know that τ ≥ 0 is an FX
t -Markov

time, as are τu,z = inf{t ≥ u : Xt 6= z} for any z ∈ S and u ≥ 0. Under Py the
event {τ ≥ u+ t} for t > 0 implies that Xu = y and τ = τu,Xu . Thus, applying the
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Markov property for h = Iτ≥t (so h(Xu+·) = I{τu,Xu≥u+t}), we have that

Py(τ ≥ u+ t) = Py(τu,Xu ≥ u+ t,Xu = y, τ ≥ u)

= Ey[E(τu,Xu ≥ u+ t|FX
u )I{τ≥u,Xu=y}] = Py(τ ≥ t)Py(τ ≥ u,Xu = y) .

Considering this identity for t = s + n−1 and u = v + n−1 with n → ∞, we find
that the [0, 1]-valued function g(t) = Py(τ > t) is such that g(s + v) = g(s)g(v)
for all s, v ≥ 0. Setting g(1) = exp(−λy) for λ : S 7→ [0,∞] which is measurable,
by elementary algebra we have that g(q) = exp(−λyq) for any positive q ∈ Q.
Considering rational qn ↓ t it thus follows that Py(τ > t) = exp(−λyt) for all t ≥ 0.
(b). If λy =∞, then Py-a.s. both τ = 0 and Xτ = X0 = y are non-random, hence
independent of each other. Suppose now that λy > 0 is finite, in which case τ is
finite and positive Py-almost surely. Then, Xτ is well defined and applying the
Markov property for h = IB(Xτ )Iτ≥t (so h(Xu+·) = IB(Xτu,Xu

)I{τu,Xu≥t+u}), we
have that for any B ∈ S, u ≥ 0 and t > 0,

Py(Xτ ∈ B, τ ≥ t+ u) = Py(Xτu,y ∈ B, τu,y ≥ t+ u, τ ≥ u,Xu = y)

= Ey[P(Xτu,Xu
∈ B, τu,Xu ≥ t+ u|FX

u )I{τ≥u,Xu=y}]

= Py(Xτ ∈ B, τ ≥ t)Py(τ ≥ u,Xu = y) .

Considering this identity for t = n−1 and u = v + n−1 with n→∞, we find that

Py(Xτ ∈ B, τ > v) = Py(Xτ ∈ B, τ > 0)Py(τ > v) = Py(Xτ ∈ B)Py(τ > v) .

Since {τ > v} and {Xτ ∈ B, τ <∞} are Py-independent for any v ≥ 0 and B ∈ S,
it follows that the random variables τ and Xτ are Py-independent, as claimed.

(c). With A = {∃qn ∈ Q, qn ↓ 0 : x(qn) 6= x(0) = y} ∈ S [0,∞), note that by
right-continuity of the sample functions t 7→ Xt(ω) the event {X· ∈ A} is merely
{τ = 0, X0 = y} and with λy finite, further Pz(X· ∈ A) = 0 for all z ∈ S. Since
λy > 0, by the strong Markov property of (Xt, t ≥ 0) for h(s, x(·)) = IA(x(·))
and the Py-a.s. finite FX

t -Markov time τ , we find that Py-a.s. Xτ+· /∈ A. Since
the event {Xτ = X0} implies, by definition of τ and sample path right-continuity,
the existence of rational qn ↓ 0 such that Xτ+qn 6= X0, we conclude that Py-a.s.
Xτ 6= y.
(d). Here t 7→ Xt(ω) is a step function, hence clearly, for each t ≥ 0

{τ ≤ t} =
⋃

q∈Q(2)

t+

{Xq 6= X0} ∈ FX
t

and τ is a strictly positive, FX
t -stopping time. �

Markov jump processes have the following parameters.

Definition 9.3.27. We call p(x,A) and {λx} the jump transition probability and
jump rates of a Markov jump process {Xt, t ≥ 0}, if p(x,A) = Px(Xτ ∈ A) for
A ∈ S and x ∈ S of positive jump rate λx, while p(x,A) = Ix∈A in case λx = 0.
More generally, a pair (λ, p) with λ : S 7→ R+ measurable and p(·, ·) a transition
probability on (S,S) such that p(x, {x}) = Iλx=0 is called jump parameters.

The jump parameters provide the following canonical construction of Markov jump
processes.
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Theorem 9.3.28. Suppose (λ, p) are jump parameters on a B-isomorphic space
(S,S). Let {Zn, n ≥ 0} be the homogeneous Markov chain of transition probability
p(·, ·) and initial state Z0 = x ∈ S. For each y ∈ S let {τj(y), j ≥ 1} be i.i.d.
random variables, independent of {Zn} and having each the exponential distribution

of parameter λy. Set T0 = 0, Tk =
∑k
j=1 τj(Zj−1), k ≥ 1 and Xt = Zk for all

t ∈ [Tk, Tk+1), k ≥ 0. Assuming Px(T∞ < ∞) = 0 for all x ∈ S, the process
{Xt, t ≥ 0} thus constructed is the unique Markov jump process with the given
jump parameters. Conversely, (λ, p) are the parameters of a Markov jump process
if and only if Px(T∞ <∞) = 0 for all x ∈ S.

Remark. The random time τj(Zj−1) is often called the holding time at state
Zj−1 (or alternatively, the j-th holding time), along the sample path of the Markov
jump process. However, recall part (c) of Proposition 9.3.26, that strong Markov
processes of continuous sample path have trivial jump parameters, i.e. their holding
times are either zero or infinite.

Proof. Part I. Existence.
Starting from jump parameters (λ, p) and X0 = x, if Px(T∞ < ∞) = 0 then our
construction produces {Xt, t ≥ 0} which is indistinguishable from a pure jump
process and whose parameters coincide with the specified (λ, p). So, assuming
hereafter with no loss of generality that T∞(ω) = ∞ for all ω ∈ Ω, we proceed to
show that {Xt,FX

t } is a homogeneous Markov process. Indeed, since pt(x,B) =
Px(Xt ∈ B) is per t ≥ 0 a transition probability on (S,S), this follows as soon as
we show that Px(Xs+u ∈ B|FX

s ) = PXs(Xu ∈ B) for any fixed s, u ≥ 0, x ∈ S and
B ∈ S.
Turning to prove the latter identity, fix s, u, x,B and note that

{Xu ∈ B} =
⋃
`≥0

{Z` ∈ B, T`+1 > u ≥ T`} ,

is of the form {Xu ∈ B} = {(Z·, T·) ∈ Au} where Au ∈ (S × [0,∞])c. Hence, this
event is determined by the law of the homogeneous Markov chain {Zn, Tn, n ≥ 0}
on S × [0,∞]. With Yt = sup{k ≥ 0 : Tk ≤ t} counting the number of jumps in
the interval [0, t], we further have that if {Ys = k}, then Xs = Zk and {Xs+u ∈
B} = {(Zk+·, Tk+· − s) ∈ Au}. Moreover, since t 7→ Xt(ω) is a step function,
FX
s = σ(Ys, Zk, Tk, k ≤ Ys). Thus, decomposing Ω as the union of disjoint events
{Ys = k} it suffices to show that under Px, the law of (Zk+·, Tk+· − s) conditional
on (Zk, Tk) and the event {Ys = k} = {τk+1(Zk) > s − Tk ≥ 0}, is the same
as the law of (Z·, T·) under PZk . In our construction, given Zk ∈ S, the random
variable τ = τk+1(Zk) = Tk+1−Tk is independent of Tk and follows the exponential
distribution of parameter λZk . Hence, setting ξ = s−Tk ≥ 0, by the lack of memory
of this exponential distribution, for any t, s, k ≥ 0,

Px(Tk+1 > t+ s|Tk, Zk, {Ys = k}) = Px(τ > t+ ξ|Tk, Zk, {τ > ξ}) = P(τ > t|Zk) .

That is, under Px, the law of Tk+1 − s conditional on FX
s and the event {Ys = k},

is the same as the law of T1 under PZk . With {Zn, n ≥ 0} a homogeneous Markov
chain whose transition probabilities are independent of {Tn, n ≥ 0}, it follows that
further the joint law of (Zk+1, Tk+1− s) conditional on FX

s and the event {Ys = k}
is the same as the joint law of (Z1, T1) under PZk . This completes our proof that
{Xt,FX

t } is a homogeneous Markov process, since for any z ∈ S, conditional on
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Zk+1 = z the value of (Zk+1+·, Tk+1+· − Tk+1) is independent of Tk+1 and by the
Markov property has the same joint law as (Z1+·, T1+· − T1) given Z1 = z.

Part II. Uniqueness. Start conversely with a Markov pure jump process (X̂t, t ≥ 0)

such that X̂0 = x and whose jump parameters per Definition 9.3.27 are (λ, p).
In the sequel we show that with probability one we can embed within its sample

function t 7→ X̂t(ω) a realization of the Markov chain {Zn, n ≥ 0} of transition

probability p(·, ·), starting at Z0 = x, such that X̂t = Zk for all t ∈ [Tk, Tk+1),
k ≥ 0 and with T0 = 0, show that for any k ≥ 0, conditionally on {Zj , Tj , j ≤ k},
the variables τk+1 = Tk+1 − Tk and Zk+1 are independent of each other, with τk+1

having the exponential distribution of parameter λZk .
This of course implies that even conditionally on the infinite sequence {Zn, n ≥ 0},

the holding times {τk+1, k ≥ 0} are independent of each other, with τk+1 maintain-

ing its exponential distribution of parameter λZk . Further, since t 7→ X̂t(ω) is a
step function (see Definition 9.3.23), necessarily here T∞(ω) = ∞ for all ω ∈ Ω.
This applies for any non-random x ∈ S, thus showing that any Markov pure jump
process can be constructed as in the statement of the theorem, provided (λ, p) are
such that Px(T∞ < ∞) = 0 for all x ∈ S, with the latter condition also necessary
for (λ, p) to be the jump parameters of any Markov pure jump process (and a
moment thought will convince you that this completes the proof of the theorem).

Turning to the promised embedding, let T0 = 0, Z0 = X̂0 = x and T1 = T0 +τ1 for

τ1 = inf{t ≥ 0 : X̂t 6= Z0}. Recall Proposition 9.3.26 that τ1 has the exponential

distribution of parameter λx and is an FX̂
t -stopping time. In case λx = 0 we

are done for then T1 = ∞ and X̂t(ω) = Z0(ω) = x for all t ≥ 0. Otherwise,
recall Proposition 9.3.26 that T1 is finite w.p.1. in which case Z1 = XT1

is well
defined and independent of T1, with the law of Z1 being p(Z0, ·). Further, since

(X̂t,FX̂
t ) is a strong Markov process (see Proposition 9.3.24) and excluding the

null set {ω : T1(ω) = ∞}, upon applying the strong Markov property at the finite

stopping time T1 we deduce that conditional on FX̂
T1

the process {X̂T1+t, t ≥ 0}
is a Markov pure jump process, of the same jump parameters, but now starting
at Z1. We can thus repeat this procedure and w.p.1. construct the sequence

τk+1 = inf{t ≥ 0 : X̂t+Tk 6= X̂Tk}, k ≥ 1, where Tk+1 = Tk + τk+1 are FX̂
t -stopping

times and Zk = X̂Tk (terminating at Tk+1 =∞ if λZk = 0). This is the embedding

described before, for indeed X̂t = Zk for all t ∈ [Tk, Tk+1), the sequence {Zn, n ≥ 0}
has the law of a homogeneous Markov chain of transition probability p(·, ·) (starting

at Z0 = x), and conditionally on σ(Zj , Tj , j ≤ k) ⊆ FX̂
Tk

, the variables τk+1 and
Zk+1 are independent of each other, with τk+1 having the exponential distribution
of parameter λZk . �

Remark 9.3.29. When the jump rates λx = λ are constant, the corresponding
jump times Tk are those of a Poisson process Nt of rate λ, which is independent
of the Markov chain {Zn}. Hence, in this case the Markov jump process has the
particularly simple structure Xt = ZNt .

Here is a more explicit, equivalent condition for existence of a Markov pure jump
process with the specified jump parameters (λ, p). It implies in particular that such
a process exists whenever the jump rates are bounded (i.e. supx λx finite).
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Exercise 9.3.30. Suppose (λ, p) are jump parameters on the B-isomorphic state
space (S,S).

(a) Show that Px(T∞ <∞) = 0 if and only if Px(
∑
n λ
−1
Zn

<∞) = 0.
Hint: Upon Conditioning on {Zn} consider part (d) of Exercise 2.3.25.

(b) Conclude that to any jump parameters p(·, ·) and λ ∈ bS corresponds
a well defined, unique Markov jump process, constructed as in Theorem
9.3.28.

Remark. The event {ω : T∞(ω) < ∞} is often called an explosion. A further
distinction can then be made between the pure (or non-explosive) Markov jump
processes we consider here, and the explosive Markov jump processes such that
Px(T∞ < ∞) > 0 for some x ∈ S, which nevertheless can be constructed as in
Theorem 9.3.28 to have step sample functions, but only up to the time T∞ of
explosion.

Example 9.3.31 (birth processes). Markov (jump) processes which are also
counting processes, are called birth processes. The state space of such processes is
S = {0, 1, 2, . . .} and in view of Theorem 9.3.28 they correspond to jump transitions
p(x, x + 1) = 1. Specifically, these processes are of the form Xt = sup{k ≥ 0 :∑k−1
j=X0

τj ≤ t}, where the holding times τj, j ≥ 1, are independent Exponential(λj)
random variables. In view of Exercise 9.3.30 such processes are non-explosive if
and only if

∑
j≥k λ

−1
j = ∞ for all k ≥ 0. For example, this is the case when

λj = j∆ + λ0 with λ0 ≥ 0 and ∆ > 0, and such a process is then called simple
birth with immigration process if also λ0 > 0, or merely simple birth process if
λ0 = 0 (in contrast, the Poisson process corresponds to ∆ = 0 and λ0 > 0). The
latter processes serve in modeling the growth in time of a population composed of
individuals who independently give birth at rate ∆ (following an exponentially dis-
tributed holding time between consecutive birth events), with additional immigration
into the population at rate λ0, independently of birth events.

Remark. In the context of Example 9.3.31, ExTk =
∑x+k−1
j=x λ−1

j for the arrival
time Tk to state k + x, so taking for example λj = jα for some α > 1 results with
an explosive Markov jump process. Indeed, then ExTk ≤ c for finite c =

∑
j≥1 j

−α

and any x, k ≥ 1. By monotone convergence ExT∞ ≤ c, so within an integrable,
hence a.s. finite time T∞ the sample function t 7→ Xt escapes to infinity, hence
the name explosion given to such phenomena. But, observe that unbounded jump
rates do not necessarily imply an explosion (as for example, in case of simple birth
processes), and explosion may occur for one initial state but not for another (for
example here λ0 = 0 so there is no explosion if starting at x = 0).

As you are to verify now, the jump parameters characterize the relatively explicit
generator for the semi-group of a Markov jump process, which in particular satisfies
Kolmogorov’s forward (in case of bounded jump rates), and backward equations.

Definition 9.3.32. The linear operator L : bS 7→ mS such that (Lh)(x) =
λx
∫

(h(y) − h(x))p(x, dy) for h ∈ bS is called the generator of the Markov jump
process corresponding to jump parameters (λ, p). In particular, (LI{x}c)(x) = λx
and more generally (LIB)(x) = λxp(x,B) for any B ⊆ {x}c (so specifying the
generator is in this context equivalent to specifying the jump parameters).

Exercise 9.3.33. Consider a Markov jump process (Xt, t ≥ 0) of semi-group

pt(·, ·) and jump parameters (λ,p) as in Definition 9.3.32. Let Tk =
∑k
j=1 τj denote
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the jump times of the sample function s 7→ Xs(ω) and Yt =
∑
k≥1 I{Tk≤t} the

number of such jumps in the interval [0, t].

(a) Show that if λx > 0 then

Px(τ2 ≤ t|τ1) =

∫
(1− e−λyt)p(x, dy) ,

and deduce that t−1Px(Yt ≥ 2)→ 0 as t ↓ 0, for any x ∈ S.
(b) Fixing x ∈ S and h ∈ bS, show that

|(psh)(x)− (p0h)(x)−Ex[(h(Xτ )− h(x))Iτ≤s]| ≤ 2‖h‖∞Px(Ys ≥ 2) ,

and deduce that for L per Definition 9.3.32,

(9.3.20) lim
s↓0

s−1((psh)(x)− (p0h)(x)) = (Lh)(x) ,

where the convergence in (9.3.20) is uniform within {h ∈ bS : ‖h‖∞ ≤
K}, for any K finite.

(c) Verify that t 7→ (Lpth)(x) is continuous and t 7→ (pth)(x) is differentiable
for any x ∈ S, h ∈ bS, t ≥ 0 and conclude that the backward Kolmogorov
equation holds. Specifically, show that

(9.3.21) ∂t(pth)(x) = (Lpth)(x) ∀t ≥ 0, x ∈ S, h ∈ bS.

(d) Show that if supx∈S λx is finite, then L : bS 7→ bS, the convergence in
(9.3.20) is also uniform in x and Kolmogorov’s forward equation (also
known as the Fokker-Planck equation), holds. That is,

(9.3.22) ∂t(pth)(x) = (pt(Lh))(x) ∀t ≥ 0, x ∈ S, h ∈ bS.

Remark. Exercise 9.3.33 relates the Markov semi-group with the correspond-
ing jump parameters, showing that a Markov semi-group pt(·, ·) corresponds to a
Markov jump process only if for any x ∈ S, the limit

(9.3.23) lim
t↓0

t−1(1− pt(x, {x}) = λx

exists, is finite and S-measurable. Moreover, necessarily then also

(9.3.24) lim
t↓0

t−1pt(x,B) = λxp(x,B) ∀B ⊆ {x}c ,

for some transition probability p(·, ·). Recall Theorem 9.3.28 that with the ex-
ception of possible explosion, the converse applies, namely whenever (9.3.23) and
(9.3.24) hold, the semi-group pt(·, ·) corresponds to a (possibly explosive) Markov
jump process. We note in passing that while Kolmogorov’s backward equation
(9.3.21) is well defined for any jump parameters, the existence of solution which is
a Markov semi-group, is equivalent to non-explosion of the corresponding Markov
jump process.

In particular, in case of bounded jump rates the conditions (9.3.23) and (9.3.24)
are equivalent to the Markov process being a Markov pure jump process and in this
setting you are now to characterize the invariant measures for the Markov jump
process in terms of its jump parameters (or equivalently, in terms of its generator).

Exercise 9.3.34. Suppose (λ, p) are jump parameters on B-isomorphic state space
(S,S) such that supx∈S λx is finite.
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(a) Show that probability measure ν is invariant for the corresponding Markov
jump process if and only if ν(Lh) = 0 for the generator L : bS 7→ bS of
these jump parameters and all h ∈ bS.
Hint: Combine Exercises 9.3.9 and 9.3.33 (utilizing the boundedness of
x 7→ (Lh)(x)).

(b) Deduce that ν is an invariant probability measure for (λ, p) if and only if
(λν)⊗ p(S×A) = (λν)(A) for all A ∈ S.

In particular, the invariant probability measures of a Markov jump process with
constant jump rates are precisely the invariant probability measures for its jump
transition probability (see Proposition 6.1.23).

Of particular interest is the following special family of Markov jump processes.

Definition 9.3.35. Real-valued Markov pure jump processes with a constant jump
rate λ whose jump transition probability is of the form p(x,B) = Pξ({z : x+z ∈ B})
for some law Pξ on (R,B), are called compound Poisson processes. Recall Remark
9.3.29 that a compound Poisson process is of the form Xt = SNt for a random walk
Sn = S0 +

∑n
k=1 ξk with i.i.d. {ξ, ξk} which are independent of the Poisson process

Nt of rate λ.

Remark. The random telegraph signal Rt = (−1)NtR0 of Example 8.2.14 is a
Markov jump process on S = {−1, 1} with constant jump rate λ, which is not a
compound Poisson process (as its transition probabilities p(1,−1) = p(−1, 1) = 1
do not correspond to a random walk).

As we see next, compound Poisson processes retain many of the properties of the
Poisson process.

Proposition 9.3.36. A compound Poisson process {Xt, t ≥ 0} has stationary,
independent increments and the characteristic function of its Markov semi-group
pt(x, ·) is

(9.3.25) Ex[eiθXt ] = eiθx+λt(Φξ(θ)−1) ,

where Φξ(·) denotes the characteristic function of the corresponding jump sizes ξk.

Proof. We start by proving that {Xt, t ≥ 0} has independent increments,
where by Exercise 8.1.12 it suffices to fix 0 = t0 < t1 < t2 < · · · < tn and show that
the random variables Di = Xti −Xti−1

, i = 1, . . . , n, are mutually independent. To

this end, note that Nt0 = 0 and conditional on the event Nti = mi for mi =
∑i
j=1 rj

and fixed r = (r1, . . . , rn) ∈ Zn+, we have that Di =
∑mi
k=mi−1+1 ξk are mutually

independent with Di then having the same distribution as the random walk Sri
starting at S0 = 0. So, for any fi ∈ bB, by the tower property and the mutual
independence of {Nti −Nti−1

, 1 ≤ i ≤ n},

Ex[

n∏
i=1

fi(Di)] = E[Ex(

n∏
i=1

fi(Di)|FN)] =
∑
r∈Zn+

n∏
i=1

{
P(Nti −Nti−1

= ri)E0[fi(Sri)]
}

=

n∏
i=1

{ ∞∑
ri=0

P(Nti −Nti−1 = ri)E0[fi(Sri)]
}

=

n∏
i=1

Ex[fi(Di)] ,

yielding the mutual independence of Di, i = 1, . . . , n.



362 9. CONTINUOUS TIME MARTINGALES AND MARKOV PROCESSES

We have just seen that for each t > s the increment Xt − Xs has under Px

the same law as SNt−Ns has under P0. Since Nt − Ns
D
= Nt−s, it follows by the

independence of the random walk {Sr} and the Poisson process {Nt, t ≥ 0} that
Px(Xt−Xs ∈ ·) = P0(SNt−s ∈ ·) depends only on t− s, which by Definition 8.3.11
amounts to {Xt, t ≥ 0} having stationary increments.
Finally, the identity (3.3.3) extends to E[zNt ] = exp(λt(z − 1)) for Nt having

a Poisson distribution with parameter λt and any complex variable z. Thus, as
Ex[eiθSr ] = eiθxΦξ(θ)

r (see Lemma 3.3.8), utilizing the independence of {Sr} from
Nt, we conclude that

Ex[eiθXt ] = E[Ex(eiθSNt |Nt)] = eiθxE[Φξ(θ)
Nt ] = eiθx+λt(Φξ(θ)−1) ,

for all t ≥ 0 and x, θ ∈ R, as claimed. �

Exercise 9.3.37. Let {Xt, t ≥ 0} be a compound Poisson process of jump rate λ.

(a) Show that if the corresponding jump sizes {ξk} are square integrable then
E0Xt = λtEξ1 and Var(Xt) = λtEξ2

1 .
(b) Show that if Eξ1 = 0 then {Xt, t ≥ 0} is a martingale. More generally,

u0(t,Xt, θ) is a martingale for u0(t, y, θ) = exp(θy − λt(Mξ(θ)− 1)) and
any θ ∈ R for which the moment generating function Mξ(θ) = E[eθξ1 ] is
finite.

Here is the analog for compound Poisson processes of the thinning of Poisson
variables.

Proposition 9.3.38. Suppose {Xt, t ≥ 0} is a compound Poisson process of jump
rate λ and jump size law Pξ. Fixing a disjoint finite partition of R \ {0} to Borel

sets Bj, j = 1, . . . ,m, consider the decomposition Xt = X0 +
m∑
j=1

X
(j)
t in terms of

the contributions

X
(j)
t =

Nt∑
k=1

ξkIBj (ξk)

to Xt by jumps whose size belong to Bj. Then {X(j)
t , t ≥ 0} for j = 1, . . . ,m are

independent compound Poisson processes of jump rates λ(j) = λP(ξ ∈ Bj) and

i.i.d. jump sizes {ξ(j), ξ
(j)
` } such that P(ξ(j) ∈ ·) = P(ξ ∈ ·|ξ ∈ Bj), starting at

X
(j)
0 = 0.

Proof. While one can directly prove this result along the lines of Exercise

3.4.16, we resort to an indirect alternative, whereby we set X̂t = X0 +
∑m
j=1 Y

(j)
t

for the independent compound Poisson processes Y
(j)
t of jump rates λ(j) and i.i.d.

jump sizes {ξ(j)
k }, starting at Y

(j)
0 = 0. By construction, X̂t is a pure jump process

whose jump times {Tk(ω)} are contained in the union over j = 1, . . . ,m of the

isolated jump times {T (j)
k (ω)} of t 7→ Y

(j)
t (ω). Recall that each T

(j)
k has the gamma

density of parameters α = k and λ(j) (see Exercise 1.4.47 and Definition 3.4.8).

Therefore, by the independence of {Y (j)
t , t ≥ 0} w.p.1. no two jump times among

{T (j)
k , j, k ≥ 1} are the same, in which case X̂

(j)
t = Y

(j)
t for all j and t ≥ 0 (as the

jump sizes of each Y
(j)
t are in the disjoint element Bj of the specified finite partition

of R \ {0}). With the Rm-valued process (X̂(1), . . . , X̂(m)) being indistinguishable
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from (Y (1), . . . , Y (m)), it thus suffices to show that {X̂t, t ≥ 0} is a compound
Poisson process of the specified jump rate λ and jump size law Pξ.
To this end, recall Proposition 9.3.36 that each of the processes Y

(j)
t has station-

ary independent increments and due to their independence, the same applies for

{X̂t, t ≥ 0}, which is thus a real-valued homogeneous Markov process (see Propo-
sition 9.3.5). Next, note that since λ =

∑m
j=1 λ

(j) and for all θ ∈ R,

m∑
j=1

λ(j)Φξ(j)(θ) = λ

m∑
j=1

E[eiθξIBj (ξ)] = Φξ(θ) ,

we have from (9.3.25) and Lemma 3.3.8 that for any θ ∈ R,

Ex[eiθX̂t ] = eiθx
m∏
j=1

E[eiθY
(j)
t ]

= eiθx
m∏
j=1

e
λ(j)t(Φ

ξ(j)
(θ)−1)

= eiθx+λt(Φξ(θ)−1) = Ex[eiθXt ] .

That is, denoting by pt(·, ·) and p̂t(·, ·) the Markov semi-groups of {Xt, t ≥ 0} and

{X̂t, t ≥ 0} respectively, we found that per fixed x ∈ R and t ≥ 0 the transi-
tion probabilities pt(x, ·) and p̂t(x, ·) have the same characteristic function. Con-
sequently, by Lévy’s inversion theorem pt(·, ·) = p̂t(·, ·) for all t ≥ 0, i.e., these
two semi-groups are identical. Obviously, this implies that the Markov pure jump

processes Xt and X̂t have the same jump parameters (see (9.3.23) and (9.3.24)),

so as claimed {X̂t, t ≥ 0} is a compound Poisson process of jump rate λ and jump
size law Pξ. �

Exercise 9.3.39. Suppose {Yt, t ≥ 0} is a compound Poisson process of jump rate
λ > 0, integrable Y0 and jump size law Pξ for some integrable ξ > 0.

(a) Show that for any integrable FY
t -Markov time τ , EYτ = EY0 + λEξEτ .

Hint: Consider the FY
t -martingales Xt∧n, n ≥ 1, where Xt = Yt−λtEξ.

(b) Suppose that Y0 and ξ are square integrable and let θr = inf{t ≥ 0 :

Z
(r)
t > Yt}, where Z

(r)
t = Bt+rt for a standard Brownian Markov process

(Bt, t ≥ 0), independent of (Yt, t ≥ 0). Show that for any r ∈ R,

Eθr =
E(Y0)+

(r − λEξ)+

(where trivially θr = 0 w.p.1. in case E(Y0)+ = 0).
Hint: Consider filtration Ft = σ(Ys, Bs, s ≤ t) and MG Mt = Xt −Bt.

As in the case of Markov chains, the jump transition probability of a Markov
jump process with countable state space S is of the form p(x,A) =

∑
y∈A p(x, y).

In this case, accessibility and intercommunication of states, as well as irreducible,
transient and recurrent classes of states, are defined according to the transition
probability {p(x, y)} and obey the relations explored already in Subsection 6.2.1.
Moreover, as you are to check next, Kolmogorov’s equations (9.3.21) and (9.3.22)
are more explicit in this setting.

Exercise 9.3.40. Suppose (λ, p) are the parameters of a Markov jump process on
a countable state space S.
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(a) Check that ps(x, z) = Px(Xs = z) are then the solution of the countable
system of linear ODEs

dps(x, z)

ds
=
∑
y∈S

q(x, y)ps(y, z) ∀s ≥ 0, x, z ∈ S,

starting at p0(x, z) = Ix=z, where q(x, x) = −λx and q(x, y) = λxp(x, y)
for x 6= y.

(b) Show that if supx λx is finite then ps(x, z) must also satisfy the corre-
sponding forward equation

dps(x, z)

ds
=
∑
y∈S

ps(x, y)q(y, z) ∀s ≥ 0, x, z ∈ S.

(c) In case S is a finite set, show that the matrix Ps of entries ps(x, z) is

given by Ps = esQ =
∑∞
k=0

sk

k! Q
k, where Q is the matrix of entries

q(x, y).

The formula Ps = esQ explains why Q, and more generally L, is called the gener-
ator of the semi-group Ps.

From Exercise 9.3.34 we further deduce that, at least for bounded jump rates, an
invariant probability measure for the Markov jump process is uniquely determined
by the function π : S 7→ [0, 1] such that

∑
x π(x) = 1 and

(9.3.26) λyπ(y) =
∑
x∈S

π(x)λxp(x, y) ∀y ∈ S .

For constant positive jump rates this condition coincides with the characterization
(6.2.5) of invariant probability measures for the jump transition probability. Con-
sequently, for such jump processes the invariant, reversible and excessive measures
as well as positive and null recurrent states are defined as the corresponding ob-
jects for the jump transition probability and obey the relations explored already in
Subsection 6.2.2.

Remark. While we do not pursue this further, we note in passing that more
generally, a measure µ(·) is reversible for a Markov jump process with countable
state space S if and only if λyµ(y)p(y, x) = µ(x)λxp(x, y) for any x, y ∈ S (so
any reversible probability measure is by (9.3.26) invariant for the Markov jump
process). Similarly, in general we call x ∈ S with λx = 0 an absorbing, hence
positive recurrent, state and say that a non-absorbing state is positive recurrent
if it has finite mean return time. That is, if ExTx < ∞ for the first return time
Tx = inf{t ≥ τ : Xt = x} to state x. It can then be shown, in analogy with
Proposition 6.2.41, that any invariant probability measure π(·) is zero outside the
positive recurrent states and if its support is an irreducible class R of non-absorbing
positive recurrent states, then π(z) = 1/(λzEz[Tz]) (see, [GS01, Section 6.9] for
more details).

To practice your understanding, the next exercise explores in more depth the
important family of birth and death Markov jump processes (or in short, birth and
death processes).

Exercise 9.3.41 (Birth and death processes). A birth and death process is a
Markov jump process {Xt} on S = {0, 1, 2, . . .} for which {Zn} is a birth and death
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chain. That is, p(x, x + 1) = px = 1 − p(x, x − 1) for all x ∈ S (where of course
p0 = 1). Assuming λx > 0 for all x and px ∈ (0, 1) for all x > 0, let

π̂(k) =
λ0

λk

k∏
i=1

pi−1

1− pi
.

Show that {Xt} is irreducible and has an invariant probability measure if and only
if c =

∑
k≥0 π̂(k) is finite, in which case its invariant measure is π(k) = π̂(k)/c.

The next exercise deals with independent random sampling along the path of a
Markov pure jump process.

Exercise 9.3.42. Let Yk = XT̃k
, k = 0, 1, . . ., where T̃k =

∑k
i=1 τ̃i and the i.i.d.

τ̃i ≥ 0 are independent of the Markov pure jump process {Xt, t ≥ 0}.
(a) Show that {Yk} is a homogeneous Markov chain and verify that any in-

variant probability measure for {Xt} is also an invariant measure for
{Yk}.

(b) Show that in case of constant jump rates λx = λ and each τ̃i having the

exponential distribution of parameter λ̃ > 0, one has the representation

Yk = ZLk of sampling the embedded chain {Zn} at Lk =
∑k
i=1(ηi−1) for

i.i.d. ηi ≥ 1, each having the Geometric distribution of success probability

p = λ̃/(λ+ λ̃).

(c) Conclude that if {T̃k} are the jump times of a Poisson process of rate

λ̃ > 0 which is independent of the compound Poisson process {Xt}, then

{Yk} is a random walk, the increment of which has the law of
∑η−1
i=1 ξi.

Compare your next result with part (a) of Exercise 9.2.47.

Exercise 9.3.43. Suppose {Xt, t ≥ 0} is a real-valued Markov pure jump process,
with 0 = T0 < T1 < T2 < · · · denoting the jump times of its sample function. Show
that for any q > 0 its finite q-th variation V (q)(X)t exists, and is given by

V (q)(X)t =
∑
k≥1

I{Tk≤t}|XTk −XTk−1
|q .





CHAPTER 10

The Brownian motion

The Brownian motion is the most fundamental continuous time stochastic process.
We have seen already in Section 8.3 that it is a Gaussian process of continuous sam-
ple functions and independent, stationary increments. In addition, it is a martingale
of the type considered in Section 9.2 and has the strong Markov property of Section
9.3. Having all these beautiful properties allows for a rich mathematical theory. For
example, many probabilistic computations involving the Brownian motion can be
made explicit by solving partial differential equations. Further, the Brownian mo-
tion is the corner stone of diffusion theory and of stochastic integration. As such
it is the most fundamental object in applications to and modeling of natural and
man-made phenomena.
This chapter deals with some of the most interesting properties of the Brownian

motion. Specifically, in Section 10.1 we use stopping time, Markov and martingale
theory to study path properties of this process, focusing on passage times and run-
ning maxima. Expressing in Section 10.2 random walks and discrete time MGs as
time-changed Brownian motion, we prove Donsker’s celebrated invariance principle.
It then provides fundamental results about these discrete time S.P.-s, such as the
law of the iterated logarithm (in short lil), and the martingale clt. Finally, the
fascinating aspects of the (lack of) regularity of the Brownian sample path are the
focus of Section 10.3.

10.1. Brownian transformations, hitting times and maxima

We start with a few elementary path transformations under which the Wiener
process of Definition 8.3.12 is invariant (see also Figure 2 illustrating its sample
functions).

Exercise 10.1.1. For {Wt, t ≥ 0} a standard Wiener process, show that the S.P.

W̃
(i)
t , i = 1, . . . , 6 are also standard Wiener processes.

(a) (Symmetry) W̃
(1)
t = −Wt, t ≥ 0.

(b) (Time-homogeneity) W̃
(2)
t = WT+t−WT , t ≥ 0 with T > 0 a non-random

constant.
(c) (Time-reversal) W̃

(3)
t = WT −WT−t, for t ∈ [0, T ], with T > 0 a non-

random constant.
(d) (Scaling) W̃

(4)
t = α−1/2Wαt, t ≥ 0, with α > 0 a non-random constant.

(e) (Time-inversion) W̃
(5)
t = tW1/t for t > 0 and W̃

(5)
0 = 0.

( f ) (Averaging) W̃
(6)
t =

∑n
k=1 ckW

(k)
t , t ≥ 0, where W

(k)
t are independent

copies of the Wiener process and ck non-random such that
∑n
k=1 c

2
k = 1.

(g) Show that W̃
(2)
t and W̃

(3)
t are independent Wiener processes and evaluate

qt = Px(WT > WT−t > WT+t), where t ∈ [0, T ].

367
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Remark. These invariance transformations are extensively used in the study of
the Wiener process. As a token demonstration, note that since time-inversion maps
La,b = sup{t ≥ 0 : Wt /∈ (−at, bt)} to the stopping time τa,b of Exercise 9.2.36, it
follows that La,b is a.s. finite and P(WLa,b = bLa,b) = a/(a+ b).

Recall Exercise 9.3.20 (or Exercise 9.3.22), that any Brownian Markov process
(Wt,Ft) is a strong Markov process, yielding the following consequence of Corollary
9.3.14 (and of the identification of the Borel σ-algebra of C([0,∞)) as the restriction
of the cylindrical σ-algebra B[0,∞) to C([0,∞)), see Exercise 8.2.9).

Corollary 10.1.2. If (Wt,Ft) is a Brownian Markov process, then {Wt, t ≥ 0}
is a homogeneous Ft+-Markov process and further, for any s ≥ 0 and bounded Borel
measurable functional h : C([0,∞)) 7→ R, almost surely

(10.1.1) E[h(W·)|Fs+ ] = E[h(W·)|Fs] .
From this corollary and the Brownian time-inversion property we further deduce

both Blumenthal’s 0-1 law about the Px-triviality of the σ-algebra FW
0+ and its

analog about the Px-triviality of the tail σ-algebra of the Wiener process (compare
the latter with Kolmogorov’s 0-1 law). To this end, we first extend the definition
of the tail σ-algebra, as in Definition 1.4.9, to continuous time S.P.-s.

Definition 10.1.3. Associate with any continuous time S.P. {Xt, t ≥ 0} the
canonical future σ-algebras T X

t = σ(Xs, s ≥ t), with the corresponding tail σ-

algebra of the process being T X =
⋂
t≥0

T X
t .

Proposition 10.1.4 (Blumenthal’s 0-1 law). Let Px denote the law of the
Wiener process {Wt, t ≥ 0} starting at W0 = x (identifying (Ω,FW) with C([0,∞))
and its Borel σ-algebra). Then, Px(A) ∈ {0, 1} for each A ∈ FW

0+ and x ∈ R.

Further, if A ∈ TW then either Px(A) = 0 for all x or Px(A) = 1 for all x.

Proof. Applying Corollary 10.1.2 for the Wiener process starting at W0 = x
and its canonical filtration, we have by the Px-triviality of FW

0 that for each A ∈
FW

0+ ,

IA = Ex[IA|FW
0+ ] = Ex[IA|FW

0 ] = Px(A) Px − a.s.

Hence, Px(A) ∈ {0, 1}. Proceeding to prove our second claim, set X0 = 0 and
Xt = tW1/t for t > 0, noting that {Xt, t ≥ 0} is a standard Wiener process (see

part (e) of Exercise 10.1.1). Further, TW
t = FX

1/t for any t > 0, hence

TW =
⋂
t>0

TW
t =

⋂
t>0

FX
1/t = FX

0+ .

Consequently, applying our first claim for the canonical filtration of the standard
Wiener processes {Xt} we see that P0(A) ∈ {0, 1} for any A ∈ FX

0+ = TW.

Moreover, since A ∈ TW
1 , it is of the form IA = ID ◦ θ1 for some D ∈ FW, so by

the tower and Markov properties,

Px(A) = Ex[ID ◦ θ1(ω(·))] = Ex[PW1
(D)] =

∫
p1(x, y)Py(D)dy ,

for the strictly positive Brownian transition kernel p1(x, y) = exp(−(x−y)2/2)/
√

2π.
If P0(A) = 0 then necessarily Py(D) = 0 for Lebesgue almost every y, hence also
Px(A) = 0 for all x ∈ R. Conversely, if P0(A) = 1 then P0(Ac) = 0 and with
Ac ∈ TW, by the preceding argument 1−Px(A) = Px(Ac) = 0 for all x ∈ R. �
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Blumenthal’s 0-1 law is very useful in determining properties of the Brownian
sample function in the limits t ↓ 0 and t ↑ ∞. Here are few of its many consequences.

Corollary 10.1.5. Let τ0+ = inf{t ≥ 0 : Wt > 0}, τ0− = inf{t ≥ 0 : Wt < 0} and
T0 = inf{t > 0 : Wt = 0}. Then, P0(τ0+ = 0) = P0(τ0− = 0) = P0(T0 = 0) = 1
and w.p.1. the standard Wiener process changes sign infinitely many times in any
time interval [0, ε], ε > 0. Further, for any x ∈ R, with Px-probability one,

lim sup
t→∞

1√
t
Wt =∞ , lim inf

t→∞

1√
t
Wt = −∞ , Wun = 0 for some un(ω) ↑ ∞ .

Proof. Since P0(τ0+ ≤ t) ≥ P0(Wt > 0) = 1/2 for all t > 0, also P0(τ0+ =
0) ≥ 1/2. Further, τ0+ is an FW

t -Markov time (see Proposition 9.1.15). Hence,
{τ0+ = 0} = {τ0+ ≤ 0} ∈ FW

0+ and from Blumenthal’s 0-1 law it follows that
P0(τ0+ = 0) = 1. By the symmetry property of the standard Wiener process (see
part (a) of Exercise 10.1.1), also P0(τ0− = 0) = 1. Combining these two facts we
deduce that P0-a.s. there exist tn ↓ 0 and sn ↓ 0 such that Wtn > 0 > Wsn for
all n. By sample path continuity, this implies the existence of un ↓ 0 such that
Wun = 0 for all n. Hence, P0(T0 = 0) = 1. As for the second claim, note that for
any r > 0,

P0(Wn ≥ r
√
n i.o.) ≥ lim sup

n→∞
P0(Wn ≥ r

√
n) = P0(W1 ≥ r) > 0

where the first inequality is due to Exercise 2.2.2 and the equality holds by the
scaling property of {Wt} (see part (d) of Exercise 10.1.1). Since {Wn ≥ r

√
n

i.o.} ∈ TW we thus deduce from Blumenthal’s 0-1 law that Px(Wn ≥ r
√
n i.o.) = 1

for any x ∈ R. Considering rk ↑ ∞ this implies that lim supt→∞Wt/
√
t =∞ with

Px-probability one. Further, by the symmetry property of the standard Wiener
process,

P0(Wn ≤ −r
√
n, i.o.) = P0(Wn ≥ r

√
n, i.o.) > 0 ,

so the preceding argument leads to lim inft→∞Wt/
√
t = −∞ with Px-probability

one. In particular, Px-a.s. there exist tn ↑ ∞ and sn ↑ ∞ such that Wtn > 0 > Wsn

which by sample path continuity implies the existence of un ↑ ∞ such that Wun = 0
for all n. �

Combining the strong Markov property of the Brownian Markov process and the
independence of its increments, we deduce next that each a.s. finite Markov time
τ is a regeneration time for this process, where it “starts afresh” independently of
the path it took up to this (random) time.

Corollary 10.1.6. If (Wt,Ft) is a Brownian Markov process and τ is an a.s.
finite Ft-Markov time, then the S.P. {Wτ+t − Wτ , t ≥ 0} is a standard Wiener
process, which is independent of Fτ+ .

Proof. With τ a.s. finite, Ft-Markov time and {Wt, t ≥ 0} an Ft-progressively
measurable process, it follows that Bt = Wt+τ −Wτ is a R.V. on our probability
space and {Bt, t ≥ 0} is a well defined S.P. whose sample functions inherit the conti-

nuity of those of {Wt, t ≥ 0}. Since the S.P. W̃t = Wt−W0 has the f.d.d. hence the

law of the standard Wiener process, fixing h ∈ bB[0,∞) and h̃(x(·)) = h(x(·)−x(0)),

the value of gh̃(y) = Ey[h̃(W·)] = E[h(W̃·)] is independent of y. Consequently,
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fixing A ∈ Fτ+ , by the tower property and the strong Markov property (9.3.12) of
the Brownian Markov process (Wt,Ft) we have that

E[IAh(B·)] = E[IAh̃(Wτ+·)] = E[IAgh̃(Wτ )] = P(A)E[h(W̃·)] .

In particular, considering A = Ω we deduce that the S.P. {Bt, t ≥ 0} has the f.d.d.

and hence the law of the standard Wiener process {W̃t}. Further, recall Lemma
8.1.7 that for any F ∈ FB, the indicator IF is of the form IF = h(B·) for some
h ∈ bB[0,∞), in which case by the preceding P(A ∩ F ) = P(A)P(F ). Since this
applies for any F ∈ FB and A ∈ Fτ+ we have established the P-independence of
the two σ-algebras, namely, the stated independence of {Bt, t ≥ 0} and Fτ+ . �

Beware that to get such a regeneration it is imperative to start with a Markov (or
stopping) time τ . To convince yourself, solve the following exercise.

Exercise 10.1.7. Suppose {Wt, t ≥ 0} is a standard Wiener process.

(a) Provide an example of a finite a.s. random variable τ ≥ 0 such that
{Wτ+t−Wτ , t ≥ 0} does not have the law of a standard Brownian motion.

(b) Provide an example of a finite FW
t -stopping time τ such that [τ ] is not

an FW
t -stopping time.

Combining Corollary 10.1.6 with the fact that w.p.1. τ0+ = 0, you are next to
prove the somewhat surprising fact that w.p.1. a Brownian Markov process enters
(b,∞) as soon as it exits (−∞, b).

Exercise 10.1.8. For b ≥ 0 and a Brownian Markov process (Wt,Ft), let τb =
inf{t ≥ 0 : Wt ≥ b} and τb+ = inf{t ≥ 0 : Wt > b}.

(a) Show that P0(τb 6= τb+) = 0.
(b) Suppose W0 = 0 and a finite random-variable H ≥ 0 is independent of
FW. Show that {τH 6= τH+} ∈ F has probability zero.

The strong Markov property of the Wiener process also provides the probability
that starting at x ∈ (c, d) it reaches level d before level c (i.e., the event W

τ
(0)
a,b

= b

of Exercise 9.2.36, with b = d− x and a = x− c).

Exercise 10.1.9. Consider the stopping time τ = inf{t ≥ 0 : Wt /∈ (c, d)} for a
Wiener process {Wt, t ≥ 0} starting at x ∈ (c, d).

(a) Using the strong Markov property of Wt show that u(x) = Px(Wτ = d)
is an harmonic function, namely, u(x) = (u(x + r) + u(x − r))/2 for
any c ≤ x − r < x < x + r ≤ d, with boundary conditions u(c) = 0 and
u(d) = 1.

(b) Check that v(x) = (x− c)/(d− c) is an harmonic function satisfying the
same boundary conditions as u(x).

Since boundary conditions at x = c and x = d uniquely determine the value of a
harmonic function in (c, d) (a fact you do not need to prove), you thus showed that
Px(Wτ = d) = (x− c)/(d− c).

We proceed to derive some of the many classical explicit formulas involving Brow-
nian hitting times, starting with the celebrated reflection principle, which provides
among other things the probability density functions of the passage times for a
standard Wiener process and of their dual, the running maxima of this process.
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Reflection principle for Brownian motion with b=1, t=3

Figure 1. Illustration of the reflection principle for Brownian motion.

Proposition 10.1.10 (Reflection principle). With {Wt, t ≥ 0} the standard
Wiener process, let Mt = sups∈[0,t]Ws denote its running maxima and Tb = inf{t ≥
0 : Wt = b} the corresponding passage times. Then, for any t, b > 0,

(10.1.2) P(Mt ≥ b) = P(τb ≤ t) = P(Tb ≤ t) = 2P(Wt ≥ b)
(where τb = inf{t ≥ 0 : Wt ≥ b}).

Remark. The reflection principle was stated by P. Lévy [Lev39] and first rigor-
ously proved by Hunt [Hun56]. It is attributed to D. André [And1887] who solved
the ballot problem of Exercise 5.5.30 by a similar symmetry argument (leading also
to the reflection principle for symmetric random walks, as in Exercise 6.1.19).

Proof. Recall Proposition 9.1.15 that τb is a stopping time for FW
t . Further,

since b > 0 = W0 and s 7→ Ws is continuous, clearly τb = Tb and WTb = b
whenever Tb is finite. Heuristically, given that Tb = s < u we have that Ws = b
and by reflection symmetry of the Brownian motion, expect the conditional law of
Wu −Ws to retain its symmetry around zero, as illustrated in Figure 1. This of
course leads to the prediction that for any u, b > 0,

(10.1.3) P(Tb < u,Wu > b) =
1

2
P(Tb < u) .

With W0 = 0, by sample path continuity {Wu > b} ⊆ {Tb < u}, so the preceding
prediction implies that

P(Tb < u) = 2P(Tb < u,Wu > b) = 2P(Wu > b) .

The supremum Mt(ω) of the continuous function s 7→ Ws(ω) over the compact
interval [0, t] is attained at some s ∈ [0, t], hence the identity {Mt ≥ b} = {τb ≤ t}
holds for all t, b > 0. Thus, considering u ↓ t > 0 leads in view of the continuity of
(u, b) 7→ P(Wu > b) to the statement (10.1.2) of the proposition. Turning to rigor-
ously prove (10.1.3), we rely on the strong Markov property of the standard Wiener
process for the FW

t -stopping time Tb and the functional h(s, x(·)) = IA(s, x(·)),
where A = {(s, x(·)) : x(·) ∈ C(R+), s ∈ [0, u) and x(u − s) > b}. To this end,
note that Fy,a,a′ = {x ∈ C([0,∞)) : x(u− s) ≥ y for all s ∈ [a, a′]} is closed (with
respect to uniform convergence on compact subsets of [0,∞)), and x(u − s) > b
for some s ∈ [0, u) if and only if x(·) ∈ Fbk,q,q′ for some bk = b + 1/k, k ≥ 1 and
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q < q′ ∈ Q(2)
u . So, A is the countable union of closed sets [q, q′] × Fbk,q,q′ , hence

Borel measurable on [0,∞) × C([0,∞)). Next recall that by the definition of the
set A,

gh(s, b) = Eb[IA(s,W·)] = I[0,u)(s)Pb(Wu−s > b) =
1

2
I[0,u)(s) .

Further, h(s, x(s+·)) = I[0,u)(s)Ix(u)>b and WTb = b whenever Tb is finite, so taking
the expectation of (9.3.13) yields (for our choices of h(·, ·) and τ), the identity,

E[I{Tb<u}I{Wu>b}] = E[h(Tb,WTb+·)] = E[gh(Tb,WTb)]

= E[gh(Tb, b)] =
1

2
E[I{Tb<u}] ,

which is precisely (10.1.3). �

Since t−1/2Wt
D
= G, a standard normal variable of continuous distribution func-

tion, we deduce from the reflection principle that the distribution functions of Tb
and Mt are continuous and such that FTb(t) = 1 − FMt

(b) = 2(1 − FG(b/
√
t)). In

particular, P(Tb > t) → 0 as t → ∞, hence Tb is a.s. finite. We further have the
corresponding explicit probability density functions on [0,∞),

fTb(t) =
∂

∂t
FTb(t) =

b√
2πt3

e−
b2

2t ,(10.1.4)

fMt
(b) =

∂

∂b
FMt

(b) =
2√
2πt

e−
b2

2t .(10.1.5)

Remark. From the preceding formula for the density of Tb = τb you can easily
check that it has infinite expected value, in contrast with the exit times τa,b of
bounded intervals (−a, b), which have finite moments (see part (c) of Exercise 9.2.36
for finiteness of the second moment and note that the same method extends to all
moments). Recall that in part (b) of Exercise 9.2.35 you have already found that
the Laplace transform of the density of Tb is

LfTb (s) =

∫ ∞
0

e−stfTb(t)dt = e−
√

2sb

(and for inverting Laplace transforms, see Exercise 2.2.15). Further, using the
density of passage times, you can now derive the well-known arc-sine law for the
last exit of the Brownian motion from zero by time one.

Exercise 10.1.11. For the standard Wiener process {Wt} and any t > 0, consider
the time Lt = sup{s ∈ [0, t] : Ws = 0} of last exit from zero by t, and the Markov
time Rt = inf{s > t : Ws = 0} of first return to zero after t.

(a) Verify that Px(Ty > u) = P(T|y−x| > u) for any x, y ∈ R, and with
pt(x, y) denoting the Brownian transition probability kernel, show that
for u > 0 and 0 < u < t, respectively,

P(Rt > t+ u) =

∫ ∞
−∞

pt(0, y)P(T|y| > u)dy ,

P(Lt ≤ u) =

∫ ∞
−∞

pu(0, y)P(T|y| > t− u)dy .

(b) Deduce from (10.1.4) that the probability density function of Rt − t is
fRt−t(u) =

√
t/(π
√
u(t+ u)).



10.1. BROWNIAN TRANSFORMATIONS, HITTING TIMES AND MAXIMA 373

Hint: Express ∂P(Rt > t+u)/∂u as one integral over y ∈ R, then change
variables to z2 = y2(1/u+ 1/t).

(c) Show that Lt has the arc-sine law P(Lt ≤ u) = (2/π) arcsin(
√
u/t) and

hence the density fLt(u) = 1/(π
√
u(t− u)) on [0, t].

(d) Find the joint probability density function of (Lt, Rt).

Remark. Knowing the law of Lt is quite useful, for {Lt > u} is just the event
{Ws = 0 for some s ∈ (u, t]}. You have encountered the arc-sine law in Exercise
3.2.16 (where you proved the discrete reflection principle for the path of the sym-
metric srw). Indeed, as shown in Section 10.2 by Donsker’s invariance principle,
these two arc-sine laws are equivalent.

Here are a few additional results about passage times and running maxima.

Exercise 10.1.12. Generalizing the proof of (10.1.3), deduce that for a standard
Wiener process, any u > 0 and a1 < a2 ≤ b,
(10.1.6) P(Tb < u, a1 < Wu < a2) = P(2b− a2 < Wu < 2b− a1) ,

and conclude that the joint density of (Mt,Wt) is

(10.1.7) fWt,Mt
(a, b) =

2(2b− a)√
2πt3

e−
(2b−a)2

2t ,

for b ≥ a ∨ 0 and zero otherwise.

Exercise 10.1.13. Let X(s, t) := infu∈[s,t] {W (u)} for a standard Wiener process
W (t), and for any t > 1, ε > 0, denote by gt,ε(x) the probability density of W (1)
at x ≥ 0, conditioned on the event {X(0, t) > −ε}.

(a) Express gt,ε(x) in terms of the standard normal distribution function
FG(·).

(b) Taking both t ↑ ∞ and ε ↓ 0, show that gt,ε(x) converges to the density

fR(x) of R :=
√
G2

1 +G2
2 +G2

3, for i.i.d. standard normal variables Gi,
i = 1, 2, 3.

Exercise 10.1.14. Let W (t) = (W1(t),W2(t)) denote the two-dimensional Brow-
nian motion of Definition 9.2.38, starting at a non-random W (0) = (x1, x2) with
x1 > 0 and x2 > 0.

(a) Find the density of τ = inf{t ≥ 0 : W1(t) = 0 or W2(t) = 0}.
(b) Find the joint density of (τ,W1(τ),W2(τ)) with respect to Lebesgue mea-

sure on {(t, x, y) ∈ (0,∞)3 : x = 0 or y = 0}.
Hint: The identity (10.1.6) might be handy here.

Exercise 10.1.15. Consider a Brownian Markov process (Wt,Ft) with W0 ≥ 0
and pt(x,B) = Px(Wt ∈ B) its Brownian semi-group of transition probabilities.

(a) Show that (Wt∧T0 ,Ft) is a homogeneous Markov process on [0,∞) whose
transition probabilities are: p−,t(0, {0}) = 1, and if x > 0 then p−,t(x,B) =
pt(x,B)−pt(x,−B) for B ⊆ (0,∞), while p−,t(x, {0}) = 2pt(x, (−∞, 0]).

(b) Show that (|Wt|,Ft) is a homogeneous Markov process on [0,∞) whose
transition probabilities are p+,t(x,B) = pt(x,B) + pt(x,−B) (for x ≥ 0
and B ⊆ [0,∞)).

Remark. We call (Wt∧T0 ,Ft) the Brownian motion absorbed at zero and (|Wt|,Ft)
the reflected Brownian motion. These are the simplest possible ways of constraining
the Brownian motion to have state space [0,∞).
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Exercise 10.1.16. The Brownian Markov process (Wt,Ft) starts at W0 = 0.

(a) Show that Yt = Mt−Wt is an Ft-Markov process, of the same transition
probabilities {p+,t, t ≥ 0} on [0,∞) as the reflected Brownian motion.

(b) Deduce that {Yt, t ≥ 0} has the same law as the reflected Brownian mo-
tion.

Exercise 10.1.17. For a Brownian Markov process (Wt,Ft) starting at W0 = 0,
show that L↓,t = sup{s ∈ [0, t] : Ws = Mt} has the same arc-sine law as Lt.

Solving the next exercise you first show that {Tb, b ≥ 0} is a strictly increasing,
left-continuous process, whose sample path is a.s. purely discontinuous.

Exercise 10.1.18. Consider the passage times {Tb, b ≥ 0} for a Brownian Markov
process (Wt,Ft) starting at W0 = 0.

(a) Show that b 7→ Tb(ω), is left-continuous, strictly increasing and w.p.1.
purely discontinuous (i.e. there is no interval of positive length on which
b 7→ Tb is continuous).
Hint: Check that P(t 7→ Mt is strictly increasing on [0, ε]) = 0 for any
ε > 0, and relying on the strong Markov property of Wt deduce that w.p.1.
b 7→ Tb must be purely discontinuous.

(b) Show that for any h ∈ bB and 0 ≤ b < c,

E[h(Tc − Tb)|FT+
b

] = Eb[h(Tc)] = E0[h(Tc−b)] ,

(c) Deduce that {Tb, b ≥ 0} is a S.P. of stationary, non-negative indepen-
dent increments, whose Markov semi-group has the transition probability
kernel

q̂t(x, y) =
t√

2π(y − x)3
+

e
− t2

2(y−x)+ ,

corresponding to the one-sided 1/2-stable density of (10.1.4).
(d) Show that {τb+ , b ≥ 0} of Exercise 10.1.8 is a right-continuous modifi-

cation of {Tb, b ≥ 0}, hence a strong Markov process of same transition
probabilities.

(e) Show that Tc
D
= c2T1 for any c ∈ R.

Exercise 10.1.19. Suppose that for some b > 0 fixed, {ξk} are i.i.d. each having
the probability density function (10.1.4) of Tb.

(a) Show that n−2
∑n
k=1 ξk

D
= Tb (which is why we say that the law of Tb is

α-stable for α = 1/2).

(b) Show that P(n−2 maxnk=1 ξk ≤ y)→ exp(−b
√

2/(πy)) for all y ≥ 0 (com-
pare with part (b) of Exercise 3.2.13).

Exercise 10.1.20. Consider a standard Wiener process {Wt, t ≥ 0}.
(a) Fixing b, t > 0 let θb,t = inf{s ≥ t : Vs ≥ b} for Vs = |Ws|/

√
s. Check

that θb,t
D
= tθb,1, then show that for b < 1,

Eθb,1 =
1

1− b2
E[(V 2

1 − b2)I{V1≥b}] ,

whereas Eθb,1 =∞ in case b ≥ 1.
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Figure 2. Scaled srw for different values of n.

(b) Considering now Vs =
∫ s

0
exp[c(Ws − Wu) − c2(s − u)/2]du for c ∈ R

non-random, verify that Vs − s is a martingale and deduce that in this
case Eθb,0 = b for any b > 0.

10.2. Weak convergence and invariance principles

Consider the linearly interpolated, time-space rescaled random walk Ŝn(t) =
n−1/2S(nt) (as depicted in Figure 2, for the symmetric srw), where

(10.2.1) S(t) =

[t]∑
k=1

ξk + (t− [t])ξ[t]+1 ,

and {ξk} are i.i.d. Recall Exercise 3.5.18 that by the clt, if Eξ1 = 0 and Eξ2
1 = 1,

then as n → ∞ the f.d.d. of the S.P. Ŝn(·) of continuous sample path, converge
weakly to those of the standard Wiener process. Since f.d.d. uniquely determine
the law of a S.P. it is thus natural to expect also to have the stronger, convergence
in distribution, as defined next.

Definition 10.2.1. We say that S.P. {Xn(t), t ≥ 0} of continuous sample func-

tions converge in distribution to a S.P. {X∞(t), t ≥ 0}, denoted Xn(·) D−→ X∞(·),
if the corresponding laws converge weakly in the topological space S consisting of
C([0,∞)) equipped with the topology of uniform convergence on compact subsets of

[0,∞). That is, if g(Xn(·)) D−→ g(X∞(·)) whenever g : C([0,∞)) 7→ R Borel mea-
surable, is such that w.p.1. the sample function of X∞(·) is not in the set Dg of
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points of discontinuity of g (with respect to uniform convergence on compact subsets
of [0,∞)).

As we state now and prove in the sequel, such functional clt, also known as
Donsker’s invariance principle, indeed holds.

Theorem 10.2.2 (Donsker’s invariance principle). If {ξk} are i.i.d. with

Eξ1 = 0 and Eξ2
1 = 1, then for S(·) of (10.2.1), the S.P. Ŝn(·) = n−1/2S(n·)

converge in distribution, as n→∞, to the standard Wiener process.

Remark. The preceding theorem is called an invariance principle because the
limiting process does not depend on the law of the summands {ξk} of the random
walk. However, the condition Eξ2

1 < ∞ is almost necessary for the n−1/2 scaling
and for having a Brownian limit process. Indeed, note Remark 3.1.13 that both fail
as soon as E|ξ1|α =∞ for some 0 < α < 2.

Since h(x(·)) = f(x(t1), . . . , x(tk)) is continuous and bounded on C([0,∞)) for any
f ∈ Cb(Rk) and each finite subset {t1, . . . , tk} of [0,∞), convergence in distribution
of S.P. of continuous sample path implies the weak convergence of their f.d.d. But,
beware that the convergence of f.d.d. does not necessarily imply convergence in
distribution, even for S.P. of continuous sample functions.

Exercise 10.2.3. Give a counter-example to show that weak convergence of the
f.d.d. of S.P. {Xn(·)} of continuous sample functions to those of S.P. {X∞(·)} of

continuous sample functions, does not imply that Xn(·) D−→ X∞(·).
Hint: Try Xn(t) = nt1[0,1/n](t) + (2− nt)1(1/n,2/n](t).

Nevertheless, with S = (C([0,∞), ρ) a complete, separable metric space (c.f. Ex-
ercise 8.2.9), we have the following useful partial converse as an immediate conse-
quence of Prohorov’s theorem.

Proposition 10.2.4. If the laws of S.P. {Xn(·)} of continuous sample functions
are uniformly tight in C([0,∞)) and for n → ∞ the f.d.d. of {Xn(·)} converge

weakly to the f.d.d. of {X∞(·)}, then Xn(·) D−→ X∞(·).

Proof. Recall part (e) of Theorem 3.5.2, that by the Portmanteau theorem

Xn(·) D−→ X∞(·) as in Definition 10.2.1, if and only if the corresponding laws
νn = PXn converge weakly on the metric space S = C([0,∞)) (and its Borel σ-
algebra). That is, if and only if Eh(Xn(·)) → Eh(X∞(·)) for each h continuous

and bounded on S (also denoted by νn
w⇒ ν∞, see Definition 3.2.17). Let {ν(m)

n }
be a subsequence of {νn}. Since {νn} is uniformly tight, so is {ν(m)

n }. Thus,

by Prohorov’s theorem, there exists a further sub-subsequence {ν(mk)
n } such that

ν
(mk)
n converges weakly to a probability measure ν̃∞ on S. Recall Proposition 8.1.8

that the f.d.d. uniquely determine the law of S.P. of continuous sample functions.
Hence, from the assumed convergence of f.d.d. of {Xn(·)} to those of {X∞(·)},
we deduce that ν̃∞ = PX∞ = ν∞. Consequently, Eh(X

(mk)
n (·)) → Eh(X∞(·)) for

each h ∈ Cb([0,∞)) (see Exercise 8.2.9). Fixing h ∈ Cb([0,∞)) note that we have

just shown that every subsequence y
(m)
n of the sequence yn = Eh(Xn(·)) has a

further sub-subsequence y
(mk)
n that converges to y∞. Hence, we deduce by Lemma

2.2.11 that yn → y∞. Since this holds for all h ∈ Cb([0,∞)), we conclude that

Xn(·) D−→ X∞(·). �
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Having Proposition 10.2.4 and the convergence of f.d.d. of Ŝn(·), Donsker’s invari-
ance principle is a consequence of the uniform tightness in S of the laws of these
S.P.-s. In view of Definition 3.2.31, we prove this uniform tightness by exhibiting

compact sets K` such that supn P(Ŝn /∈ K`)→ 0 as `→∞. To this end, recall the
following classical result of functional analysis (for a proof see [KaS97, Theorem
2.4.9] or the more general version provided in [Dud89, Theorem 2.4.7]).

Theorem 10.2.5 (Arzelà-Ascoli theorem). A set K ⊂ C([0,∞)) has compact
closure with respect to uniform convergence on compact intervals, if and only if
supx∈K |x(0)| is finite and for t > 0 fixed, supx∈K osct,δ(x(·))→ 0 as δ ↓ 0, where

(10.2.2) osct,δ(x(·)) = sup
0≤h≤δ

sup
0≤s≤s+h≤t

|x(s+ h)− x(s)| ,

is just the maximal absolute increment of x(·) over all pairs of times within [0, t]
that are at most distance δ of each other.

The Arzelà-Ascoli theorem suggests the following strategy for proving uniform
tightness.

Exercise 10.2.6. Let S denote the set C([0,∞)) equipped with the topology of
uniform convergence on compact intervals, and consider its subsets Fr,δ = {x(·) :
x(0) = 0, oscr,δ(x(·)) ≤ 1/r} for δ > 0 and integer r ≥ 1.

(a) Verify that the functional x(·) 7→ osct,δ(x(·)) is continuous on S per fixed
t and δ and further that per x(·) fixed, the function osct,δ(x(·)) is non-
decreasing in t and in δ. Deduce that Fr,δ are closed sets and for any
δr ↓ 0, the intersection ∩rFr,δr is a compact subset of S.

(b) Show that if S.P.-s {Xn(t), t ≥ 0} of continuous sample functions are
such that Xn(0) = 0 for all n and for any r ≥ 1,

lim
δ↓0

sup
n≥1

P(oscr,δ(Xn(·)) > r−1) = 0 ,

then the corresponding laws are uniformly tight in S.
Hint: Let K` = ∩rFr,δr with δr ↓ 0 such that P(Xn /∈ Fr,δr ) ≤ 2−`−r.

Since Ŝn(·) = n−1/2S(n·) and S(0) = 0, by the preceding exercise the uniform

tightness of the laws of Ŝn(·), and hence Donsker’s invariance principle, is an im-
mediate consequence of the following bound.

Proposition 10.2.7. If {ξk} are i.i.d. with Eξ1 = 0 and Eξ2
1 finite, then

lim
δ↓0

sup
n≥1

P(oscnr,nδ(S(·)) > r−1
√
n) = 0 ,

for S(t) =
∑[t]
k=1 ξk + (t− [t])ξ[t]+1 and any integer r ≥ 1.

Proof. Fixing r ≥ 1, let qn,δ = P(oscnr,nδ(S(·)) > r−1
√
n). Since t 7→ S(t)

is uniformly continuous on compacts, oscnr,nδ(S(·))(ω) ↓ 0 when δ ↓ 0 (for each
ω ∈ Ω). Consequently, qn,δ ↓ 0 for each fixed n, hence uniformly over n ≤ n0

and any fixed n0. With δ 7→ qn,δ non-decreasing, this implies that b = b(n0) =
infδ>0 supn≥n0

qn,δ is independent of n0, hence b(1) = 0 provided infn0≥1 b(n0) =
limδ→0 lim supk→∞ qk,δ = 0. To show the latter, observe that since the piecewise
linear S(t) changes slope only at integer values of t,

osckr,kδ(S(·)) ≤ osckr,m(S(·)) ≤Mm,` ,
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for m = [kδ] + 1, ` = rk/m and

(10.2.3) Mm,` = max
1≤i≤m

0≤j≤`m−1

|S(i+ j)− S(j)| .

Thus, for any δ > 0,

lim sup
k→∞

qk,δ ≤ lim sup
m→∞

P(Mm,`(v) > v
√
m) ,

where v = r−1
√
k/m → 1/(r

√
δ) as k → ∞ and `(v) = r3v2. Since v → ∞ when

δ ↓ 0, we complete the proof by appealing to part (c) of Exercise 10.2.8. �

As you have just seen, the key to the proof of Proposition 10.2.7 is the following
bound on maximal fluctuations of increments of the random walk.

Exercise 10.2.8. Suppose Sm =
∑m
k=1 ξk for i.i.d. ξk such that Eξ1 = 0 and

Eξ2
1 = 1. For integers m, ` ≥ 1, let S(m) = Sm and Mm,` be as in (10.2.3), with

Mm,0 = maxmi=1 |Si|.
(a) Show that for any m ≥ 1 and t ≥ 0,

P(Mm,0 ≥ t+
√

2m) ≤ 2P(|Sm| ≥ t) .

Hint: Use Ottaviani’s inequality (see part (a) of Exercise 5.2.16).
(b) Show that for any m, ` ≥ 1 and x ≥ 0,

P(Mm,` > 2x) ≤ `P(Mm,1 > 2x) ≤ `P(M2m,0 > x) .

(c) Deduce that if v−2 log `(v)→ 0, then

lim sup
v→∞

lim sup
m→∞

P(Mm,`(v) > v
√
m) = 0 .

Hint: Recall that m−1/2Sm
D−→ G by the clt.

Applying Donsker’s invariance principle, you can induce limiting results for ran-
dom walks out of the corresponding facts about the standard Brownian motion,
which we have found already in Subsection 10.1.

Example 10.2.9. Recall the running maxima Mt = sups∈[0,t]Ws, whose density

we got in (10.1.5) out of the reflection principle. Since h0(x(·)) = sup{x(s) : s ∈
[0, 1]} is continuous with respect to uniform convergence on C([0, 1]), we have from
Donsker’s invariance principle that as n→∞,

h0(Ŝn) =
1√
n

n
max
k=0

Sk
D−→M1

(where we have used the fact that the maximum of the linearly interpolated func-
tion S(t) must be obtained at some integer value of t). The functions h`(x(·)) =∫ 1

0
x(s)`ds for ` = 1, 2, . . . are also continuous on C([0, 1]), so by same reasoning,

h`(Ŝn) = n−(1+`/2)

∫ n

0

S(u)`du
D−→
∫ 1

0

(Wu)`du .

Similar limits can be obtained by considering h`(|x(·)|).

Exercise 10.2.10.
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(a) Building on Example 10.2.9, show that for any integer ` ≥ 1,

n−(1+`/2)
n∑
k=1

(Sk)`
D−→
∫ 1

0

(Wu)`du ,

as soon as Eξ1 = 0 and Eξ2
1 = 1 (i.e. there is no need to assume finiteness

of the `-th moment of ξ1), and in case ` = 1 the limit law is merely a
normal of zero mean and variance 1/3.

(b) The cardinality of the set {S0, . . . , Sn} is called the range of the walk by
time n and denoted rngn. Show that for the symmetric srw on Z,

n−1/2 rngn
D−→ sup

s≤1
Ws − inf

s≤1
Ws .

We continue in the spirit of Example 10.2.9, except for dealing with functionals
that are no longer continuous throughout C([0,∞)).

Example 10.2.11. Let τ̂n = n−1 inf{k ≥ 1 : Sk ≥
√
n}. As shown in Exercise

10.2.12, considering the function g1(x(·)) = inf{t ≥ 0 : x(t) ≥ 1} we find that

τ̂n
D−→ τ1 as n → ∞, where the density of τ1 = inf{t ≥ 0 : Wt ≥ 1} is given in

(10.1.4).

Similarly, let At(b) =
∫ t

0
IWs>bds denote the occupation time of B = (b,∞)

by the standard Brownian motion up to time t. Then, considering g(x(·), B) =∫ 1

0
I{x(s)∈B}ds, we find that for n→∞ and b ∈ R fixed,

(10.2.4) Ân(b) =
1

n

n∑
k=1

I{Sk>b
√
n}

D−→ A1(b) ,

as you are also to justify upon solving Exercise 10.2.12. Of particular note is the

case of b = 0, where Lévy’s arc-sine law tells us that At(0)
D
= Lt of Exercise 10.1.11

(as shown for example in [KaS97, Proposition 4.4.11]).
Recall the arc-sine limiting law of Exercise 3.2.16 for n−1 sup{` ≤ n : S`−1S` ≤ 0}

in case of the symmetric srw. In view of Exercise 10.1.11, working with g0(x(·)) =
sup{s ∈ [0, 1] : x(s) = 0} one can extend the validity of this limit law to any random
walk with increments of mean zero and variance one (c.f. [Dur10, Example 8.6.3]).

Exercise 10.2.12.

(a) Let g1+(x(·)) = inf{t ≥ 0 : x(t) > 1}. Show that P(W· ∈ G) = 1
for the subset G = {x(·) : x(0) = 0 and g1(x(·)) = g1+(x(·)) < ∞}
of C([0,∞)), and that g1(xn(·)) → g1(x(·)) for any sequence {xn(·)} ⊆
C([0,∞)) which converges uniformly on compacts to x(·) ∈ G. Further,

show that τ̂n − n−1 ≤ g1(Ŝn) ≤ τ̂n and deduce that τ̂n
D−→ τ1.

(b) To justify (10.2.4), first verify that the non-negative g(x(·), (b,∞)) is
continuous on any sequence whose limit is in G = {x(·) : g(x(·), {b}) = 0}
and that E[g(W·, {b})] = 0, hence g(Ŝn, (b,∞))

D−→ A1(b). Then, deduce

that Ân(b)
D−→ A1(b) by showing that for any δ > 0 and n ≥ 1,

g(Ŝn, (b+ δ,∞))−∆n(δ) ≤ Ân(b) ≤ g(Ŝn, (b− δ,∞)) + ∆n(δ) ,

with ∆n(δ) = n−1
∑n
k=1 I{|ξk|>δ

√
n} converging in probability to zero

when n→∞.
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Our next result is a refinement due to Kolmogorov and Smirnov, of the Glivenko-
Cantelli theorem (which states that for i.i.d. {X,Xk} the empirical distribution
functions Fn(x) = n−1

∑n
i=1 I(−∞,x](Xi), converge w.p.1., uniformly in x, to the

distribution function of X, whichever it may be, see Theorem 2.3.6).

Corollary 10.2.13. Suppose {Xk, X} are i.i.d. and x 7→ FX(x) is a continuous
function. Then, setting Dn = supx∈R |FX(x)− Fn(x)|, as n→∞,

(10.2.5) n1/2Dn
D−→ sup

t∈[0,1]

|B̂t| ,

for the standard Brownian bridge B̂t = Wt − tW1 on [0, 1].

Proof. Recall the Skorokhod construction Xk = X−(Uk) of Theorem 1.2.37,
with i.i.d. uniform variables {Uk} on (0, 1], such that {Xk ≤ x} = {Uk ≤ FX(x)}
for all x ∈ R (see (1.2.1)), by which it follows that

Dn = sup
u∈FX(R)

|u− n−1
n∑
i=1

I(0,u](Ui)| .

The assumed continuity of the distribution function FX(·) further implies that
FX(R) = (0, 1). Throwing away the sample Un, let Vn−1,k, k = 1, . . . , n − 1,
denote the k-th smallest number in {U1, . . . , Un−1}. It is not hard to check that

|Dn − D̃n| ≤ 2n−1 for

D̃n =
n−1
max
k=1
|Vn−1,k −

k

n
| .

Now, from Exercise 3.4.11 we have the representation Vn−1,k = Tk/Tn, where Tk =∑k
j=1 τj for i.i.d. {τj}, each having the exponential distribution of parameter one.

Next, note that Sk = Tk − k is a random walk Sk =
∑k
j=1 ξk with i.i.d. ξj = τj − 1

such that Eξ1 = 0 and Eξ2
1 = 1. Hence, setting Zn = n/Tn one easily checks that

n1/2D̃n = Zn
n

max
k=1
|n−1/2Sk −

k

n
(n−1/2Sn)| = Zn sup

t∈[0,1]

|Ŝn(t)− tŜn(1)| ,

where Ŝn(t) = n−1/2S(nt) for S(·) of (10.2.1), so t 7→ Ŝn(t) − tŜn(1) is linear on
each of the intervals [k/n, (k + 1)/n], k ≥ 0. Consequently,

n1/2D̃n = Zng(Ŝn(·)) ,

for g(x(·)) = supt∈[0,1] |x(t) − tx(1)|. By the strong law of large numbers, Zn
a.s.→

1
Eτ1

= 1. Moreover, g(·) is continuous on C([0, 1]), so by Donsker’s invariance prin-

ciple g(Ŝn(·)) D−→ g(W·) = supt∈[0,1] |B̂t| (see Definition 10.2.1), and by Slutsky’s

lemma, first n1/2D̃n = Zng(Ŝn(·)) and then n1/2Dn (which is within 2n−1/2 of

n1/2D̃n), have the same limit in distribution (see part (c), then part (b) of Exercise
3.2.8). �

Remark. Defining F−1
n (t) = inf{x ∈ R : Fn(x) ≥ t}, with minor modifications

the preceding proof also shows that in case FX(·) is continuous, n1/2(FX(F−1
n (t))−

t)
D−→ B̂t on [0, 1]. Further, with little additional work one finds that n1/2Dn

D−→
supx∈R |B̂FX(x)| even in case FX(·) is discontinuous (and which for continuous FX(·)
coincides with (10.2.5)).



10.2. WEAK CONVERGENCE AND INVARIANCE PRINCIPLES 381

You are now to provide an explicit formula for the distribution function FKS(·) of

supt∈[0,1] |B̂t|.

Exercise 10.2.14. Consider the standard Brownian bridge B̂t on [0, 1], as in
Exercises 8.3.15-8.3.16.

(a) Show that qb = P(supt∈[0,1] B̂t ≥ b) = exp(−2b2) for any b > 0.

Hint: Argue that qb = P(τ
(b)
b <∞) for τ

(r)
b of Exercise 9.2.35.

(b) Deduce that for any non-random a, c > 0,

P( inf
t∈[0,1]

B̂t ≤ −a or sup
t∈[0,1]

B̂t ≥ c) =
∑
n≥1

(−1)n−1(pn + rn) ,

where p2n = r2n = qna+nc, r2n+1 = qna+nc+c and p2n+1 = qna+nc+a.
Hint: Using inclusion-exclusion prove this expression for pn = P( for

some 0 < t1 < · · · < tn ≤ 1, B̂ti = −a for odd i and B̂ti = c for even

i) and rn similarly defined, just with B̂ti = c at odd i and B̂ti = −a at
even i. Then use the reflection principle for Brownian motion Wt such
that |W1| ≤ ε to equate these with the relevant qb (in the limit ε ↓ 0).

(c) Conclude that for any non-random b > 0,

(10.2.6) FKS(b) = P( sup
t∈[0,1]

|B̂t| ≤ b) = 1− 2

∞∑
n=1

(−1)n−1e−2n2b2 .

Remark. The typical approach to accepting/rejecting the hypothesis that i.i.d.
observations {Xk} have been generated according to a specified continuous distribu-
tion FX is by thresholding the value of FKS(b) at the observed Kolmogorov-Smirnov
statistic b = n1/2Dn, per (10.2.6). To this end, while outside our scope, using the
so called Hungarian construction, which is a much sharper coupling alternative
to Corollary 10.2.21, one can further find the rate (in n) of the convergence in
distribution in (10.2.5) (for details, see [SW86, Chapter 12.1]).

We conclude with a sufficient condition for convergence in distribution on C([0,∞)).

Exercise 10.2.15. Suppose C([0,∞))-valued random variables Xn, 1 ≤ n ≤ ∞,

defined on the same probability space, are such that ‖Xn −X∞‖`
p→ 0 for n → ∞

and any ` ≥ 1 fixed (where ‖x‖t = sups∈[0,t] |x(s)|). Show that Xn
D−→ X∞ in the

topological space S consisting of C([0,∞)) equipped with the topology of uniform
convergence on compact subsets of [0,∞).
Hint: Consider Exercise 8.2.9 and Corollary 3.5.3.

10.2.1. Skorokhod’s representation and the martingale clt. We pur-
sue here an alternative approach for proving invariance principles, which is better
suited to deal with dependence, culminating with a Lindeberg type, martingale
clt. We first utilize the continuity of the Brownian path to deduce, in view of
Corollary 3.5.3, that linear interpolation of random discrete samples along the path
converges in distribution to the Brownian motion, provided the sample times ap-
proach a uniform density.

Lemma 10.2.16. Suppose {W (t), t ≥ 0} is a standard Wiener process and k 7→ Tn,k

are non-decreasing, such that Tn,[nt]
p→ t when n → ∞, for each fixed t ∈ [0, `].
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Then, ‖Ŝn−W‖
p→ 0 for the norm ‖x(·)‖ = supt∈[0,`] |x(t)| of C([0, `]) and Ŝn(t) =

Sn(nt), where

(10.2.7) Sn(t) = W (Tn,[t]) + (t− [t])(W (Tn,[t]+1)−W (Tn,[t])) .

Remark. In view of Exercise 10.2.15, the preceding lemma implies in particular

that if Tn,[nt]
p→ t for each fixed t ≥ 0, then Ŝn(·) D−→W (·) in C([0,∞)).

Proof. Recall that each sample function t 7→W (t)(ω) is uniformly continuous
on [0, `], hence osc`,δ(W (·))(ω) ↓ 0 as δ ↓ 0 (see (10.2.2) for the definition of
osc`,δ(x(·))). Fixing ε > 0 note that as r ↑ ∞,

Gr = {ω ∈ Ω : osc`,3/r(W (·))(ω) ≤ ε} ↑ Ω ,

so by continuity from below of probability measures, P(Gr) ≥ 1−ε for some integer

r. Setting sj = j/r for j = 0, 1, . . . , `r+ 1, our hypothesis that Tn,[nt]
p→ t per fixed

t ≥ 0, hence uniformly on any finite collection of times, implies that for some finite
n0 = n0(ε, r) and all n ≥ n0,

P(
`r

max
j=0
|Tn,[nsj ] − sj | ≤ r

−1) ≥ 1− ε .

Further, by the monotonicity of k 7→ Tn,k, if t ∈ [sj−1, sj) and n ≥ r, then

Tn,[nsj−1] − sj ≤ Tn,[nt] − t ≤ Tn,[nt]+1 − t ≤ Tn,[nsj+1] − sj−1

and since sj+1 − sj−1 = 2/r, it follows that for any n ≥ max(n0, r),

(10.2.8) P( sup
b∈{0,1},t∈[0,`)

|Tn,[nt]+b − t| ≤ 3r−1) ≥ 1− ε .

Recall that for any n ≥ 1 and t ≥ 0,

|Ŝn(t)−W (t)| ≤ (1− η)|W (Tn,[nt])−W (t)|+ η|W (Tn,[nt]+1)−W (t)| ,

where η = nt − [nt] ∈ [0, 1). Observe that if both Gr and the event in (10.2.8)
occur, then by definition of Gr each of the two terms on the right-side of the last

inequality is at most ε. We thus see that ‖Ŝn −W‖` ≤ ε whenever both Gr and

the event in (10.2.8) occur. That is, P(‖Ŝn −W‖ ≤ ε) ≥ 1− 2ε. Since this applies

for all ε > 0, we have just shown that ‖Ŝn −W‖
p→ 0, as claimed. �

The key tool in our program is an alternative Skorokhod representation of ran-
dom variables. Whereas in Theorem 1.2.37 we applied the inverse of the desired
distribution function to a uniform random variable on [0, 1], here we construct a
stopping time τ such that Wτ has the stated, mean zero law.

Theorem 10.2.17 (Skorokhod’s representation). Given standard Wiener
process (Wt, t ≥ 0) and law PX with EX = 0 and EX2 < ∞, there exists an a.s.

finite FW
t -stopping time τ such that Wτ

D
= X, Eτ = EX2 and Eτ2 ≤ 4EX4.

Proof. In case X ≡ 0 this trivially holds with τ = τ0,0 ≡ 0. Otherwise, the

a.s. finite first exit time τ = τ
(0)
a,b of Exercise 9.2.36 has Wτ ∈ {−a, b} of zero

mean. By the uniqueness of the law of {−a, b}-valued variable of zero mean, such
stopping times τ yield the representation Wτ = X whenever X is binary valued.
More generally, fix an integrable X of zero mean and recall Exercise 5.3.21 that
Xn → X for some binary-splitting, zero-mean Doob’s MG (Xn,Fξ

n). In particular,
Xn takes at most 2n non-random values and conditional on any positive probability
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event {Xk = xk, k ≤ n}, one has a zero-mean difference Dn+1 = Xn+1 − Xn ∈
{−an, bn} for some an = an(x1, . . . , xn) and bn = bn(x1, . . . , xn). Setting τn+1

inductively in n as the first s ≥ τn such that Ws − Wτn /∈ (−an, bn), we have
thanks to the continuity of t 7→ Wt that {τk} are non-decreasing FW

t -stopping
times. In view of Corollary 10.1.6 these stopping times are a.s. finite and the
R.C.P.D. of Wτn+1

−Wτn given FW
τn , matches that of Dn+1 given (Xk = Wτk , k ≤

n). Thus (X1, . . . , Xn)
D
= (Wτ1 , . . . ,Wτn) for all n. Further, with supu |Wτn∧u| ≤

max{|Xk|, k ≤ n} a bounded variable, we have by (9.2.9) that for any n,

E[τn] = E[W 2
τn ] = E[X2

n] , E[τ2
n] ≤ 4E[W 4

τn ] = E[X4
n] .

Clearly, τn ↑ τ for some FW
t -stopping time τ (see Exercise 9.1.10(b)), whereas by

monotone convergence E[τ qn] ↑ E[τ q] for any q > 0. Our assumption of X ∈ L2

yields by Doob’s L2 MG convergence that E[X2
n]→ E[X2], so in particular E[τ ] =

E[X2] is finite. Having almost surely that Xn → X and τn → τ finite, thus also

Wτn → Wτ , we further deduce that Wτ
D
= X. Finally, note that EX4 ≥ EX4

n for
all n (e.g. see Example 4.2.20), hence Eτ2 ≤ 4EX4, as claimed. �

Utilizing the following concept of size-biased sample, the next exercise provides
an alternative construction for Theorem 10.2.17, based on τA,B of Exercise 9.2.36
(for appropriate random (A,B)). We note in passing that while allowing for any
X ∈ L1, the latter construction relies on auxiliary randomization.

Definition 10.2.18. Given a random variable V ≥ 0 of positive, finite mean, we
say that Z ≥ 0 is a size-biased sample of V if E[g(Z)] = E[V g(V )]/EV for all
g ∈ bB. Alternatively, the Radon-Nikodym derivative between the corresponding
laws is dPZ

dPV (v) = v/EV .

Exercise 10.2.19. Suppose X is an integrable random variable, such that EX = 0
(so EX+ = EX− is finite). Consider the [0,∞)2-valued random vector

(A,B) = (0, 0)I{X=0} + (Z,X)I{X>0} + (−X,Y )I{X<0} ,

where Y and Z are size-biased samples of X+ and X−, respectively, which are
further independent of X.
(a) Show that then for any f ∈ bB,

(10.2.9) E[r(A,B)f(−A) + (1− r(A,B))f(B)] = E[f(X)] ,

where r(a, b) = b/(a+ b) for a > 0 and r(0, b) = 1.
Hint: It suffices to show that E[Xh(Z,X)I{X>0}] = E[(−X)h(−X,Y )I{X<0}] for
h(a, b) = (f(b)− f(−a))/(a+ b).
(b) Let Gt = σ(σ(U1, U2),Ft) for [0, 1]-valued independent uniform variables U1 and
U2 which are independent of the filtration F∞ of the Brownian Markov process Wt.
For A,B as in part (a), construct τA,B = inf{t ≥ 0 : Wt /∈ (−A,B)} as an a.s.
finite Gt-stopping time with all the (other) properties of τ of Theorem 10.2.17.

Building on Theorem 10.2.17 we have the following representation, due to Strassen,
of any discrete time martingale via sampling along the path of the Brownian motion.

Theorem 10.2.20 (Strassen’s martingale representation). Fix a standard
Wiener process {W (t), t ≥ 0}. Any L2-martingale {M`} with M0 = 0 can be
represented as Mk = W (Tk) for non-decreasing a.s. finite FW

t -stopping times
{Tk}, where T0 = 0, τk+1 = Tk+1 − Tk and Dk+1 = Mk+1 −Mk are such that
E[τk+1|FW

Tk
] = E[D2

k+1|FM
k ] and E[τ2

k+1|FW
Tk

] ≤ 4E[D4
k+1|FM

k ] for all k ≥ 0.
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Proof. Starting at T0 = 0, we shall construct, inductively on k ≥ 0 the
stated, non-decreasing FW

t -stopping times Tk+1. To this end, recall from the proof
of Proposition 4.4.3, that the random distribution function

Fk+1(x;ω) = P̂Dk+1|FM
k

((−∞, x], ω) ,

corresponding to the R.C.P.D. of Dk+1 given FM
k , is determined by pointwise limits

from a countable collection of FM
k -measurable, [0, 1]-valued variables, hence is of

the form F̂k+1(x|M1, . . . ,Mk) for some Borel function F̂k+1 : R × Rk 7→ [0, 1].
Further, by Exercise 4.4.6 and the L2-martingale property, almost surely,

E[Dk+1|FM
k ] =

∫
x dF̂k+1(x|M1, . . . ,Mk) = 0 ,

E[D2
k+1|FM

k ] =

∫
x2 dF̂k+1(x|M1, . . . ,Mk) <∞ .

Assuming Tk has been constructed already, consider Corollary 10.1.6 for the FW
t -

stopping time Tk, to deduce that Wk(t) = W (Tk+ t)−W (Tk) is a standard Wiener
process which is independent of FW

Tk
. Thus, applying Theorem 10.2.17 for Wk(s)

and the FW
Tk

-measurable law F̂k+1(·|W (T1), . . . ,W (Tk)) yields the a.s. finite FWk
t -

stopping time τk+1 such that

E[τk+1|FW
Tk

] =

∫
x2 dF̂k+1(x|W (T1), . . . ,W (Tk)) ,

E[τ2
k+1|FW

Tk
] ≤ 4

∫
x4 dF̂k+1(x|W (T1), . . . ,W (Tk)) ,

while the R.C.P.D. of Wk(τk+1) given FW
Tk

matches the R.C.P.D. of P̂Dk+1|FM
k

.

Now, with Tk an FW
t -stopping time, the same applies for Tk+1 = τk+1 + Tk and

setting Mk+1 = Wk(τk+1)+W (Tk) advances the identity (M`, ` ≤ n)
D
= (W (T`), ` ≤

n) from n = k to n = k + 1. �

Remark. Adapting the preceding proof to rely on Exercise 10.2.19 instead of
Theorem 10.2.17, allows us to dispense of assuming a square-integrable Mn, at the
cost of requiring an auxiliary randomization via i.i.d. uniform variables {Uk} for
constructing our stopping times {Tn}.

When proving Theorem 10.2.20, we inductively in k got τk+1 by applying Theorem
10.2.17 for the R.C.P.D. of the MG difference Dk+1 given FM

k . Thus, when {Dk}
are independent, so are the corresponding stopping times {τk}. The latter are
further i.i.d. when considering a random walk Sn, thereby yielding as an immediate
corollary the following representation.

Corollary 10.2.21 (Skorokhod’s representation for random walks).
Suppose ξ1 of zero mean is square integrable. The random walk Sn =

∑n
k=1 ξk

of i.i.d. {ξk} can be represented as Sn = W (Tn) for a standard Wiener process
{W (t), t ≥ 0} and FW

t -stopping times {Tk}, with T0 = 0 and i.i.d. τk = Tk−Tk−1 ≥
0 such that E[τ1] = E[ξ2

1 ].

Combining Strassen’s martingale representation with Lemma 10.2.16, we are now
in position to prove a Lindeberg type martingale clt.
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Theorem 10.2.22 (martingale clt, Lindeberg’s). Suppose that for any n ≥ 1
fixed, (Mn,`,Fn,`) is a (discrete time) L2-martingale, starting at Mn,0 = 0, and
the corresponding martingale differences Dn,k = Mn,k −Mn,k−1 and predictable
compensators

〈Mn〉` =
∑̀
k=1

E[D2
n,k|Fn,k−1] ,

are such that for any fixed t ∈ [0, 1], as n→∞,

(10.2.10) 〈Mn〉[nt]
p→ t .

If in addition, for each ε > 0,

(10.2.11) gn(ε) =

n∑
k=1

E[D2
n,kI{|Dn,k|≥ε}|Fn,k−1]

p→ 0 ,

then as n→∞, the linearly interpolated, time-scaled S.P.

(10.2.12) Ŝn(t) = Mn,[nt] + (nt− [nt])Dn,[nt]+1 ,

converges in distribution on C([0, 1]) to the standard Wiener process, {W (t), t ∈
[0, 1]}.

Remark. For martingale differences {Dn,k, k = 1, 2, . . .} that are mutually in-
dependent per fixed n, our assumption (10.2.11) reduces to Lindeberg’s condition
(3.1.4) and the predictable compensators vn,t = 〈Mn〉[nt] are then non-random. In

particular, vn,t = [nt]/n→ t in case Dn,k = n−1/2ξk for i.i.d. {ξk} of zero mean and
unit variance, in which case gn(ε) = E[ξ2

1 ; |ξ1| ≥ ε
√
n]→ 0 (see Remark 3.1.4), and

we recover Donsker’s invariance principle as a special case of Lindeberg’s martingale
clt.

Proof. Step 1. We first prove a somewhat stronger convergence statement for
martingales of uniformly bounded differences and predictable compensators. Specif-
ically, using ‖ · ‖ for the supremum norm ‖x(·)‖ = supt∈[0,1] |x(t)| on C([0, 1]), we

proceed to construct a coupling of Ŝn(·) of (10.2.12) and the standard Wiener pro-

cess W (·) in the same probability space, such that ‖Ŝn−W‖
p→ 0, in case (10.2.10)

holds and in addition, for some non-random εn → 0,

E[M2
n,n] ≤ 2 ,

n
max
k=1
|Dn,k| ≤ 2εn .

To this end, first consider the predictable compensators

〈Mn〉?` =
∑̀
k=1

E[D2
n,k|FM

n,k−1] ,

with respect to the canonical filtrations FM
n,` = σ(Mn,k, k ≤ `) and recall from

Exercise 5.3.42 that

E
[

sup
t∈[0,1]

|〈Mn〉[nt] − 〈Mn〉?[nt]|
2
]
≤ 16(2εn)2E[M2

n,n]→ 0 ,

as n → ∞. We thus deduce that (10.2.10) applies also for 〈Mn〉?[nt]. Next, apply

Theorem 10.2.20 simultaneously over n, for the L2 martingales {Mn,`}, with the
same standard Wiener process {W (t), t ≥ 0}, to get the representation Mn,` =

W (Tn,`). Recall that Tn,` =
∑`
k=1 τn,k, where for each n, the non-negative τn,k
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are adapted to the filtration {Hn,k := FW
Tn,k

, k ≥ 1} and such that w.p.1. for

k = 1, . . . , n,

E[τn,k|Hn,k−1] = E[D2
n,k|FM

n,k−1] ,(10.2.13)

E[τ2
n,k|Hn,k−1] ≤ 4E[D4

n,k|FM
n,k−1] .(10.2.14)

Under this representation, the process Ŝn(·) of (10.2.12) is of the form considered

in Lemma 10.2.16, and as shown there, ‖Ŝn−W‖
p→ 0 provided Tn,[nt]

p→ t for each
fixed t ∈ [0, 1].

To verify the latter convergence in probability, set T̂n,` = Tn,`−〈Mn〉?` and τ̂n,k =
τn,k −E[τn,k|Hn,k−1]. Note that by the identities of (10.2.13),

〈Mn〉?` =
∑̀
k=1

E[D2
n,k|FM

n,k−1] =
∑̀
k=1

E[τn,k|Hn,k−1] ,

hence T̂n,` =
∑`
k=1 τ̂n,k is for each n, theHn,`-martingale part in Doob’s decomposi-

tion of the integrable, Hn,`-adapted sequence {Tn,`, ` ≥ 0}. Further, considering the
expectation in both sides of (10.2.14), by our assumed uniform bound |Dn,k| ≤ 2εn
it follows that for any k = 1, . . . , n,

E[τ̂2
n,k] ≤ E[τ2

n,k] ≤ 4E[D4
n,k] ≤ 16ε2

nE[D2
n,k] ,

where the left-most inequality is just the L2-reduction of conditional centering
(namely, E[Var(X|H)] ≤ E[X2], see part (a) of Exercise 4.2.16). Consequently,

the martingale {T̂n,`, ` ≥ 0} is square-integrable and since its differences τ̂n,k are
uncorrelated (see part (a) of Exercise 5.1.8), we deduce that for any ` ≤ n,

E[T̂ 2
n,`] =

∑̀
k=1

E[τ̂2
n,k] ≤ 16ε2

n

n∑
k=1

E[D2
n,k] = 16ε2

nE[M2
n,n] .

Recall our assumption that E[M2
n,n] is uniformly bounded, hence fixing t ∈ [0, 1],

we conclude that T̂n,[nt]
L2

→ 0 as n → ∞. This of course implies the convergence

to zero in probability of T̂n,[nt], and in view of assumption (10.2.10) and Slutsky’s

lemma, also Tn,[nt] = T̂n,[nt] + 〈Mn〉?[nt]
p→ t as n→∞.

Step 2. We next eliminate the superfluous assumption E[M2
n,n] ≤ 2 via the strategy

employed in proving part (a) of Theorem 5.3.34. That is, consider the Fn,`-stopped

martingales M̃n,` = Mn,`∧θn for stopping times θn = n∧ inf{` < n : 〈Mn〉`+1 > 2},
such that 〈Mn〉θn ≤ 2. As the corresponding martingale differences are D̃n,k =
Dn,kI{k≤θn}, you can easily verify that for all ` ≤ n

〈M̃n〉` = 〈Mn〉`∧θn .

In particular, 〈M̃n〉n = 〈Mn〉θn ≤ 2, implying that E[M̃2
n,n] = E〈M̃n〉n ≤ 2.

Further, if {θn = n} then 〈M̃n〉[nt] = 〈Mn〉[nt] for all t ∈ [0, 1] and the function

S̃n(t) = M̃n,[nt] + (nt− [nt])D̃n,[nt]+1 ,

coincides on [0, 1] with Ŝn(·) of (10.2.12). Due to the monotonicity of ` 7→ 〈Mn〉` we

have that {θn < n} = {〈Mn〉n > 2}, so our assumption (10.2.10) that 〈Mn〉n
p→ 1

implies that P(θn < n) → 0. Consequently, 〈M̃n〉[nt]
p→ t and applying Step 1
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for the martingales {M̃n,`, ` ≤ n} we have the coupling of S̃n(·) and the standard

Wiener process W (·) such that ‖S̃n −W‖
p→ 0. Combining it with the (natural)

coupling of S̃n(·) and Ŝn(·) such that P(Ŝn(·) 6= S̃n(·)) ≤ P(θn < n)→ 0, we arrive

at the coupling of Ŝn(·) and W (·) such that ‖Ŝn −W‖
p→ 0.

Step 3. We establish the clt under the condition (10.2.11), by reducing the problem
to the setting we have already handled in Step 2. This is done by a truncation
argument similar to the one we used in proving Theorem 2.1.11, except that now
we need to re-center the martingale differences after truncation is done (to convince
yourself that some truncation is required, consider the special case of i.i.d. {Dn,k}
with infinite forth moment, and note that a stopping argument as in Step 2 is
not feasible here because unlike 〈Mn〉`, the martingale differences are not Fn,`-
predictable).
Specifically, our assumption (10.2.11) implies the existence of finite nj ↑ ∞ such

that P(gn(j−1) ≥ j−3) ≤ j−1 for all j ≥ 1 and n ≥ nj ≥ n1 = 1. Setting εn = j−1

for n ∈ [nj , nj+1) it then follows that as n→∞ both εn → 0 and for δ > 0 fixed,

P(ε−2
n gn(εn) ≥ δ) ≤ P(ε−2

n gn(εn) ≥ εn)→ 0 .

In conclusion, there exist non-random εn → 0 such that ε−2
n gn(εn)

p→ 0, which we
use hereafter as the truncation level for the martingale differences {Dn,k, k ≤ n}.
That is, consider for each n, the new martingale M̃n,` =

∑`
k=1 D̃n,k, where

D̃n,k = Dn,k −E[Dn,k|Fn,k−1] , Dn,k = Dn,kI{|Dn,k|<εn} .

By construction, |D̃n,k| ≤ 2εn for all k ≤ n. Hence, with D̂n,k = Dn,kI{|Dn,k|≥εn},
by Slutsky’s lemma and the preceding steps of the proof we have a coupling such

that ‖S̃n −W‖
p→ 0, as soon as we show that for all ` ≤ n,

0 ≤ 〈Mn〉` − 〈M̃n〉` ≤ 2
∑̀
k=1

E[D̂2
n,k|Fn,k−1]

(for the right hand side is bounded by 2gn(εn) which by our choice of εn converges
to zero in probability, so the convergence (10.2.10) of the predictable compensators

transfers from Mn to M̃n). These inequalities are in turn a direct consequence of
the bounds

(10.2.15) E[D̃2
n,k|F ] ≤ E[D

2

n,k|F ] ≤ E[D2
n,k|F ] ≤ E[D̃2

n,k|F ] + 2E[D̂2
n,k|F ]

holding for F = Fn,k−1 and all 1 ≤ k ≤ n. The left-most inequality in (10.2.15) is
merely an instance of the L2-reduction of conditional centering, while the middle

one follows from the identity Dn,k = Dn,k + D̂n,k upon realizing that by definition

Dn,k 6= 0 if and only if D̂n,k = 0, so

E[D2
n,k|F ] = E[D

2

n,k|F ] + E[D̂2
n,k|F ] .

The latter identity also yields the right-most inequality in (10.2.15), for E[Dn,k|F ] =

−E[D̂n,k|F ] (due to the martingale condition E[Dn,k|Fn,k−1] = 0), hence

E[D
2

n,k|F ]−E[D̃2
n,k|F ] =

(
E[Dn,k|F ]

)2
=
(
E[D̂n,k|F ]

)2 ≤ E[D̂2
n,k|F ] .

Now that we have exhibited a coupling for which ‖S̃n−W‖
p→ 0, if ‖Ŝn− S̃n‖

p→ 0
then by the triangle inequality for the supremum norm ‖ · ‖ there also exists a

coupling with ‖Ŝn −W‖
p→ 0 (to construct the latter coupling, since there exist
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non-random ηn → 0 such that P(‖Ŝn − S̃n‖ ≥ ηn) → 0, given the coupled S̃n(·)
and W (·) you simply construct Ŝn(·) per n, conditional on the value of S̃n(·) in

such a way that the joint law of (Ŝn, S̃n) minimizes P(‖Ŝn − S̃n‖ ≥ ηn) subject to

the specified laws of Ŝn(·) and of S̃n(·)). In view of Corollary 3.5.3 this implies the

convergence in distribution of Ŝn(·) to W (·) (on the metric space (C([0, 1]), ‖ · ‖)).
Turning to verify that ‖Ŝn − S̃n‖

p→ 0, recall first that |D̂n,k| ≤ |D̂n,k|2/εn, hence
for F = Fn,k−1,

|E(Dn,k|F)| = |E(D̂n,k|F)| ≤ E( |D̂n,k| |F) ≤ ε−1
n E[D̂2

n,k|F ] .

Note also that if the event Γn = {|Dn,k| < εn, for all k ≤ n} occurs, then Dn,k −
D̃n,k = E[Dn,k|Fn,k−1] for all k. Therefore,

IΓn‖Ŝn − S̃n‖ ≤ IΓn
n∑
k=1

|Dn,k − D̃n,k| ≤
n∑
k=1

|E(Dn,k|Fn,k−1)| ≤ ε−1
n gn(εn) ,

and our choice of εn → 0 such that ε−2
n gn(εn)

p→ 0 implies that IΓn‖Ŝn− S̃n‖
p→ 0.

We thus complete the proof by showing that P(Γcn) → 0. Indeed, fixing n and
r > 0, we apply Exercise 5.3.41 for the events Ak = {|Dn,k| ≥ εn} adapted to
the filtration {Fn,k, k ≥ 0}, and by Markov’s inequality for C.E. (see part (b) of
Exercise 4.2.22), arrive at

P(Γcn) = P
( n⋃
k=1

Ak
)
≤ er + P

( n∑
k=1

P(|Dn,k| ≥ εn|Fn,k−1) > r
)

≤ er + P
(
ε−2
n

n∑
k=1

E[D̂2
n,k|Fn,k−1] > r

)
= er + P(ε−2

n gn(εn) > r) .

Consequently, our choice of εn implies that P(Γcn) ≤ 3r for any r > 0 and all n
large enough. So, upon considering r ↓ 0 we deduce that P(Γcn)→ 0. As explained
before, this concludes our proof of the martingale clt. �

Specializing Theorem 10.2.22 to the case of a single martingale (M`,F`) leads to
the following corollary.

Corollary 10.2.23. Suppose an L2-martingale (M`,F`) starting at M0 = 0, is

of F`-predictable compensators such that n−1〈M〉n
p→ 1 and as n→∞,

n−1
n∑
k=1

E[(Mk −Mk−1)2; |Mk −Mk−1| ≥ ε
√
n]→ 0 ,

for any fixed ε > 0. Then, as n→∞, the linearly interpolated, time-scaled S.P.

(10.2.16) Ŝn(t) = n−1/2{M[nt] + (nt− [nt])(M[nt]+1 −M[nt])} ,
converge in distribution on C([0, 1]) to the standard Wiener process.

Proof. Simply consider Theorem 10.2.22 for Mn,` = n−1/2M` and Fn,` = F`.
In this case 〈Mn〉` = n−1〈M〉` so (10.2.10) amounts to n−1〈M〉n

p→ 1 and in stating
the corollary we merely replaced the condition (10.2.11) by the stronger assumption
that E[gn(ε)]→ 0 as n→∞. �

Further specializing Theorem 10.2.22, you are to derive next the martingale ex-
tension of Lyapunov’s clt.
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Exercise 10.2.24. Let Zk =
∑k
i=1Xi, where the Fk-adapted, square-integrable

{Xk} are such that w.p.1. E[Xk|Fk−1] = µ for some non-random µ and all k ≥ 1.

Setting Vn,q = n−q/2
∑n
k=1 E[|Xk − µ|q |Fk−1] suppose further that Vn,2

p→ 1, while

for some q > 2 non-random, Vn,q
p→ 0.

(a) Setting Mk = Zk − kµ show that Ŝn(·) of (10.2.16) converges in distri-
bution on C([0, 1]) to the standard Wiener process.

(b) Deduce that Ln
D−→ L∞, where

Ln = n−1/2 max
0≤k≤n

{Zk −
k

n
Zn}

and P(L∞ ≥ b) = exp(−2b2) for any b > 0.

(c) In case µ > 0, set Tb = inf{k ≥ 1 : Zk > b} and show that b−1Tb
p→ 1/µ

when b ↑ ∞.

The following exercises present typical applications of the martingale clt, starting
with the least-squares parameter estimation for first order auto regressive processes
(see Exercises 6.1.15 and 6.3.30 for other aspects of these processes).

Exercise 10.2.25 (First order auto regressive process). Consider the R-
valued S.P. Y0 = 0 and Yn = αYn−1+Dn for n ≥ 1, with {Dn} a uniformly bounded
Fn-adapted martingale difference sequence such that a.s. E[D2

k|Fk−1] = 1 for all
k ≥ 1, and α ∈ (−1, 1) is a non-random parameter.

(a) Check that {Yn} is uniformly bounded. Deduce that n−1
∑n
k=1D

2
k
a.s.→ 1

and n−1Zn
a.s.→ 0, where Zn =

∑n
k=1 Yk−1Dk.

Hint: See part (c) of Exercise 5.3.43.
(b) Let Vn =

∑n
k=1 Y

2
k−1. Considering the estimator α̂n = 1

Vn

∑n
k=1 YkYk−1

of the parameter α, conclude that
√
Vn(α̂n − α)

D−→ N (0, 1) as n→∞.
(c) Suppose now that α = 1. Show that in this case (Yn,Fn) is a martingale

of uniformly bounded differences and deduce from the martingale clt that
the two-dimensional random vectors (n−1Zn, n

−2Vn) converge in distri-

bution to ( 1
2 (W 2

1 − 1),
∫ 1

0
W 2
t dt) with {Wt, t ≥ 0} a standard Wiener

process. Conclude that in this case√
Vn(α̂n − α)

D−→ W 2
1 − 1

2
√∫ 1

0
W 2
t dt

.

(d) Show that the conclusion of part (c) applies in case α = −1, except for
multiplying the limiting variable by −1.
Hint: Consider the sequence (−1)kY ′k with Y ′k corresponding to D′k =
(−1)kDk and α = 1.

Exercise 10.2.26. Let Ln = n−1/2 max0≤k≤n{
∑k
i=1 ciYi}, where the Fk-adapted,

square-integrable {Yk} are such that w.p.1. E[Yk|Fk−1] = 0 and E[Y 2
k |Fk−1] = 1

for all k ≥ 1. Suppose further that supk≥1 E[|Yk|q |Fk−1] is finite a.s. for some

q > 2 and ck ∈ mFk−1 are such that n−1
∑n
k=1 c

2
k

p→ 1. Show that Ln
D−→ L∞ with

P(L∞ ≥ b) = 2P(G ≥ b) for a standard normal variable G and all b ≥ 0.

Hint: Show that k−1/2ck
p→ 0, then consider part (a) of Exercise 10.2.24.
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10.2.2. Law of the iterated logarithm. With Wt a centered normal vari-
able of variance t, one expects the Brownian sample function to grow as

√
t for

t → ∞ and t ↓ 0. While this is true for fixed, non-random times, such reasoning
ignores the random fluctuations of the path (as we have discussed before in the
context of random walks, see Exercise 2.2.24). Accounting for these we obtain the
following law of the iterated logarithm (lil).

Theorem 10.2.27 (Kinchin’s lil). Set h(t) =
√

2t log log(1/t) for t < 1/e and

h̃(t) = th(1/t). Then, for standard Wiener processes {Wt, t ≥ 0} and {W̃t, t ≥ 0},
w.p.1. the following hold:

lim sup
t↓0

Wt

h(t)
= 1, lim inf

t↓0

Wt

h(t)
= −1,(10.2.17)

lim sup
t→∞

W̃t

h̃(t)
= 1, lim inf

t→∞

W̃t

h̃(t)
= −1.(10.2.18)

Remark. To determine the scale h(t) recall the estimate P(G ≥ x) = e−
x2

2 (1+o(1))

which implies that for tn = α2n, α ∈ (0, 1) the sequence P(Wtn ≥ bh(tn)) =

n−b
2+o(1) is summable when b > 1 but not summable when b < 1. Indeed, using

such tail bounds we prove the lil in the form of (10.2.17) by the subsequence
method you have seen already in the proof of Proposition 2.3.1. Specifically, we
consider such time skeleton {tn} and apply Borel-Cantelli I for b > 1 and α near
one (where Doob’s inequality controls the fluctuations of t 7→Wt by those at {tn}),
en-route to the upper bound. To get a matching lower bound we use Borel-Cantelli
II for b < 1 and the independent increments Wtn − Wtn+1

(which are near Wtn

when α is small).

Proof. Since h̃(t) = th(1/t), by the time-inversion invariance of the standard

Wiener process, it follows upon considering W̃t = tW1/t that (10.2.18) is equivalent
to (10.2.17). Further, by the symmetry of this process, it suffices to prove the
statement about the lim sup in (10.2.17).
Proceeding to upper bound Wt/h(t), applying Doob’s inequality (9.2.2) for the

non-negative martingale Xs = exp(θ(Ws − θs/2)) (see part (a) of Exercise 9.2.7),
such that E[X0] = 1, we find that for any t, θ, y ≥ 0,

P( sup
s∈[0,t]

{Ws − θs/2} ≥ y) = P( sup
s∈[0,t]

Xs ≥ eθy) ≤ e−θy .

Fixing δ, α ∈ (0, 1), consider this inequality for tn = α2n, yn = h(tn)/2, θn =
(1 + 2δ)h(tn)/tn and n > n0(α) = 1/(2 log(1/α)). Since exp(h(t)2/2t) = log(1/t),
it follows that e−θnyn = (n0/n)1+2δ is summable. Thus, by Borel-Cantelli I, for
some n1 = n1(ω, α, δ) ≥ n0 finite, w.p.1. sups∈[0,tn]{Ws − θns/2} ≤ yn for all

n ≥ n1. With log log(1/t) non-increasing on [0, 1/e], we then have that for every
s ∈ (tn+1, tn] and n ≥ n1,

Ws ≤ yn + θntn/2 = (1 + δ)h(tn) ≤ 1 + δ

α
h(s)

Therefore, w.p.1. lim sups↓0Ws/h(s) ≤ (1 + δ)/α. Considering δk = 1/k = 1− αk
and k ↑ ∞ we conclude that

(10.2.19) lim sup
s↓0

Ws

h(s)
≤ 1 , w.p.1.
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To bound below the left side of (10.2.19), consider the independent events An =
{Wtn−Wtn+1 ≥ (1−α2)h(tn)}, where as before tn = α2n, n > n0(α) and α ∈ (0, 1)
is fixed. Setting xn = (1−α2)h(tn)/

√
tn − tn+1, we have by the time-homogeneity

and scaling properties of the standard Wiener process (see parts (b) and (d) of
Exercise 10.1.1), that P(An) = P(W1 ≥ xn). Further, noting that both x2

n/2 =
(1 − α2) log log(1/tn) ↑ ∞ and nx−1

n exp(−x2
n/2) → ∞ as n → ∞, by the lower

bound on the tail of the standard normal distribution (see part (a) of Exercise
2.2.24), we have that for some κα > 0 and all n large enough,

P(An) = P(W1 ≥ xn) ≥ 1− x−2
n√

2πxn
e−x

2
n/2 ≥ καn−1 .

Now, by Borel-Cantelli II the divergence of the series
∑
n P(An) implies that w.p.1.

Wtn −Wtn+1
≥ (1 − α2)h(tn) for infinitely many values of n. Further, applying

the bound (10.2.19) for the standard Wiener process {−Ws, s ≥ 0}, we know that
w.p.1. Wtn+1

≥ −2h(tn+1) ≥ −4αh(tn) for all n large enough. Upon adding these
two bounds, we have that w.p.1. Wtn ≥ (1 − 4α − α2)h(tn) for infinitely many
values of n. Finally, considering αk = 1/k and k ↑ ∞, we conclude that w.p.1.
lim supt↓0Wt/h(t) ≥ 1, which completes the proof. �

As illustrated by the next exercise, restricted to a sufficiently sparsely spaced {tn},
the a.s. maximal fluctuations of the Wiener process are closer to the fixed time clt

scale of O(
√
t), than the lil scale h̃(t).

Exercise 10.2.28. Show that for tn = exp(exp(n)) and a Brownian Markov pro-
cess {Wt, t ≥ 0}, almost surely,

lim sup
n→∞

Wtn/
√

2tn log log log tn = 1 .

Combining Kinchin’s lil and the representation of the random walk as samples of
the Brownian motion at random times, we have the corresponding lil of Hartman-
Wintner for the random walk.

Proposition 10.2.29 (Hartman-Wintner’s lil). Suppose Sn =
∑n
k=1 ξk, where

ξk are i.i.d. with Eξ1 = 0 and Eξ2
1 = 1. Then, w.p.1.

lim sup
n→∞

Sn/h̃(n) = 1 ,

where h̃(n) = nh(1/n) =
√

2n log log n.

Remark. Recall part (c) of Exercise 2.3.4 that if E[|ξ1|α] =∞ for some 0 < α < 2

then w.p.1. n−1/α|Sn| is unbounded, hence so is |Sn|/h̃(n) and in particular the
lil fails.

Proof. In Corollary 10.2.21 we represent the random walk as Sn = WTn for
the standard Wiener process {Wt, t ≥ 0} and Tn =

∑n
k=1 τk with non-negative i.i.d.

{τk} of mean one. By the strong law of large numbers, n−1Tn
a.s.→ 1. Thus, fixing

ε > 0, w.p.1. there exists n0(ω) finite such that t/(1 + ε) ≤ Tbtc ≤ t(1 + ε) for all

t ≥ n0. With t` = ee(1 + ε)` for ` ≥ 0, and V` = sup{|Ws −Wt| : s, t ∈ [t`, t`+3]},
note that if t ∈ [t`+1, t`+2] and t ≥ n0(ω), then |WTbtc−Wt| ≤ V`. Further, t 7→ h̃(t)
is non-decreasing, so w.p.1.

lim sup
t→∞

∣∣∣ Sbtc
h̃(btc)

− Wt

h̃(t)

∣∣∣ ≤ lim sup
`→∞

V`

h̃(t`)
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and in view of (10.2.18), it suffices to show that for some non-random ηε ↓ 0 as
ε ↓ 0,

(10.2.20) lim sup
`→∞

V`

h̃(t`)
≤ ηε , w.p.1.

To this end, by the triangle inequality,

V` ≤ 2 sup{|Ws −Wt` | : s ∈ [t`, t`+3]} .

It thus follows that for δε = (t`+3 − t`)/t` = (1 + ε)3 − 1 and all ` ≥ 0,

P(V` ≥
√

8δεh̃(t`)) ≤ P
(

sup
s∈[t`,t`+3]

|Ws −Wt` | ≥
√

2δεh̃(t`)
)

= P( sup
u∈[0,1]

|Wu| ≥ x`) ≤ 4P(W1 ≥ x`) ,

where x` =
√

2δεh̃(t`)/
√
t`+3 − t` =

√
4 log log t` ≥ 2, the equality is by time-

homogeneity and scaling of the Brownian motion and the last inequality is a con-
sequence of the symmetry of Brownian motion and the reflection principle (see
(10.1.2)). With `2 exp(−x2

`/2) = (`/ log t`)
2 bounded above (in `), applying the

upper bound of part (a) of Exercise 2.2.24 for the standard normal distribution of
W1 we find that for some finite κε and all ` ≥ 0,

P(W1 ≥ x`) ≤ (2π)−1/2x−1
` e−x

2
`/2 ≤ κε`−2 .

Having just shown that
∑
` P(V` ≥

√
8δεh̃(t`)) is finite, we deduce by Borel-Cantelli

I that (10.2.20) holds for ηε =
√

8δε, which as explained before, completes the
proof. �

Remark. Strassen’s lil goes further than Hartman-Wintner’s lil, in charac-
terizing the almost sure limit set (i.e., the collection of all limits of convergent

subsequences in C([0, 1])), for {S(n·)/h̃(n)} and S(·) of (10.2.1), as

K = {x(·) ∈ C([0, 1]) : x(t) =

∫ t

0

y(s)ds :

∫ 1

0

y(s)2ds ≤ 1} .

While Strassen’s lil is outside our scope, here is a small step in this direction.

Exercise 10.2.30. Show that w.p.1. [−1, 1] is the limit set of the R-valued se-

quence {Sn/h̃(n)}.

10.3. Brownian path: regularity, local maxima and level sets

Recall Exercise 8.3.13 that the Brownian sample function is a.s. locally γ-Hölder
continuous for any γ < 1/2 and Kinchin’s lil tells us that it is not γ-Hölder con-
tinuous for any γ ≥ 1/2 and any interval [0, t]. Generalizing the latter irregularity
property, we first state and prove the classical result of Paley, Wiener and Zyg-
mund (see [PWZ33]), showing that a.s. a Brownian Markov process has nowhere
differentiable sample functions (not even at a random time t = t(ω)).

Definition 10.3.1. For a continuous function f : [0,∞) 7→ R and γ ∈ (0, 1], the
upper and lower (right) γ-derivatives at s ≥ 0 are the R-valued

Dγf(s) = lim sup
u↓0

u−γ [f(s+u)− f(s)] and Dγf(s) = lim inf
u↓0

u−γ [f(s+u)− f(s)] ,
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which always exist. The Dini derivatives correspond to γ = 1 and denoted by D1f(s)
and D1f(s). Indeed, a continuous function f is differentiable from the right at s
if D1f(s) = D1f(s) is finite.

Proposition 10.3.2 (Paley-Wiener-Zygmund). With probability one, the sam-
ple function of a Wiener process t 7→ Wt(ω) is nowhere differentiable. More pre-
cisely, for γ = 1 and any T ≤ ∞,

(10.3.1) P({ω ∈ Ω : −∞ < DγWt(ω) ≤ DγWt(ω) <∞ for some t ∈ [0, T ]}) = 0 .

Proof. Fixing integers k, r ≥ 1, let

Akr =
⋃

s∈[0,1]

⋂
u∈[0,1/r]

{ω ∈ Ω : |Ws+u(ω)−Ws(ω)| ≤ ku} .

Note that if −c ≤ D1Wt(ω) ≤ D1Wt(ω) ≤ c for some t ∈ [0, 1] and c <∞, then by
definition of the Dini derivatives, ω ∈ Akr for k = [c] + 1 and some r ≥ 1. We thus
establish (10.3.1) for γ = 1 and T = 1, as soon as we show that Akr ⊆ C for some
C ∈ FW such that P(C) = 0 (due to the uncountable union/intersection in the
definition of Akr, it is a-apriori not in FW, but recall Remark 9.1.3 that we add all
P-null sets to F0 ⊂ F , hence a-posteriori Akr ∈ F and P(Akr) = 0). To this end
we set

C =
⋂
n≥4r

n⋃
i=1

Cn,i

in FW, where for i = 1, . . . , n,

Cn,i = {ω ∈ Ω : |W(i+j)/n(ω)−W(i+j−1)/n(ω)| ≤ 8k/n for j = 1, 2, 3} .
To see that Akr ⊆ C note that for any n ≥ 4r, if ω ∈ Akr then for some integer
1 ≤ i ≤ n there exists s ∈ [(i − 1)/n, i/n] such that |Wt(ω) −Ws(ω)| ≤ k(t − s)
for all t ∈ [s, s + 1/r]. This applies in particular for t = (i + j)/n, j = 0, 1, 2, 3,
in which case 0 ≤ t − s ≤ 4/n ≤ 1/r and consequently, |Wt(ω) −Ws(ω)| ≤ 4k/n.
Then, by the triangle inequality necessarily also ω ∈ Cn,i.
We next show that P(C) = 0. Indeed, note that for each i, n the random variables
Gj =

√
n(W(i+j)/n −W(i+j−1)/n), j = 1, 2, . . ., are independent, each having the

standard normal distribution. With their density bounded by 1/
√

2π ≤ 1/2, it
follows that P(|Gj | ≤ ε) ≤ ε for all ε > 0 and consequently,

P(Cn,i) =

3∏
j=1

P(|Gj | ≤ 8kn−1/2) ≤ (8k)3n−3/2 .

This in turn implies that P(C) ≤
∑
i≤n P(Cn,i) ≤ (8k)3/

√
n for any n ≥ 4r and

upon taking n→∞, results with P(C) = 0, as claimed.
Having established (10.3.1) for T = 1, we note that by the scaling property of

the Wiener process, the same applies for any finite T . Finally, the subset of Ω
considered there in case T = ∞ is merely the increasing limit as n ↑ ∞ of such
subsets for T = n, hence also of zero probability. �

You can even improve upon this negative result as follows.

Exercise 10.3.3. Adapting the proof of Proposition 10.3.2 show that for any fixed
γ > 1

2 , w.p.1. the sample function t 7→ Wt(ω) is nowhere γ-Hölder continuous.
That is, (10.3.1) holds for any γ > 1/2.
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Exercise 10.3.4. Let {Xt, t ≥ 0} be a stochastic process of stationary increments

which satisfies for some H ∈ (0, 1) the self-similarity property Xct
D
= cHXt, for

all t ≥ 0 and c > 0. Show that if P(X1 = 0) = 0 then for any t ≥ 0 fixed, a.s.
lim supu↓0 u

−1|Xt+u − Xt| = ∞. Hence, w.p.1. the sample functions t 7→ Xt are
not differentiable at any fixed t ≥ 0.

Almost surely the sample path of the Brownian motion is locally γ-Hölder con-
tinuous for any γ < 1

2 but not for any γ > 1
2 . Further, by the lil its modulus of

continuity is at least h(δ) =
√

2δ log log(1/δ). The exact modulus of continuity
of the Brownian path is provided by the following theorem, due to Paul Lévy (see
[Lev37]).

Theorem 10.3.5 (Lévy’s modulus of continuity). Setting g(δ) =
√

2δ log( 1
δ )

for δ ∈ (0, 1], with (Wt, t ∈ [0, T ]) a Wiener process, for any 0 < T < ∞, almost
surely,

(10.3.2) lim sup
δ↓0

oscT,δ(W·)

g(δ)
= 1 ,

where oscT,δ(x(·)) is defined in (10.2.2).

Remark. This result does not extend to T = ∞, as by independence of the
unbounded Brownian increments, for any δ > 0, with probability one

osc∞,δ(W·) ≥ max
k≥1
{|Wkδ −W(k−1)δ|} =∞ .

Proof. Fixing 0 < T < ∞, note that g(Tδ)/(
√
Tg(δ)) → 1 as δ ↓ 0. Fur-

ther, osc1,δ(W̃·) = T−1/2 oscT,Tδ(W·) where W̃s = T−1/2WTs is a standard Wiener
process on [0, 1]. Consequently, it suffices to prove (10.3.2) only for T = 1.
Setting hereafter T = 1, we start with the easier lower bound on the left side of

(10.3.2). To this end, fix ε ∈ (0, 1) and note that by independence of the increments
of the Wiener process,

P(∆`,1(W·) ≤ (1− ε)g(2−`)) = (1− q`)2` ≤ exp(−2`q`) ,

where q` = P(|W2−` | > (1− ε)g(2−`)) and

(10.3.3) ∆`,r(x(·)) =
2`−r
max
j=0
|x((j + r)2−`)− x(j2−`)| .

Further, by scaling and the lower bound of part (a) of Exercise 2.2.24, it is easy to
check that for some `0 = `0(ε) and all ` ≥ `0,

q` = P(|G| > (1− ε)
√

2` log 2) ≥ 2−`(1−ε) .

By definition osc1,2−`(x(·)) ≥ ∆`,1(x(·)) for any x : [0, 1] 7→ R and with exp(−2`q`) ≤
exp(−2`ε) summable, it follows by Borel-Cantelli I that w.p.1.

osc1,2−`(W·) ≥ ∆`,1(W·) > (1− ε)g(2−`)

for all ` ≥ `1(ε, ω) finite. In particular, for any ε > 0 fixed, w.p.1.

lim sup
δ↓0

osc1,δ(W·)

g(δ)
≥ 1− ε ,



10.3. BROWNIAN PATH: REGULARITY, LOCAL MAXIMA AND LEVEL SETS 395

and considering εk = 1/k ↓ 0, we conclude that

lim sup
δ↓0

osc1,δ(W·)

g(δ)
≥ 1 w.p.1.

To show the matching upper bound, we fix η ∈ (0, 1) and b = b(η) = (1+2η)/(1−η)
and consider the events

A` =
⋂
r≤2η`

{∆`,r(W·) <
√
bg(r2−`)} .

By the sub-additivity of probabilities,

P(Ac`) ≤
∑
r≤2η`

P(∆`,r(W·) ≥
√
bg(r2−`)) ≤

∑
r≤2η`

2`−r∑
j=0

P(|Gr,j | ≥ x`,r)

where x`,r =
√

2b log(2`/r) and Gr,j = (W(j+r)2−` −Wj2−`)/
√
r2−` have the stan-

dard normal distribution. Since η > 0, clearly x`,r is bounded away from zero for
r ≤ 2η` and exp(−x2

`,r/2) = (r2−`)b. Hence, from the upper bound of part (a) of

Exercise 2.2.24 we deduce that the r-th term of the outer sum is at most 2`C(r2−`)b

for some finite constant C = C(η). Further, for some finite κ = κ(η) and all ` ≥ 1,∑
r≤2η`

rb ≤
∫ 2η`+1

0

tbdt ≤ κ2η`(b+1) .

Therefore, as (1− η)b(η)− (1 + η) = η > 0,

P(Ac`) ≤ Cκ2`2−b`2η`(b+1) = Cκ2−η` ,

and since
∑
` P(Ac`) is finite, by the first Borel-Cantelli lemma, on a set Ωη of

probability one, ω ∈ A` for all ` ≥ `0(η, ω) finite. As you show in Exercise 10.3.6,
it then follows from the continuity of t 7→Wt that on Ωη,

|Ws+h(ω)−Ws(ω)| ≤
√
bg(h)[1 + ε(η, `0(η, ω), h)] ,

where ε(η, `, h) ↓ 0 as h ↓ 0. Consequently, for any ω ∈ Ωη,

lim sup
δ↓0

g(δ)−1 sup
0≤s≤s+h≤1,h=δ

|Ws+h(ω)−Ws(ω)| ≤
√
b .

Since g(·) is non-decreasing on [0, 1/e], we can further replace the condition h = δ
in the preceding inequality by h ∈ [0, δ] and deduce that on Ωη

lim sup
δ↓0

osc1,δ(W·)

g(δ)
≤
√
b(η) .

Taking ηk = 1/k for which b(1/k) ↓ 1 we conclude that w.p.1. the same bound also
holds with b = 1. �

Exercise 10.3.6. Suppose x ∈ C([0, 1]) and ∆m,r(x) are as in (10.3.3).

(a) Show that for any m, r ≥ 0,

sup
r2−m≤|t−s|<(r+1)2−m

|x(t)− x(s)| ≤ 4

∞∑
`=m+1

∆`,1(x) + ∆m,r(x) .

Hint: Deduce from part (a) of Exercise 8.2.7 that this holds if in addition

t, s ∈ Q(2,k)
1 for some k > m.
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(b) Show that for some c finite, if 2−(m+1)(1−η) ≤ h ≤ 1/e with m ≥ 0 and
η ∈ (0, 1), then

∞∑
`=m+1

g(2−`) ≤ cg(2−m−1) ≤ c√
1− η

2−η(m+1)/2g(h) .

Hint: Recall that g(h) =
√

2h log(1/h) is non-decreasing on [0, 1/e].
(c) Conclude that there exists ε(η, `0, h) ↓ 0 as h ↓ 0, such that if ∆`,r(x) ≤√

bg(r2−`) for some η ∈ (0, 1) and all 1 ≤ r ≤ 2η`, ` ≥ `0, then

sup
0≤s≤s+h≤1

|x(s+ h)− x(s)| ≤
√
bg(h)[1 + ε(η, `0, h)] .

We take up now the study of level sets of the standard Wiener process

(10.3.4) Zω(b) = {t ≥ 0 : Wt(ω) = b} ,
for non-random b ∈ R, starting with its zero set Zω = Zω(0).

Proposition 10.3.7. For a.e. ω ∈ Ω, the zero set Zω of the standard Wiener
process, is closed, unbounded, of zero Lebesgue measure and having no isolated
points.

Remark. Recall that by Baire’s category theorem, any closed subset of R having
no isolated points, must be uncountable (c.f. [Dud89, Theorem 2.5.2]).

Proof. First note that (t, ω) 7→Wt(ω) is measurable with respect to B[0,∞)×F
and hence so is the set Z = ∪ωZω×{ω}. Applying Fubini’s theorem for the product
measure Leb × P and h(t, ω) = IZ(t, ω) = I{Wt(ω)=0} we find that E[Leb(Zω)] =

(Leb×P)(Z) =
∫∞

0
P(Wt = 0)dt = 0. Thus, the set Zω is w.p.1. of zero Lebesgue

measure, as claimed. The set Zω is closed since it is the inverse image of the closed
set {0} under the continuous mapping t 7→Wt. In Corollary 10.1.5 we have further
shown that w.p.1. Zω is unbounded and that the continuous function t 7→ Wt

changes sign infinitely many times in any interval [0, ε], ε > 0, from which it follows
that zero is an accumulation point of Zω.
Next, with As,t = {ω : Zω ∩ (s, t) is a single point}, note that the event that Zω

has an isolated point in (0,∞) is the countable union of As,t over s, t ∈ Q such that
0 < s < t. Consequently, to show that w.p.1. Zω has no isolated point, it suffices to
show that P(As,t) = 0 for any 0 < s < t. To this end, consider the a.s. finite FW

t -
Markov times Rr = inf{u > r : Wu = 0}, r ≥ 0. Fixing 0 < s < t, let τ = Rs noting
that As,t = {τ < t ≤ Rτ} and consequently P(As,t) ≤ P(Rτ > τ). By continuity
of t 7→ Wt we know that Wτ = 0, hence Rτ − τ = inf{u > 0 : Wτ+u −Wτ = 0}.
Recall Corollary 10.1.6 that {Wτ+u − Wτ , u ≥ 0} is a standard Wiener process
and therefore P(Rτ > τ) = P(R0 > 0) = P0(T0 > 0) = 0 (as shown already in
Corollary 10.1.5). �

In view of its strong Markov property, the level sets of the Wiener process inherit
the properties of its zero set.

Corollary 10.3.8. For any fixed b ∈ R and a.e. ω ∈ Ω, the level set Zω(b) is
closed, unbounded, of zero Lebesgue measure and having no isolated points.

Proof. Fixing b ∈ R, b 6= 0, consider the FW
t -Markov time Tb = inf{s > 0 :

Ws = b}. While proving the reflection principle we have seen that w.p.1. Tb is
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finite and WTb = b, in which case it follows from (10.3.4) that t ∈ Zω(b) if and

only if t = Tb + u for u ≥ 0 such that W̃u(ω) = 0, where W̃u = WTb+u −WTb is,
by Corollary 10.1.6, a standard Wiener process. That is, up to a translation by

Tb(ω) the level set Zω(b) is merely the zero set of W̃t and we conclude the proof by
applying Proposition 10.3.7 for the latter zero set. �

Remark 10.3.9. Recall Example 9.2.52 that for a.e. ω the sample function Wt(ω)
is of unbounded total variation on each finite interval [s, t] with s < t. Thus, from
part (a) of Exercise 9.2.43 we deduce that on any such interval w.p.1. the sample
function W·(ω) is non-monotone. Since every nonempty interval includes one with
rational endpoints, of which there are only countably many, we conclude that for
a.e. ω ∈ Ω, the sample path t 7→ Wt(ω) of the Wiener process is monotone in no
interval. Here is an alternative, direct proof of this fact.

Exercise 10.3.10. Let An =
⋂n
i=1{ω ∈ Ω : Wi/n(ω) − W(i−1)/n(ω) ≥ 0} and

A = {ω ∈ Ω : t 7→Wt(ω) is non-decreasing on [0, 1]}.
(a) Show that P(An) = 2−n for all n ≥ 1 and that A = ∩nAn ∈ F has zero

probability.
(b) Deduce that for any interval [s, t] with 0 ≤ s < t non-random the proba-

bility that W·(ω) is monotone on [s, t] is zero and conclude that the event
F ∈ F where t 7→Wt(ω) is monotone on some non-empty open interval,
has zero probability.
Hint: Recall the invariance transformations of Exercise 10.1.1 and that
F can be expressed as a countable union of events indexed by s < t ∈ Q.

Our next objects of interest are the collections of local maxima and points of
increase along the Brownian sample path.

Definition 10.3.11. We say that t ≥ 0 is a point of local maximum of f :
[0,∞) 7→ R if there exists δ > 0 such that f(t) ≥ f(s) for all s ∈ [(t − δ)+, t + δ],
s 6= t, and a point of strict local maximum if further f(t) > f(s) for any such s.
Similarly, we say that t ≥ 0 is a point of increase of f : [0,∞) 7→ R if there exists
δ > 0 such that f((t− h)+) ≤ f(t) ≤ f(t+ h) for all h ∈ (0, δ].

The irregularity of the Brownian sample path suggests that it has many local
maxima, as we shall indeed show, based on the following exercise in real analysis.

Exercise 10.3.12. Fix f : [0,∞) 7→ R.

(a) Show that the set of strict local maxima of f is countable.
Hint: For any δ > 0, the points of Mδ = {t ≥ 0 : f(t) > f(s), for all
s ∈ [(t− δ)+, t+ δ], s 6= t} are isolated.

(b) Suppose f is continuous but f is monotone on no interval. Show that
if f(b) > f(a) for b > a ≥ 0, then there exist b > u3 > u2 > u1 ≥ a
such that f(u2) > f(u3) > f(u1) = f(a), and deduce that f has a local
maximum in [u1, u3].
Hint: Set u1 = sup{t ∈ [a, b) : f(t) = f(a)}.

(c) Conclude that for a continuous function f which is monotone on no in-
terval, the set of local maxima of f is dense in [0,∞).

Proposition 10.3.13. For a.e. ω ∈ Ω, the set of points of local maximum for
the Wiener sample path Wt(ω) is a countable, dense subset of [0,∞) and all local
maxima are strict.
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Remark. Recall that the upper Dini derivative D1f(t) of Definition 10.3.1 is non-
positive, hence finite, at every point t of local maximum of f(·). Thus, Proposition
10.3.13 provides a dense set of points t ≥ 0 where D1Wt(ω) <∞ and by symmetry
of the Brownian motion, another dense set where D1Wt(ω) > −∞, though as we
have seen in Proposition 10.3.2, w.p.1. there is no point t(ω) ≥ 0 for which both
apply.

Proof. If a continuous function f has a non-strict local maximum then there
exist rational numbers 0 ≤ q1 < q4 such that the set M = {u ∈ (q1, q4) : f(u) =
supt∈[q1,q4] f(t)} has an accumulation point in [q1, q4). In particular, for some ra-

tional numbers 0 ≤ q1 < q2 < q3 < q4 the set M intersects both intervals (q1, q2)
and (q3, q4). Thus, setting Ms,r = supt∈[s,r]Wt, if P(Ms3,s4 = Ms1,s2) = 0 for

each 0 ≤ s1 < s2 < s3 < s4, then w.p.1. every local maximum of Wt(ω) is
strict. This is all we need to show, since in view of Remark 10.3.9, Exercise
10.3.12 and the continuity of Brownian motion, w.p.1. the (countable) set of
(strict) local maxima of Wt(ω) is dense on [0,∞). Now, fixing 0 ≤ s1 < s2 <
s3 < s4 note that Ms3,s4 − Ms1,s2 = Z − Y + X for the mutually independent
Z = supt∈[s3,s4]{Wt − Ws3}, Y = supt∈[s1,s2]{Wt − Ws2} and X = Ws3 − Ws2 .

Since g(x) = P(X = x) = 0 for all x ∈ R, we are done as by Fubini’s theorem,
P(Ms3,s4 = Ms1,s2) = P(X − Y + Z = 0) = E[g(Y − Z)] = 0. �

Remark. While proving Proposition 10.3.13 we have shown that for any count-
able collection of disjoint intervals {Ii}, w.p.1. the corresponding maximal values
supt∈IiWt of the Brownian motion must all be distinct. In particular, P(Wq = Wq′

for some q 6= q′ ∈ Q) = 0, which of course does not contradict the fact that
P(W0 = Wt for uncountably many t ≥ 0) = 1 (as implied by Proposition 10.3.7).

Here is a remarkable contrast with Proposition 10.3.13, showing that the Brownian
sample path has no point of increase (try to imagine such a path!).

Theorem 10.3.14 (Dvoretzky, Erdös, Kakutani). Almost every sample path
of the Wiener process has no point of increase (or decrease).

For the proof of this result, see [MP09, Theorem 5.14].
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283–339.
[Lig85] Thomas M. Liggett, An improved subadditive ergodic theorem, Ann. Probab., 13 (1985),

1279-1285.

[Mas90] Pascal Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann.
Probab. 18, (1990), 1269–1283.

[MP09] Peter Mörters and Yuval Peres, Brownian motion, Cambridge University Press, 2010.
[Num84] Esa Nummelin, General irreducible Markov chains and non-negative operators, Cam-

bridge University Press, 1984.

[Oks03] Bernt Oksendal, Stochastic differential equations: An introduction with applications, 6th

ed., Universitext, Springer Verlag, 2003.
[PWZ33] Raymond E.A.C. Paley, Norbert Wiener and Antoni Zygmund, Note on random func-

tions, Math. Z. 37, (1933), 647–668.
[Pit56] E. J. G. Pitman, On the derivative of a characteristic function at the origin, Ann. Math.

Stat. 27 (1956), 1156–1160.

[SW86] Galen R. Shorak and Jon A. Wellner, Empirical processes with applications to statistics,
Wiley, 1986.

[Str93] Daniel W. Stroock, Probability theory: an analytic view, Cambridge university press,

1993.

399



400 BIBLIOGRAPHY

[Wil91] David Williams, Probability with martingales, Cambridge university press, 1991.



Index

λ-system, 14

µ-integrable, 31

π-system, 14

σ-algebra, 7, 177
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σ-algebra, Borel, 10

σ-algebra, Markov, 315, 349

σ-algebra, completion, 14, 298, 299, 306,
313, 314

σ-algebra, countably generated, 10

σ-algebra, cylindrical, 295, 348, 368

σ-algebra, exchangeable, 225

σ-algebra, generated, 10, 20

σ-algebra, induced, 62

σ-algebra, invariant, 236, 259, 275

σ-algebra, optional, 315

σ-algebra, stopped, 185, 234, 315

σ-algebra, tail, 57, 225, 259, 276, 278, 281,

368

σ-algebra, trivial, 8, 160

σ-field, 7

0-1 law, 79

0-1 law, Blumenthal’s, 368

0-1 law, Hewitt-Savage, 225

0-1 law, Kolmogorov’s, 57, 132, 199, 226,

276, 281, 291, 368

0-1 law, Lévy’s, 199, 259

absolutely continuous, 155, 233, 345

absolutely continuous, mutually, 222

algebra, 12

almost everywhere, 20

almost surely, 20

angle-brackets, 203

arc-sine law, 108, 373, 374

arc-sine law, Lévy’s, 379

Bessel process, 330

Bessel process, index, 331

birth processes, 359

Bonferroni’s inequality, 38

Borel function, 18

Borel set, 11

Borel-Cantelli I, 78, 168, 204

Borel-Cantelli II, 79, 204

branching process, 213, 233, 243

Brownian bridge, 312, 347, 380

Brownian motion, 149, 310, 367

Brownian motion, d-dimensional, 330

Brownian motion, absorbed, 373

Brownian motion, drift, 312, 346

Brownian motion, fractional, 312

Brownian motion, geometric, 347

Brownian motion, integral, 312

Brownian motion, level set, 396

Brownian motion, local maximum, 397

Brownian motion, maxima, 371, 378

Brownian motion, modulus of continuity,
394

Brownian motion, nowhere differentiable,

392

Brownian motion, nowhere monotone, 397

Brownian motion, reflected, 373

Brownian motion, standard, 310, 369

Brownian motion, total variation, 340

Brownian motion, zero set, 396

Cantor set, 29, 121

Carathéodory’s extension theorem, 13

Carathéodory’s lemma, 16

Cauchy sequence, 167

central limit theorem, 96, 113, 375

central limit theorem, Donsker’s, 376

central limit theorem, functional, 376

central limit theorem, Lindeberg’s, 96, 381,
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central limit theorem, Lyapunov’s, 101, 388

central limit theorem, Markov additive
functional, 258

central limit theorem, multivariate, 148,
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Cesáro averages, 47, 254

change of variables, 50

Chapman-Kolmogorov equations, 237, 342,
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characteristic function, 117, 143, 361
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compensator, predictable, 203, 207, 331,

385

conditional expectation, 154, 174

cone, convex, 9, 246

consistent, 61, 276

continuous fraction, 278

continuous mapping, 80, 81, 109

continuous modification, 299

continuous, Hölder, 393

convergence almost surely, 24

convergence in Lq , 39, 165

convergence in Lq , weak, 166

convergence in distribution, 104, 141, 375

convergence in measure, 39

convergence in probability, 39, 105, 142,
332

convergence weakly, 376

convergence, bounded, 45

convergence, dominated, 42, 164, 198, 337

convergence, monotone, 33, 41, 164, 337

convergence, of types, 128, 131

convergence, total-variation, 111, 255, 271

convergence, uniformly integrable, 46

convergence, vague, 114

convergence, Vitali’s theorem, 46, 48, 223

convergence, weak, 104, 109, 376

convolution, 68

countable representation, 21, 295

counting process, 137, 359

coupling, 105, 383

coupling, Markovian, 255, 256

coupling, monotone, 100

coupon collector’s problem, 73, 136

covariance, 71

Cramér-Wold device, 146

DeMorgan’s law, 7, 77

density, Cesáro, 17

derivative, Dini, 393, 398

diagonal selection, principle, 115, 323, 336

distribution function, 26, 88, 104, 143

distribution, Bernoulii, 277

distribution, Bernoulli, 53, 92, 100, 119, 134

distribution, beta, 202

distribution, Binomial, 100, 135

distribution, Cauchy, 122, 131

distribution, exponential, 28, 52, 83, 105,

120, 121, 137, 175, 380

distribution, extreme value, 107

distribution, gamma, 70, 81, 137, 139, 362

distribution, geometric, 53, 73, 83, 105,

212, 365

distribution, multivariate normal, 147, 149,
175, 179, 234, 303, 308

distribution, multivariate normal,

non-degenerate, 149

distribution, Newcomb-Benford, 282

distribution, normal, 28, 53, 95, 119, 311

distribution, Poisson, 53, 70, 100, 119, 134,
137

distribution, Poisson thinning, 140, 362

distribution, stable, 374
distribution, support, 30

distribution, triangular, 120

Doob’s convergence theorem, 194, 323
Doob’s decomposition, 186, 331, 338

Doob’s optional stopping, 196, 207, 327
Doob-Meyer decomposition, 331, 338

doubly stochastic, 248

Dynkin’s π − λ theorem, 15

equidistribution theorem, 282

ergodic theorem, Birkhoff, 259, 279

event, 7
event space, 7

event, shift invariant, 236, 267
expectation, 31

extinction probability, 214

Fatou’s Lemma, 164
Fatou’s lemma, 42

Feller property, 352

Feller property, strong, 265
field, 12

filtration, 56, 177, 229, 343
filtration, augmented, 313

filtration, canonical, 178, 314

filtration, continuous time, 313, 318
filtration, interpolated, 314, 321, 343

filtration, left, 313

filtration, left-continuous, 314
filtration, right, 313

filtration, right-continuous, 313, 331

finite dimensional distributions, 149, 231,
293, 344

finite dimensional distributions, consistent,

294, 343
Fokker-Planck equation, 360

Fubini’s theorem, 63, 307
function, absolutely continuous, 200

function, continuous, 109, 169, 265
function, Hölder continuous, 299
function, harmonic, 238

function, indicator, 18

function, Lebesgue integrable, 28, 50, 307
function, Lebesgue singular, 29

function, Lipschitz continuous, 299
function, measurable, 16
function, non-negative definite, 308

function, Riemann integrable, 51

function, semi-continuous, 22, 110, 183
function, separable, 304

function, simple, 18, 169
function, slowly varying, 132
function, step, 354

function, sub-harmonic, 238
function, super-harmonic, 183, 238, 247
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Galton-Watson trees, 214, 218

Girsanov’s theorem, 222, 340

Glivenko-Cantelli theorem, 88, 380

graph, weighted, 249

Hahn decomposition, 157

harmonic function, 370

Helly’s selection theorem, 114, 257

hitting time, first, 180, 210, 317, 329

hitting time, last, 180

holding time, 357, 359

hypothesis testing, 90

i.i.d., 72

independence, 54

independence, P, 54

independence, mutual, 55, 146

independence, pairwise, 100

independence, stochastic processes, 307

inequality, Lp martingale, 191, 322, 335

inequality, Cauchy-Schwarz, 37

inequality, Chebyshev’s, 35

inequality, Doob’s, 188, 195, 321

inequality, Doob’s up-crossing, 192, 323

inequality, Doob’s, second, 189

inequality, Hölder’s, 37

inequality, Jensen’s, 36, 163, 182

inequality, Kolmogorov’s, 91, 106

inequality, Markov’s, 35

inequality, Minkowski’s, 37

inequality, Ottaviani’s, 191, 378

inequality, Schwarz’s, 168

inequality, up-crossing, 193

inner product, 168, 308

integration by parts, 65

invariance principle, Donsker, 376, 385

Kakutani’s theorem, 218

Kesten-Stigum theorem, 217

Kochen-Stone lemma, 79

Kolmogorov’s backward equation, 346, 360

Kolmogorov’s cycle condition, 249

Kolmogorov’s extension theorem, 61, 232,

296

Kolmogorov’s forward equation, 360, 364

Kolmogorov’s three series theorem, 102,

197, 205

Kolmogorov-Centsov theorem, 300

Kolmogorov-Smirnov statistic, 381

Kronecker’s lemma, 92, 204, 205

Lévy’s characterization theorem, 340

Lévy’s continuity theorem, 126, 145

Lévy’s downward theorem, 223

Lévy’s inversion theorem, 121, 128, 144,

363

Lévy’s upward theorem, 198

ladder, heights, 283

ladder, times, 283

Laplace transform, 81, 116, 372

law, 25, 60, 144

law of large numbers, strong, 71, 82, 87, 92,
191, 207, 224, 252, 253, 258, 275, 282

law of large numbers, strong, non-negative

variables, 85

law of large numbers, weak, 71, 75

law of large numbers, weak, in L2, 72

law of the iterated logarithm, 84, 390

law, exchangeable, 225

law, joint, 60, 63, 139

law, size biased, 383

law, stochastic process, 232

Lebesgue decomposition, 155, 157, 219

Lebesgue integral, 31, 174, 230, 343

Lebesgue measure, 12, 15, 28, 34, 155, 278

Lenglart inequality, 188, 340

likelihood ratio, 221

lim inf, 77

lim sup, 77

local maximum, 397

longest common subsequence, 287

longest increasing subsequence, 289

map, measure preserving, 275

map, shift, 234, 276

mapping, ergodic, 277

mapping, mixing, 278

Markov chain, 229

Markov chain, ψ-irreducible, 263

Markov chain, aperiodic, 254, 271, 278

Markov chain, atom, 261

Markov chain, birth and death, 234, 244,

249, 251

Markov chain, continuous time, 354

Markov chain, cyclic decomposition, 258,
259

Markov chain, Ehrenfest, 239

Markov chain, Feller, 265

Markov chain, first entrance decomposition,
238

Markov chain, H-recurrent, 266

Markov chain, homogeneous, 229

Markov chain, irreducible, 242, 263, 278

Markov chain, last entrance decomposition,

238

Markov chain, law, 231

Markov chain, minorization, 260

Markov chain, null recurrent, 259

Markov chain, O-recurrent, 267

Markov chain, O-transient, 267

Markov chain, open set irreducible, 265

Markov chain, period, 254, 271

Markov chain, positive H-recurrent, 270

Markov chain, positive recurrent, 251, 281

Markov chain, recurrent, 242, 247, 266,
278, 285

Markov chain, recurrent atom, 260
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Markov chain, renewal, 233, 243, 249, 258

Markov chain, reversible, 248, 249

Markov chain, stationary, 236, 257, 276,

278

Markov chain, transient, 242, 247

Markov class, closed, 239, 263, 278

Markov class, irreducible, 239, 263, 363

Markov occupation time, 240, 252, 259

Markov process, 313, 343

Markov process, birth and death, 364

Markov process, Brownian, 339, 347

Markov process, generator, 346, 359, 364

Markov process, homogeneous, 343, 349

Markov process, jump parameters, 356

Markov process, jump rates, 356

Markov process, jump, explosive, 359

Markov process, jump, pure, 354

Markov process, law, 345

Markov process, O-recurrent, 331

Markov process, O-transient, 331

Markov process, stationary, 347

Markov process, strong, 349, 368

Markov property, 161, 234, 348

Markov property, strong, 234, 349

Markov semi-group, 237, 342

Markov semi-group, Feller, 352

Markov state, absorbing, 243

Markov state, accessible, 239, 263, 363

Markov state, aperiodic, 254, 262

Markov state, intercommunicate, 239, 277,

363

Markov state, null recurrent, 250, 253, 364

Markov state, O-recurrent, 267, 285

Markov state, O-transient, 267

Markov state, period, 254

Markov state, positive recurrent, 250, 262,

364

Markov state, reachable, 265, 267

Markov state, recurrent, 240, 245, 363

Markov state, transient, 240, 363

Markov time, 315, 327, 349, 369

Markov, accessible set, 263

Markov, additive functional, 258, 282

Markov, Doeblin chain, 262

Markov, equivalence class property, 250

Markov, H-irreducible, 264

Markov, Harris chain, 266

Markov, initial distribution, 230, 344

Markov, jump process, 304, 306

Markov, meeting time, 255

Markov, minorization, 260

Markov, occupation ratios, 253

Markov, small function, 262

Markov, small set, 264

Markov, split chain, 260

martingale, 178, 239, 381

martingale difference, 178, 195

martingale differences, bounded, 389

martingale transform, 183, 206

martingale, L2, 179, 331

martingale, Lp, 201

martingale, Lp, right-continuous, 325

martingale, backward, 222, 321

martingale, Bayes rule, 222, 320

martingale, binary splitting, 200

martingale, continuous time, 318

martingale, cross variation, 341

martingale, differences, 385

martingale, Doob’s, 198, 208, 324

martingale, Gaussian, 179

martingale, interpolated, 321, 325

martingale, local, 186, 336

martingale, orthogonal, 341

martingale, product, 180, 218

martingale, reversed, 222, 321

martingale, right closed, 324

martingale, square-integrable, 179, 331

martingale, square-integrable, bracket, 341

martingale, square-integrable, continuous,

331

martingale, sub, 181

martingale, sub, continuous time, 318

martingale, sub, last element, 324, 327, 331

martingale, sub, reversed, 222, 224, 327

martingale, sub, right closed, 331

martingale, sub, right-continuous, 321

martingale, sup, reversed, 326

martingale, super, 181, 239

martingale, super, continuous time, 318

martingale, uniformly integrable, 198, 324

maximal inequalities, 188

mean, 52

measurable space, 8

measurable function, 18

measurable function, bounded, 225, 229

measurable mapping, 18

measurable rectangles, 59, 276

measurable set, 7

measurable space, isomorphic, 21, 62, 173,
226, 231, 296, 343, 345

measurable space, product, 11

measure, 8

measure space, 8

measure space, complete, 14

measure, σ-finite, 15, 280

measure, completion, 28, 50, 155

measure, counting, 112, 263

measure, excessive, 245, 247, 257, 364

measure, finite, 8

measure, invariant, 236, 245, 347

measure, invariant probability, 236, 250,

270, 283, 347, 361

measure, invariant, unique, 246

measure, maximal irreducibility, 263

measure, mutually singular, 156, 221, 246,
260
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measure, non-atomic, 9, 12

measure, outer, 16

measure, positive, 236

measure, probability, 8

measure, product, 59, 60

measure, regular, 11

measure, restricted, 49, 64

measure, reversible, 248, 364

measure, shift invariant, 236, 309

measure, signed, 8, 157

measure, support, 30, 157, 245

measure, surface of sphere, 69, 129

measure, tight, 113

measure, uniform, 12, 47, 70, 120, 127, 129,

139, 277

measures, uniformly tight, 113, 125, 143,

145, 265, 376

memory-less property, 212

memoryless property, 138, 357

merge transition probability, 261

modification, 299

modification, continuous, 300

modification, RCLL, 304, 325, 338

modification, separable, 304

moment, 52

moment generating function, 122

moment problem, 113, 122

monotone class, 17

monotone class theorem, 19, 64, 349, 350

monotone class theorem, Halmos’s, 17

monotone function, 332

network, 249

non-negative definite matrix, 147

norm, 167

occupancy problem, 74, 135

occupation time, 379

operator, linear, 283

operator, non-expanding, 283

operator, non-negative, 283

optional time, 315, 327, 349

order statistics, 139, 140, 380

Ornstein-Uhlenbeck process, 312, 347

orthogonal projection, 169

parallelogram law, 168

partial sums, recurrent, 284

passage time, 371, 396

percolation, first passage, 290

permutation, random, 289

point of increase, 397

point process, 137

point process, Poisson, 137, 289, 298

Poisson approximation, 134

Poisson process, 137, 298, 319, 340

Poisson process, arrival times, 137

Poisson process, compensated, 319, 320,
333, 340

Poisson process, compound, 361

Poisson process, drift, 346

Poisson process, excess life time, 138

Poisson process, inhomogeneous, 137, 298

Poisson process, jump times, 137

Poisson process, rate, 137

Poisson process, superposition, 141

Poisson process, time change, 298

Poisson, thinning, 140

polarization, 341

Portmanteau theorem, 110, 141, 376

pre-visible, 183

predictable, 183, 186, 189, 331, 338

probability density function, 28, 144, 155,
171, 372

probability density function, conditional,
171

probability density function, joint, 58

probability space, 8

probability space, canonical, 232, 344

probability space, complete, 14

Prohorov’s theorem, 114, 143, 376

quadratic variation, predictable, 331

Radon-Nikodym derivative, 155, 218, 219,

222, 233, 260, 345, 383

Radon-Nikodym theorem, 155

random field, 300

random matrices, product, 287

random variable, 18

random variable, P-degenerate, 30, 128,
131

random variable, P-trivial, 30

random variable, integrable, 32

random variable, lattice, 128

random variables, exchangeable, 225

random vector, 18, 143, 147, 308

random walk, 129, 178, 183, 187, 196,
210–212, 233, 244, 249, 267, 375

random walk, simple, 108, 148, 179, 181,

211, 234, 244, 259, 279

random walk, simple, range, 379

random walk, symmetric, 178, 180, 211, 236

record values, 85, 92, 101, 213

reflection principle, 108, 180, 371, 378

regeneration measure, 261

regeneration times, 261, 369

regular conditional probability, 171, 172

regular conditional probability distribution,

172, 205

renewal theory, 89, 106, 137, 212, 233, 241,
253, 283

renewal times, 89, 233, 241, 253

RMG, 222, 321

ruin probability, 210, 330

sample function, continuous, 300, 310, 331

sample function, RCLL, 304
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sample function, right-continuous, 321

sample space, 7

Scheffé’s lemma, 43

set function, countably additive, 8, 296

set function, finitely additive, 8

set, T-invariant, 275

set, almost invariant, 275

set, boundary, 110

set, continuity, 110

set, cylinder, 61

set, Lebesgue measurable, 50

set, negative, 158

set, negligible, 24

set, null, 14, 299, 313, 331

set, positive, 158

Skorokhod representation, 27, 105, 380, 382

Slutsky’s lemma, 106, 128, 380, 386

space, Lq , 32, 166

split mapping, 261

square-integrable, 179

srw, 310

stable law, 131

stable law, domain of attraction, 131

stable law, index, 131

stable law, skewness, 132

stable law, symmetric, 131

standard machine, 33, 48, 50

state space, 229, 342

Stirling’s formula, 108

stochastic integral, 321, 342

stochastic process, 177, 229, 293, 343

stochastic process, α-stable, 374

stochastic process, adapted, 177, 229, 313,
318, 343

stochastic process, auto regressive, 389

stochastic process, auto-covariance, 308,

311

stochastic process, auto-regressive, 234, 273

stochastic process, Bessel, 330

stochastic process, canonical construction,

293, 295

stochastic process, continuous, 300

stochastic process, continuous in

probability, 306

stochastic process, continuous time, 293

stochastic process, DL, 338

stochastic process, Gaussian, 179, 308, 310

stochastic process, Gaussian, centered, 308

stochastic process, Hölder continuous, 300,
337

stochastic process, increasing, 331

stochastic process, independent increments,
298, 309, 310, 319, 340, 345, 361

stochastic process, indistinguishable, 299,

332, 335

stochastic process, integrable, 178

stochastic process, interpolated, 314, 321,
343

stochastic process, isonormal, 308

stochastic process, law, 236, 276, 297, 309,
312

stochastic process, Lipschitz continuous,

300

stochastic process, mean, 308

stochastic process, measurable, 305

stochastic process, progressively

measurable, 314, 332, 338, 349

stochastic process, pure jump, 354

stochastic process, sample function, 293

stochastic process, sample path, 137, 293

stochastic process, separable, 304, 306

stochastic process, simple, 342

stochastic process, stationary, 236, 276,

309, 312, 347

stochastic process, stationary increments,
310, 345, 361

stochastic process, stopped, 185, 316, 328

stochastic process, supremum, 305

stochastic process, variation of, 332

stochastic process, weakly stationary, 309

stochastic process, Wiener, 310, 319

stochastic process, Wiener, standard, 310

stochastic processes, canonical

construction, 302

stopping time, 180, 234, 315, 327, 329, 350

sub-space, Hilbert, 168

subsequence method, 85, 390

symmetrization, 127

take out what is known, 161

tower property, 160

transition probabilities, stationary, 342

transition probability, 174, 229, 342

transition probability, adjoint, 248

transition probability, Feller, 265

transition probability, jump, 356

transition probability, kernel, 233, 345, 346

transition probability, matrix, 233

truncation, 74, 101, 134

uncorrelated, 70, 71, 75, 179

uniformly integrable, 45, 166, 207, 324

up-crossings, 192, 323

urn, B. Friedman, 202, 211

urn, Pólya, 202

variance, 52

variation, 332

variation, quadratic, 332

variation, total, 111, 332, 397

vector space, Banach, 167

vector space, Hilbert, 168, 308

vector space, linear, 167

vector space, normed, 167

version, 154, 299

Wald’s identities, 211
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Wald’s identity, 162

weak law, truncation, 74

Wiener process, maxima, 371
Wiener process, standard, 369

with probability one, 20
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