We discuss transience for reversible MC with countable state space $X = Y$, transition prob $p(x, y)$. irreducible.

We say that p is reversible wrt measure, $\pi : X \rightarrow \mathbb{R}_{\geq 0}$

s.t. $\forall (x, y)$ $\pi(x)p(x, y) = \pi(y)p(y, x)$

We let $c(x, y) := \pi(x)p(x, y)$

$c(x, y) = c(y, x)$

Note that $\sum_y c(x, y) = \pi(x)$

$p(x, y) = \frac{1}{\pi(x)} \sum_y c(x, y)$

In other words any rev MC Markov Chain is a RW on a weighted network $\mathcal{G}(\mathbb{R}_+, \text{V}, \text{E}, c)$
Given $A, B \in V$ disjoint, define $\forall x$

$$
\varphi(x) = \mathbb{P}_x(\tau_A < \tau_B) \quad \text{if } \tau_A \land \tau_b < \infty
$$

$$
= 0 \quad \text{otherwise}
$$

(equivalently, $\varphi(x) = \lim_{n \to \infty} \mathbb{P}_x(\tau_A < (\tau_B \land n))$)

Note that φ is harmonic on $V \setminus (A \cup B)$. Indeed,

$$
\varphi(x) = 1 \quad \forall x \in A, \quad = 0 \quad \forall x \in B
$$

$$
\forall x \in V \setminus (A \cup B)
$$

$$
\varphi(x) = \mathbb{E}_x \mathbb{P}_{x_1}(\tau_A < (\tau_B \land n))
$$

$$
\lim_{n \to \infty}
$$

$$
= \lim_{n \to \infty} \sum_y p(x, y) \mathbb{P}_y(\tau_A < (\tau_B \land n))
$$

$$
= \sum_y p(x, y) \varphi(y)
$$
Further if \(V \setminus (A \cup B) =: W \) is finite then \(\phi \) is unique because of the following Max. Principle

Lemma (Max principle) If \(W \) is unique then the max. is at

Lemma If \(\phi \) is harmonic on the finite set \(W \subseteq V \), then

\[
\max_{x \in W} \phi(x) = \max_{x \in \mathcal{W}} \phi(x) \quad \text{in } W^c
\]

where \(\mathcal{W} \) is the set of nodes with at least one neighbor in \(W \).

Proof by contradiction if max "\(\phi \)"

is achieved on \(U \subseteq W \)

then \(\exists x \in U \)

\[
\bar{\phi} = \phi(x) = \sum_y \xi(xy) \phi(y)
\]

hence \(U \) must contain all neighbors of
Corollary: If \(\varphi_1, \varphi_2 \) are harmonic on \(W \) and coincide on \(\partial W \), they coincide on \(W \).

Proof: Consider \(\varphi_1 - \varphi_2 \).

Connection with electrical networks. (These are also physical objects but we give here rigorous defns.)

An electrical network is a weighted graph \(G = (V, E, c) \). Given \(W \subset V \)

We say that \(i : E \to \mathbb{R}, i(x,y) = -i(y,x) \)

\(i \) is a current on \(W \), \(\mathbf{v} : W \to \mathbb{R} \)

\(\mathbf{v} \) are voltages on \(W \).

If \(\forall (x,y) \in E \)

\[\sum_{(y,z) \in E} i(y,z) = 0 \]

and \((x,y) \in E \Rightarrow i(x,y) = \frac{\mathbf{v}(x) - \mathbf{v}(y)}{r(x,y)} = c(x,y) (\mathbf{v}(x) - \mathbf{v}(y)) \)
Lemma If \((v, i)\) are current/voltages on \(W\), then \(v\) is harmonic on \(W\) and vice versa (where \(i(x, y) = c(x, y)(v(k) - v(y))\))

Rmk Typically we have \(W = V \setminus (A \cup B)\) and set \(v(x) = v_+\) for \(x \in A\), \(v_+\), \(v(x) = 0\) for \(x \in B\).

The effective \(G_{A, B}\), graph obtained from \(G\) collapsing \(A\) to a single vertex and \(B\) to "".

- If \(\phi\) is harmonic on \(W\) in \(G\), it is harmonic on \(W\) in \(G_{A, B}\).
- Effective conductance

\[C(A \leftrightarrow B) = \text{current flowing across any cut } t \text{ between } A \text{ and } B\]
when \(e \in \mathcal{E} \) we have \(v(x) = 1 \) \(\forall x \in A \)
\(v(x) = 0 \) \(\forall x \in B \)

If \(A = \{ e \} \) we write \(\mathcal{L} (e \leftrightarrow B) \).

Def \(S \subseteq \mathcal{E} \) separates \(A \) and \(B \)
in \(G \) if any path btw \(A \) and \(B \) contains at least one edge in \(S \).

Lemma Assume \(\tau_B < \infty \) a.s. Then
\[
P_e (\tau_e^+ > \tau_B) = \frac{1}{\pi(e)} \mathcal{L} (e \leftrightarrow B) -
\]

Proof
\[
P_e (\tau_e^+ > \tau_B) = \sum_x p(e,x) P_x (\tau_e > \tau_B)
\]
\[
= \sum_x p(e,x) \left[1 - P_x (\tau_B > \tau_e) \right]
\]
\[
= \sum_x p(e,x) \left[1 - \frac{q(x)}{q(e)} \right]
\]

where \(q \) is harmonic on \(V \setminus (A \cup B) \)

unique

\(A = \{ e \} \)
\[P_a(\tau^+_e \rightarrow \tau^+_B) = \frac{1}{\varphi(a) \pi(a)} \sum_x \xi(a,x) \left[\varphi(x) - \varphi(x') \right] \]

\[= \frac{1}{\pi(a)} \sum_x \xi(a,x) = \frac{1}{\pi(a)} \hat{\varphi}(a \rightarrow B) \]

\[= \frac{1}{\pi(a)} \mathcal{E}(a \leftrightarrow B) \]

Def Given \(\theta : \hat{E} \rightarrow \mathbb{R} \) antisymmm. (a flow)

its energy is

\[\mathcal{E}(\theta) := \sum_{(x,y) \in E} \theta^{ij \Delta^2} \]

\[\mathcal{E}(\theta) := \sum_{(x,y) \in E} \rho(x,y) \theta^{(x,y)^2} \]

[Here \(\hat{E} \subset V \times V \):]

\[\hat{E} = \{(x,y), x,y \in V, \{x,y\} \in E^2 \} \]

directed edges]
Given \(\varphi : V \to \mathbb{R} \), its energy is (abuse of notation)

\[
\mathcal{E}(\varphi) = \frac{1}{2} \sum_{(x,y) \in E} c(x,y)(\varphi(x) - \varphi(y))^2
\]

Lemma: If \(v \) are the voltages st \(v|_A = 1, \ v|_B = 0 \), then \(\forall \varphi \) with same b.c. \(\mathcal{E}(\varphi) \geq \mathcal{E}(v) = \mathcal{E}(\mathcal{A} \leftrightarrow \mathcal{B}) \)

Proof: Call \(\mathcal{E}(\varphi, v) = \sum_{(x,y) \in E} (\varphi(x) - v(x))(\varphi(y) - v(y)) \)

Sufficient to show \(\mathcal{E}(\varphi, v) = 0 \) \(\forall \varphi \) such that \(\varphi|_A = 1, \ \varphi|_B = 0 \), \(\mathcal{W} = V \setminus (A \cup B) \)

\[
\mathcal{E}(\varphi, v) = \sum_{(x,y) \in E} (\varphi(x) - v(x))(\varphi(y) - v(y)) = \sum_{x \in \mathcal{W}} \frac{1}{2} \sum_{y \in \mathcal{W}} c(x,y)(v(x) - v(y)) = 0
\]
\[E_{\text{all}} = \sum_{x \in A} \sum_{y : (x,y) \in E} C(x,y) (v(x) - v(y)) \]

\[E(v,v) = \sum_{x \in A} \sum_{y : (x,y) \in E} C(x,y) (v(x) - v(y)) = \sum_{x \in A} \sum_{y \in A} \epsilon(x,y) i(x,y) = I(A \leftrightarrow B) \]

Corollary If \(c_1 \leq c_2 \) are two sets of conductances, then

\[E_{c_1}(A \leftrightarrow B) \leq E_{c_2}(A \leftrightarrow B) \]

Assume \(G = (V,E,c) \) is infinite network and let \(V_n \uparrow V \), \(|V_n| = n \)

Define \(G_n \) by “contracting all vertices in \(V \setminus V_n \) in a single one \(b_n \)
Remark: $C_{G_n}(a \leftrightarrow b_n)$ is monotone non-decreasing/increasing.

and

$$C(a \leftrightarrow \infty) = \lim_{n \to \infty} C_{G_n}(a \leftrightarrow b_n)$$

Then $C(a \leftrightarrow \infty)$ does not depend on the sequence G_n.

Proof: Via hitting times interpretation or monotonicity principle.

Theorem: $G = (V,E,c)$ is recurrent/transient iff $C(a \leftrightarrow \infty) > 0$.
Lemma. Let i be the current flow from $a \leftrightarrow B$ for $v(a) = 1$, $v_B = 0$.
Then $\forall \theta$ for any other flow θ
$s.t. \ d \theta = d \ i$

$$d \theta(x) := \sum_{(x,y) \in E} \theta(x,y)$$

we have $E(\theta) \geq E(i) = C(a \leftrightarrow B)$

vice versa if θ, i are unit flows

$$E(\theta) \theta \geq E(i) = \frac{1}{C(a \leftrightarrow B)}$$

Proof. Exercise.

Thm. (V,E,C) is transient iff
there exists a unit flow $i \Rightarrow \infty$
with finite energy.
Thm. For $d \geq 3$, SRW on \mathbb{Z}^d is transient.

Proof. By monotonicity, sufficient to consider $d = 3$, $\alpha = 0$.

Construct

$$\theta(x,y) = \mathbb{P}(\theta(x,y) \in R)$$

where R is a random simple path on \mathbb{Z}^d constructed as follows:

Draw $v \sim \text{Unif}(S^2)$. Let $r_0 = R_{\geq 0}$ be the ray along direction v.

and R a path from r_0 in \mathbb{Z}^3, measured on v s.t.

$$d(R, r_0) \leq C$$

for a constant C.

$$(d(R, r_0) = \max_{x \in R} \min_{y \in R_0} ||x - y||_2)$$