## Stat 375 Inference in Graphical Models

## Homework 1

Due - 04/09/2012

Please return this homework in class or to Packard 272.

Given a graph $G=(V, E)$, an independent set of $G$ is a subset $S \subseteq V$ of the vertices such that if $i, j \in S$ then $(i, j) \notin E$. We let $\operatorname{IS}(G)$ denote the set of independent sets of $G$, and $Z(G)=|\operatorname{IS}(G)|$ denote its size. We consider the uniform measure

$$
\begin{equation*}
\mu_{\mathrm{IS}, G}(S)=\frac{1}{Z(G)} \mathbb{I}(S \in \operatorname{IS}(G)) \tag{1}
\end{equation*}
$$

(1) The set $S \subseteq V$ can be encoded by a binary vector $x \in\{0,1\}^{V}$ letting $x_{i}=1$ if and only if $i \in S$. Denote by $\mu_{G}(x)$ the probability distribution induced on this vector when $S \sim \mu_{\mathrm{IS}, G}$. Show that $\mu_{G}(x)$ is a pairwise graphical model on $G$.
(2) Let $L_{n}$ be the line graph with $n$ vertices, i.e. the graph with vertex set $V\left(L_{n}\right)=\{1,2,3, \ldots, n\}$ and edge set $E\left(L_{n}\right)=\{(1,2),(2,3), \ldots,(n-1, n)\}$. Derive a formula for $Z\left(L_{n}\right)$.
[Hint: Write a recursion over $n$, and solve it by matrix representation.]
(3) With the above definitions, derive a formula for $\mu_{L_{n}}\left(x_{i}=1\right), i \in\{1, \ldots, n\}$. Plot $\mu_{L_{n}}\left(x_{i}=1\right)$ versus $i$ for $n=11$. Describe the main features of this plot. Can you explain them intuitively?
[Hint: Use the same recursion as in point (2).]
(4) The same measure $\mu_{L_{n}}(x)$ can be described as a Bayesian network. Using the results in point (3), write the conditional probability distributions for such a network.

