Stat 375 Inference in Graphical Models

Homework 2

Due - 4/16/2012

Please return this homework in class or to Packard 272.

As in the first homework, we will consider the uniform measure over the independent sets of a graph $G=(V, E)$. Explicitly, this is the the measure over $x \in\{0,1\}^{V}$ defined by

$$
\begin{equation*}
\mu_{G}(x)=\frac{1}{Z(G)} \prod_{(i, j) \in E} \mathbb{I}\left(\left(x_{i}, x_{j}\right) \neq(1,1)\right) \tag{1}
\end{equation*}
$$

Specifically, we consider $G=T_{k, \ell}$ to be the rooted regular tree with ℓ generations and branching factor k. Hence the root has k descendants and each other node has one ancestor and k descendants (with the exception of the leaves). The number of vertices is $\left(k^{\ell+1}-1\right) /(k-1)$, and $T_{k, \ell=0}$ is the graph consisting only of the root.

Denote by \varnothing the root of $T_{k, \ell}$.
(1) Denote by $Z_{\ell}=Z\left(T_{k, \ell}\right)$ the number of independent sets of $G=T_{k, \ell}$. Let $Z_{\ell}(0)$ be the number of independent sets $T_{k, \ell}$ such that $x_{\varnothing}=0$, and by $Z_{\ell}(1)$ the number of independent sets such that $x_{\varnothing}=1$.

Of course $Z_{0}(0)=Z_{0}(1)=1$. Derive a recursion expressing $\left(Z_{\ell+1}(0), Z_{\ell+1}(1)\right)$ as a function of $\left(Z_{\ell}(0), Z_{\ell}(1)\right)$.
(2) Using the above, derive a recursion for the probability that the root belongs to a uniformly random independent set. Explicitly, derive a recursion for

$$
\begin{equation*}
p_{\ell}=\mu_{T_{k, \ell}}\left(\left\{x_{\varnothing}=1\right\}\right) . \tag{2}
\end{equation*}
$$

(3) Program this recursion and plot p_{ℓ} as a function of $\ell \in\{0, \ldots, 50\}$ for four values of k, e.g. $k \in$ $\{1,2,3,10\}$. Comment on the qualitatative behavior of these plots. Can you prove any of your observations? [Answering to the last question is optional.]

